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Phase diagram of the Ising model on percolation clusters
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Miron Kaufman and Jimmy E. Touma*
Department ofPhysics, Cleueland State Uniuersity, Cleueland, Ohio 44115

(Received 12 November 1993)

The annealed Ising magnet on percolation clusters is studied by means of a mapping into a Potts-Ising
model and with the Migdal-Kadanoff renormalization-group method. The phase diagram is determined
in the three-dimensional parameter space of the Ising coupling E, the bond-occupation probability p,
and the fugacity q, which controls the number of clusters. Three phases are identified: percolating fer-

romagnetic, percolating paramagnetic, and nonpercolating paramagnetic. For large q the phase diagram
includes a multicritical point at the intersection of the Ising critical line and the percolation critical line.
In the case of random bond percolation (q =1) the Ising critical line is: p(1 —e ~)=1—exp( —2L&),
where L& is the pure-Ising-model critical coupling.

I. INTRODUCTION II. MODEL AND EXACT RESULTS

The Ising model defined on percolation clusters is
relevant to a variety of physical phenomena such as
phase separation in a binary fluid mixture in a porous
medium' and amorphous magnets. In this paper we ana-
lyze the annealed Ising model on percolation clusters; i.e.,
we assume that the relaxation times for spin
configurations and for percolation configurations are
short compared to the characteristic time of measure-
ment. The percolation part of this model is a generaliza-
tion of the random-bond percolation which includes a
fugacity q that controls the number of clusters. This gen-
eralized percolation model is employed in Monte Carlo
and renormalization-group studies of the Potts model.

In Sec. II we define the model and present some exact
results. In the particular case of the square lattice the Is-
ing critical line for the Ising model on random-bond
(fugacit q = 1) percolation clusters is p (1—e «)
=2— 2, where E is the Ising coupling constant and p is
the bond-occupation probability.

In Sec. III we present a numerical analysis of the mod-
el in two-dimensions (2D) based on the Migdal-Kadanoff
renormalization-group technique. Though only approxi-
mate for the 2D Bravais lattice this technique is exact
for a hierarchical lattice. Hence the exact results
presented in Sec. II are satisfied by this technique thus
enhancing our confidence that the numerical findings are
qualitatively correct. We present the phase diagram in
the Ising coupling E, the bond-occupation probability p
plane for fixed fugacity q. For all q we find three phases:
the paramagnetic nonpercolating, the paramagnetic per-
colating, and the ferromagnetic percolating. If q is small
enough the Ising critical line and the percolation critical
line intersect at zero temperature. If q is sufBciently large
the two lines meet at a multicritical point at finite tern-
perature. In this case the ferromagnetic percolating
phase can be accessed direct1y from the paramagnetic
nonpercolating phase by crossing a line in the universali-
ty class of the 2q-state Potts model.

The summary of our findings as well as a critique are
presented in Sec. IV.

where (i,j ) denotes a pair of sites connected by a bond.
The partition function for the annealed Ising magnet on
percolation clusters is

Z y ~ cw BZconf
(2)

where 8 is the number of bonds, C is the number of clus-
ters including single-site clusters, and w =p/(1 —p).

By using the Kasteleyn-Fortuin expansion for the
Potts model we map the model defined in Eqs. (1) and (2)
into a Potts-Ising model. At each site i there is the Potts
spin cr; taking q values and the Ising spin s; taking two
values. The partition function is

Z=Tr(,
}
Tr( } g [1+5(o;,oj)w exp[K(ssi —1)]],

(i,j )

(3)

where 5 is the Kronecker delta and g is a product over
all lattice edges. By writing the factor on the right-hand
side of Eq. (3) as a Boltzmann factor

1+5(cr, , tr )w exp[E. (s;s- —1)]

=exp[J5(o;,o, )+L5(o;,at )s;s, ], (4)

we find

J=
—,'ln[(1+ w)(1+ we )],

L =
—,'ln[(1+w)/(1+we )] .

At each site i of a lattice there is an Ising spin s; =+1.
The lattice sites are connected by bonds according to the
generalized bond-percolation model: a bond is present
with a probability p and percolation configurations with
the same number of bonds are distinguished according to
the number of clusters C as the configuration probability
is proportional to q . For a given percolation
configuration the partition function of the Ising model is

Zl""'=Tr(, }
exp E g(,. ,}(s;s, —1)
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The model is now given by the Hamiltonian

H—lke T= g [J5(o;,o~ )+L5(o;,o~ )s;s, ] .
(i,j)

(6)

Z,', =[Tr~ Tr, Za, zk ]

The following recursion equations are obtained by using
Eqs. (11)and (12):

Certain exact results can be obtained by studying the
Ising-Potts Hamiltonian of Eq. (6). If K =0, i.e., infinite
temperature, from Eq. (5) it follows that L =0, and the
model reduces to the q-state Potts model. The Potts
critical coupling for the square lattice is (Ref. 5)
Jc=ln(1+v q ). Equation (5) then implies wc=&q or
the threshold bond-occupation probability is

pc =&q /(1+ &q ). For the random-bond percolation

q =1 and thus pc= —,'.
If K = ~, or zero temperature, Eqs. (5) imply J =L,

and thus the Hamiltonian becomes

H/k—AT= g 2J5(o;, oj)5( ;s, s),
(i,j )

because 1+s;sj=25(s;,sj). This is the 2q-state Potts
model. For the square lattice the critical coupling is
Jc=—,'ln(1+v 2q ) which corresponds to wc=&2q or
pc=~2q /(1+&2q ). For the random-bond percolation

q =1 and thus pc=2 —~2.
If p=1 or w= ~ from Eq. (5) we find J= ~ and

L =K. Since 5(o';, oj)=1 if J=ao, the Hamiltonian
reduces to (apart from an additive constant) the pure Is-
ing model: H/k&T—=QKs;s . The critical coupling
for the square lattice is Kc =—,

' ln(1+ &2).
For the random-bond percolation q =1, i.e., the Potts

spin takes one value. Consequently 5(o;,o )=1 and the
Hamiltonian of Eq. (6} becomes the Ising Hamiltonian:

HlkttT=Q— (Ls, s, +J). We find by using Eq. (5) the
Ising critical line in the parameter w, E plane:

exp(2Lc ) =(1+w)/(1+ we ),
where Lc is the critical coupling of the pure Ising model.
In the parameter plane of bond-occupation probability
p=w/(1+w) and r =1—e this equation becomes

w'=[1+ —,'(w +w e )/(q+w+we )] —1,

w'e =[1+w e /(q+w+we )] —1 .

(13)

(14)

The phase diagram in the parameter plane of
r =1—e and p =w/(1+w) at fixed q is determined by
following the recursion Eqs. (13) and (14). For all q there
are three phases: (i) the nonpercolating paramagnetic
phase governed by the fixed point at r =0 (K =0 or
T= ~) and p =0; (ii) the percolating paramagnetic phase
governed by the fixed point at r =0 (K =0 or T= co) and

p =1; (iii) the percolating ferromagnetic phase governed
by the fixed point at r =1 (K = ~ or T =0) and p = l.
The ferromagnetic phase is always inside the percolating
phase. In other words, there is no nonpercolating fer
romagnetic phase. This result is consistent with our ex-
pectation that long-range order (ferromagnetism) requires
an infinite percolating cluster.

For all q values the percolating ferromagnetic phase is
separated from the percolating paramagnetic phase by
the Ising critical line governed by the fixed point at p =1
and K =0.6094 [exact value for square lattice coupling is
—,
' ln(1+ ~2)].

The percolating paramagnetic phase is separated from
the nonpercolating paramagnetic phase by the percola-
tion critical line which belongs to the universality class of
the q-state Potts critical point. The fixed point governing
this line is located at r =0 (K =0 or T= oo }.

Within the Migdal-Kadanoff renormalization group we
find (see Fig. 1) that for q + 8 the percolation and Ising
critical lines meet at a zero temperature (r =1) point
which belongs to the universality class of the 2q-state
Potts model. The critical exponent corresponding to the
How along the r =1 axis is the thermal exponent of the

pr = 1 —exp( 2LC ) . — (9) 1.0

For the square lattice exp(2LC }= 1+&2, and thus Eq. (9)
reduces to

(10)

III. SOLUTION AND PHASE DIAGRAM 0.8—

We study the model by using the Migdal-Kadanoff
renormalization-group scheme. The main asset of this
scheme, besides its simplicity, is the fact that it is exact
for the diamond hierarchical lattice. Hence physical re-
quirements such as the positivity of the heat capacity and
the exact results discussed in Sec. II above are satisfied by
this renormalization scheme.

The Boltzmann weight for bond connecting sites i and

J 1S

Z, =1+5(o,,o . )w exp[K(s;sj —1)] .

The renormalized Boltzmann weight for a 20 lattice is

0.7
I

0.6
0.0 0.2

I

0.4 0.6
I

0.8 1.0

FIG. 1. Phase diagram for q = 1: solid line is Ising critical
line; dotted line is percolation critical line. The two lines meet
at T =0 at a point in the universality class of the 2q-state Potts
model.
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1.00

0.98-

0.96—

exponents determined by linearizing the recursion equa-
tions are positive; i.e., this is an unstable fixed point. The
critical line staring at this multicritical point and ending
at the zero temperature (r =1}critical fixed point is in
the universality class of the 2q-state Potts model. This
latter line separates the percolating ferromagnetic phase
from the nonpercolating paramagnetic phase.

0.94- IV. SUMMARY AND CRITIQUE

0.92—

0.90
0.0

I
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I

0.4
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0.6
I

0.8 1.0

FIG. 2. Phase diagram for q =20: solid line is Ising critical
line; dotted line is percolation critical line; the double solid line
is in the universality class of the 2q-state Potts model. The
three lines meet at a multicritical point.

2q-state Potts model. This is consistent with the exact re-
sult derived in Sec. II according to which at T=O the
model reduces to the 2q-state Potts model. For a small
range of p values we observe the following reentrance
phenomenon. As T is lowered (r increased) at fixed p the
following phases are encountered: the percolating
paramagnetic, the nonpercolating paramagnetic, the per-
colating paramagnetic, and the percolating ferromagner-
tic phase.

For q )8 the percolation critical line (universality class
of q-state Potts model} meets the Ising critical line at a
novel multicritical point, as shown in Fig. 2. The critical

We presented a study of the phase diagram of the Ising
model on percolation clusters. The percolation part of
this problem is a generalization of the random-bond per-
colation which includes a fugacity q controlling the num-
ber of clusters. By mapping the model on a Potts-Ising
model and studying the latter we derived a number of ex-
act results. In particular for the Ising model on random
percolation clusters (q =1) the Ising critical line is
p(1 —e «) =1 exp—( 2Lc), —where Lc is the pure Ising
model critical coupling.

The phase diagram of the model was determined by us-
ing the Migdal-KadanofF' renormalization-group scheme.
For small q the Ising critical line and the percolation crit-
ical line intersect at a 2q-state Potts critical point located
at T =0. For large q the two lines meet at a novel mul-
ticritical point at nonzero temperature. In this case the
percolating ferromagnetic phase can be accessed from the
nonpercolating paramagnetic phase across a line in the
universality class of the 2q-state Potts critical point.

The scheme used in this work gives continuous transi-
tions for all q while it is known that the 2D Potts model
has a discontinuous transition for q )4. We do then ex-
pect that the multicritical point in Fig. 2 is replaced by a
critical end point. ' Numerical simulations are needed to
verify the predictions of this work.

'Present address: Department of Physics, Auburn University,
Auburn, Alabama 36849-5311.
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