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Polymerization on the diamond hierarchical lattice:
The Migdal-Kadanoff renormalization-group scheme

Miron Kaufman
Department of Physics, Cleveland State University, Cleveland, Ohio 44115

Todd Berger, P. D. Gujrati, and David Bowman
Department of Physics, University of Akron, Akron, Ohio 44325
(Received 20 October 1989)

The thermodynamics of the equilibrium polymerization model (grand-canonical ensemble of self-
avoiding walks) in two dimensions is worked out by means of the Migdal-Kadanoff
renormalization-group technique. This method involves renormalization-group flows in an eight-
dimensional parameter space. At the critical point the number of relevant fields (positive ex-
ponents) is four. The leading exponent value differs by less than 1% from the (presumed) exact
value. The results are exact for the polymerization problem defined on the diamond hierarchical
lattice. Some results are peculiar to this lattice and are not expected to hold for Bravais lattices.
For instance, the polymerized phase (infinite polymerization index) is dilute (zero density of chemi-
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cal bonds).

I. INTRODUCTION

The equilibrium polymerization process in a grand-
canonical ensemble of self-avoiding walks is solved exact-
ly on an extremely inhomogeneous lattice, the diamond
hierarchical lattice. Previous exact solutions of the poly-
merization process were obtained for the one-dimensional
and for the Bethe lattices' and for the equivalent-
neighbor lattice.> Unlike these and Bravais lattices,
where all vertices are equivalent to each other, the ver-
tices of the diamond hierarchical lattice can be classified’
in an infinity of equivalence classes, with each class
containing a vanishingly small fraction of all vertices.
Hierarchical lattices are in general inhomogeneous, and
this feature makes them crude models for disordered sys-
tems.* Hierarchical structures have been used to model
the dynamics of glassy materials,’ spin glasses in equilib-
rium,® and the backbone of the percolating cluster.” It is
our hope that this study will provide insights into a sub-
ject of considerable current interest:* polymers in an in-
homogeneous medium (such as the percolating cluster).

The recursion equations which exactly solve a statisti-
cal model on the diamond hierarchical lattice constitute
the Migdal-Kadanoff renormalization-group approxima-
tion’ for the same model defined now on a two-
dimensional (2D) Bravais lattice, as first observed by
Berker and Ostlund.!® The drastic geometric differences
between hierarchical and Bravais lattices cause important
differences!! in the thermodynamics of a given model
when defined on these lattices. Other features, however,
do not differ qualitatively. For example, the phase dia-
gram for the polymerization problem on the diamond
hierarchical lattice is the same as the expected phase dia-
gram for regular lattices. We develop in this paper a
computational framework for quantities such as the num-
ber of polymers, length of polymers, and their fluctua-
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tions, which can be used in the whole parameter space.
By contrast, previous studies, such as € expansion,'? scal-
ing theory,"* and conformal invariance for two dimen-
sions!* have focused on the thermodynamic behavior in
the vicinity of the polymerization critical point.

The diamond hierarchical lattice can accommodate no
Hamilton walk (a self-avoiding walk covering a unit frac-
tion of all vertices). In fact, the longest single self-
avoiding walk occupies a vanishingly small fraction of all
vertices in the thermodynamic limit. The maximum cov-
erage (largest possible fraction of vertices on polymers) is
achieved only with a nonzero density of polymers (ma-
croscopically large numbers of polymers). The polymeri-
zation index (average number of bonds per polymer) lies
in this case between 2 and 4; i.e., the maximum coverage
is achieved mainly with small polymers. These features,
unexpected from our experience with homogeneous lat-
tices, which can accommodate Hamilton walks, are root-
ed in the geometry of the diamond hierarchical lattice.
For the latter lattice all long self-avoiding paths are fun-
neled through some high-coordinated vertices whose oc-
cupation by a polymer blocks all other paths through
these vertices. We expect this bottleneck effect to also
hold on the hierarchical lattice which serves as a model
for the percolating backbone.” In the polymerized phase
the polymerization index (average size of a polymer), as
expected, is infinite. However, unlike expectations based
on homogeneous lattices such as the one-dimensional
(1D) and the equivalent-neighbor lattices, the bond densi-
ty is zero in the thermodynamic limit.

Close to the critical polymerization point, the critical
amplitude of the singular part of the free energy is equal
to a constant plus an oscillatory contribution. Such oscil-
lations are rooted in the self-similar character of the lat-
tice, and have been studied before for other models.'
Unlike those previous studies we find the oscillations to
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have a relatively large amplitude.

The remainder of this paper is organized as follows. In
Sec. II the salient geometric features of the diamond lat-
tice which influence the statistics of self-avoiding walks
are described. In Sec. III the recursion equations are de-
rived after mapping the polymerization process into an
Ising-Potts model (equivalent to the Hillhorst model'®).
Numerical results for the dependence of the number of
bonds, the number of polymers, etc., on the model fields
(two fugacities) are also presented here. The singular be-
havior of the thermodynamic quantities in the vicinity of
the polymerized phase is discussed in Sec. IV. Section V
contains our conclusions.

II. GEOMETRY OF THE DIAMOND LATTICE
AND SELF-AVOIDING WALKS

The diamond hierarchical lattice is constructed itera-
tively as shown in Fig. 1. Four bonds of order zero are
assembled into a diamond (or bond of order 1). Four dia-
monds are then put together into a diamond of diamonds
(or bond of order 2). This process is continued
indefinitely.

By construction this lattice is self-similar. There exists
a “volume” scale, the so-called aggregation number,’
which equals 4. In renormalization-group studies of
models on d-dimensional Bravais lattices the aggregation
number is written as /¢, with / =d =2 in this case, and [ is
the “length” scale. This scale is responsible for the
modulation by oscillations of the power-law dependence
of thermodynamic quantities close to criticality. This
feature is peculiar to nonrandom hierarchical (fractal)
structures. It does not occur for translationally invariant
structures which do not possess a single scale /, e.g., for a
one-dimensional lattice exact decimations can be per-
formed with any integer / =2, while for the diamond lat-
tice exact decimations can be performed only with / equal
to an integer power of 2: 2,4,8,. . .. A numerical study of
the oscillations can be found in Sec. IV.

The diamond hierarchical lattice is an inhomogeneous
structure. The primitive bonds can be divided into
equivalence classes.’ Each class is determined by a sym-
metry operation which maps the left branch into the
right branch of the diamond shown in Fig. 1. In a lattice
with 4" primitive bonds there are 2" equivalence classes,
with each class containing 2" primitive bonds. Hence in
the thermodynamic limit, n->oo, the fraction of
equivalent bonds out of the total number of bonds is van-
ishingly small, 27"—0. By contrast, for a translationally

O

FIG. 1. Construction of the diamond hierarchical lattice.
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invariant lattice (e.g., the square lattice) all bonds, except
the surface ones which constitute a vanishingly small
fraction of the total, are equivalent. Not all hierarchical
lattices are as inhomogeneous as the diamond one. For
example, in the case of the Cayley tree (Bethe lattice with
surface) each equivalence class possesses a finite fraction
of the total number of bonds. In this sense the diamond
lattice is an extremely inhomogeneous structure, a prop-
erty it shares with multifractals.’

We now focus on self-avoiding walks grown on the dia-
mond lattice. First we consider a single walk covering
the largest possible number of bonds. On the nth genera-
tion lattice with 4" primitive bonds, this walk covers
2"V —1 primitive bonds; i.e., it covers a vanishingly
small fraction of all bonds: 27 "—0 as n— . This situ-
ation sets aside the diamond hierarchical lattice from
Bravais lattices where Hamilton walks can be accommo-
dated. It is rooted in the bottleneck effect: in order to
cover as many primitive bonds as possible the polymer
grows in a single direction (the vertical direction of Fig.
1). In fact, as it will be shown in Sec. IV, that the fractal
dimension of this walk is 1. This is also the case with the
hierarchical lattice which serves as a model for the per-
colating backbone.”

We next determine the maximum coverage of the dia-
mond lattice with many self-avoiding walks. The vertices
of coordination numbers 4,8, 16,. . ., are all internal sites
on polymers. Indeed, if this is not true, i.e., such a vertex
is either the end of a polymer or is empty (not on any po-
lymer), then we could draw from this vertex one or two
more bonds, respectively. This means that we did not
start with a maximum coverage configuration. Since for
each vertex of coordination number larger than 2 there
are two bonds, the fraction of bonds out of the total 4"
lattice edges is b=2(S—S,)/4", where S=2(4"—1) is
the total number of vertices and S, = 14" is the number of
vertices of coordination number 2. In the thermodynam-
ic limit n — oo, the largest value for the fraction of bonds
on polymers is b= 1.

To determine the number of polymers for a maximum
coverage configuration, we note that

b+p+®,=2, (1)

where b,p, and @, are, respectively, the density of bonds
on polymers, the density of polymers, and the density of
uncovered sites (sites not on polymers). The densities are
obtained by dividing the corresponding numbers by the
number of lattice edges 4”. Since b =1 it follows that

ptd,=1. (2)

On the other hand, vertices of coordination number 2 ei-
ther are not on polymers (®,), or are at ends of polymers
(2p), or are internal sites on polymers (x). Then

Py +2p+x=1, (3)

where x is the ratio of the number of internal polymer
sites of coordination number 2 to 4" and 1 is the ratio of
the total number of vertices of coordination number 2 to
4". After subtracting Eq. (2) from Eq. (3) we find
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pHx= ()

RS
L.
Since x =0, the largest p = and this maximum coverage
is achieved with trimers (polymerization index b /p =2
bonds per polymer). To compute the smallest p compati-
ble with maximum coverage, we note that this situation
arises when the polymers are as long as possible. We find
a recursion equation: P, ,;=4P,+1, P,=1, where P, is
the number of polymers on the nth generation lattice. By
iterating this equation we find, in the limit n — o, p=1,
which corresponds to the polymerization index b /p =4.

To summarize, the maximum coverage configurations
have b=1 and 5 <p <{. We have used these results to
check the correctness of our numerical scheme (Sec. III)
in this limit. The fact that a macroscopically large num-
ber of polymers p = £ >0 is needed to achieve maximum
coverage sets aside the diamond hierarchical lattice from
Bravais lattices where Hamilton walks are possible and
thus maximum coverage can be achieved even with a sin-
gle walk (p =0). It also suggests, but does not prove, that
the polymerized phase (polymerization index b /p = ),
where p =0, is dilute (b =0). This result is proved in Sec.
IV by using the recursion equations.

III. SOLUTION OF THE POLYMERIZATION MODEL

A. Recursion equations

The partition function of the grand-canonical ensemble
of self-avoiding walks (polymerization model) is

Z=S k%", (5)

The summation is over all possible graphs of self-avoiding
walks that can be drawn on the edges of the diamond
hierarchical lattice. B is the total number of bonds on
polymers and P is the total number of polymers. The two
positive parameters k and 7 are fugacities controlling, re-
spectively, the amount of material polymerized and the
number of polymers. In the language of the chemical re-
action theory k is the activity for chain propagation and
7=n? where 7 is the activity for the initiation or ter-
mination of a chain propagation.

Our solution of the model is based on its equivalence to
a discrete version'® of the n-vector model with n—0.!
This discrete vector model can also be written as an

Ising-Potts model:?> at each lattice vertex i there is an
J
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Ising spin S;==1 and a Potts spin 0;,=1,2,...,9. The
Hamiltonian is

—H/kyT=qJ 3 8(0,,0;)S;S;+VqH ¥ 8(c;,1), (6)
{i,)) i

where & is the Kronecker delta. The partition function
Z,, of this model with g —0, the analog of n —0, is relat-
ed to the polymer problem partition function'® Z:

Z=2Z,[2q(1+1HH)]7V, 7
where N is the number of lattice vertices. The fugacities
k and 7 depend on the magnetic problem parameters J
and H as follows:!8

k=J/(1+1H?),

(8)
T=H?*/(1+1H?) .

The Boltzmann weight associated with a primitive
(zeroth-order) bond ij is

Z,;=expl[qJ8(0;,0;)S;S;]
~1+¢J8(0;,0;)8,S;+1q*J%8(0;,0;) )
and the Boltzmann weight associated with a vertex k is
Z,=exp[VqHb8(o,,1)S,]
~1+VqH80,,1)S, +1gH®(0;,1) . (10)

Since we are eventually interested in the ¢ —0, higher-
order terms are not exhibited in Egs. (9) and (10) as they
make no contribution in that limit. The Migdal-
Kadanoff renormalization group for d dimensions and
with a linear scale factor 1=2is

a (11)

where Z;; is the Boltzmann weight for an nth order bond,
and Z;; is the Boltzmann weight for an (n + 1)th-order
bond. The single site weight Z, does not renormalize.
For d=1 and d =2, Eq. (11) provides the exact solution
for the one-dimensional lattice and for the diamond
hierarchical lattice of Fig. 1, respectively. Though only
two parameters J and H determine the polymer problem
studied here, the recursion equation (11) generates six
more parameters. The Boltzmann weight for an nth or-
der bond, n 21, is

Z,;=1+1q'?n[8(c;,1)S;+8(c;,1)S;]+qJ8(0;,0,)S;S;+LqL[8(c,,1)+8(c ,1)]

+qD8(U,-,l)ﬁ(oj,I)S,Sj+%q3/2M8(0,»,1)8(01,1)(S,+Sj)+q2K8(a,.,1)8(0j,lH—quS(ai,oj) . (12)

The field 4 appearing above creates a magnetic field at each lattice vertex proportional to the vertex coordination num-

ber. It must be distinguished from H which is a uniform field.

We first perform the decimation involved in the right-hand side of Eq. (11) and find
S Z4Z,Z,;=2qA{1+1q'*h[8(5,,1)S,+8(0;,1)S;]1+¢J]8(0;,0;)S;S; + 1qL[8(c;,1)+8(c;,1)]

Spr0y

+¢D8(0;,1)8(0;,1)S,S;+1q**M8(c;,1)8(0;,1)(S; +S;)+q*K8(c;,1)8(0;,1)+¢*R8(0;,0;} ,

(13)
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where
A=1+1H>+hH+L+1h?,
=[(1+1H*h+2JH+2DH +M+ Hh*>+Jh
+1Lh+Dh]/A4 ,
J=J*/4,
L=[(1+1H))L+MH+2K+ LHh+IMh+1L?1/4 ,
(14)

D=[(1+1H*)1h>+DHh+JHh+Mh+2JD+D?]/4 ,
M=[(1+1H*)Lh+IMHh+Kh+JLH+JM +LDH
+LLM+DM}/A4 ,

R=[(1+1H)IL>+ L LMH+LK +1M?]/ 4 ,
R=0.

Since for d =1 the power in the right-hand side of Eq.
(11) is 1, Eq. (14) provides an exact renormalization-
group solution of the polymerization problem. The poly-
merization free energy per vertex f =(InZ)/N is

=1 2 c,/2",
n=0
where (15)

C,=In[4,/(1+1H"].

We verified the correctness of Egs. (14) and (15) and the
accuracy of our numerics, by comparing the free energy
obtained from (15) to the exact closed formula for 1D po-
lymerization

f=In{Hk+ D+ [k —1)+kw]'?},
where k and 7 are determined by J and H according to
Eq. (8).

To obtain the recursion equations for the diamond
hierarchical lattice we have to square Eq. (13) since the
power on the right-hand side of Eq. (11) is two for d =2.
We find

h'=2h,

J'=2J,

L'=2L+1h?,

D'=2D+1h?, (16)

M'=2M+2Jh+2Dh+Lh ,

K'=2K+Mh+2JD+1L*+D*

R'=2R+J*.
The polymerization free energy per primitive bond is
—1S C, /4,
n=0
where (17

C,=2In[A4,/(1+1H")].
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B. Numerics

For given values of the fugacities k and  the free ener-
gy is computed as follows. First from Eq. (8) we deter-
mined the values of J and H. By comparing Egs. (9) and
(12) we find that the starting values of the other six fields
are h=L=D=M=K =0 and R =1J2. The free energy
is then obtained from Eq. (17) by iterating Egs. (14) and
(16). The summation on the right-hand side of Eq. (17) is
stopﬁed after n terms if the (n+1)th term is less than
107

The derivatives of f with respect to Ink and Inm give
the fraction of bonds on polymers to the total number of
lattice bonds (denoted by b) and the ratio of the number
of polymers to the total number of lattice bonds (denoted
by p). The derivatives of b and p with respect to Ink and
In7 determine the fluctuations of these quantities:

Slnk ’ P Snr
8b
———*- 18
N(8b?) SInk ’ (18)

N{(8p2)y= —L, N(8bsp)= 5”

where N is the number of lattice edges (to be dis-
tinguished from N the number of lattice vertices). These
quantities were computed by numerically differentiating
f. The following inequalities constitute checks on the va-
lidity of the results:

f=20, b>0, p>0, (8b%)>0,
(8b2)(8p?) > (8bdp)? .

Figures 2-7 exhibit a few results concerning the
dependence of various thermodynamic quantities on the
two fugacities. In Figs. 2 and 3 we show the dependence
of b and p on k for a few fixed values of 7. For the small-

0.4 a = 1x10""°
b m=1x10"8
c =01
d =10
0.3 4
b 0.2
0.1 4
0 T T T —
0 1 2 3 4 5

k

FIG. 2. Variation of b with k for the following = values:
107'°,107%,10 ', and 1.
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a = 1x107"0
0.15 - b = 1x107¢
c mw=0.1
d m=1.0
d
01 4
p
[+
0.05
b
a
0 T T v r ~
0 1 2 3 4 5

FIG. 3. Variation of p with k for the following 7 values:
107'°,107¢, 107", and 1.

er 7 some structure develops, which is tied to oscillations
peculiar to hierarchical models (see Sec. IV below). The
dependence of b and p on 7 for three fixed values of k
(below, at, and above the critical k, =%) is shown in Figs.
4 and 5. As 7—0, b and p tend to zero for all k. In Fig.
6 we show the polymerization index (average size of a po-
lymer, b /p) as a function of k for a fixed small value of .
The sharp maximum occurs at k =k, =1. In the limit
7—0, for k >k, we expect b/p=O0(1/Ilnm)— = (see

0.06 4

0.05 1

0.04 4

b  0.034

0.02 4

0.01 4

/
0

T T T T

0 0.00002 0.00004 0.00006 0.00008

0.0001

m

FIG. 4. Variation of b with 7 for the following k values: 0.4,
0.5, and 0.6.
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0.08 4

0.06 4

p  0.041

0.024

0o 0.02 0.04 0.06 0.08 0.1

”

FIG. 5. Variation of p with = for the following k values: 0.25,
0.5, and 1.

Sec. IV, below). The fluctuation of p is shown in Fig. 7 as
a function of k for a fixed value of 7. The positivity of
this quantity is ensured in our computation by the fact
that the Migdal-Kadanoff scheme is realizable.'

IV. SINGULAR BEHAVIOR

In the two-dimensional subspace determined by J and
H, R=1J? h=L=D=M=K =0, which corresponds
to the polymerization problem defined in Eq. (5), we find

80 1
60 A

b/p 40 -1

20 A

FIG. 6. Variation of the polymer index (b/p) with k for
T=10"¢.



4376
0.0354
0.03 {
0.025
0.02 {
2
N<Gp) >
0.015 4
0.01 4
0.005 1
[ v - v
0 0.5 1 1.5 2 2s 3

FIG. 7. Variation of the p fluctuation A{8p?) with k for
T=1.

an unstable fixed point at J=1 and H=0 (or k=1 and

m=0). The recursion equations for H=0 are
J'=2J%*and R'=J*. (19)

The field R does not affect the free energy in any way (it
is redundant'®) and can be ignored. Linearizing the re-
cursion equation at the fixed point J=1 we find the
thermal eigenvalue A;=2 and then the thermal exponent
yr=InA;/In2=1. This exponent is the fractal dimen-
sion?® of the infinite self-avoiding walk. The fractal di-
mension of the self-avoiding walk on the hierarchical
lattice which models the percolating cluster’ is also
unity. This result differs from Flory’s formula
yr=(d+2)/3=4% for d =2. In fact, for general d the re-

cursion equation (19) becomes
J'=21"1y (20)

which has the unstable fixed point at J=2'"¢ and the
thermal exponent is y;=1, independent of d. This result
shows the great difference between d-dimensional Bravais
lattices, d = 2, and the hierarchical lattices corresponding
to the Migdal-Kadanoff renormalization-group scheme.
On these hierarchical lattices the linear polymer grows
only along the one direction, the vertical of Fig. 1, which
explains why the polymer is one-dimensional. The “heat
capacity” exponent, within the Migdal-Kadanoff renor-
malization group, is

a =2_—d/y7'=2—d .

We estimate next the free energy f for small values of
the field = (small H), for k (or J) greater than the critical
value of 1. Then Eq. (19) approximates the first n itera-
tions until the other fields start to become nonnegligible
because of the HJ™ contribution in the second of Eq.
(14):

HI'"W=u , (21)
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where u is a fixed small number, say 1072 Iterating n
times Eq. (19) we find

JW=J /I, (22)
where J-=1. We estimate n from Egs. (21) and (22):

2"=[In(u /H))/[In(J /J )]
= In(u?/m)]/[In(k /k¢)] (23)
Since, for the first n iterations 4 =1, see Eq. (14),
fUH)=4""f(J" H) . (24)

Now J'™ is large (since H is small) and consequently we
use a ‘“‘low-temperature,” or maximum coverage, approx-
imation:

fU H)=1linJ""+ LInH?, (25)

where { and - are, respectively, the values of b and p at
maximum coverage, (see Sec. II). A finite entropic con-
tribution is neglected in Eq. (25), Combining Egs. (23),
(24), and (25) we find

flk,m)=[In(k /k)]*/In(1/m)
for 7—0, k>kc=1. (26)

By taking the logarithmic derivatives of f with respect to
k and  [see Eq. (18)] we find that b and p vanish loga-
rithmically slowly as 7 tends to zero. The polymerization
index b/p, on the other hand, diverges logarithmically
slowly. Similar conclusions hold for dimensions larger
than 2, within the Migdal-Kadanoff scheme. For d=1,
on the other hand, the same analysis yields the exact re-
sult f=Ink for k > 1 and m7—o.

The critical exponents y; are obtained from
y,=InA, /In2 where 2 is the change in scale factor and A;
are the eigenvalues of the recursion equations at the criti-
cal fixed point. We find four positive exponents; i.e.,
there are four relevant fields associated with the polymer-
ization critical point. It will be interesting to verify this
Migdal-Kadanoff scheme prediction that the codimen-
sion®! of the polymerization critical point is four by other
methods (e.g., Nienhuis’s Coulomb gas representation of
2D phase transitions?’). The largest exponent is the
“magnetic” one:

ya=In[1(9+V33)]/In2~1.8821 .

It differs by less than 1% from Nienhuis’s?*> value
5 ~1.8958. The other three positive exponents are all
equal to unity, and this includes the thermal exponent
discussed at the beginning of this section.

Close to the critical polymerization point kc=1,
7 =0, the singular contribution to the free energy can be
written in a scaling form:

fomlk—kelP A (m/lk—kel®) 27)

where A=2y, /yr (the factor of 2 is due to the fact that
m~H?) and 2—a=2/yr. The requirement that the criti-
cal manifold be an isolated point at #=0 and k =k, im-
plies
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A, (x)=A4,x?"¥/A for x—o . (28)

Hence along the critical isotherm close to the critical
point

fim A m2me/A 29)

By computing f along the critical isotherm and fitting
the numerical values to Eq. (29), we find that
A, =0.42680+0.00003 and (2—a)/A=0.53125
+0.00006. This exponent value agrees with the exponent
value determined by linearizing the recursion equations:
(2—a)/A=1/y,=0.5313.

Equation (27) overlooks oscillating corrections to scal-
ing characteristic of nonrandom self-similar models. The
scaling function 4, which is a function of k —k also,
satisfies the following equation:

A/l —kelS k—ke)
=A. (7/lk—k %A (k—ke)), (20)

where A, is the thermal eigenvalue equal to 2 for this
model. If the renormalization-group procedure describes
a statistical model on a translationally invariant lattice
(e.g., one-dimensional lattice) then 4, must be indepen-
dent of the scale factor 1 and implicitly of the thermal ei-
genvalue; i.e., A is independent of the second argument
in Eq. (30). However, for the hierarchical lattice there
exists an intrinsic scale factor which produces oscillations
as a function of Inlk —k.| with a period InA;=In2.
The plot of WN{(8b%) versus In(k—k.) for fixed
7/(k—kc)*=0.01 (see Fig. 8) shows the oscillations
with the expected period In2. It is noteworthy that the
amplitude of these oscillations is 25% of the uniform
part, a much larger fraction than in previous studies'® of
oscillations for Potts models (typical fraction 107).

At the high-temperature fixed point (all fields:
J,H,. .. are zero) the magnetic exponent is positive, dou-
bly degenerated, and equal to unity. Of course a positive
exponent signals a singularity in the free energy on the
locus of points in the parameter space which flow to-
wards this fixed point. The exponent value is
“dangerous” in Wegner’s terminology,'’ i.e., it implies a
logarithmic singularity:

f=—amlhr for 7—0, k<1, (31

where a is a positive function of k. Singular behavior at
“high temperatures” is peculiar!! to the hierarchical lat-
tices which possess vertices of unbounded coordination
number. It does not occur on Bravais lattices, where f
vanishes linearly with 7.

V. CONCLUSIONS

We have studied the grand-canonical ensemble of self-
avoiding walks (equilibrium polymerization model) by us-
ing the Migdal-Kadanoff position-space renormalization-
group technique. A framework for computing quantities
such as the number of chemical bonds and the number of
polymers in the whole parameter space (as opposed to
close to the critical point only as in previous works) was
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FIG. 8. The dependence of the b fluctuation N(8b%) on
In(k —k¢) for 7/(k —ke)*=0.01 showing oscillations with the
period In 2. The amplitude of the oscillations is about 25% of
the uniform contribution.

realized. This framework can be perfected by using more
sophisticated position-space renormalization-group tech-
niques to become trustworthy in comparing to and pre-
dicting experimental data. At the polymerization critical
point we find four positive exponents (four relevant fields
in the renormalization-group terminology). It will be in-
teresting to verify whether this result is genuine or a mere
artifact of the Migdal-Kadanoff scheme. The value of the
leading exponent (the magnetic one) comes within 1% of
the presumed exact value, while the thermal exponent
value differs substantially (33%) from the exact value.

Our calculations, though only approximate for 2D Bra-
vais lattices, constitute the exact solution of the polymeri-
zation model on the diamond hierarchical lattice.
Viewed from this perspective, our work is a contribution
to the field of polymers on fractals. The geometry of the
diamond hierarchical lattice causes certain results which
are not expected to hold on Bravais lattices. For exam-
ple, no Hamilton walk can be accommodated by this lat-
tice. Also the polymerized phase (infinite polymerization
index) is dilute in the sense that the density of chemical
bonds is zero. The critical amplitudes of various quanti-
ties close to the critical point exhibit oscillations pro-
duced by the self-similar character of the lattice. Quite
surprisingly these oscillations are much more substantial
than the (previously studied) oscillations for Potts mod-
els.
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