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We examine the dynamics of a healthy rotor and a rotor with a transverse crack, which opens and closes due to its self weight. Using
discrete wavelet transform, we perform a multiresolution analysis of the measured vibration signal from each of these rotors. In
particular, the measured vibration signal is decomposed into eight frequency bands, and the rms amplitude values of the healthy
and cracked rotors are compared in the three lowest-frequency bands. The results indicate that the rms vibration amplitudes for
the cracked rotor are larger than those of the healthy rotor in each of these three frequency bands. In the case of externally applied
harmonic force excitation to the rotor, the rms values of the vibration amplitude of the cracked rotor are also found to be larger
than those of a healthy rotor in the three lowest-frequency bands. Furthermore, the difference in the rms values between the healthy
and cracked rotors in each of the three lowest-frequency bands is more pronounced in the presence of external excitation than that
with no excitation. The obtained results suggest that the present multiresolution approach can be used effectively to detect the
presence of a crack in a rotor.

Copyright © 2009 Jerzy T. Sawicki et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Rotors used in industrial machinery such as compressors,
pumps, or turbines are often subjected to extreme loading
during their operation. Rotating parts in machines exposed
to external forces and temperatures may lead to a fatigue
crack resulting in rotor damage. Structural health monitor-
ing of the rotors is important for improving the safety of their
operation and for extending their service life [1–6].

For the detection of cracks in rotors, both model-based
and experimental approaches have been used by researchers
[7–24]. In both approaches, the traditional method of
crack identification is the analysis of the vibration signal of
the rotor using Fourier transform. The Fourier transform
determines the dominant modes of vibration in the form
of spectral peaks. From the frequency and magnitude of
the peaks, the presence of a crack may be detected. A crack
in a rotor introduces a local flexibility to the rotor. The
local flexibility is induced by the concentration of strain
energy in the vicinity of the crack tip. Because of this local

flexibility, the crack may open or close (i.e., breathe) during
a complete revolution of the rotor if the rotor is weight
dominated. The breathing effect may lead to a parametric
excitation of the rotor. If the vibration signal from a cracked
rotor is measured and its spectrum is compared to that of
a healthy rotor, it is found that the parametric excitation
changes slightly only, the magnitudes of the spectral peaks
but not the peak frequencies [12]. Thus it is not an easy
task to distinguish a cracked rotor from a healthy rotor. To
overcome this deficiency, more recent developments include
additional excitation of the system such as those induced
by active magnetic bearings (AMBs). The AMB acts as an
actuator that can apply an external force to the rotating shaft
[12, 13, 18–22]. Magnetic bearings also have the ability to
vary the applied radial rotor force. If the applied force is
periodic, then the presence of a crack, acting as a strong
nonlinearity in the system, can generate responses containing
additional frequencies that are rational combinations of the
rotor spin speed, critical speed of the rotor, and applied
forcing frequency. These additional frequencies may be used
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as the signature of a crack and thus may be used for
crack identification. Other methods including those based on
nonlinear dynamics have been also used for detecting cracks
in rotors [25–27].

In this paper a wavelet-based approach is adopted, and
a simple quantification procedure is proposed to detect the
presence of a crack in a rotating shaft by performing a
multiresolution analysis of the vibration signal, based on
discrete wavelet transform (DWT). Multiresolution analysis
based on DWT has been used for signal analysis in a variety
of applications [27–33]. Our detection procedure consists
of decomposing the vibration signals into several frequency
bands and comparing the rms values of the decomposed
signals of the healthy and cracked rotors in a few low-
frequency bands.

It should be emphasized that Fourier transform involves
time-averaging of the signal; as a result, it loses the detailed
temporal information of the signal. Fourier transform also
has a fixed resolution at all frequencies. In contrast, wavelet
analysis transforms a signal in the time domain into a time-
frequency domain with different resolutions at different sig-
nal frequencies. In other words, it provides a multiresolution
approach for signal analysis. In the wavelet-based approach,
the higher the signal frequency, the finer is the resolution and
vice versa.

Several investigators have applied wavelet analysis as a
method of detecting cracks in rotors. Wavelet analysis has
been performed using (a) continuous wavelet transform
(CWT) [7, 8] or (b) discrete wavelet transform (DWT) [34].
The wavelet approach obtains a time-scale decomposition
of the signal under consideration using a translation (time)
parameter and a scale parameter. In both CWT and DWT,
the translation parameter is discrete, whereas the scale
parameter is allowed to vary continuously in CWT, but is
discrete in DWT. Adewusi and Al-Bedoor [34] used a discrete
wavelet transform to analyze the vibration signals of an
overhang rotor with a propagating transverse crack. They
used the Daubechies (6 db) mother wavelet and presented
the results in the form of scalograms and space-scale energy
graphs. Their results indicate that at the lowest-frequency
band, corresponding to the frequency 1X, the vibration
amplitude may increase or decrease depending on the
location of the crack and side load; however, the vibration
amplitude at the second frequency band, corresponding
to the frequency 2X, increases continuously as the crack
propagates. The experimental work of Adewusi and Al-
Bedoor [34] does not include magnetic force excitation of
the rotor.

In the following development, a DWT-based multires-
olution analysis is used to detect the presence of a crack
in a rotor both in the presence and absence of magnetic
force excitation. The force applied to the shaft is induced
by means of an active magnetic actuator. The rms values
of the decomposed signal in the three lowest-frequency
bands are employed to detect the presence of a crack in
the rotor. Our presentation is organized as follows. The
experimental procedure is outlined in Section 2 followed by
some details of multiresolution wavelet analysis provided in
Section 3. In Section 4, the results of multiresolution analysis

Figure 1: Experimental setup for crack detection in a rotor with
active magnetic actuator.

are presented and discussed. Finally, in Section 5, a few
concluding remarks are given.

2. Experimental Procedure

The experimental setup used in this study is shown in
Figure 1. The test rig is equipped with active magnetic
bearings (AMBs) which can act as supporting bearings or as
actuators to apply forces to the rotating shaft. The rig was
designed to operate either on ball bearings or on AMBs. For
this study, the rotor is running on ball bearings mounted
in support housings (similar to touchdown bearings) which
were bolted to the side of the conical magnetic bearing
pedestals. The active magnetic actuator is located between
the supporting bearings near the unbalance disk. It was
calibrated, and currents and fluxes are monitored to control
the applied force to the rotating shaft. The actuator is an
8-pole radial design and is equipped with four variable
reluctance type position sensors. It can provide specified
force actuation in two perpendicular axes, which are rotated
45◦ from the vertical. The excitation waveform for the
magnetic actuator is generated in MATLAB/SIMULINK
environment and transferred to hardware via a dSPACE DS
1103 board.

The shaft diameter is 15.875 mm and its length is
659 mm. The rotor diameter of active magnetic bearings
(not activated in this experiment) and the rotor diameter of
radial force actuator are 47.625 mm. The unbalance disk has
a diameter of 127 mm and a thickness of 12.7 mm. The 30
finite element model of the rotor is presented in Figure 2(a)
and shows the position of the supporting single row deep
groove ball bearings (at nodes 2 and 29), which are assumed
isotropic with stiffness 3 MN/m and damping 10 Ns/m. The
notch approximating the crack, having a width of 0.94 mm
(0.037 inch) and a depth of 40% of shaft diameter, is located
between the disk and the active magnetic force actuator,
at the distance of 292.1 mm from the left end ball bearing
support. It should be noted that such a relatively large notch
does not possess all the features of a real crack, including
the breathing effect which becomes marginal. The vibration
signals are measured at node 15.

Figure 2(b) shows the Campbell diagram for the rotor
system up to a rotor spin speed of 25000 rpm. The first
resonance speed of the rotor is 2820 rev/min (47 Hz), and
agrees very well with the experimentally obtained data using
either modal approach or measured transfer function. The
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Figure 2: (a) Finite element model of the rotor test rig. (b) Campbell diagram for the undamaged rotor.

other critical speeds for this system are 262, 603, and
875 Hz. The sinusoidal force from the magnetic actuator
has peak-to-peak amplitude of 120 N and frequency of
3780 rev/min (63 Hz), while the operating speed of the
rotor is maintained at 2200 RPM (36.67 Hz). The excitation
frequency was selected based on the approximate condition
for combinational frequencies, that is,

Ωe = |nΩ− ωi|, for n = ±1,±2,±3, . . . (1)

The above conditions were derived based on a two degree of
freedom Jeffcott rotor model with weight dominance [20–
22], where Ω is the rotor speed, Ωe is the frequency of the
magnetic actuator force, and ωi is the natural frequency of
the system. So, in our case, based on the first critical speed
and value n = 3, we have Ωe = |(3)(36.67)−47| = 63 Hz. Of
course, other (corresponding to different n values and higher
resonances) excitation frequencies are permissible, but the
selected one resulted in the most explicit results.

ControlDesk, an experimental tool, was used to monitor,
tune and control the running process, and to capture all
the vibration signals. The signals were sampled at 10 kHz
and stored on a PC. The experiments were performed at
the Center for Rotating Machinery Dynamics and Control
(RoMaDyC) at Cleveland State University (see [12] for
details).

3. Multiresolution Wavelet Analysis

Using discrete wavelet transform, a multiresolution analysis
of the vibration signals of the healthy and cracked rotors can
be performed as follows [33]. The measured vibration signal
is decomposed into several levels with downsampling by a
factor of 2 at each successive level. At the first level the signal
is decomposed into an approximation component (A1) and
a detail component (D1). The approximation component,
A1, is subsequently decomposed into another approximation

A2

A1

A7

A8 D8

D7

D2

D1

Signal

Figure 3: The DWT decomposition showing the various approx-
imation and detail signals at eight levels. The original vibration
signal is decomposed into a low-frequency component (A1) and a
high-frequency component (D1). Each successive approximation is
then decomposed into an approximation and a detail component,
for example, A1 = A2 + D2,A2 = A3 + D3, and so on.

component and another detail component, A2 and D2,
respectively, and so on (see Figure 3).

In this manner, the vibration signals from the healthy
and cracked rotors are decomposed into eight levels. At
each level, the detail component represents a high-frequency
band, and the approximation component contains the low
frequencies. For example, the detail component D1 has the
bandwidth 2500–5000 Hz, and the approximation compo-
nent, A1 contains frequencies between 0 and 2500 Hz. We
have used a Daubechies wavelet of order 14, as the mother
wavelet. Daubechies wavelets have been employed earlier
in the detection of cracks in shafts [24], as well as for
detecting faults in carbon-fiber reinforced composites [31],
and concrete structures [32]. We have specifically chosen the
14 db wavelet due to the fact that its spectrum is much closer
to that of a band pass filter, compared to the Daubechies
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Figure 4: Time series plot (a) and multiresolution decomposition
(b) of the vibration signal for healthy rotor with no excitation.

wavelets of other orders [31]. From the different levels of
decomposition, the measured vibration signal, S(t), can be
reconstructed as follows:

S(t) = A1 + D1 = (A2 + D2) + D1 = (A3 + D3) + D2 + D1

= · · · = A8 + D8 + D7 + D6 + D5 + D4 + D3 + D2 + D1.
(2)

Following the scheme shown in Figure 3, the detail
component, D1, represents the highest-frequency band of
the decomposition, D2 is the next highest-frequency band
with half the bandwidth of D1, and so forth. If the sampling
frequency is fs, then the band Dn has frequencies between
fs/2n+1 and fs/2n, and the approximation, An, has frequency
values between 0 and fs/2n+1. In our case, with a sampling
frequency of 10 kHz, the frequency ranges of the various
detail components, D1 through D8, are as shown in Table 1.
The approximation A8 has frequencies between 0 and
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Figure 5: Time series plot (a) and multiresolution decomposition
(b) of the vibration signal for cracked rotor with no excitation.

Table 1: Frequency ranges of detail components.

Detail component Frequency (Hz)

D1 2500–5000

D2 1250–2500

D3 625–1250

D4 312.5–625

D5 156.25–312.5

D6 78.125–156.25

D7 39.06–78.125

D8 19.53–39.06

19.53 Hz. A detailed account of discrete wavelet transform
and multiresolution analysis may be found in [35].

The number of levels to be used in a DWT-based
multiresolution analysis is determined by the rotational
frequency of the shaft and the sampling rate. The lowest level
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Figure 6: Time series plot (a) and multiresolution decomposition
(b) of the vibration signal for healthy rotor with excitation.

should be chosen such that its detail component has a fre-
quency band that encompasses the rotational frequency. In
the present case the rotational frequency is 36.7 Hz, and the
sampling rate is 10000 Hz. Based on this sampling frequency
the detail component D8 lies in the frequency range 19.53–
39.06 Hz, approximately. Note that the rotational frequency
of 36.7 Hz falls in this frequency range. Thus it was sufficient
to use an eight-level decomposition for the multiresolution
analysis.

4. Results and Discussion

First we consider the healthy and cracked rotors with no
magnetic excitation. The vibration signal of the healthy rotor
is depicted in Figure 4(a), and the detail components of
the eight-level decomposition are shown in Figure 4(b). The
corresponding results for the cracked rotor are illustrated
in Figures 5(a) and 5(b), respectively. All vibration signals
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Figure 7: Time series plot (a) and multiresolution decomposition
(b) of the vibration signal for cracked rotor with excitation.

are measured by displacement sensors located at node 15
(see Figure 2(a)). It is apparent from Figures 4(b) and 5(b)
that the most significant contributions to the signal come
from the three lowest-frequency bands: D6, D7, and D8. The
contributions from the other five bands, D1–D5, are negligi-
ble. Note also that the amplitudes in the approximation, A8,
which corresponds to the 0–19.53 Hz frequency band, are
very small. The calculated rms values of the amplitudes in the
three bands D6–D8 are listed in Table 2. It is apparent from
this table that in each of these three frequency bands, the rms
value of the cracked rotor is larger than that of the healthy
rotor.

Next, the vibration signals in the healthy and cracked
rotors in the presence of magnetic excitation are examined.
For the healthy rotor with magnetic excitation, the vibration
signal and its eight-level decomposition are depicted in
Figures 6(a) and 6(b), respectively. The corresponding results
for the cracked rotor are shown in Figures 7(a) and 7(b).
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Table 2: Comparison of rms values (μm) of healthy and cracked rotors with no excitation.

Level frequency band D 6 78.125–156.25 Hz D 7 39.06–78.125 Hz D 8 19.53–39.06 Hz

Healthy rotor 1.43 29.44 38.55

Cracked rotor 2.16 38.04 50.71

Percent change 51.0 29.2 30.5

Table 3: Comparison of rms values (μm) of healthy and cracked rotors with excitation.

Level frequency band D 6 78.125–156.25 Hz D 7 39.06–78.12 Hz D 8 19.53–39.06 Hz

Healthy rotor 3.23 34.01 44.15

Cracked rotor 5.23 47.46 61.82

Percent change 61.9 39.6 40.0
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Figure 8: Measured response magnitude of rotor vibrations versus
frequency for healthy and notched rotors, without (a) and with
(b) external excitation. Rotational frequency is 36.7 Hz, magnetic
actuator frequency is 63 Hz, and frequency bands D6 (78.125–
156.25 Hz), and D7 (39.06–78.125 Hz), and D8 (19.53–39.06 Hz).

From Figures 6(b) and 7(b), it can be seen that the vibration
amplitudes are significant in the three lowest-frequency
bands, D6, D7, and D8. Also, it is found that the rms
amplitude value in each of these three bands is larger for
the cracked rotor than the healthy rotor (see Table 3). In
addition, note from Tables 2 and 3 that the difference in the
rms values between the healthy and cracked rotors in each of
the three lowest-frequency bands is more pronounced in the
presence of magnetic excitation than that with no magnetic
excitation.

It should be pointed out that the three lowest-frequency
bands, D6–D8, encompass the frequencies from 39.06 Hz to
156.25 Hz. Clearly, this frequency range covers the peak
frequencies 1X–4X and all other frequency peaks that fall in
between, as found by Fourier transform [12] and presented

here in Figure 8 with the denoted frequency bands, D6–D8.
Figure 8(a) shows the measured response at the node 15 of
the machine with the damaged (notched) and healthy rotor
due to the residual unbalance. The response is characterized
by a major peak at the synchronous frequency of 36.7 Hz.
The noise-induced harmonics of the spin speed (2X, 3X, . . .)
can also be seen in the response but their magnitude is
very small compared to the 1X frequency component (note
the logarithmic scale). It can be observed that the response
magnitude is higher almost at all frequencies for the damaged
machine. Figure 8(b) compares the measured rotor response
of the machine with the damaged (notched) and healthy
rotor due to the residual unbalance and the externally applied
magnetic force excitation having the frequency of 63 Hz and
amplitude of 120 N. The rotor spin speed, its harmonics
(1X, 2X, 3X, . . .) and the actuator frequency of 63 Hz can be
noted. In addition, there are visible peaks of combination
resonances at 26.3, 63, 83.6, 99.7, 120.3 and 136.3 Hz.

Thus, the applied wavelet analysis includes all spectral
peaks that are created by combination resonances due to
magnetic excitation. In other words, the spectral content of
the vibration signal under magnetic excitation is accurately
captured by the DWT-based multiresolution analysis per-
formed here.

5. Concluding Remarks

In this study, the dynamics of a simple rotating system with
and without a transverse crack in the shaft has been investi-
gated using a multiresolution analysis. The scenario with or
without external force excitation has been examined. In this
approach, the vibration signal of the rotor is decomposed
into eight frequency bands in terms of approximation and
detail components. The results show that the rms values of
the detail components in the three lowest-frequency bands
are higher for the cracked rotor than the healthy rotor,
both in the presence or absence of external force excitation.
Furthermore, the difference in rms values between a healthy
and cracked rotor is more pronounced in the presence
of external force excitation. These results indicate that the
multiresolution approach can be used to distinguish the
healthy and cracked rotor responses. The advantage of this
method is that it provides a simple quantification procedure
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based on the rms amplitude values of the vibration signal
in different frequency bands. Thus, multiresolution analysis
using a discrete wavelet transform suggests an alternative
approach to Fourier analysis for structural health monitoring
of cracked rotors.
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