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Thermomechanical Behavior of Rotor with Rubbing

Jerzy T. Sawicki and Alberto Montilla-Bravo
Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio, USA

Zdzislaw Gosiewski
Aviation Institute, Warsaw, Poland

This article presents an analytical study of the dynam-
ics and stability of rotors subjected to rubbing due to con-
tact with seals, taking account of associated thermal effects.
The seal interaction force acting on the shaft gives rise to a
friction force, which is a source of heating and can induce
so-called spiral vibrations. A mathematical model that has
been developed couples the heat-conduction equation with
the equations for motion of the rotor. Numerical simulations
have been conducted that show the thermomechanical be-
havior of the rotor at various operating conditions. A proce-
dure for analyzing the stability of multibearing rotors based
on the system eigenvalue analysis and the state-space ap-
proach has been proposed. Finally, the experimental data
related to full annular rub have been presented.

Keywords contact force, rotor rubbing, spiral vibration, stability,
thermal bow

Steam turbine rotors are generally large, precision-machined
steel forgings with multiple turbine wheels machined directly
out of a single forging for the attachment of buckets (blades).
Such rotors can exceed 20 feet in length and can have body
diameters exceeding 30 inches. As such, most steam turbine ro-
tors are relatively flexible as compared to gas turbine rotors that
employ a bolted construction. Because of this, most steam tur-
bine rotors operate at speeds exceeding the first critical speed
and sometimes operate near their second critical speed. One
consequence of the integral rotor design and the relative flex-
ibility of the rotors is that steam turbine rotors can be sensi-
tive to rub-induced vibrations. This is unfortunate, since steam
turbines employ multiple turbine stages to extract energy from
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the steam and therefore require many seals between the static
and rotating elements to minimize parasitic leakage and maxi-
mize thermal performance. Obviously, minimizing the rotor/seal
clearances enhances thermal performance; the drawback to this
approach is the increased risk of rotor/seal rubs and the resulting
rotor vibration. This vibration may be self-correcting (stable),
or self-propagating (unstable). In the worst case, the vibration
can prohibit operation of the machine.

The rubbing phenomenon in rotating machinery has been
widely written about during the past 3 decades. It has been well
recognized that under certain conditions rotating machinery ex-
hibits vibrations that have chaotic content, that is, they present
unpredictable behavior. Such behavior is driven by the existence
of nonlinearities in the system, which could have many roots;
one of them is the interaction of the rotating and stationary com-
ponents (Bently, 1974; Ehrich, 1992; Goldman and Muszynska,
1993, 1994; Kraker et al., 1988; Muszynska, 1989; Padovan
and Choy, 1987). Numerous papers have employed bifurcation
diagrams or Poincar´e maps to report on the chaotic nature of
rub interactions; for example, see Bently (1974), Goldman and
Muszynska (1993), and Sawicki (1999). Some authors have ex-
plained the occurrence of such phenomena in terms of induced
nonlinearities, for example, Sawicki (1999).

A relatively small number of papers have addressed the ther-
mal effect associated with the rubbing of a rotor against its sta-
tionary components, which tends to heat the rotor at the angular
location of the rub and is responsible for the rotor thermal bal-
ance change, known as the Newkirk effect. Based on Taylor’s
results (1924), Newkirk (1926) pointed out that when a rubbing
rotor is running below its first balance resonance speed, the rub-
induced lateral vibrations increase in time. Since then, many
researchers have studied this effect. The most significant anal-
yses have been provided by Dimarogonas (1973, 1983) and by
Kellenberger (1980). Childs (1997) extended the Kellenberger
model to include the effects of a radial clearance at the rub loca-
tion. All these authors confirmed that these vibrations grow in
amplitude and phase, resulting in spiral vibrations. One exam-
ple is contacts between the rotor and seals, such as oil-lubricated
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generator shaft seals (Kellenberger, 1980) or brush seals
(Sawicki, 2000), which can generate an asymmetrical periph-
eral temperature distribution and consequent rotor bow. If that
is coupled with rotor vibration, a spiraling phenomenon may be
observed. Another example is asymmetrical heating of the jour-
nal in fluid-film bearings; for example, see Kirk and Balbahadur
(2000). The thermally induced vibrations can lead to problems,
such as difficulties in performing proper balancing or, in serious
cases, a situation in which it is impossible to operate the machine.

This article presents an analytical study of the dynamics of
rotors subjected to rubbing due to contact with seals and also
considers thermal effects. The induced thermal bow is modeled
on Kellenberger’s approach (1980). A mathematical model that
has been developed couples the heat conduction equation with
the equations of motion for the rotor. Numerical simulations
that have been conducted show the thermomechanical behavior
of the rotor at various operating conditions. The procedure for
stability analysis of the multibearing rotor systems based on
the eigenvalue analysis and state-space approach is proposed.
Finally, the experimental data related to the full annular rub
have been presented.

ROTOR/STATOR CONTACT MODEL
The model of a rotor/stator system is shown in Figure 1, where

the rotor is a Jeffcott (Laval) rotor—that is, uniform, massless,
and having an elastic shaft carrying a rotor (disk) at its midspan.
The bearings in this model are considered to be rigid and fric-
tionless. The rotor has mass,mR, stiffness,kR, and damping,
cR. The stator has mass,mS, and is mounted on a foundation
via spring,kS, and damper,cS. The concentric radial clearance
between the rotor and stator isC.

The kinematics of the rotor/stator contact model are illus-
trated in Figure 2. It is postulated that contact between the rotor

FIGURE 1
Schematic of rotor/stator model.

FIGURE 2
The rotor/stator interaction model.

and the stator takes place if the following condition is satisfied:

δ = δ∗ − C = |r̄ R− r̄ S| − C > 0 [1]

whereδ∗ is the relative radial displacement of the rotor and
stator, andδ is the penetration depth.

In addition, it is assumed that as a result of contact, the
rotor/stator (contact) stiffness increases, and induced contact
force, F̄R, is the result of nonlinear contact radial load and non-
linear tangential friction load, which are related by the Coulomb
friction coefficientµ. A portion of heat generated by friction
load Q1 diffuses into the rotor, and the portionQ2 diffuses out
of the rotor. Also, it is assumed that if the contact condition in
Equation (1) is satisfied, the induced contact force modeled by
a simple model takes the form

F̄ R = kCδ
neiα [2]

where the contact stiffnesskC is a function of the material prop-
erties and geometry of the contacting components, and the coef-
ficient of restitution isn = 1.5 for the Hertzian type of contact.

Following the notation in Figure 2, the nonlinear equations
of motion for the rotor/stator system in complex vector notation
r̄ = x + iy are

mR
d2

dt2
(r̄ R+ εeiωt )+ cR ˙̄r R+ kR(r̄ R− rTei γ) = −(1+ iµ)F̄R

mS¨̄r S+ cS˙̄r S+ kSr̄S = (1+ iµ)F̄R

[3]
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THERMAL BOW OF THE ROTOR
The radial contact force,̄FR, acting on the shaft (see Figure 2)

gives rise to a friction force, which is a source of heating.
Kellenberger (1980) used a heat-balance equation to arrive at
the following definition for excess temperatureT:

Ṫ(t) = k1

k3
µωRFR(t)− k2

k3
T(t) [4]

where

R is the rotor radius at which contact occurs;
FR is the seal interactive force;
µωRFR(t) is the power dissipated due to rubbing contact;
k1 is the proportionality factor defining the proportion of gener-

ated power that enters the shaft;
k2 is the proportionality factor that defines the amount of heat

lost from the shaft; and
k3 is the factor that is proportional to the specific heat, density,

and geometry of the shaft in the vicinity of the rubbing
location.

Following Kellenberger’s (1980) development, we assumed that
the shaft’s thermal deflection (bow) was proportional to the ex-
cess temperature,T, that is,

ρT = k4T [5]

whereρT is the rotating shaft with thermal deflection, andk4

is the proportionality factor containing the thermal expansion
coefficient, the material constants of the shaft, and the rotor’s
geometry, such as diameter, length, and bearings positions.

Now, taking into account the relationship in Equation (5), the
temperature, Equation (4), can be rewritten in terms of thermal
deflection in stationary coordinates as

˙̄r T (t)− iωr̄ T (t)+ p̂µωRF̄R(t)+ q̂r̄T (t) = 0 [6]

where parameterspandqcharacterize heat input and heat output,
respectively, for the shaft and are defined as

p̂ = k1k4

k3
, q̂ = k2

k3
[7]

Note that the rotor/stator’s motion, Equation (3), and thermal
bow, Equation (6), are coupled by the normal and tangential
components of the contact force and by the thermal bow vector,
r̄ T . Equations (3) and (6) are written in inertial coordinates.

NUMERICAL RESULTS
The equations of motion, Equations (3) and (6), can be written

in a nondimensional format by introducing the dimensionless
timez= ωRt , and the following definitions (Kellenberger, 1980;
Liebich, 1998):

ωR =
√

kR

mR
, p = p̂RkR, q = q̂

ωR
, ξR = cR

2mRωR
, η = ω

ωR

[8]

FIGURE 3
Rotor response, in rotating coordinates, to rub, without thermal
effects.η = 0.95, p = 0, q = 1× 10−3, ξR = 0.05, MS= 1×
10−5, CS= 0.7, KS= 200,µ = 0.2, KC = 1× 10−2, Ĉ = 2.

KC = kC

kR
, MS = mS

mW
, CS = cS

cR
, KS = kS

kR
, and Ĉ = C

ε

It should be noted that using the transformationr̄ (t) = ρ̄(t)eiωt

Equations (3) and (6) can also be presented in a rotating
coordinates frame.

Figure 3 shows, in rotating coordinates, the rotor’s response
to full annular rub without considering the thermal effect, that
is, for p = 0, and for the rotor’s running speed just below the
critical speed, that is, forω = 0.95ωR. Also, the contact force
is nonlinear with the exponentn = 1.5 (see Equation (2)). The
computed response clearly indicates transient behavior.

Figure 4 presents the rotor response for the same operating
conditions as Figure 3, except that now the parameter represent-
ing the heat input to the rotor does have nonzero value, that is,
p = 1.51. It can be seen that after initial transient behavior, the
rotor starts to exhibit unstable spiral vibrations with a growing
amplitude and phase angle (which can be seen only in a rotating
coordinates frame). The spiral is traced out against the shaft’s
rotation.

STATE-SPACE REPRESENTATION OF THE MULTIMASS
ROTOR/SEAL DYNAMICS

For the multimass rotor-bearing model limited to lateral
vibrations, the matrix equation of motion (in stationary
coordinates) can be written as follows:

Mẍ+ Dẋ+ Kx = f(t) [9]

wherex is (n× 1) the vibration vector;M , D, andK , are (n×
n) mass, damping, and stiffness matrices, respectively; andf(t)
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FIGURE 4
Rotor response, in rotating coordinates, to rub, with thermal

effects.η = 0.95, p = 1.51,q = 1× 10−3, ξR = 0.05,
MS = 1× 10−5, CS = 0.7, KS = 200,µ = 0.2,

KC = 1× 10−2, Ĉ = 1.5.

is the excitation force vector. The properties of bearings are
included in matricesD andK .

The equation of motion for the multimass rotor-bearing sys-
tem with thermal bow takes the following form (Schmied, 1987):

Mẍ+ Dẋ+ Kx − K RTxThs= f(t) [10]

whereK R is (n × n) the stiffness matrix of the rotor without
pedestals and bearings;T is the (n × 2) matrix describing the
linear relation between the thermal deflections of all coordinates

FIGURE 5
Diagram of rotor/seal test rig with two disks.

and the translatory coordinates at the rubbing site (the hot spot);
andxThs is (2× 1) the vector of thermally induced translatory
displacements at the location of the hot spot (rubbing).

In stationary coordinates, the thermal equation can be written
in the following form (Kellenberger, 1980):

I ẋThs+ Pxhs+QxThs= 0 [11]

whereI and0 are (2× 2) unity and zero matrices, respectively,
and xhs is the (2× 1) vector of translatory displacements of
the shaft at the location of the rubbing. The matricesP andQ
are (2× 2) and represent added heat and dissipated heat,
respectively.

Equations (10) and (11) are coupled and can be combined as
follows:[

M 0

0 0

]{
ẍ

ẍThs

}
+
[

D 0

0 I

]{
ẋ

ẋThs

}
+
[

K −K RT

P̄ Q

]{
x

xThs

}
=
{

f(t)

0

}
[12]

whereP̄ is (2× n) a matrix having coefficients of matrixP at
the columns corresponding to the translatory coordinatesxhs of
the hot spot.

Introducing state variables, defined asx1 = x, x2 = ẋ,
x3 = xThs, and writing the equations


ẋ1 = x2

Mẋ2 = −Kx1− Dx2+ K RTx3+ f

ẋ3 = −P̄x1−Qx3

[13]
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FIGURE 6
Responses (1×) of the two-disk rotor during start-up and shutdown, testing both with and without rubbing.

allows the state equation to be written as follows:

ẋ = Ax + Bu =
 0 I 0
−M−1K −M−1D M−1K RT
−P̄ 0 −Q

 · x
+
 0

M−1

0

 f [14]

where the state vector is defined asx= (x1,x2,x3)T . The stability
of the system (Equation (12)) can be conveniently determined
by analysis of the real part of the eigenvalues of state matrixA.

EXPERIMENTAL STUDY RESULTS
Full annular rub in a rotor/seal system was investigated exper-

imentally. A shaft with a diameter of 0.394 inches and a length
of 22 inches was supported by two brass bearings and driven by
a 0.1-hp motor. Two disks were attached as is shown in Figure 5.
A seal was located at the midspan. The bronze seal used in the
experiment was fitted with an O-ring in the seal support and had
6 mils of diametral clearance. The rotor was originally centered
in the seal and well balanced. A known mass unbalance (4.4×
10−4 lbm) was then added to each disk. Without contact with the
seal, the rotor’s initial, balanced resonance speed was approx-
imately 1850 rpm. The data acquisition and processing system
consisted of four XY displacement proximity probes (Figure 5),
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one speed probe, one Keyphasor probe to measure speed and
phase, and ADRE software.

The 1× Bode plots of the X-direction responses of the two-
disk rotor during the startup and shutdown testing, with and
without rubbing, are presented in Figure 6. In the test with the
rubbing, the peak amplitude of vibration was limited by the
clearance between the rotor and the seal. In addition, the inher-
ent nonlinearity of the system gave rise not only to subharmonic
vibrations (Sawicki et al., 1999), but also to amplitude jump dis-
continuities, which occur when multitude solutions exist. This is
clearly demonstrated in Figure 6. It is mainly during the startup
that the amplitude drops down; then it jumps up during the shut-
down operation. The range of resonance speeds is much wider
during startup than it is during shutdown.

An excellent description of the phenomena observed was
provided by Bently and colleagues (2000a, 2000b), who pre-
sented insightful data concerning the experiment and studied the
precessional rub in great detail. They also analyzed the effect
of unbalance, friction, rotative speed, rub frequency, and other
parameters.

SUMMARY AND CONCLUSIONS
Rubbing occurring in a rotor/stator/seal system was inves-

tigated analytically, numerically, and experimentally. The an-
alytical model accounts for the thermal effect associated with
rubbing. The characteristic spiral vibrations of the generic ro-
tor/stator system was calculated. The issue of the stability of
multimass rotor-bearing systems subjected to thermal bow due
to the occurrence of rub was addressed by developing a pro-
cedure based on the state-space representation and eigenvalue
analysis. Finally, the characteristic for full annular rub amplitude
jump has been demonstrated experimentally.

NOMENCLATURE
S Geometric center of the stator
R Geometric center of the rotor (also radius of the rotor)
G Rotor center of gravity
ε Mass eccentricity
mR Rotor mass
kR Rotor stiffness
cR Rotor damping
mS Stator mass
kS Stator stiffness
cS Stator damping
rT Thermal bow in inertial coordinates frame
ω Angular speed of rotor
ωR Rotor critical speed
F̄R Contact force vector
µ Coulomb friction coefficient
kC Contact stiffness between rotor and stator
C Concentric radial clearance
γ Position of the hot spot
ξR Rotor damping ratio

r̄ R Rotor vibration vector in inertial coordinates frame
ρ̄R Rotor vibration vector in rotating coordinates frame
T Excess temperature
Q1 Heat entering the rotor per unit time
Q2 Heat loss per unit time
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