
Cleveland State University
EngagedScholarship@CSU
Chemical & Biomedical Engineering Faculty
Publications Chemical & Biomedical Engineering Department

1-1999

Copper Alloy-Impregnated Carbon-Carbon
Hybrid Composites for Electronic Packaging
Applications
S. K. Datta
Cleveland State University

Surendra N. Tewari
Cleveland State University, s.tewari@csuohio.edu

Jorge E. Gatica
Cleveland State University, j.gatica@csuohio.edu

W. Shih
BFGoodrich Aerospace

L. Bentsen
BFGoodrich Aerospace

Follow this and additional works at: https://engagedscholarship.csuohio.edu/encbe_facpub

Part of the Materials Science and Engineering Commons, and the Thermodynamics Commons
How does access to this work benefit you? Let us know!
Publisher's Statement
Copyright 1999 ASM International. This paper was published in Metallurgical and Materials
Transactions A: Physical Metallurgy and Materials Science, Vol. 30, Issue 1, pp. 175-181 and is made
available as an electronic reprint with the permission of ASM International. One print or electronic
copy may be made for personal use only. Systematic or multiple reproduction, distribution to
multiple locations via electronic or other means, duplications of any material in this paper for a fee or
for commercial purposes, or modification of the content of this paper are prohibited.
Available on publisher's site at: http://www.asminternational.org/portal/site/www/AsmStore/
ProductDetails/?vgnextoid=8d441774ef326210VgnVCM100000621e010aRCRD.

Repository Citation
Datta, S. K.; Tewari, Surendra N.; Gatica, Jorge E.; Shih, W.; and Bentsen, L., "Copper Alloy-Impregnated Carbon-Carbon Hybrid Composites for
Electronic Packaging Applications" (1999). Chemical & Biomedical Engineering Faculty Publications. 6.
https://engagedscholarship.csuohio.edu/encbe_facpub/6

This Article is brought to you for free and open access by the Chemical & Biomedical Engineering Department at EngagedScholarship@CSU. It has
been accepted for inclusion in Chemical & Biomedical Engineering Faculty Publications by an authorized administrator of EngagedScholarship@CSU.
For more information, please contact library.es@csuohio.edu.

Original Citation
Datta, S.K., Tewari, S.N, Gatica, J.E., Shih, W., & Bentsen, L. (1999). Copper Alloy-Impregnated Carbon-Carbon Hybrid Composites
for Electronic Packaging Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 30,
175-181.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cleveland-Marshall College of Law

https://core.ac.uk/display/216939361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fencbe_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/encbe_facpub?utm_source=engagedscholarship.csuohio.edu%2Fencbe_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/encbe_facpub?utm_source=engagedscholarship.csuohio.edu%2Fencbe_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/encbe?utm_source=engagedscholarship.csuohio.edu%2Fencbe_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/encbe_facpub?utm_source=engagedscholarship.csuohio.edu%2Fencbe_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=engagedscholarship.csuohio.edu%2Fencbe_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/248?utm_source=engagedscholarship.csuohio.edu%2Fencbe_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
http://www.asminternational.org/portal/site/www/AsmStore/ProductDetails/?vgnextoid=8d441774ef326210VgnVCM100000621e010aRCRD
http://www.asminternational.org/portal/site/www/AsmStore/ProductDetails/?vgnextoid=8d441774ef326210VgnVCM100000621e010aRCRD
https://engagedscholarship.csuohio.edu/encbe_facpub/6?utm_source=engagedscholarship.csuohio.edu%2Fencbe_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 30A, JANUARY 1999—175

Copper Alloy–Impregnated Carbon-Carbon Hybrid
Composites for Electronic Packaging Applications

S.K. DATTA, S.N. TEWARI, J.E. GATICA, W. SHIH, and L. BENTSEN

Porous carbon-carbon preforms, based on three-dimensional networks of PAN (Polyacrylonitrile)-
based carbon fibers and various volume fractions of chemical vapor–deposited (CVD) carbon, were
impregnated by oxygen-free, high-conductivity (OFHC) Cu, Cu-6Si-0.9Cr, and Cu-0.3Si-0.3Cr (wt
pct) alloys by pressure infiltration casting. The obtained composites were characterized for their
coefficient of thermal expansion (CTE) and thermal conductivity (K) along the through-thickness
and two in-plane directions. One composite, with a 28 vol pct Cu-0.3Si-0.3Cr alloy, showed out-
standing potential for thermal management applications in electronic applications. This composite
exhibited approximately isotropic thermal expansion properties (CTE 5 4 to 6.5 ppm/K) and thermal
conductivities (k ≥ 260 W/m K).

I. INTRODUCTION

THE continued drive for system miniaturization in the
electronics industry requires mounting several unpackaged
electronic chips in close proximity to each other on a single
substrate. Multichip modules, already in use in mainframe
computers, are finding applications in workstations and
high-performance avionic components. They require pack-
aging materials with a high thermal conductivity (k ) and a
coefficient of thermal expansion (CTE) which matches the
low CTE values (4 to 6 ppm/K) of the substrates (e.g.,
alumina) and devices (e.g., silicon and GaAs).[1,2] Beryllium
oxide or beryllium-beryllia composites are very attractive
because of their very low density, outstanding thermal con-
ductivity, and reasonably matching CTE,[3,4] but their tox-
icity constitutes a serious problem, especially where
machining is involved.[2] Copper and aluminum have a very
high thermal conductivity (398 and 247 W/m K, respec-
tively) but their CTE is much too large. However, their
CTE can be brought down to 4 to 6 ppm/K by making
composites containing appropriate volume fractions of low-
CTE materials such as silicon carbide, aluminum nitride, or
carbon. Aluminum and copper alloy composites containing
carbon fibers,[2] silicon carbide particles,[3] diamond,[2] and
other reinforcements are being investigated for this appli-
cation.

An aluminum-silicon carbide composite prepared by melt
infiltration is presently a leading thermal management ma-
terial for electronic applications.[2,3,4] With 70 vol pct silicon
carbide, this composite has a CTE of 6 ppm/K and a ther-
mal conductivity of 110 W/m K[2] (a value of 170 W/m K
has been reported in the literature,[5] but its original source
is inaccessible).

A composite containing 67 vol pct graphite and an ox-
ygen-free, high-conductivity (OFHC) copper matrix, pre-
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pared by hot pressing[6] copper-coated graphite fibers,
showed thermal conductivity values of 400 W/m K parallel
to the fiber axis and 60 W/m K transverse to the fiber axis.
The pressure infiltration–cast copper alloy–carbon fiber
composite,[7,8] examined recently, showed a low CTE (1.6
ppm/K) and good room-temperature mechanical properties.
However, carbon fiber–reinforced composites have the fol-
lowing serious limitations. (1) Their thermal conductivity
is highly anisotropic. As shown by Ilegbusi,[9] an improve-
ment in thermal conductivity in the direction normal to the
fiber axis is critical for the heat-removal efficiency in the
system. The ideal thermal management material for elec-
tronic applications should have a high isotropic thermal
conductivity. (2) The composites have a low, reasonably
acceptable CTE parallel to the fiber axis, but their CTE
normal to the fiber axis is very large, nearly equal to that
of copper.[5] (3) They suffer from ‘‘racheting’’ during ther-
mal cycling, i.e., compressive and tensile plastic deforma-
tions occur during thermal cycling of the composites. (4)
Melt infiltration does not yield a uniform fiber distribution
across the entire specimen cross section; instead, ‘‘melt
channels’’ invariably develop in the microstructure, causing
fiber bunching. All these limitations are due to the fibrous
nature of the graphite fiber reinforcement.

These problems can be eliminated by using a porous pre-
form made of a three-dimensional network of carbon fibers
for the pressure infiltration of copper melt. Currently, a cop-
per-graphite composite is commercially available from UN-
OCAL-POCO (Decatur, Texas), with a CTE of 8.6 ppm/K
(slightly larger than the optimum value of 6 ppm/K), but
its thermal conductivity is only 175 W/m K. This research
was aimed at developing a pressure infiltration–cast carbon-
copper alloy composite with high isotropic thermal con-
ductivity (greater than 175 W/m K) and a low CTE (about
6 ppm/K).

II. EXPERIMENTAL PROCEDURE

The porous carbon-carbon (C-C) preforms were fabri-
cated at BFGoodrich (Santa Fe Springs, CA), using a pro-
prietary process to yield three types of preforms with
various void fractions (23 to 46 pct) and pore sizes. Pore
size distributions were determined by mercury porosimetry.
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Fig. 1—Microstructure of porous carbon-carbon preforms.

The permeabilities of the preforms were determined by cor-
relating water flow rates with the applied pressure gradient
according to Darcy’s law. The C-C preforms were infil-
trated with three copper alloys: OFHC copper, Cu-6Si-
0.9Cr (wt pct) and Cu-0.3Cr-0.3Si (wt pct). Chromium was
added to increase the melt wettability.[9] A silicon addition
was selected because it would improve the melt fluidity,
and the formation of silicon carbide may result in reduced
solidification shrinkage. When one mole of carbon and one
mole of silicon combine to form one mole of silicon car-
bide, the volume expansion is approximately 58 pct. Such
a volume expansion during the final stages of solidification
helps to reduce the volume fraction of shrinkage porosity.
During pressure casting, the prealloyed ingots, placed on
top of the porous C-C preforms in an alumina crucible,
were first melted under low-pressure (;1022 Torr) condi-
tions. The melt was superheated to approximately 200 K
above its melting temperature. High-pressure (;4 MPa) ul-
tra-high purity argon gas was then rapidly introduced into
the pressure casting chamber to force the melt into the pores
of the preform. The specimens were allowed to solidify
under pressure by switching off the induction power supply
to the graphite susceptors surrounding the alumina crucible.

The microstructures of the C-C preforms and the infil-

tration-cast composite specimens were examined by stan-
dard optical metallography and scanning electron
microscopy (SEM). The linear thermal expansion of the
composite was examined, in a flowing argon atmosphere
within a temperature range from 300 to 700 K, in a dila-
tometer in the through-thickness (Z) and the in-plane (X
and Y) directions. The dilatometer was calibrated with a
quartz specimen. Thermal diffusivities in the X, Y, and Z
directions were measured by the laser-flash method. Ther-
mal conductivities were estimated from the thermal diffu-
sivities by using volume-averaged values of the heat
capacity of the metal and the carbon constituents and an
experimentally determined composite density.

III. RESULTS AND DISCUSSION

A. Porous C-C Preforms

1. Microstructure
Figure 1 shows a typical microstructure of the porous C-

C preform. The C-C preform is based on a three-dimen-
sional network of PAN (Polyacrylonitrile) carbon fibers,
into which carbon has been introduced by chemical vapor
deposition techniques to obtain preforms with various void
fractions and pore size distributions. Figure 1(a) contains
two regions. In one region, the fibers are viewed mostly
along their length. In the other region their head-on view
is seen. The high-magnification view in Figure 1(b) shows
the carbon fiber (marked as A) and the chemical vapor–
deposited (CVD) carbon that was deposited on its surface
(marked as B). The fibers are about 10 mm in diameter and
occupy about 25 pct of the volume. The fraction porosity
is controlled by the extent of carbon deposition by chemical
vapor deposition. The CVD carbon for this sample is 3 to
4-mm thick. A typical pore, marked by an arrow, is visible
in this microstructure. The copper alloy was infiltrated into
such pores.

2. Mercury porosimetry
Figure 2 shows the results of mercury porosimetry de-

terminations for the three C-C preforms examined in this
study: C1-1, C41B, and SPC3P. Figures 2(a) and (b) show
the percent total intrusion volume as a function of the pore
diameter and the corresponding normalized pore volume
distributions, respectively. Pores larger than 100 mm were
rarely observed in the C-C preform microstructures. There-
fore, the features corresponding to very large pores (Dp .
100 mm) appearing in Figures 2(a) and (b) are likely to be
the artifacts resulting from the specimen preparation, e.g.,
cracks occurring on the specimen surface during machining.
The smallest pores correspond to the C41B preform, while
the largest pores were found in the C1-1 preform. The frac-
tion of submicron pores is the largest in C41B and is the
smallest in C1-1. The median pore diameters, listed in Ta-
ble I, are based on the intruded volume, while the average
pore diameters represent the relationship 4 V/A, where V is
the total intrusion volume and A is the total pore surface
area. Bulk densities and the fraction porosities (based on
the total mercury intrusion volume) were used, to obtain
the skeletal densities. Table I shows that C1-1 and SPC3P
have similar median pore diameters (24.0 and 27.5 mm re-
spectively) but SPC3P, with a larger fraction of submicron
pores, has a 33-pct smaller average pore diameter (i.e., 0.06
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(a)

(b)

(c)

Fig. 2—Porosimetry determinations for porous C-C preforms: (a )
intrusion curves, (b ) normalized pore volume distributions, and (c ) density
vs fraction porosity.

Table I. Mercury Porosimetry Results for the Porous Carbon-Carbon Preforms

C-C Preform Type
Median Pore Diameter

Dp , mm
Average Pore Diameter

(4V/A), mm
Bulk Density

rb , g/cm3

Skeletal Density
r , g/cm3

Fraction Porosity,
«

C1-1 24.0 0.09 1.49 2.23 0.33
C41B 4.2 0.03 1.68 2.18 0.23
SPC3P 27.5 0.06 1.25 2.31 0.46

vs 0.09 mm). C41B has the smallest median (4.2 mm) and
average (0.03 mm) pore diameters. The void fractions for
SPC3P, C1-1, and C41B are 46, 33, and 23 pct, respec-
tively.

Figure 2(c) plots the bulk and the skeletal densities of
the three C-C preforms as determined by mercury porosi-
metry. The skeletal densities obtained from mercury poro-

simetry are based on the assumption that all the pores are
interconnected. In the absence of isolated pores, the skeletal
densities would be expected to increase with an increasing
volume fraction of CVD carbon added to the preform, as
indicated by the dotted line with triangular symbols. This
line represents the estimated volume-averaged skeletal den-
sities of the C-C preforms (assuming a 25 pct volume of
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Fig. 3—Permeability determinations for C1-1 C-C preforms.

Fig. 4—Microstructure of pressure infiltrated cast C-Cu composites.

carbon fibers, with a density of 1.8 g/cm3, and the rest being
graphite, with a density of 2.2 g/cm3). However, the skeletal
density was actually observed to decrease with a decreasing
pore fraction (rectangular symbols in Figure 2(c)). This
suggests that the volume fraction of the isolated pores that
are not interconnected increases with the increasing fraction
of CVD carbon. This suggests that some of the intercon-
necting pores are occluded during the chemical vapor dep-
osition process.

3. Permeability
Figure 3 shows water flow velocities as a function of the

applied pressure gradient during a permeability experiment
on C1-1. Flow velocities along the Z (through-thickness)
and the X-Y (in-plane) directions are indicated in this fig-
ure. The goodness of fit exhibited by the linear correlation
indicates the applicability of Darcy’s law, v 5 2(k/m) DP,
where v represents the flow velocity, k is the permeability,
m is the dynamic viscosity of water (9.62 3 10210 MPa/s),
and DP, is the external pressure gradient applied on the
fluid. The permeability in the X-Y direction (6.6 3 10212

m2) is higher than that in the Z direction (1.8 3 10212 m2).

B. Copper Alloy–Infiltrated C-C Composite

1. Microstructure
Figure 4 shows the typical microstructure of a pressure

infiltration–cast composite obtained by infiltrating a Cu-
6Si-0.9Cr alloy into a C1-1 C-C preform. The white regions
correspond to the copper alloy and the dark gray regions
represent the carbon fibers. The three-dimensional weave
of the fibers is evident by the longitudinal and transverse
views of the fiber bundles in the low-magnification optical
micrograph (cf. Figure 4(a)). The uninfiltrated regions ap-
pear black and are more clearly visible at the higher mag-
nification (marked by an arrow in Figure 4 (b)). Composites
obtained with different C-C preform-alloy combinations
showed similar features, except for the different amounts
of uninfiltrated pores. The composite specimens were also
examined by mercury porosimetry to determine the extent
of infiltration as a function of the microstructural charac-
teristics (pore size distribution, fraction porosity, etc.) of
the C-C preform and the alloying additives in the melt (Si
and Cr).

2. Mercury porosimetry
Figure 5 shows the percent intrusion volume as a func-

tion of the pore diameter, obtained by mercury porosimetry
performed on pressure infiltration–cast composite samples.
The median and average pore diameters, bulk density, and
pore fraction of the melt-infiltrated composite specimens
are summarized in Table II. Figure 5(a) shows that there is
a substantial decrease in the pore size after melt infiltration.
As mentioned before, the pores larger than 100 mm might
be an artifact induced during the specimen preparation.
Therefore, the actual average and median pore diameters
must be slightly smaller than those reported in Table II.
There is a substantial decrease in the median pore diameters
after melt infiltration (0.034 mm for Cu-0.3Si-0.3Cr and
0.015 mm for Cu-6Si-0.9Cr) as compared to that of 24.0
mm for the C-C preform. However, the pressures used dur-
ing casting (;4 MPa) do not appear sufficient to infiltrate
the submicron pores in the preform. In general, for a given
C-C preform, the extent of infiltration was observed to in-
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(a)
(b)

(c)

Fig. 5—Intrusion curves (porosimetry) for C-C preforms and the
corresponding pressure infiltrated cast Cu-C composites: (a ) C1-1, (b )
SPC3P, and (c ) C41-B.

Table II. Mercury Porosimetry Results for the Pressure Infiltration Cast Copper Alloy Composites

Composite Type
(C-C 1 Alloy)

Median Pore Diameter
Dp , mm

Average Pore Diameter
(4 V/A), mm

Bulk Density
rb , g/cm3

Fraction Porosity,
«p

C1-1 1 Cu-6Si-.3Cr 0.015 0.011 4.28 0.07
C1-1 1 Cu-0.3Si-0.3Cr 0.034 0.013 4.01 0.12
C41B 1 OFHC Cu 2.89 0.028 2.12 0.22
C41B 1 0.3Si-0.3Cr 3.40 0.028 2.01 0.23
C41B 1 Cu-0.3Si-.3Cr 0.763 0.033 3.53 0.19
SPC3P 1 Cu-0.3Si-0.3Cr 0.424 0.019 3.58 0.24
SPC3P 1 Cu-0.3Si-0.3Cr 0.731 0.023 3.31 0.23
SPC3P 1 OFHC Cu 2.59 0.038 2.67 0.28

crease in the following order: OFHC Cu, Cu-0.3Si-0.3Cr,
and Cu-6Si-0.9Cr. Wetting angles (Q) for the copper-chro-
mium alloy melt on graphite have recently been reported
to be 158, 150, and 45 deg for the OFHC Cu, Cu-0.3 wt
pct Cr, and Cu-0.9 wt pct Cr alloys, respectively,[10] Copper

liquid-vapor surface energy (gL-V) is about 1279 mJ/2. The
minimum pore diameter which could be infiltrated by ap-
plying an external pressure of 4 MPa can be estimated
(Dp,min » 4 gL-V COS (u)/P) to be 1.1 mm for OFHC copper,
and 1 mm for Cu-0.3Cr. Since the 0.9 wt pct Cr melt wets
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Table III. Coefficients of Thermal Expansion for the Copper Alloy Infiltrated Composites

C-C Preform Bulk Density Metal Volume Fraction, Pore Volume Fraction, CTE, ppm/K

Alloy Type rb , g/cm3 «M «p X Y Z

OFHC Cu C41B 2.81 0.127 0.103 2.3 2.7 1.9
C1-1 2.12 0.049 0.181 1.88 — 2.12
SPC3P 2.67 0.16 0.28 — 1.2 0.67

Cu-0.3Cr-0.3Si C41B 2.01 0.0317 0.193 — 1.58 1.8
C1-1 4.01 0.28 0.05 6.5 6.5 4.1
SPC3P 3.55 0.26 0.20 — 3.7 4.55*

Cu-6Si-09.Cr C41B 2.18 0.056 0.174 — 3.2 2.0
C1-1 4.28 0.31 0.02 10.2 10.05 6.1

Fig. 6—CTE vs composite metal volume fraction (εM).

graphite (i.e., u , 90 deg), a chromium addition to copper
alloys should result in complete infiltration. Such a trend is
qualitatively demonstrated in Figure 5. The quantitative dif-
ferences between the expected and the observed extent of
infiltration may be due to the uncertainties in the surface
energy and wetting angle value, particularly in the presence
of silicon in the melt.

Even though the median pore diameter of SPC3P was
about the same as that of C1-1, its infiltration was not as
efficient (cf. the porosimetry measurements for the Cu-
0.3Si-0.3Cr composites in Figures 5(a) and (b)). This is
possibly due to the much larger fraction of submicron po-
rosity present in SPC3P than in C1-1 (cf. Figures 2(a) and
(b)). Figure 5(b) also shows that pure copper does not in-
filtrate as effectively as the Cu-0.3Si-0.3Cr alloy. The C41-
B preform has the maximum fraction of submicron porosity
and, therefore, the smallest median and average pore di-
ameters. It yields very little infiltration (cf. Figure 5(c)).

3. Coefficient of thermal expansion
The CTE values for the melt-infiltrated samples, mea-

sured along the three directions X, Y, and Z, and the cor-
responding matrix alloy and the C-C preform types are
given in Table III. The table also lists the bulk density and
the metal (eM) and pore (ep) volume fractions. The OFHC
Cu, Cu-6Si-0.9Cr, and Cu-0.3Si-0.3Cr matrix alloys

yielded approximately the same CTE, i.e., 17 to 18 ppm/K.
An examination of Table III reveals that C1-1 infiltrated
with Cu-0.3Si-0.3Cr yields nearly isotropic thermal expan-
sion properties, with a CTE ranging from 4 to 6.5 ppm/K.
As mentioned earlier, this is in the desired range for thermal
management applications for multichip modules.

Figure 6 shows the CTE values for all the specimens
examined in this study, as a function of the volume fraction
of the copper alloy in the composite. The zero volume-
fraction value is for carbon (about 1 ppm/K), and the unit
volume-fraction values are those measured for the OFHC
Cu, Cu-6Si-0.9Cr, and Cu-0.3Si-0.3Cr alloys (17 to 18
ppm/K). The straight line represents the linear regression
through the data. As has been reported for the Al-SiC com-
posites,[3] here also, the volume-averaged values for the two
constituents (metals and carbon) represent the CTE of these
composites.

4. Thermal conductivity
Table IV gives the thermal diffusivity values along the

X, Y, and Z directions for the composites, based on the
preform C1-1 and two matrix alloys: Cu-6Si-0.3Cr and Cu-
0.3Si-0.3Cr. The thermal diffusivity of OFHC copper is
1.15 3 1024 m2/s. Alloying reduced the thermal diffusivity
to 6.22 3 1026 for the Cu-6Si-0.9Cr and 4.46 3 1025 m2/s
for the Cu-0.3Si-0.3Cr. The bulk densities of the two com-
posites are 4.28 and 4.01 g/cm23, respectively. The volume
fractions of metal and carbon constituents for these com-
posites are given in Table I. By volume-averaging the spe-
cific heat contributions from the metal (0.386 J/gzK) and
the carbon (0.7 J/gzK), the specific heats of the composites
are estimated to be 0.58 and 0.59 J/gzK, respectively. The
thermal conductivity values listed in Table IV were ob-
tained by using the bulk density, volume-averaged specific
heat, and the thermal diffusivity. The Cu-0.3Si-0.3Cr com-
posite showed significantly higher thermal conductivities
than the Cu-6Si-0.9Cr composite. This would be expected
because the addition of alloying elements, even though
helpful for the melt infiltration, would degrade the thermal
conductivity of the alloy. The Cu-0.3Si-0.3Cr composite
has high thermal conductivity along all three directions, as
compared with C-Cu laminates based on P130 fibers, which
had a high thermal conductivity (260 W/m K[2]) only in the
in-plane direction.

IV. CONCLUSIONS

This study indicates that the porous carbon preforms ob-
tained by chemical vapor deposition of carbon into a three-
dimensional network of carbon fibers can be used to make
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Table IV. Thermal Diffusivity and Conductivity Values for the Copper Alloy Impregnated C1-1 Preform

Cu-6Si-0.9Cr Cu-0.3Si-0.3Cr

Thermal Property X Y Z X Y Z

Diffusivity (a ) 3 104 , m2/s 0.937 0.827 0.853 1.128 1.173 2.01
Conductivity (k ) , W/m K 236 208 215 261 271 465

metal-matrix composite for thermal management materials
for electronic applications. The copper alloy (Cu-0.3Si-
0.3Cr, wt pct) infiltrated composites show a high thermal
conductivity (k . 250 W/m K), both in the in-plane direc-
tion and in the through-thickness direction. They also pos-
sess a nearly isotropic thermal coefficient of expansion,
ranging from 4 to 6.5 ppm/K, making them ideally suited
for Si/GaAs/AlO2 substrates.
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