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Cellular/Dendritic Array Tip Morphology during Directional
Solidification of Pb-5.8 Wt Pct Sb Alloy

L. YU, G.L. DING, J. REYE, S.N. OJHA, and S.N. TEWARI

Cellular/dendritic array tip morphology has been examined in directionally solidified and quenched
Pb-5.8 wt pct Sb alloy by a serial sectioning and three-dimensional image reconstruction technique.
There is a large scatter in the tip radius, the nearest neighbor spacing, and the mushy zone length,
even among the immediately neighboring cells and dendrites. This scatter may be caused by the
natural convection (in the mushy zone and in the bulk melt at the array tip), which also produces
macrosegregation along the length of the directionally solidified samples. Even in the presence of
convection, however, the tip radii are observed to be approximately proportional to the square of the
primary spacings, and the radii are in a good quantitative agreement with the predictions from the
model due to Hunt–Lu.

I. INTRODUCTION by hypoeutectic Pb-Sn alloys, do cause extensive convec-
tion, but they also produce cellular and dendritic arrays with

IT is important to understand the development of den- uniform morphology if the formation of “channel segrega-
dritic microstructures during directional solidification, tion” can be avoided.[5] This would allow simultaneous mea-
because these microstructures ultimately control the mechan- surements of tip radius and primary spacing for the
ical properties of directionally solidified components. The individual cells and dendrites in the array. Therefore, for
cellular/dendritic arrayed growth models[1,2,3] have generally this study, we selected Pb-5.8 wt pct Sb alloy, which has a
assumed that for a given processing condition, i.e., thermal solidification behavior similar to hypoeutectic Pb-Sn. The
gradient (Gl), growth speed (V ), and solute content of a metallic alloys are opaque; hence, the tip radii and the corres-
binary alloy melt (C0), the array attains a unique morphology, ponding primary arm spacings were determined by metallo-
i.e., unique cell/dendrite tip radius and primary spacing. graphic examination of the quenched mushy zone near the
However, experiments, both on transparent alloys[4] and tip of cellular/dendritic array.
metallic alloys[5,6,7] have shown that a range of primary
spacings is stable under a given growth condition. Recent
theoretical analyses[8,9,10] also support this view. This would
suggest that a range of tip radii may also exist during the II. EXPERIMENTAL PROCEDURE
steady-state growth of a cellular/dendritic array. The purpose

A. Alloy Preparation and Directional Solidificationof this research was to investigate this possibility and obtain
a quantitative relationship between the primary spacings and

About 24- to 30-cm-long Pb-Sb feed-stock samples werethe corresponding tip radii during directional solidification
obtained by induction melting a charge (Pb 99.99 wt pctof binary metallic alloys.
purity and Sb 99.999 wt/pct purity) under an argon atmos-Three-dimensional arrayed growth during directional
phere in a graphite crucible and pushing the melt into evacu-solidification of binary alloys with the melt on top and the
ated quartz tubes (0.6-cm inner diameter (i.d.)) with the helpsolid at the bottom can be carried out under two conditions:
of argon pressure. The cast Pb-5.8 wt/pct Sb feed-stocksolutally stable (for example, hypoeutectic Al-Cu alloy) and
cylinders were extracted and placed into the quartz direc-solutally unstable (for example, hypoeutectic Pb-Sn). One
tional solidification ampoule (0.7-cm i.d., 61-cm long). Thewould expect that there would be no density inversion in
quartz ampoule was then sealed at the bottom. It was evacu-the mushy zone and in the bulk melt ahead of the array
ated from the top and heated in the directional solidificationtips during directional solidification of hypoeutectic Al-Cu
furnace to create a 15- to 20-cm-long melt column. Direc-alloys, because copper enrichment increases melt density.
tional solidification was carried out by withdrawing theHowever, extensive deformation of the cellular/dendritic
ampoule from the furnace assembly at various speeds. Afterarray tips, attributed to natural convection, has been reported
6 to 10 cm of directional solidification, the ampoule wasunder such growth conditions,[11] which makes it impossible
quickly pulled from the furnace, and the melt column wasto extract meaningful and accurate tip radii from these exper-
quenched by spraying water on the ampoule surface.iments. The solutally unstable growth conditions, typified

Temperature profiles during directional solidification
were measured by two chromel-alumel thermocouples (0.01-
cm diameter wires kept in closed-end silica capillaries, 0.06-
cm outer diameter (o.d.)) with their tips separated by 3 toL. YU, Graduate Student, G.L. DING, Research Associate, J. REYE,

Undergraduate Student, and S.N. TEWARI, Professor, are with the Chemical 5 cm along the sample length. The steady-state thermal
Engineering Department, Cleveland State University, Cleveland, OH 44115. profile was maintained, as indicated by identical thermal
S.N. OJHA, formerly Visiting Professor, Chemical Engineering Depart- profiles obtained from the two thermocouples. The thermalment, Cleveland State University, is Professor, Metallurgical Engineering

gradient in the liquid at the liquid-solid interface duringDepartment, Banaras Hindu University, Varanasi, India.
Manuscript submitted November 19, 1998. these experiments was maintained at 140 K cm21.
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B. Metallography and Macrosegregation

Longitudinal and transverse microstructures were
observed by standard optical metallography techniques using
an etchant made up of 5 mL nitric acid, 5 mL acetic acid,
and 90 mL glycerin. Two-millimeter-thick slices were cut
along the length of the directionally solidified (DS) sample
as a function of solidification distance. These samples were
chemically analyzed by atomic absorption spectroscopy for
their Sb content.

C. Serial Sectioning and Three-Dimensional Image
Reconstruction (a)

Serial sectioning and three-dimensional image reconstruc-
tion techniques were used to obtain the morphological infor-
mation about the cell/dendrite tips. The cell/dendrite tip
position at the time of quench was first located by examining
a longitudinal section through the sample. The sample por-
tion containing the mushy zone was then machined out and
mounted in epoxy in order to observe the microstructure on
the transverse sections. The sample was located in the mount
such that the quenched cell/dendrite tips were about 1 mm
below the mount surface. A reference hole was then drilled
on the transverse surface of the specimen. A Leica
Ultramiller,[12] which can make serial sections and provide
a surface finish suitable for optical metallography, was used
to obtain transverse microstructures as a function of distance
from the quenched array tips. The milled surface was lightly

(b)etched in order to reveal the microstructure and record it
Fig. 1—Typical thermal profile during directional solidification of Pb-5.8electronically. The microstructures were recorded with the
wt pct Sb alloy. (a) Temperature profiles recorded by two thermocoupleshelp of a TV camera (which was attached to the Ultramiller)
spaced 6.3 cm apart along the sample axis. (b) Steady-state thermal profilewithout removing the sample from the machining stage. The
during directional solidification is indicated by identical temperature vs

boundary of the reference hole was drawn on a transparent distance history as recorded by the two thermocouples.
sheet mounted on the monitor. The sample was translated
after each serial sectioning so that the image of the reference
hole always aligned with the image drawn on the transparent from the two thermocouples are almost identical, as seen
sheet attached to the monitor. This method assured alignment by translating one with respect to the other (Figure 1(b)).
of the transverse images for the subsequent three-dimen- This indicates a steady-state thermal field during directional
sional rendering of the cell/dendrite tip morphology. Typi- solidification. A thermal gradient of 140 K cm21 in the melt
cally, a sample was cut at 3- to 5-mm steps for a distance at the cellular/dendritic array tips was used for the samples
of about 100 mm from the array tips. Then it was sectioned examined in this study.
at 10- to 50-mm steps for a distance of about 0.3 mm into Figure 2 shows the typical longitudinal microstructures
the mushy zone. of cellular and dendritic arrays at their tips in Pb-5.8 wt pct

Cell/dendrite boundary was edge tracked and the (x, y) Sb alloy directionally solidified at different growth veloci-
coordinates were corrected by incorporating the calibrated ties. It is apparent that the cells and dendrites are aligned
magnifications. The (x, y) coordinates on various transverse nearly parallel to the alloy growth direction. With increasing
sections and their corresponding distance from the tip were growth velocity, the morphology changes from cell to den-
then fed into a three-dimensional rendering software, IRIS drite. For this thermal gradient, the cell-to-dendrite transition
Explorer 3.5.[13] A “map” made up of the “ReadXYZData,” occurs at 1.5 mm s21.
“LatToGeom,” and “Render” modules in IRIS Explorer 3.5 Typical growth speed dependence of the longitudinal mac-
takes the (x, y, z) coordinates and transforms them into a rosegregation is shown in Figure 3, which plots Ca /C0 versus
three-dimensional view of any particular cell or dendrite. fraction solidified ( fs ,), where Cs is the Sb content in the
Several sets of coordinates from different cells or dendrites solid, fs is fraction distance solidified, and C0 is the original
could be fed into the IRIS Explorer at one time to render antimony content of the melt. In this figure, the symbols
the three-dimensional view of the array tips. marked by “L” correspond to the quenched liquid portion

of the specimens. For each directionally solidified specimen,
the C0 values, obtained by measuring the area under the Cs

III. RESULTS vs fs plots, which included both the directionally solidified
and quenched melt portions, was found to be within 65 pctA. Microstructure and Macrosegregation
of the analysis done on the precast feed-stock bars. This
figure shows that the Cs /C0 value increases from less thanFigure 1 shows the temperature profiles recorded by the

two thermocouples during a typical experiment. The profiles unity to values larger than unity as a function of fs. This is
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Fig. 3—Influence of growth speed on the macrosegregation along the direc-
tionally solidified length of Pb-5.8 wt pct Sb (Gl 5 140 K cm21).

solute content will be expected along the entire length of
directionally solidified specimens (except for the initial and
final transients, which would be of about the same size as

(a) the mushy zone length). Data for one as-cast feed-stock
sample, which was similarly analyzed along the specimen
length and did not show longitudinal macrosegregation, have
not been included in this figure for the sake of clarity. The
extent of macrosegregation increases with decreasing growth
velocity. Convection is caused by the density inversion in
the interdendritic melt (Sb content increases toward the bot-
tom of the mushy zone and reduces the melt density) and
in the bulk melt immediately ahead of the tip because of the
solutal buildup.[14] The extent of convective mixing increases
with decreasing growth speed.

B. Spatial Uncertainty Caused by the Serial Sectioning
and Three-Dimensional Image Reconstruction
Technique

Figure 4 shows typical transverse microstructures
observed on serial sections in the mushy zone as a function
of distance from the quenched tip for a Pb-5.8 wt pct Sb
alloy sample grown at 3 mm s21. The corresponding dis-
tances from the tip are shown below the images. Such trans-
verse images were used to obtain the three-dimensional
rendering of the array tips. The crescent on the right side
of the images corresponds to the reference hole that was
used for vertical alignment of these images. The X-Y uncer-
tainty of the serial sections can be estimated by edge tracking
the reference holes from several sections and comparing
them with respect to each other. A typical comparison is(b)
shown in Figure 4(e), which shows the location of the refer-

Fig. 2—Typical longitudinal (parallel to the alloy growth direction) micro- ence hole on two serial sections. The extent of misalignment
structure of Pb-5.8 wt pct Sb directionally solidified at 140 K cm21: (a) is indicated by the X-Y shift between the two contours. The
cellular (V 5 0.8 mm s21); and (b) dendritic (V 5 3 mm s21).

errors in the X and Y directions were observed to be 5 6 3
and 2 6 1 mm, respectively. This error can be significantly
improved by using vertical holes of smaller diameter for
image alignment.an indication of extensive mixing between the interdendritic

mushy zone liquid and the bulk melt ahead of the cellualar/ The random error introduced into the Z-axis (vertical dis-
tance between the serial sections) is less than 1 mm. Thisdendritic arrays. In the absence of convection, a uniform
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(b)(a)

(d )(c)

(e)

Fig. 4—Typical microstructures observed on serial sections (transverse) in the mushy zone as a function of distance from the quenched tip: (a) at tip, (b)
32 mm from tip, (c) 90 mm from tip, (d ) 318 mm from tip, and (e) difference between two typical reference hole images, which were recorded at 90 and
140 mm from tip.

was examined in the following manner. A short length of a a function of distance from its cylindrical surface. The image
of the machined wire as observed on the serial sections25 6 1 mm diameter chromel wire was laid horizontally on

a flat bed and covered with epoxy. The mounted sample became continually wider until the wire was sectioned
almost through its middle. During the subsequent sectioning,was then sectioned by the Ultramiller at 1 mm steps. Figure

5(a) shows typical longitudinal sections through the wire as the remaining portion of the wire (half the cylinder) pulled
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(a)

Fig. 6—Three-dimensional view of a typical dendritic array near its tip
(Gl 5 140 K cm21; V 5 3 mm s21).

assumed to correspond to the wire’s center). This figure
indicates that the typical X, Y translation uncertainties are
about 2 to 3 mm. A half-circle regression fit to the data in
Figure 5(b) yielded the radius values for the two wire seg-
ments to be 11.3 6 2.0 and 12.2 6 2.3 mm, respectively.
These two values are very close to the actual radius of the
wire, 12.5 mm. This indicates that the serial sectioning and
three-dimensional image reconstruction technique used in
this study is reliable.

C. Cellular/Dendritic Tip Morphology

Figure 6 shows a three-dimensional rendering of a den-
drite array that was used to measure the dendrite tip radii.
One typical dendrite from this array is shown in Figure 7
(bottom right), which shows four two-dimensional views of
this dendrite as it is rotated around its axis at 45 deg intervals.

(b) Examination of these four views indicates that the dendritic
Fig. 5—Typical spatial uncertainty during Ultramiller serial sectioning and envelope is not axisymmetric. However, these two-dimen-
three-dimensional image reconstruction. (a) Longitudinal serial sections sional views can be used to measure the dendrite tip radius
through a 25-mm-diameter wire as a function of distance. The leftmost (Rt) by using a parabolic fit to the data points located on
view is the first cut through the wire, and the rightmost view is the last

the outer periphery of the dendrites. One can thus obtaincut through the wire (before the wire pulled off from the mount). (b) Edge-
four different tip radii corresponding to the four views ofon view of the three-dimensional reconstructed wire and the half-circle

regression fit through the data to obtain the wire radius. the same dendrite, or all four views can be combined together
to yield one overall tip radius for this dendrite. Figure 8
shows the four two-dimensional views of this dendrite (thin
lines) and an overall parabolic fit (thick curve) through alloff from the epoxy mount. For several wires, it was observed

that 11 to 13 steps of 1-mm machining were required before the data points. The overall mean tip radius for this dendrite
is 14.2 mm.the center of the wire was reached and the wire pulled off

from the epoxy. This suggests that the error in the vertical Even though the dendrites present in the cluster (Figure
6) were growing at the same growth speed and under andirection (Z-axis) during serial sectioning is less than 1 mm.

Two longitudinal segments of the wire, 121- and 110-mm identical thermal gradient, their nearest neighbor spacing
distribution was not uniform, as seen from the transverselong, respectively, were used for the edge-on visualization

shown in Figure 5(b). The symbols in this figure indicate view of the dendrites (Figure 9). For each dendrite whose
tip radius was determined, we also measured its mean nearestthe mean values of the X-coordinates corresponding to the

left and right edges of the wire, as seen on the various serial neighbor spacing (primary dendrite spacing). Figure 9 plots
the experimentally measured dendrite tip radius vs the corres-sections. The error bars indicate one standard deviation for

the X-coordinates as recorded along the entire length of the ponding primary dendrite spacing. The small symbols corre-
spond to the tip radius obtained from the four views of thewire segment. The abscissa in Figure 5(b) indicates the

distance from the center of the wire for the various serial individual dendrite, and the thick symbol corresponds to its
overall mean tip radius. The tip radius within this dendritesections (the section at which the wire got pulled off was
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Fig. 7—Four typical views of a dendrite tip as the dendrite is rotated at 45 deg steps about its axis. The image at the bottom right is the three-dimension al
representation of this dendrite.

cluster varies from 12 to 28 mm and the primary dendrite larger scatter in their tip radius as compared with the den-
drites. The overall tip radius for this cellular sample, grownspacing in the same cluster varies from 160 to 203 mm, even

though all these dendrites were presumably growing under at 1 mm s21, is 49 6 23 mm as compared with 19.8 6 5.1
mm for the dendritic sample grown at 3 mm s21. The largeidentical conditions. Despite all this scatter, there is a clear

indication that dendrites whose immediate neighbors are scatter can be attributed to the nonuniformity of the cell
distribution on the transverse section, as seen in the micro-located farther apart tend to have larger tip radii. Combining

all the tip radii data together, the overall tip radius for this graph (Figure 10), and anisotropy in the tip shape. For exam-
ple, the cell number 22 has six immediate neighbors and issample turns out to be 19.8 6 5.1 mm.

Similar behavior was also observed for the cellular arrays, axisymmetric, where as, cell number 14 has seven immediate
neighbors and is highly asymmetric. The tendency for theas shown in Figure 10. The micrograph in this figure shows

the cell cluster from which the individual cell tip radii were cell tip radius to increase with the increasing nearest neigh-
bor spacing is not as evident as it was for the dendrites.determined. The three-dimensional views for the cells were

constructed in a manner identical to the dendrites. Since A closer examination of the transverse microstructures of
the cellular and dendritic arrays near their tip (Figure 11)their tips were also not axisymmetric, the tip radius was

determined from the four views of a cell, as described pre- shows that the cells (and dendrites) do not have a uniform
mushy zone length. Some of them lead their immediateviously for the dendrites (rotating the individual cells along

their axis at 45-deg steps). The shape near the tip was not neighbors, and some lag behind. The dendrite marked by
an arrow in Figure 11(a) at 61 mm from the interface didparabolic; it was closer to circular. Therefore, the radius was

determined by fitting semicircles to the four views of the not even show up in the cross-sectional view at 46 mm from
the interface. Similarly, the cell marked by an arrow in Figuretip. Dependence of these tip radii on their nearest neighbor

spacing is presented in Figure 10. The cells have a much 11(b) at 75 mm from the interface did not show up in the
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(a)

Fig. 8—Four views of a dendrite tip fitted with a parabolic function to
obtain the tip radius.

(a)
(b)

Fig. 10—Tip radius and primary spacing variation among neighboring cells
(Gl 5 140 K cm21; V 5 1 mm s21).

cross-sectional view at 45 mm from the interface. Under
diffusive thermal and mass transport conditions, one would
expect that the leading cells or dendrites would have a
smaller tip radius as compared with their lagging neighbors.
However, when we plotted the tip radius as a function of
distance from the tip of the leading cell (or dendrite), no
such correlation was found. Figure 11 also reinforces the
previously made observation that axial asymmetry at the tip
is considerably more for cells than for dendrites.

D. Growth Speed Dependence of Cell/Dendrite Tip
Radius

(b) Figure 12 shows the growth speed dependence of the
cell/dendrite tip radius for the Pb-5.8 wt pct Sb samplesFig. 9—Tip radius and primary dendrite spacing variation among neigh-

boring dendrites (G2 5 140 K cm21; V 5 3 mm s21). directionally solidified at 140 K cm21. The morphology is
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(b)(a)

(c) (d )

Fig. 11—Some of the cells and dendrites lead their immediate neighbors in the array. (a & b) Transverse sections through the dendritic array at 46 and 61
mm from the interface. (c & d) Transverse sections through the cellular array at 45 and 75 mm from the interface.

cellular at growth speeds below 1.5 mm s21. It is dendritic at
higher speeds. There is a larger scatter in the experimentally
determined tip radius for the cells as compared with the
dendrites. The tip radius decreases with increasing growth
speed.

IV. DISCUSSION

Hunt–Lu[8] provide the following expressions for the cell
and dendrite tip radius Rt during directional solidification
of binary alloys.

For cells: Rt 5 2G/(DT 8s, DT0),

where DT 8s 5 a(V 8 2 G8)0.55 (1 2 V 8)1.5 and

a 5 0.5582 2 0.2267 log10 (k)

1 0.2034 [log10 (k)]2

For dendrites: Rt 5 2G/(DT 8s DT0),

where DT 8s 5 0.41(V 8 2 G8)0.55
Fig. 12—Growth speed dependence of cell/dendrite tip radii (Rt).
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Fig. 13—Rt vs nearest neighbor spacing, l2, for Pb-5.8 wt pct Sb alloy directionally solidified at 140 K cm21. The Rt values are the mean from the four
views of the individual cell/dendrite. Corresponding growth speeds and morphology are indicated in the figure. Solid lines are the linear regression (forced
to pass through origin) through the data, and the corresponding slope values are indicated in the figure.

Here, G8 5 Gl Gk/DT 2
0, and V 8 5 VGk/(DDT0). The term Gl not by the surface energy. This analysis also suggests that

Rt would be approximately proportional to l2.is thermal gradient, k the solute partition coefficient, G the
capillarity constant, D the solute diffusion coefficient in the Figure 13 plots the experimentally observed Rt vs l2 for

all the samples examined in the present study. The datamelt, and DT0 the alloy freezing range. We use the following
values for the various parameters: Gl 5 140 K cm21. C0 5 points represent the mean of the four tip radii from the four

views for each cell or dendrite. The solid lines are the linear5.8 wt pct Sb, k 5 0.4[15], ml 5 6.8 K wt pct Sb,[15] G 5
0.089 mm K,[16] and Dl 5 3 3 1025 cm2 s21[17] in order to regression through the data (while forcing the lines to pass

through the origin). The Rt vs l2 slopes thus obtained arecalculate the predicted tip radii for the cell and dendrite
morphologies (cells for growth speed of 1.5 mm s21 and indicated in these figures. The slope appears to decrease

with increasing growth speed.below; and dendrite for higher speed). The prediction is
shown in Figure 12 as a broken line. It is interesting to note In order to obtain the theoretical predictions of the Rt vs

l2 slope, the following Gt
c vs growth parameter relationshipsthat, despite the presence of significant convection during

these experiments, as evidenced by the extensive longitudi- for cells and dendrites[8] were incorporated in the l2 vs Rt
[18]

expression presented previously. The solutal gradient aheadnal macrosegregation, there is good agreement between the
experimentally observed and theoretically predicted tip radii. of the tips (Gt

c) is 2VCt(1 2 k)/D, and that in the interden-
dritic melt (Gc) is Gl /ml. Hunt–Lu[8] give the followingHunt[18] proposed the following analytical relationship to

predict the primary arm spacings(l): l2 5 4!2[(Gt
c 2 Gc) relationships to predict the tip composition (Ct) for cells and

dendrites, Ct 5 C0 1 DT 8sDT0/m. For cells:2 1](Dl /V )Rt, where Gt
c is the solutal gradient ahead of the

cell/dendrite tip and Gc is the solutal gradient in the interden-
dritic melt. This approach assumes that the primary spacing DT 8s 5

G8

V 8
1 a 1 (1 2 a)V 80.45 2

G8

V 8
(a 1 (1 2 a)0.45)

is determined by the tip radius of the dendrite. It suggests
that, for a given growth condition, Rt would be proportional

whereto l2. Other investigators have incorporated tip radius predic-
tions based on their own model into this relationship in a 5 5.273 3 1023 1 0.5519k 2 0.1865k2.
order to predict the primary spacings.[3,19] These models

For dendrites:have generally assumed that the tip radius of the array is
selected by the liquid-solid surface energy. Spencer and Hup-
pert[10] recently carried out an analysis showing that the tip DT 8S 5 1G8

V 82
c

1 aV 8b 1 (1 2 a)V 81.2b

radius of the dendrite is selected by the array spacing and
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tip radii and primary spacings for both the cellular and
dendritic arrays. The cells and dendrites in an array do not
have a uniform mushy zone length. Some of them lead their
immediate neighbors, and some lag behind. This scatter in
the morphology of the immediate neighbors within an array
may be attributed to the natural convection during growth of
this alloy caused by the density inversion in the interdendritic
melt and in the bulk melt immediately ahead of the array.
However, some scatter may be due to the natural competition
among the neighbors, which would be present even under
purely diffusive thermal and solutal mass transport condi-
tions. Only low gravity experiments can resolve this
dilemma. It is interesting, however, that despite the convec-
tion present during these experiments, the tip radii are
approximately proportional to the square of the primary
spacings, a behavior predicted by the dendrite models based
on diffusive transport; and the experimentally observed cell/
dendrite tip radii are in a good agreement with the predictions

Fig. 14—Slope of Rt vs l2 plots vs the alloy growth speed. Filled symbols from the model due to Hunt–Lu.[8]

indicate the experimentally determined values of the slope, and the open
symbols are the theoretical predictions.
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