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Abstract 

 
Lake Michigan dwelling dune thistle, Circium pitcheri, is a federally threatened 

plant, whose reproduction is affected by a non-native weevil, Larinus planus. Originally 

introduced as a biological control agent to combat the spread of Canada thistle, Circium 

arvense, this weevil is instead using C. pitcheri as a host for its larvae. Associational 

susceptibility is an important factor to consider in hopes of preventing the damage to 

this endangered plant. The goal of this study was to observe L. planus behavior to 

determine why there is a correlation between increased density of beach grass and high 

levels of C. pitcheri damage. We hypothesize that C. pitcheri’s neighboring grass 

community is used as a dispersal aid for the non-native weevil, making neighboring 

thistle hosts more susceptible to weevil damage in grassy environments. To test this, we 

conducted ethogram studies at Whitefish Dunes State Park (WDSP) in Door County, WI. 

At WDSP, we found that L. planus physically used beach grass to get to C. pitcheri and 

largely failed to disperse using the sand. These results should help provide ecologically 

sustainable management strategies, while also promote more in-depth host specific 

analyses prior to the release of biological control agents.  

 

 

 

 

 
 
 

 



Introduction 

 
 Understanding insect behavior can often be the first step to plant conservation. 

In this study, we observe how weevil dispersal behavior is affected by indirect 

associational mechanisms and abiotic factors. Through this, we hope to gain a better 

understanding of insect pest management, in order to conserve plants that are subject 

to their herbivory.  

 

Biological Control Overview 

Implementing non-native species for biological control (biocontrol) purposes has 

earned a divided reputation. At first, biological control was not met with such 

contention. Redeeming qualities of biocontrol include cost effectiveness, sustainability 

and that it is environmentally sound. Successfully established populations of biocontrol 

agents require only a singular cost of introduction. The first well-publicized and 

successful means of biological control was the 1888 introduction of the vedalia beetle, 

Rodolia carinalis, into California to manage the cottony cushion scale, Icerya purchasi 

(Doutt, 1988). Subsequently, numerous other successful biocontrol introductions have 

been performed, most notably was that involving the control of the purple loosestrife 

(Lythrum salicariaI). In the ten years since the release of two leaf beetles, Galerucella 

calmariensis and Galerucella pusilla, reduced flowering frequency has been one of the 

consistent results of beetle feeding (Grevstad, 2006). In most published studies, purple 

loosestrife plants were found to be shorter on average, sustaining various levels of 

beetle damage (Grevstad, 2006; Lindgren, 2003; Denoth et al. 2005; Blossey et al. 2000). 



Victories like these vary in their implementation but are rooted in a similar, general 

process.   

Biocontrol agent invasion is successful after a series of stages are completed: 

uptake, transport, release, introduction and establishment (Colautti et al. 2004). This 

success is typically attributed to the population’s release into an environment free from 

the effects of their predators.  The degree of the success of this non-native species 

invasion is explained by the enemy-release hypothesis (ERH), which suggests that the 

abundance or impact of some non-native species is related to the scarcity of natural 

enemies in the introduced range as compared to the native range (Keane et al. 2002). As 

a result, biocontrol agents highlight the potential importance of natural predators in 

preserving ecological balance. Consequently, introduced agent populations grow larger 

in introduced ranges than in their native range (Crawley 1987). However, even 

biocontrol agents  that are deemed successful may be negatively affected by other 

processes that are unrelated to enemy release, like environmental variables, human 

activity, selection for invasive genotypes etc (Keane et al. 2002).  

Different biocontrol programs have yielded successful results in reducing pest 

populations. In their 2005 meta-analysis of biocontrol programs, Stiling and colleagues 

gathered 145 independent studies. Their goal was to examine the efficacy of different 

biocontrol agents in reducing the abundance and performance of several weed and pest 

species. In sum, their data show that non-target effects were much smaller than effects 

on target species, which supports the continued use of biocontrol. The feeding mode 

and specialization of the biocontrol agent may also play a role in its success or failure. 



For example, the team observed significant effects of biocontrol programs involving 

folivores, pathogens and sap feeders on target weeds. Other studies also supported the 

continued use of biocontrol programs, finding that only 10% or less of classical 

biocontrol programs have led to population changes in non-target organisms (Lynch et 

al. 2001). Similarly, there has been a push for multi-species releases of biocontrol agents 

in hopes of reducing pest populations (Stiling et al. 2005). Although inter-specific 

competition and intra-guild predation are among the interactions that might disturb 

effective biocontrol of pests (van den Bosch, 1971), multiple agents were found to 

decrease pest abundance by 27.2% compared to single species releases (Stiling et al. 

2005). This is certainly reinforced by the famously successful case of the purple 

loosestrife, which has four bioncontrol agents released in Wisconsin and Minnesota.This 

approach typically functions under the implicit bias that the information available on the 

biocontrol agents prior to release is sufficient to predict and therefore prevent 

unwanted ecological outcomes. 

While biological control has been considered an important component of 

integrated pest management (Waage et al. 1988), some researchers have highlighted 

the dangers of this route, finding that the benefits do not outweigh the risks (Simberloff 

et al. 1996). Potential harmful effects, varying from endangering to extinguishing non-

target species, stress the inadequacies surrounding the implementation of biological 

control. For example, after the victory over the cottony cushion scale led to haphazard 

releases of predatory insects that failed to yield positive results. Instead of eliminating a 

pest, the introduced enemy becomes a pest itself. Success rates vary, with 41% of cases 



resulting in some control and 20% of cases with in complete control (Louda et al. 2003). 

This firstly suggests that native relatives of targeted species are most vulnerable to 

predation by biocontrol agents. For example, a type of predatory snail, Euglandina 

rosea, has been introduced from Florida and Central America to many islands worldwide 

with the intention of controlling another snail, Achatina fulica, but has instead 

extinguished several endemic forest snails (Simberloff et al. 1996). Next, the data also 

suggests that the relationship between feeding preference and actual levels of herbivory 

is complicated by environmental context, which can influence the agent’s choice. For 

example, the small Indian mongoose (Herpestes auropunctatus), introduced to a medley 

of island countries to control rats in agricultural fields, instead contributed to the 

decline of birds native to those areas (Simberloff et al. 1996).  In general, any predator 

or herbivores maintained at high densities on common alternative hosts can potentially 

drive a rare non-target species to extinction (Simberloff et al. 1996). 

Recent studies suggest that current biocontrol assumptions need to be 

reevaluated (Louda et al. 2003). Through this, the question is not if biocontrol programs 

can be effective, but how can they be made most effective. Namely, focusing on what 

pairing of biocontrol agent and pest is ideal for a given situation. When the pairings are 

incorrect, biocontrol fails. These seemingly predictable outcomes of success and failure 

are typically the product of limited quantitative information on most biological control 

programs (Greathead 1986). Currently, evaluations of biological control are typically 

based on non-quantitative economic criteria (Stiling et al. 2005). Inadequate analysis 

makes it difficult to establish a consistent measure of success for biological control 



agents. Ideally, analysis would detail how life history, phenology and population 

parameters are correlated with known outcomes within a given environment, in order 

to minimize non-target effects.  

Interestingly, although the merits of generalists over specialist in biocontrol 

efficacy were questioned in the past, more recent data have begun strengthening the 

case for generalists. Specialist refers to species that are able to thrive in specific 

environments and/or on a specific diet, whereas generalists can function in a wider 

breadth of environments and or diets.  In a review using 181 manipulative studies, 

approximately 75% of the cases using generalist predators significantly decreased pest 

abundance (Stiling et al. 2005). When only studying the compatibility of the biocontrol 

agent and target host, unintended effects may inadvertently be ignored. However, 

associational susceptibility is not necessarily related to higher abundances of generalist 

herbivores. Instead, it can rely on one or more specialist herbivores (Plath et al. 2012). 

Despite this, researchers have concluded that it might not be possible to predict the 

impact of specific plant associations simply based on the diet breadth of the herbivore 

in question when only considering the relationship being a neighboring plant and a 

target plant (Barbosa, et al. 2009).  

  All of this, in combination, emphasizes the individuality of each ecological 

circumstance, revealing the need for individualized biocontrol treatment options.  

 

 

 



Associational Susceptibility Impact 

Plant-plant associations affect the probability that a plant will be vulnerable to 

herbivory. Plant associations can increase, known as associational susceptibility, or 

decrease, known as associational resistance, the likelihood of vulnerability to 

herbivores.  In associational susceptibility, the outcome of this interaction is negative for 

a target plant, enhancing chances of detection and damage. Target plant damage is 

facilitated by a variety of factors, like palatability and taxonomy. Here, herbivory 

resulting from associational susceptibility typically involves herbivorous insects, not 

herbivorous mammals (Barbosa et al. 2009). Palatability of neighboring plants can either 

attract or repel insects to/from the target plant. When the neighboring plant is 

unpalatable to target plant herbivores, the predators are either repelled from the area 

or spillover occurs. Interestingly, when considering this effect using polyphagous insects, 

the results found were not significant, implying that plant species with narrower host 

ranges are a driving force (Barbosa et al. 2009). Next, the taxonomic similarity between 

a target plant and its neighbor may increase interactions leading to associational 

susceptibility. This is a logical conclusion because plants that are closely related are 

more likely to share herbivores.  

 Neighboring plants increase the likelihood of this herbivore detection and 

predation of target plants (Barbosa et al. 2009). The occurrence of associational 

susceptibility may be more impacted by relative abundance of neighboring plants than 

specific traits of neighboring plants. Therefore, a greater intensity of traits yields higher 

predation. However, this can be largely confounded by plant species biomass, meaning 



that individual plant species vary greatly in size.  As a result, plants that offer a greater 

resource attract greater herbivore predation. 

Long-term detriments to target plants, like decreases in fitness or yield, 

experiencing associational susceptibility depend on the consistency and strength of this 

concentration as well as the variety of direct/indirect interactions between plants. 

Direct mechanisms imply the individual’s own traits impact damage, whereas indirect 

mechanisms attribute damage to neighboring individuals. The former allows for higher 

resistance to evolve through heritable traits found within a given population; the latter 

does not. Instead, indirect mechanisms rely on the landscape to inform management 

strategies.  

Ultimately, indirect interactions like associational susceptibility impact the 

overall fitness of the target plant, but because they depend on characteristics of the 

neighborhood and not heritable traits of the target plant, there can be no evolutionary 

response to the fitness consequences. Unfortunately, ecosystems lend themselves to 

large quantities of direct and indirect interactions making it difficult to predict the 

relative importance of any particular interaction, like associational susceptibility. 

However, as the detrimental effects of associational susceptibility accumulate, the 

fitness of the target plant species decreases. As a result, it is important to study a 

breadth of indirect associational effects within the complex environment of an 

individual target species. When limiting a study to a controlled environment, like a lab 

setting, important mechanisms contributing to associational effects may be disregarded. 



Here, if we had just considered L. planus and C. pitcheri interactions, associational 

effects may have been overlooked.  

 

Study System 

 Release of a non-native flower-head weevil, Larinus planus, as a means of 

controlling Canada thistle, Cirsium arvense, epitomizes a biological control failure. 

Originally released as biological control for one of the most serious perennial weeds of 

agriculture in the cooler temperate regions of the world, C. arvense, L. planus widely 

prefers Pitcher’s thistle and is therefore contributing to the steady decline of population 

sizes (McClay, 1988). Seven species were released as biocontrol agents for Canada 

thistle; four of those were weevils, including L. planus. Interestingly, L. planus 

(previously L. carlinae) was evaluated twice as a potential biocontrol agent for Canada 

thistle. Its introduction was rejected in the 1960s due to its diet breadth in European 

host-specificity tests (Zwölfer et al. 1971). After L. planus was found in the northwestern 

United States, researchers continued to suggest redistribution of the weevil to areas 

with Canada thistle (Wheeler et al. 

1985). Using contemporary 

protocols to evaluate host 

specificity, McClay (1989) 

determined that the weevil was 

unlikely to form significant 

populations on native thistles. 

Figure 1 Adult L. planus, on Canada thistle, photographer: 
David Cappaert 



Sadly, McClay failed to consider the flower head difference between native and 

Canadian thistles in his study (Louda et al. 2003). This further supports Louda et al. claim 

that test environments are not sufficient to predict responses in a new environment.  

L. planus is a seed-eating weevil from Eurasia that is thought to have entered the 

United States accidentally in the 1960s (Havens et al. 2012). Adult L. planus span 5-8 

mm long, 3 mm wide and are grey-blue in color (Deneke et al. 2008). The defining 

characteristic of weevils, their elongated snout, is called the rostrum. The elytra typically 

have one thin patch of grey to white hairs. Older individuals may appear completely 

black due to loss of colored hairs. Female L. planus grow a rostrum that is curved such 

that it is approximately 16.8% of the total female body length (Havens et al. 2012). 

Along the coast of Lake Michigan, L. planus is threatening the survival of an endangered 

dune thistle, Cirsium pitcheri (Pitcher’s thistle). Federally threatened since 1998, C. 

pitcheri has fallen victim to a non-native weevil, L. planus. (Havens et al.  2012). Weevils 

were first discovered in Whitefish Dunes State Park (WDSP, Door Couny, WI) in 2010. 

Havens and her team found weevils in one-third of the flower heads examined. The 

following year, the researchers found L. planus in over half of the flower heads 

surveyed.  

Weevil predation is driven by reproduction. Females oviposit their eggs into 

adult C. pitcheri capitula and the larvae then consume the thistle’s seeds, preventing 

that capitulum from reproducing. The process of finding a host plant is largely unclear 

but chemical stimuli appear to play an important role in the selection process (Volovnik, 

2015). Location and accessibility of the host plant also impact weevil selection (Hakes et 



al, unpublished data). WDSP offers different habitat conditions for Pitcher’s thistle. 

Therefore, an individual plant’s associations determine the likelihood of detection by 

predators, like Larinus (Barbosa et al. 2009).  

Since larvae development occurs within a capitulum, selection of the ‘womb’ is 

crucial for offspring survival. Factors affecting oviposition are size of the capitulum, 

ripeness of the capitulum and the presence of oviposition holes on the capitulum 

(Volovnik, 2015). Typically, female weevils prefer laying eggs in larger flower heads, 

where the mean diameter of the capitula examined was 13.54 mm (Volovnik, 2015). 

Ripeness of the flower head is attributed with specific stages of capitula development, 

where the head is sufficiently mature but either totally or mostly closed (Volovnik, 

2015). It is unknown if a female can determine larval infestation of a specific capitula 

since site selection usually takes no more than a minute (Volovnik, 2015).  

After selection, oviposition occurs. This is the most arduous phase of the 

oviposition process. Females use their rostrum, to remove enough plant matter to reach 

the base of the capitulum. Longer and more pointed rostra are associated with the 

Larinus weevils that lay eggs in still closed flower heads (Brandl et al. 1989). When 

gnawing out the hole, the female is constantly moving her body in hopes of compacting 

the walls of the hole. The prepared hole ranges from 2 mm to 4 mm wide (Volovnik, 

2015). The female then turns and detects the hole with the tip of her abdomen, 

ovipositing her egg into the hole. Some species of weevil use their long rostra to push 

the egg deeper into the hole (Gültekin, 2006). The behavior with which the hole is 

sealed varies among weevil species. Often, female Larinus cover the egg with a droplet 



of dense substance released from the tip of the abdomen. This fecal cap soon dries as a 

solid, which protects the egg from desiccation and zoophages. Many weevils are also 

known to mark oviposition holes with short-lived special pheromones, rendering the 

host an “occupied plant” but no such data are available for Larinus weevils (Kozlowski et 

al. 1983). The brief duration of the cues seems to suggest that older larva have the 

opportunity to damage or eliminate later eggs. Larva usually span 8-9 mm in length and 

the body is strongly curved in a ‘C’ (Deneke et al. 2008). Development usually spans 23-

54 days. During this time, adult weevils are not particularly active, seeking refuge in leaf 

litter or in soil, where they will eventually overwinter.  

Weevil consumption of C. pitcheri seeds yields obviously damaging effects for 

population densities of the flowering dune plant. Pitcher’s thistle, Circsium pitcheri, is a 

prickly and pollinating addition to the shorelines of the upper Great Lakes. The 

disturbance prone habitat of the dune makes it the perfect home for this thistle. C. 

pitcheri is a monocarpic perennial, with 4-8 year life span, that can be described in four 

stages: seedling, juveniles with at least one true leaf, vegetative plants, and 

reproductive adult with flower heads. It flowers and reproduces once, then dies.           



 

Figure 2 C. pitcheri with terminal and secondary heads at stages three and zero, 
respectively. Whitefish Dune State Park, 2016, photographer: Hakes 

Despite a rather unusual life history, C. pitcheri contributes to the biodiversity of 

the dune by acting as a source of pollen. Flowering occurs in late June, where one plant 

can produce 1-35 pink/creamy-white capitula (Havens et al.  2012). The dune thistle is a 

sexually reproductive plant, therefore individual flower heads are not self fertilizing. 

Despite this, inbreeding can still occur as a pollinator may visit two flower heads on the 

same plant. Once fertilized, seeds develop and, over time, grow tufts of pappus, which 

allows them to catch breeze when the flower head opens. These characteristics, sexually 

reproduction and wind dispersal, initially give the impression of populations with high 

genetic diversity. Despite this, due stochastic processes like drift or founder events, C. 

pitcheri have relatively small population sizes leading to less genetic diversity within 

populations (Gauthier et al. 2010). Similarly, gene flow may also be limited due to C. 

pitcheri seed weight, meaning that seeds typically fall within 4 m of parent plant.  

Obviously, L. planus predation is not the only factor endangering this plant 

species. Herbivory and trampling from native mammals, like deer, and birds, like the 



American goldfinch (Cardeulis tristis), threaten the survival of this thistle. Other insects, 

like spittlebugs, cause apical meristem damage. Climate change also is predicted to 

restrict the range of C. pitcheri over the next decades (Vitt et al. 2010). Lastly, increased 

inbreeding among C. pitcheri greatly contributes to low diversity between populations 

(Gauthier et al. 2010).  

Despite the plethora of variables contributing to its decline, C. pitcheri 

conservation is a worthy endeavor. As one of the only flowering plants located on dune 

communities, Pitcher’s thistle attracts pollinating insects and therefore increases the 

biodiversity of the area. A source of pollen for migrating Monarch butterflies or local 

bees, C. pitcheri is a crucial component of the larger ecosystem. Lastly, learning how to 

successfully combat the spread of L. planus could provide future management options 

for failed biological control attempts.   

 

Research Objectives 

We hope to determine if associational effects of neighboring plants, specifically 

beach grass, affect weevil predation on Pitcher’s thistle. Using these findings, we would 

be able to discern whether C pitcheri’s neighboring community has a stronger 

correlation to plant damage than its physical characteristics. Based on previous findings 

from Hakes and her team, C. pitcheri are easier to access when denser patches of 

vegetation surround them. By observing weevil behavior, we hope to shed light on their 

locomotive preferences.  

 



Materials and Methods 

 
Study site  
 Whitefish Dunes State Park (WDSP) is a state park located on the eastern shore 

of the Door Peninsula in Wisconsin. Approximately 230 of the 867 acres of the park are 

considered the Whitefish Dunes State Natural Area, implemented to protect rare 

species of plant, such as the dune thistle (C. pitcheri) from the public (Wisconsin DNR, 

2014). Dry sand and constant disturbance makes WDSP largely inhospitable for many 

plant species. The primary dune, nearest to the lakeshore, is inhabited by the early-

successional beach-specialists, marram grass (Ammophila arenaria), which spreads its 

tuberous roots just under the surface of the sand. WDSP also has areas of high 

elevation, which refer to the dune slopes with areas of sandy blowouts (Meunier, 2015). 

Although C. pitcheri can be found here, these slopes harbor the fewest plant species due 

to the unstable nature of the sand. Contrastingly, the peak of the dune—with an 

elevation of approximately 12 m—yields the greatest plant diversity due to the adjacent 

late successional mixed broadleaf-coniferous forest that characterizes Door County 

(Meunier, 2015).  

 

 

 

 

 

 

 



Experimental design    

 
Figure 3 Sample C. pitcheri used for observational L. planus studies   

Next, we wanted to consider direct mechanisms, by testing the relationship 

between flower head size and weevil damage. Here, height, crown diameter, head—

capitulum—diameter, number of heads, head stage, head position and number of 

exterior oviposition holes per head were cataloged. Height referred to the length of the 

plant from the ground to its tallest head. Crown diameter represents the horizontal 

width of the plant from its base and it is a proxy for plant size. Number of flower heads 

also acts as a proxy for plant size. Head diameter indicates flower size and was 

measured using a caliper. Flower heads smaller than 10 mm were not considered. We 

assessed internal damage by the presence of L. planus found inside dead C. pitcheri 

flower heads. In August 2016, final damage assessments were conducted for all 97 C. 



pitcheri, amounting to 334 flower heads. Seed stage refers to the presence of viable 

seeds: 0, if no seeds are viable; 1-4, if few-mostly all seeds are viable. L. planus stage 

refers to the presence of weevils: 0, if no weevils present; 1, if larva was present; 2, if 

pupa was present; 3, if adult was present; 4, if weevil frass was present.  

 
Ethograms 
 
 In June 2016, 170 ethograms were conducted, to determine how L. planus was 

reaching the target plant. The purpose of these observations was to investigate a 

relationship between associational effects of neighboring plants and damage to C. 

pitcheri of L. planus (Meunier, 2015). This association refers to increased damage on 

thistles that are surrounded by grass neighbors.  

 

 
Figure 4 Template of L. planus ethogram, created by Marianthi Tangili ‘16 



Weevils were collected in the morning of each observational day. They were 

readily available on adult C. pitcheri flower heads. Each weevil collected was marked 

with a unique color pattern on its elytra using Craft Smart paint markers. 

Prior to each ethogram, air temperature, average wind speed, maximum wind 

speed, humidity and weather conditions were noted using a Kestrel Instrument 

(Minneapolis, MN). Any previous weevils were removed from the target plant to not 

influence dispersal behavior.  L. planus was released on the sand 35 cm from the target 

plant. Once released, weevil behavior and duration of that behavior was recorded until 

the weevil reached the target plant, died, or flew out of sight. Cataloged weevil 

behaviors included: stationary (ST), walking (WA), mating (MA), foraging (FO), playing 

dead (PD) or flying (FL). If the observer lost track of the individual for a period of time 

the behavior was marked as ‘out of sight’ (OS). Locations of weevil behaviors included: 

sand (SA), grass (GR), juvenile or non-target C. pitcheri (CP), debris (DB) or dead grass 

(DG). The former refers to plant matter that is horizontal, whereas the latter refers to 

grass matter that is vertical. Behavior or locations not included in the scope of the 

ethogram were noted as XS or XL respectively. We released weevils from 17 separate 

target plant locations and conducted 170 weevil observations. Ethograms ranged from a 

total of 4 seconds to 2 hours. In addition to quantifying the number of seconds a weevil 

spent doing each behavior and at each location, we standardized the proportional time 

each weevil spent in a behavior or location.  



 
Figure 5 L. planus on C. pitcheri leaf (left) and on an immature capitulum (flower head) 
C. pitcheri (right). Each weevil was marked for identification during ethogram study.   
Whitefish Dune State Park, 2016, M. Montoya 

Statistical analysis   
 

Statistical analysis was used to consider the relationship between grass neighbor 

associations and weevil damage. For all analyses that yield P values, we used an alpha 

value of 0.05. We analyzed the frequency of weevils flying out of sight from various 

locations (sand, grass, debris, or C. pitcheri) using a chi-square test of goodness-of-fit. 

Our expected frequency was an even ratio (1:1:1). We used the same test to analyze the 

dependent variable horizontal and vertical substrate. We continued to use chi-square 

test of goodness-of-fit when examining the location prior to reaching the target plant, 

combining ‘grass’ and ‘dead grass’ results as well as omitting ‘out of sight’ results, as this 

behavior was the fault of the observer. In order to analyze how time spent engaging in 

behaviors differed at various locations we conducted a chi-square test of independence. 

Next, to assess normality, we analyzed the distributions of weevil location and abiotic 

conditions using a Shapiro-Wilk test. Data that did not meet the assumption of 



normality so we used the Spearman’s rank correlation coefficient to explore the 

correlation between abiotic factors and time spent on behaviors/at various locations. 

We performed all of these statistical analyses in PAST (Hammer et al, 2001) and Excel 

templates (McDonald, 2014).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 

 
The main objective of our study was to determine if neighboring grasses affect   

weevil behavior and dispersal to Pitcher’s thistle. All weevils were released on the sand, 

35 cm from one of 17 target thistles. Of the 170 L. planus ethograms conducted, 75 

(44%) weevils reached a target Pitcher’s thistle, 91 (54%) few away (i.e long-distance 

dispersal event) and 4 weevils (1.8%) died under observation (Fig. 6). All 4 of the dead 

individuals died while struggling to upright themselves on the sand, where they were 

initially released. Even though the weevils were upright at the time of release, many 

weevils tended to fall on their dorsal side while on the sand (Czaplinska, personal 

observation).  

We were interested in whether the 91 weevils that flew away (long-distance 

dispersal event) and did not reach the target plant, differed in their location (grass, 

sand, or debris) immediately prior to flying away (Fig.7). When combining ‘grass’ and 

‘dead grass’ findings (both vertical substrate), 44 (48. 4%) weevils flew away when on 

grass. Next, 34 (37.4%) weevils flew away when on sand, 8 (8.8%) when on debris, 3 

(3.3%) when on a juvenile C. pitcheri and 2 (2.2%) when out of sight and unaccounted 

for. The difference in frequency of weevils flying away from the sand, grass, debris or 

juvenile C. pitcheri is significant (x2=53.247, 3 d.f, P<0.001). However, this result is driven 

by the comparatively rare locations of ‘juvenile C. pitcheri’ and ‘out of sight.’ When just 

comparing the frequency of weevils flying away from horizontal substrate at ground 

level (i.e. sand and debris) with vertical substrate (i.e. dead grass, live grass, and juvenile 



C. pitcheri) there is no association between location and this behavior (x2 = 0.281, 1 df, 

P=0.298) 

Similarly, of the 75 weevils that successfully reached the target plant, we 

examined whether the frequency of weevils at each location of the ‘last stop’ before 

flying or walking onto their host plant varied (Fig. 8). When combining ‘grass’ and ‘dead 

grass’ location findings, an overwhelming 64 (85.3%) weevils reached the target plant by 

either flying or walking directly from the vertical structure of grass. Next, 5 (6.6%) 

weevils reached the target plant from sand and debris. Lastly, 1 (1.1%) weevil reached 

the target plant after initially being out of sight by the researcher, and was therefore 

removed from the chi-square analysis. Here, the difference in proportions is significant 

(x2=94.081, 2 d.f, P<0.001).  

Next, we examined the frequency of time weevils spent engaged in each 

behavior. Of those successful 75 weevils, time was overwhelmingly spent stationary. Of 

the 75298 seconds of weevil observations, L. planus spent a total 50,237 seconds 

stationary compared to a total 13,027 walking (Fig. 9). The frequency of time spent in 

each behavior was significantly different between locations (x2=20.560, 12 d.f, p<0.001). 

Weevils tended to be stationary the longest on grass (26,020 sec) and also tended to 

walk more often on grass (5,037 sec) than on sand, or debris. Overall, L. planus was 

found to be most active in grass (38,567 sec) and second most active on sand (19,870 

sec). Total time is lowest on C. pitcheri vegetation, which is a combination of activity on 

immature C. pitcheri and the target plant prior to reaching the flower head (6848 sec). 

This may be a reflection on how the study was conducted (as noted above, not every 



thistle release site had juvenile C. pitcheri nearby). The proportion of time spent flying 

away was highest in sand environments (14.14% on sand, 2.23% on grass, 1.03% on 

debris, 1.08% on juvenile C. pitcheri).  

The association between abiotic factors (air temperature, wind speed and 

humidity) and total/proportional time spent on grass, sand and debris location was 

examined (Table 1). The variable ‘Total time’ represents how long we observed an 

individual before it either died, flew away or reached the target thistle. In general, less 

total time dispersing was observed as air temperature increased (r=-0.384, P <0.001) 

and more total time was spent at various locations as humidity increased (r=0.321, 

P<0.001). Interestingly, this association differed when only considering the weevils that 

successfully reached the target plant (Table 4). Here, proportion of total time increased 

as air temperature increased (r=0.272, P=0.019) and proportion of total time decreased 

as humidity increased (r=-0.287, P=0.013). Next, a significant correlation was found 

between sand and the abiotic factors air temperature and humidity (Table 2). As 

humidity increased, time spent on the sand increased (r=0.310, P<0.001). However, as 

air temperature increased, time spent on the sand decreased (r=-0.336, P<0.001). This 

correlation was also found among the weevils that successfully reached the target plant 

(air temperature: r=-0.330, P= 0.004, humidity: r=0.306, P=0.008, Table 3). An almost 

identical correlation was found between time spent on debris and the abiotic factors air 

temperature and humidity. Among all the weevils, total time spent on debris decreased 

as temperature increased and time spent on debris increased as humidity increased (air 

temperature: r=-0.361, P<0.001, humidity: r=0.389, P<0.001, Table 2). The same pattern 



is seen when considering proportional time (air temperature: r=-0.355, P<0.001, 

humidity: r=0.398, P<0.001, Table 1). This was also reinforced among the weevils that 

successfully reached the target plant, where the proportion of time on debris decreased 

as air temperature increased and increased as humidity decreased (air temperature:   

r=-0.417, P<0.001, humidity: r=0.436, P<0.001, Table 4).  

Finally, the effect of abiotic factors and total time spent doing various behaviors 

(stationary, walking, playing dead and out of sight) was examined. In general, time spent 

stationary or walking decreased as air temperature increased (stationary: r= -0.349, 

P<0.001, walking: r= -0.376, P<0.001, Table 5). Contrastingly, as humidity increased, 

time spent walking increased (r= 0.344, P<0.001, Table 5). These walking correlations 

were also found among the weevils that successfully reached the target plant (air 

temperature: r= -0.288, P=0.012, humidity: r= 0.308, P=0.007, Table 6). All behaviors, 

where the Spearman’s rank coefficient was significant, decreased as temperature 

increased.  

 

 

 

 

 

 

 

 
 



 

Figure 6 Total Ethogram Result—Frequency of L. planus that reached target thistle, flew 
away or died on the sand (N=170) 
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Figure 7 L. planus location prior to flying away—Frequency of L. planus that flew away 
from grass, sand, debris, juvenile C. pitcheri or were out of sight (N=91) 
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Figure 8 L. planus location prior to reaching target plant—Frequency of L. planus that 
reached target plant from grass, sand, debris or out of sight (N=75) 
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Figure 9 Behavior distributions across location—Time spent engaging in each behavior, 
which differed by location of the weevil. This analysis was restricted to L. planus that 
successfully reached target plant (N=75) 
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Table 1. Spearman’s rank correlations between abiotic conditions and proportion of time 
(seconds) spent at various location, displaying rank correlation coefficient for all L. planus 
tested (N=170), where p<0.05*, p<0.01** and p<0.001*** 

 
 
 
 
 
 
 
Table 2. Spearman’s rank correlation between abiotic conditions and total time (seconds) 
spent at various location, displaying rank correlation coefficient for all L. planus tested 
(N=170), where p<0.05*, p<0.01** and p<0.001*** 

 Grass Sand Dead Grass C. pitcheri Debris 

Air temperature (°C) -0.147 -0.336*** -0.263*** -0.137 -0.362*** 

Avg. wind (m/s) 0.068 -0.008 0.231 -0.004*** 0.081 

Max. wind (m/s) 0.055 0.0352 0.191* -0.008 0.012 

Humidity (g/c3) 0.109 0.310*** 0.199*** 0.168* 0.388*** 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Total Prop. Grass Prop. Sand Prop. Dead Grass Prop. Debris 

Air temperature (°C) -0.0384*** -0.0905 0.0217 -0.162* -0.355*** 

Avg. wind (m/s) 0.114 0.012 -0.131 0.256*** 0.054 

Max. wind (m/s) 0.126 -0.009 -0.125 0.226** -0.016 

Humidity (g/c3) 0.321*** 0.071 0.017 0.093 0.399*** 



 
 

Table 3. Spearman’s rank correlation between abiotic conditions and time (seconds) spent at 
various location, displaying rank correlation coefficient for all L. planus tested (N=75), where 
p<0.05*, p<0.01** and p<0.001*** 

 Grass Sand Dead Grass C. pitcheri Debris 

Air temperature (°C) 0.109 -0.330** -0.199 -0.198 0.401*** 

Avg. wind (m/s) 0.205 -0.072 0.234 -0.047 0.047 

Max. wind (m/s) 0.239* 0.053 0.202 2.75E-05 0.037 

Humidity (g/c3) -0.123 0.306** 0.158 0.229** 0.415*** 

 
 
 
 
 
 
 
 
 

 
Table 4. Spearman’s rank correlation between abiotic conditions and proportion of time 
(seconds) spent at various locations, displaying rank correlation coefficient for all L. planus 
tested (N=75), where p<0.05*, p<0.01** and p<0.001*** 

 Prop. Grass Prop. Sand Prop. Dead Grass Prop. Debris Prop. Total 

Air temperature (°C) 0.234* -0.072 -0.107 -0.417*** 0.272* 

Avg. wind (m/s) 0.181 -0.108 0.239* 0.038 0.169 

Max. wind (m/s) 0.155 -0.096 0.161 -0.039 0.158 

Humidity (g/c3) -0.225 0.121 0.068 0.436*** -0.287* 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



 
 
 

Table 5. Spearman’s rank correlation between abiotic conditions and proportion of time 
(seconds) spent engaging in various behaviors, displaying rank correlation coefficient for all L. 
planus tested (N=170), where p<0.05*, p<0.01** and p<0.001*** 

 Stationary Walking Playing dead Out of sight Flying 

Air temperature (°C) -0.3488*** -0.37629*** -0.072844 -0.23831** -0.012206 

Avg. wind (m/s) 0.050011 0.11268 0.048584 0.0038966 0.016657 

Max. wind (m/s) 0.075526 0.099358 0.045238 0.0050225 -0.030313 

Humidity (g/c3) 0.31444*** 0.34434*** 0.079371 0.26357*** 0.010318 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6. Spearman’s rank correlation between abiotic conditions and proportion of time 
(seconds) spent engaging in various behaviors, displaying rank correlation coefficient for all L. 
planus tested (N=75), where p<0.05*, p<0.01** and p<0.001*** 

 
 

 

 

 

 

 Stationary Walking Playing dead Out of sight Flying 

Air temperature (°C) -0.21497 -0.28781** -0.17179 -0.27227* 0.14375 

Avg. wind (m/s) 0.076841 0.051945 0.019729 -0.034543 0.052797 

Max. wind (m/s) 0.20972 0.1362 0.13444 -0.010413 -0.073056 

Humidity (g/c3) 0.21585 0.30824** 0.12128 0.29121** -0.14018 



 

 

Discussion  

 

 Our ethogram study provided insight into the dispersal and host-finding behavior 

of a non-native weevil that is attacking the rare, native Pitcher’s thistle at WDSP. 

Overall, we found that marked weevils that reach their target host are overwhelmingly 

using grass neighbors to get to the thistle. In contrast, location (sand, debris, grass) had 

no effect on weevils that did not reach the host (i.e. flew away), but weevils were more 

likely to fly when on sand environments. Furthermore, our evidence supports that 

abiotic factors, such as temperature, affected the total time of dispersal and time spent 

engaging in certain behaviors and locations. Together, these results suggest that 

neighboring beach grass acts as a dispersal mediator for the non-native weevil, 

potentially explaining why thistles with grass neighbors suffer higher levels of weevil 

infestation than thistles in sandy locations. Knowing how weevil behavior is affected by 

thistle neighborhood and abiotic factors, we hope to better inform conservation efforts 

of C. pitcheri and management strategies to control insect pests.  

 

Dispersal mediated effects 

In general, neighboring grass facilitates L. planus dispersal. Weevils spent an 

overwhelming amount of their time on the neighboring grass. Weevils that reached the 

target plant spent most amount of time on the grass (48.8%). Moreover, 85.3% of the 

weevils that reached the target plant flew or walked directly from the grass to the 



thistle (where grass was the ‘last stop’) before arriving. This suggests that target thistle 

hosts may be more susceptible to weevil damage in grassy environments because 

grasses are the substrate that weevils prefer to spend time on when looking for hosts.  

This finding offers a new and overlooked mechanism of associational effects. 

Traditionally, associational susceptibility predicts that neighboring plants will serve as an 

alternative resource to herbivores (Agrawal, 2004; Barbosa et al. 2009). L. planus, 

however, does not feed on beach grass and instead feeds on fresh leaves of target host 

plants (Johnson et al, 2008). Therefore, the grass is serving L. planus mainly—based on 

the results of this study—as a means of dispersal. Grass substrate might allow for the 

weevil to remain upright, which is a luxury that they are occasionally denied on the sand 

(Czaplinska, unpublished data). These findings imply that sand can negatively influence 

L. planus fitness. Sand was not as popular among the weevils that successfully reached 

the target plant, especially when compared to the weevils that did not reach the thistle 

(6.6% and 37.4%, respectively). Similarly, four weevils were observed dying on the sand 

after falling on their backs and struggling. We did not have a large enough sample to 

determine whether temperature was a determining factor in weevil mortality on sand, 

but we did observe these deaths on sunny, hot days (34.2°C, 20.2°C, 31.6°C and 30.1°C). 

However, if the grass was preferred solely because it is an alternative to sand, this is not 

supported by our observations. Debris, which offered a more stable horizontal substrate 

than sand, was not a preferred location for weevils. This may suggest that the vertical 

structure of grass dictates weevil location preference.  



Other uses of the grass should also be considered, including: refuge from 

predators, camouflage, volatile chemical detection, or respite from stressful 

environments. A commonly observed L. planus defense mechanism was falling 

(Czaplinska, Hakes, Montoya-Paniagua; unpublished data). We observed the weevils’ 

tendency to fall from C. pitcheri or grass when disturbed rather than fly away. Falling 

among these plants made it difficult for the observer to spot the weevil. This suggests 

that L. planus uses vertical structures, like the host plant and neighboring grass, as 

camouflage and protection. Sand does not appear to possess defense mechanisms for 

the weevil. Weevils, which are dark in color, are easy to find on the sand. Similarly, a 

weevil that ‘trips’ on the sand often struggles to return to an upright position. The four 

documented weevil deaths occurred on the sand after the individual had fallen unto its 

back. The lack of debris or vertical structures on some parts of the sand environment 

can make it difficult or impossible for the weevil to regain an upright position. This and 

other factors contribute to making the sand a stressful environment for L. planus. Our 

studies show that temperature negatively impacts time spent on the sand, suggesting 

that vertical structures may maintain cooler temperatures. Future studies could pursue 

distinguishing these preferences.  

Grass may also be used as an aid for volatile chemical detection. Herbivorous 

insects typically rely on cues, visual or chemical, to find the target plants (Barbosa et al 

2009). L. planus indisputable preference for C. pitcheri only at their reproductive stage 

suggests that flower heads can produce volatile chemical signals that allow for weevil 

detection. As a result, the vertical structure of grass might facilitate olfactory cue 



detection by stationary weevils. L. planus’ prominent geniculate, or elbow-like, 

antennae propose olfactory significance. How C. pitcheri volatile emission influences the 

behavior of the weevil can inform future management strategies. Plant volatiles have 

been found to enhance the ‘appeal’ of insect sex pheromones (Deng et al, 2004; 

Dickens, 1989; Light et al 1993). For example, green leaf alcohols have been found to 

attract cockchafer (Melolontha spp.) males to plants that females are already feeding on 

(Reinecke et al, 2002). A plant’s chemical cues also cause some herbivorous insects to 

alter their production and release of sex pheromones (Reddy et al, 2004). These plant 

volatiles indicate a suitable food source for their progeny. For example, chemicals 

released by tomatoes—like ethylene and 3-methyl-butan-1-ol—induce sex pheromone 

production in females of the moth species Helicoverpa (Raina et al. 1992). 

One alternative explanation for why weevils may prefer thistles with grass 

neighbors is that grasses and thistles may directly facilitate or compete in ways that 

affect thistle fitness. In this case, weevils may be drawn to the characteristics of the 

thistles themselves while choosing their host. Although we do not have evidence 

whether grass directly affects thistle fitness, our research findings allow us to minimize 

the role of thistle flower head traits being a direct mechanism affecting weevil damage. 

When considering the relationship between C. pitcheri flower head diameter and 

oviposition, the logistic regression revealed no significant relationship (P=0.377). This 

means that weevils are not searching for larger flower heads in which to oviposit. 

Previous research in our lab also failed to find relationships between thistle size and 

weevil damage (Hakes, unpublished data). Despite this, past studies have attributed L. 



planus damage to Tracy’s thistle’s, Cirsium undulatum, physical characteristics (Louda et 

al. 2002; McClay, 1989). Here, most of the undamaged flower heads were the smaller 

heads on side branches. One reason why McClay observed different results than we did 

could be the large difference in flower head diameter between native C. pitcheri, which 

are larger, and Tracy’s thistles, which are smaller (Louda et al. 2002). This may suggest 

that size of flower head matters to weevils up to a threshold, and then heads are large 

enough for weevil development. In our study, even the smallest C. pitcheri heads may 

be above that size threshold.  

Our research did not consider the chemical effect of flowering heads on weevil 

dispersal behavior. Plant-chemical cues are found to affect oviposition behavior in 

herbivorous insects, where plant volatiles released from flowering plants play a vital role 

in guiding oviposition behavior (Reisenman et al 2009).  Plants can limit damage by 

changing flower-opening activity in response to damage (Hilker et al. 2011).  For 

example, flowering and undamaged tobacco plants attract the Carolina sphinx moth 

(Manduca sexta) whereas tobacco plants that are damaged by moth larvae release less 

of the attractive volatile (Hilker et al, 2011). Additionally, these damaged plants can 

reduce the percentage of flower opening during the night, when the moths are active. 

Observing a correlation between amount of flowering heads open and over all plant 

damage could be a useful avenue to consider for C. pitcheri. L. planus tend to oviposit in 

closed heads so C. pitcheri might be increasing the amount of flower heads open among 

damaged heads.  

 



Abiotic factors 

 Air temperature and humidity appear to most impact weevil behavior. Our 

research generally reveals that the two abiotic factors are inversely related. Namely, 

higher air temperature and lower humidity cause less weevil activity. This combination 

has been proven potentially deadly to insect embryo (Little et al. 2007). Humidity 

concentrations within the leaf boundary layer can influence choice of oviposition site 

and affect egg development (Hilker et al, 2011; Woods, 2010). The leaf boundary layer 

refers to the thin layer of air surrounding the surface of a leaf. Low humidity due to dry 

air may lead to dehydration of the egg. Our results support that increased humidity 

positively impacts weevil activity, which may result in more oviposition. Although we did 

not note oviposition behaviors in our ethogram studies, we did observe increases in 

stationary and walking behaviors as humidity increased, as well as increased time spent 

on C. pitcheri.  Female weevils are stationary when they oviposit and weevils will often 

walk to each other on the thistle in order to mate (Czaplinska, unpublished data). As 

humidity decreases and temperature increases, a plant’s increase in temperature causes 

the metabolic rate of the embryo to increase. This, in combination with increased water 

loss in the egg, is known to cause the stressed embryo to die. Embryonic activity was not 

within the scope of this study. However, host-finding behavior may be affected by what 

is best for weevil development.  

 

Future Avenues 



 Our observational studies confirm the use of grass as a means of L. planus 

dispersal. This is particularly important, as the grass does not provide a food resource to 

the weevil, which is unique to associational relationships. Instead, the grass’s vertical 

and temperate environment might provide a more stable environment for L. planus 

(Paniagua Montoya, unpublished results). Grass might also be more conducive as a 

means of detecting plant volatiles. Conducting behavioral studies testing olfaction 

would help assess its affect on weevil dispersal. A suggested model for these tests 

includes a dynamic Y-shaped oflactometer, where charcoal-cleansed air is pumped 

containing volatile sources (see methods Mayer et al, 2008; see methods Defagó et al, 

2016). Through this, Mayer and his team recommend using sticky traps equipped with 

dispensers containing volatile implicates as a pest management strategy. Determining 

the relationship between weevil dispersal and volatile cues could be the key to saving C. 

pitcheri from extinction.  

 Although weevil physiology suggests an olfactory preference, visual cues should 

also be considered as a potential means of facilitating dispersal. Future observations 

could compare the dispersal abilities of functioning weevils to those that are visually 

impaired. Despite this, binding weevils may not be within the moral scope of all future 

researchers.  

Our study also did not consider the many internal factors that affect weevil 

behavior. Food deprivation plays a crucial role in insect responses. Hunger can trigger an 

increase in sensitivity to host plant stimulus (Defagó et al, 2016; Bernays et al, 1994). 

Assessing starvation levels of L. planus and how this relates to their dispersal rate may 



inform peak damage periods. Since L. planus is mostly active June-August, C. pitcheri 

might be damaged at a higher rate in the beginning of June, as new (and hungry) adults 

emerge. Insect age also affects sperm production. We attempted to distinguish males 

and females in this study, when collecting weevils that were mating. The male sweet 

potato weevil, Cylas formicarius, produces more sperm and is able to transfer more 

sperm to females successfully with age (Hiroyoshi et al. 2016). Older males were able to 

produce and transfer more sperm. Interestingly, mating failure still occurs and Kuriwada 

et al. (2013) reported that more than half female C. formicarius copulated with no 

sperm in their body, especially when females walked during mating.  Although males do 

not make oviposition choices, they may still want to find flower heads in order to find a 

mate. Therefore, sperm production may also inform peak damage periods.  

  This study also did not address larval L. planus behavior. Although larvae remain 

inside the flower head, exploring their behavior would provide a complete 

understanding of behavior across the L. planus life cycle. Unfortunately, L. planus 

observational studies would be difficult to execute in the field and would have to be 

conducted in a lab setting. Dismissing the environmental complexes can result in an 

incomplete understanding.  

 Currently, L. planus continue to severely threaten the C. pitcheri species. By 

studying weevil behavior, we hope to impact future management strategies to salvage 

C. pitcheri populations at Whitefish Dunes State Park and all along the coast of Lake 

Michigan. Ecology has the unique purpose of creating an environment suitable for all.  



The havoc L. planus wreaked on C. pitcheri emphasizes the delicacy of every ecosystem, 

where no variable is truly independent. Therefore, all manipulations must take into 

account the greater complexity at hand. Fortunately, as dynamic beings, we are able to 

weed out insufficient methods and conduct more rigorous tests that incorporate host 

specificity and indirect associational effects. With these tools at our disposal, it is our 

duty to try to preserve the balance of the environment.  
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