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Abstract 
 

Eurytemora affinis, a calanoid copepod, is known to be a versatile, prolific 

invader of freshwater ecosystems across the globe. It has recently been documented in the 

Laurentian Great Lakes, including in Little Sturgeon Bay, an embayment of Lake 

Michigan. One survival mechanism that could make E. affinis a successful invader is diel 

vertical migration (DVM), a behavior in which animals move to different lakes depths at 

different times of day in order to avoid predation. Much is known about DVM of E. 

affinis, but primarily from studies in marine and brackish systems. Our goal was to 

investigate how E. affinis responds to its new, non-native freshwater environment, and to 

make inferences about its invasive success. During the summer of 2014, samples were 

taken at Little Sturgeon Bay twice on four days—once at noon and again at night. 

Samples were collected at one-meter intervals from one nearshore site and one offshore 

site. Body size and darkness of different life-stages of E. affinis were evaluated to 

determine stage-dependent differences in visual predation risk. Abundance of E. affinis 

was determined at each depth of each site to describe diel patterns of movement through 

the water column.  Results show significant differences among life-stages in both length 

and visual area, but not our measure of darkness.  Magnitude of DVM was greater near 

shore than in the offshore habitat. This may be a result of greater predation pressure near 

shore. The magnitude of DVM was also stage-dependent, with adults performing a more 

drastic migration than copepodites. This stage-dependency could be a result of differing 

visual predation risk, since copepodites are smaller than adults. The variety of DVM 

magnitudes exhibited for different life stages and environmental conditions support the 

notion that E. affinis is highly phenotypically plastic, making it a successful invader.
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Introduction 

It is romantic, yet shortsighted, to think of an 

ecosystem as static and pristine—an archaic 

system of organisms interacting in the same way 

year after year. In reality, ecosystems are 

incredibly dynamic. Ecologists use food webs to 

describe relationships between different 

organisms: lines describing who eats whom cross 

and tangle between species (Figure 1). The result 

is a highly complex set of relationships, interactions, and interdependencies. The slightest 

manipulation of a single component of a food web can result in a cascade of changes. For 

example, elimination of a keystone predator (such as a wolf) could mean an increase in 

the abundance of its prey (elk), which could over-graze and diminish certain plant species 

(sage grass). Similarly, the elimination of a food source like sage grass could warrant a 

ricocheting response moving up through trophic levels (levels of the food web). Human 

activities, especially pollution and facilitating the introduction of invasive species, play a 

huge role in altering food webs. 

Invasive species, or those that are introduced to a new (non-native) environment, are 

of particular interest to humans and ecologists for a variety of reasons. First, invasive 

species are frequently introduced as a result of human activity. Second, the introduction 

of a new organism into the food web of an ecosystem yields the potential for vast change 

in food web structure. Third, these changes are potentially harmful ecologically and/or 

economically (Mills et al. 1994). Oftentimes, an invasive species survives exceedingly 

Figure 1. Example of a food web. Spheres 
represent organisms and lines describe who 
eats whom. Blue spheres are parasites, red 
spheres are free-living heterotrophs, and 
green spheres are primary producers. Image 
from Dr. Jennifer Dunne et al. (2013) 
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well in a new environment because its main predator or competitor from its previous 

environment is absent. Alternatively, the invasive species may be better equipped than 

native species to cope with certain conditions such as toxic algae blooms. As a result, the 

invasive organism can out-perform and out-compete native species (Dodson 2005).  

Behaviors such as migration and patch selection are excellent indications of how a 

species fits into its environment. These behaviors are often survival strategies driven by 

the presence of certain pressures such as predation, food requirements, and metabolic 

efficiency. As a result, populations of organisms inhabit spaces where they are able to 

maximize their chance of survival and reproduction and minimize predation risk and 

metabolic costs (Mangel and Clark 1988). Through the study of behaviors such as 

migration, we may better understand how an invasive species responds to the pressures 

and challenges of its new environment. 

 
DVM: Diel Vertical Migration 
 

Diel vertical migration, or DVM, is a massive, population-wide daily migration 

performed by zooplankton and fish populations in aquatic systems across the globe 

(Dodson 2005). This study focuses primarily on DVM of zooplankton populations. The 

most common DVM behavior pattern for zooplankton is to spend daylight hours at 

deeper depths and move to shallower areas at night (Figure 2). This pattern is typically 

repeated on a diel, or 24-hour, cycle.  
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Figure 2. An example of the "normal" diel vertical migration pattern of zooplankton, adapted from Wolf & 
Mort, 1986: The vertical distribution of a population of cladoceran Daphnia hyalina in a lake at six times 
throughout a single day. 

DVM can be a costly behavior, so it is only beneficial to a zooplankton population 

when certain pressures are present. Zooplankton that migrate to deeper waters during the 

day spend less time feeding at shallower depths where their food source, phytoplankton, 

has greater access to light, and therefore higher productivity. Migration is metabolically 

costly as well, since zooplankton inhabiting deeper, cooler waters show slower growth 

and lower fecundity rates (Dodson 1990). In addition, zooplankton eggs, which are 

carried by females, take longer to develop at colder temperatures (Lampert 1989).  

Despite its apparent costs, DVM is an adaptive behavior that allows zooplankton 

populations to select habitat patches that will provide optimal foraging, reproductive, and 

survival opportunity. During the day, the optimal patch for zooplankton may be deep and 

out of sight of potential visual predators. At night, though, risk of visual predation is 

lower near the surface. As a result, zooplankton move near the surface where foraging 



   4	  

opportunity is greatest (Lampert 1989). Stated simply, migration is the behavior of a 

species in response to the changing location of optimal habitat.  

Several theories exist to explain DVM. These theories identify a variety of drivers 

that contribute to the changing location of optimal habitat, making DVM a favorable 

behavior for zooplankton. These theories may be lumped into two categories: biotic and 

abiotic. Biotic theories emphasize the importance of living things such as predators and 

food as drivers of DVM, while abiotic theories examine the roles of non-living aspects 

such as ultraviolet radiation avoidance and temperature. Drivers may be further classified 

as either proximate or ultimate. Proximate drivers act as cues that zooplankton detect 

warning them of the presence of ultimate drivers—the factors that determine the 

suitability and survivability of a habitat. These drivers may also be classified as static—

remaining the same between day and night—or dynamic, changing on a diel basis. (Table 

1; Williamson 2011). 

 
Table 1. Leading theories of DVM, proximate cues, ultimate drivers, nature of the drivers, and generalized 
response of herbivorous zooplankton to each driver (Williamson 2011). 

 
 
 
Abiotic Drivers 
 

Ultraviolet Radiation: During the day, the amount of light penetrating a lake 

decreases with increased depth. The rate at which irradiance decreases, or the extinction 

coefficient, varies by lake transparency (Figure 3).  A lake may be less transparent if it is 

turbid, containing many suspended particles, or is highly productive, containing a high 

concentration of phytoplankton or a layer of blue-green algae covering its surface. At 
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night, though, very little light 

penetrates the water column. 

Because the light profile of a 

lake varies so drastically on a 

daily basis, it is considered a 

dynamic driver of DVM. 

Light is recognized as 

the primary proximate cue used 

by zooplankton to assess 

predation risk (Forward 1988). 

This should come as no 

surprise, since a well-lit zooplankton is more easily seen and captured by a visual, or 

‘seeing,’ predator than a poorly-lit zooplankton. Experiments have confirmed that UV 

radiation enhances fish predation on zooplankton in UV-transparent systems (Leech et al. 

2009). 

 In addition to increased predation risk, UV radiation is potentially damaging to 

aquatic organisms. UV-B rays in particular can negatively affect growth, reproduction, 

and survival of zooplankton (Leech and Williamson 2000). In cases of prolonged 

exposure to UV-B radiation, short UV wavelengths can damage DNA and membranes, 

leading to zooplankton mortality (Williamson et al. 1994, 1999). 

 
Temperature: The temperature of a lake is typically warmest near the surface when a 

lake is stratified (Figure 2). Temperature stratification is observed when temperatures 

remain effectively the same through shallow lake depths and then rapidly decrease with 

Figure 3. Sample temperature, chlorophyll, and light profiles 
of three lakes of differing transparencies (Williamson  2011). 
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increasing depth. The depth at which temperature most quickly decreases is called the 

thermocline. Below the thermocline, temperatures remain nearly constant until the 

bottom of the water column. This vertical temperature profile is maintained in fresh water 

because less dense, warmer water floats near the surface and is, in turn, further warmed 

by the sun. A lake is said to be isothermal if it is the same temperature from top to 

bottom. An isothermal lake is more easily mixed by wind or water currents because 

waters with similar temperatures have similar densities, and therefore there is very little 

resistance to mixing based on density differences. Shallow lakes are more likely than 

deeper lakes to be stirred by wind, and are therefore more often isothermal (Dodson 

2005). 

Though lake temperature profiles may change seasonally, they rarely change 

drastically between a single day and night. The range of temperatures experienced from 

the top to the bottom of a stratified lake is much greater than any diel temperature 

variation. For this reason, temperature is generally considered a static driver of DVM 

(Williamson 2011). Zooplankton that spend more time in warmer surface waters 

experience higher rates of growth and reproduction (Orcutt and Porter 1983, Stich and 

Lampert 1984, Leibold 1989) while zooplankton that spend time at deeper, colder depths 

incur harsh metabolic costs (Pangle and Peacor 2006, Pangle et al. 2007). The costs that 

accompany cold water and benefits that accompany warm water provide incentive for 

zooplankton to spend time in shallower, warmer depths. 
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Biotic Drivers 
 

Food Availability: Zooplankton feed on 

phytoplankton (e.g. algae and photosynthetic 

prokaryotes), so the vertical distribution of 

phytoplankton is an important factor for 

zooplankton habitat selection. While the 

vertical phytoplankton profile may be variable 

in a single lake over time, it generally does not 

change consistently on a diel basis. Therefore, 

food availability is considered a static driver of 

DVM (Williamson 2011). 

 Phytoplankton are hypothesized to exist 

where there is adequate light and nutrient 

supply, but these conditions vary between lakes 

(Reynolds 1984). Because of this variation, a 

diverse array of phytoplankton vertical 

distributions has been observed in lakes (Figure 

4).   

In a well-mixed lake, phytoplankton 

may be evenly distributed throughout the 

water column (Mellard et al. 2011). In a 

stratified lake, though, phytoplankton is 

Figure 4. Examples of differing phytoplankton 
vertical profiles in five stratified lakes. Vertical 
distributions are Chlorophyll a fluorescence 
profiles. Zm is the depth 1ºC cooler than the 
surface temperature. (Mellard et al 2011) 
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typically found throughout the shallower waters near the surface, or may congregate to 

form a deep chlorophyll maximum (DCM).  The DCM, or peak abundance of 

phytoplankton, may be located deep in the water column if there is high light penetration 

(Figure 4B, E). A DCM may only persist in a stratified lake while there is little mixing 

and sufficient light penetration to support photosynthesis at deeper depths (Fee 1976). 

When phytoplankton is limiting at certain depths of a lake, zooplankton will 

congregate in areas with high phytoplankton density despite possible high predation risk 

(Jonsen and Jakobsen 1987). 

 
Predation: Predation is widely accepted by limnologists as the most important 

driving force behind DVM. Both field studies (Zaret and Suffern 1976) as well as 

experimental studies (Stich and Lampert 1981, Bollens and Frost 1991) have documented 

zooplankton migrating to deeper waters during light hours to avoid predators. Further 

evidence that predation heavily motivates DVM lies in the fact that migration amplitude 

increases in the presence of predators or their karimones (chemical compounds released 

by predators and detected by prey) (Gliwicz 1986, Leech et al. 2009).  

Modeling predation risk the impact of predation on DVM has been of particular 

interest to several researchers for decades (Gerritsen & Stricckler 1976, Williamson 

1993, De Robertis 2002). Predation risk, or the probability that an individual of a prey 

species will be killed by a predator, may be explained as the product of prey vulnerability 

and density risk (Williamson 1993).  

 
𝑃𝑅 = 𝑃𝑉 ∗ 𝐷𝑅 

 
𝑃𝑅 = 𝑝𝑟𝑒𝑑𝑎𝑡𝑖𝑜𝑛  𝑟𝑖𝑠𝑘 

𝑃𝑉 = 𝑝𝑟𝑒𝑦  𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
𝐷𝑅 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  𝑟𝑖𝑠𝑘 
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Density risk is a function of predator density and overlap between predator and prey 

populations. Thus, density risk is system-dependent. Prey vulnerability, on the other 

hand, is species and life stage-dependent. It includes all the prey-specific characteristics 

that influence the ability of the predator to detect, capture, and kill/ingest prey 

(Williamson 1993). 

In the case of visual predation, 

prey vulnerability is of particular 

interest since it may vary according to 

physical attributes of the prey. Larger 

prey are at greater risk of predation by 

visual predators since they may be 

seen from farther distances at lower 

light levels (Figure 5; De Robertis 

2002).  

 
 
Consequences of DVM 
 

In theory, DVM by zooplankton results in a reprieve for phytoplankton from 

constant grazing and limits the size of the grazing zooplankton population. During 

daylight hours when zooplankton spend time at deeper depths, phytoplankton are offered 

temporary refuge from zooplankton grazing. Algae growth during this time leads to 

overall higher population productivity (Reichwaldt et al. 2004). In addition, spending 

time at deeper, colder depths limits zooplankton population growth. A smaller 

zooplankton population is unable to graze as intensely on phytoplankton, allowing the 

Figure 5. (De Robertis 2002) Vulnerability to visual 
predators depends on light intensity and prey size. A) 
Modeled dependence of the visual range at which a fish 
can detect two sizes of zooplankton prey (10 and 20 mm). 
B) Risk of attack by visual predators as a function of 
zooplankton prey size 
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phytoplankton population to be more productive (Loose & Dawidowicz 1994). While 

some research suggests that phytoplankton productivity may benefit from nutrient 

transport facilitated by zooplankton undergoing DVM (Sommer et al. 1986), others 

suggest that zooplankton performing DVM displace necessary nutrients such as nitrogen 

below the photic zone (the depth of water that is exposed to sufficient sunlight for 

photosynthesis to occur), resulting in limited phytoplankton production (Longhurst and 

Harrison 1988, Dodson 2005).  

In reality, the effects of DVM on nutrient cycling and phytoplankton productivity 

are highly variable and case-specific. Different phytoplankton community compositions, 

degrees of nutrient limitation, and differences in zooplankton community and grazing all 

factor into how DVM impacts phytoplankton dynamics (Haupt et al. 2009). The 

relationship between DVM and phytoplankton dynamics is not one-size-fits-all.  

The issue of zooplankton-phytoplankton community interactions is further 

complicated by the impact of ontogeny on zooplankton food preference. Zooplankton 

may face distinct challenges depending on their size and life stage. Different life stages of 

a single species may act vastly different—consuming different food, avoiding different 

predators, and performing DVM with differing magnitudes—in response to these distinct 

challenges (Werner & Gilliam 1984). Such ontogenetic changes in DVM have been 

documented in Eurytemora affinis—the copepod that is the focus of this study (Holliland 

et al. 2012).  

 
Eurytemora affinis 
 

Identification: Adult Eurytemora affinis typically measure around 1.2-1.3mm in 

length and have a number of morphological traits allowing it to be easily distinguished 
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from other calanoid copepod species (Torke 2001). Adults and copepodites (juvenile 

copepods that have not yet reached sexual maturity) have a unique caudal ramus that is 

over three times as long as it is wide (Figure 6). On the posterior end of the caudal ramus 

are five obvious setae. Mature adults display distinct sexual characteristics. Adult females 

exhibit two lateral metasomal wings—one on each side of the genital region. Adult males 

have “hooked” antennae used for grasping the female during mating and an enlarged fifth 

leg. The species passes through 6 naupliar and 5 copepodite stages before reaching sexual 

maturity (Poppe 1880). 

 
Life History and Ecology: The E. affinis life cycle includes four major stages: 

egg, nauplius, copepodite, and adult (Figure 6). An individual may live up to 73 days 

after hatching, of which the juvenile (nauplius and copepodite stages combined) stage 

lasts between 11 and 37 days. Eggs develop over 1 to 14 days, but the development time 

is temperature-dependent. Eggs develop slowly at 5 ºC and rapidly at 22 ºC. If conditions 

are unfavorable, eggs may enter a dormant stage. These dormant, or diapausing, eggs can 

remain viable up to 18 years (Torke 2001).  
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Figure 6. Eurytemora affinis (Poppe 1880). Copepodite Stage I (41-42); Copepodite Stage II (43-44), 
Copepodite Stage III (45-46), Copepodite Stage IV (female: 47-48, male: 49-50), Copepodite Stage V 
(female: 51, male: 52), adult male: 53, adult female, 54, 55. 

 
 In Lake Michigan, E. affinis spends the winter and spring as diapausing eggs and 

is far more abundant during the summer and fall (Torke 2001). During the peak seasons 

when eggs exit diapause, E. affinis is epibenthic, meaning it primarily inhabits the 

sediment of and the water immediately above the bottom of bodies of water (Evans and 
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Stewart 1977). Their epibenthic location is not static, though. Eurytemora affinis 

populations have been observed to undergo diel vertical migration (DVM) and diel 

horizontal migration (DHM) in both salt and freshwater systems around the globe (Hough 

& Naylor 1992, Almén et al 2014).   

 
Invasive Success: On a global scale, E. affinis has a cosmopolitan distribution. This 

means that it inhabits a broad range that extends across the Northern Hemisphere. 

Eurytemora affinis is found in temperate regions of Asia and Europe, and from 

subtropical to subarctic regions of North America (Lee 2000). Its native range includes 

brackish and saltwater regions of the North American Atlantic coast, Pacific coast, 

western European coast, and parts of Asia (Torke 2001). In the past, E. affinis was 

documented in only a few freshwater habitats including coastal and oxbow lakes. Within 

the past 70 years, though, E. affinis populations have extended beyond their native saline 

and brackish waters to invade several freshwater habitats across the Northern Hemisphere 

(Lee 2000).  

Eurytemora affinis is a particularly good invader for a variety of reasons. First, it is 

euryhaline, meaning that it tolerates a wide range of salinities. This eurytolerance (or 

wide tolerance) allows E. affinis to survive in both brackish and freshwater habitats. In 

addition, it is a generalist grazer and is able to consume a variety of phytoplankton, 

including the cyanobacteria Microcystis and Nodularia, which secrete the toxins 

microcystin and nodularin, respectively (Kozlowsky-Suzuki et al 2003, Kozlowsky et al 

2002).  

Tolerance to a wide range of phytoplankton and salinities alone, though, does not 

account entirely for its successful invasions. Mounting evidence suggests that the 



   14	  

“evolvability,” or strong selection of phenotypic traits and rapid evolution following 

invasion, of E. affinis is the most important quality allowing the species to invade 

freshwater habitats independently across the globe (Lee 2003).  Among these new 

freshwater habitats is the Laurentian Seaway, which extends from the Atlantic Ocean to 

the Laurentian Great Lakes (Figure 7).

 

Figure 7. A map of the Laurentian Great Lakes including the St. Lawrence Seaway. Taken from Mills et al. 
1994. 

 
Introduction to and Establishment in the Laurentian Great Lakes: Since the 

completion of the St. Lawrence Seaway in 1959 extending from the Atlantic Ocean to 

Lake Ontario, at least 43 nonindigenous species have been introduced to the Great Lakes. 

Of these invasions, over 70% are attributed to the discharge of ballast water from ocean-

faring vessels (Grigorovich et al. 2003). Eurytemora affinis is most likely among the 

species introduced into the Great Lakes in this manner, since it was first recorded in Lake 

Ontario in 1959, the same year as the seaway completion. In the years following, E. 



   15	  

affinis was found subsequently in Lake Erie in 1961 and then in Lake Michigan in 1964 

(Mills 1993).  

In Lake Michigan, E. affinis is commonly found in high abundance during the 

summer and early fall, but is difficult to find during winter and spring months. 

Eurytemora affinis is currently a wide-spread, well-established member of zooplankton 

communities across the shores of the Great Lakes, having been found in Milwaukee 

Harbor, coastal waters of southeastern Lake Michigan, and in the littoral and plankton 

communities of Green Bay (Torke 2001). In 1977, Gannon and Brickner (1982)found 

that within Green Bay, E. affinis was most abundant near Big Bay de Noc and Sturgeon 

Bay. Little Sturgeon Bay, which is located approximately 10 miles from Sturgeon Bay, is 

the sample site for this study. 

 

Ecological Trends in Green Bay 
 

The same qualities that make E. affinis a successful invasive species—tolerance to a 

wide range of salinities, rapid evolvability, and generalist grazing tendencies—make it 

particularly well-suited for changing conditions in Green Bay.  

Green Bay is the largest and one of the most productive embayments in the 

Laurentian Great Lakes (Bertand et al. 1976). There exists a strong trophic gradient from 

the southern end of the bay near the mouth of the Fox River to the northern opening of 

the bay into Lake Michigan. The southern section is most eutrophic, with high 

phytoplankton growth. The middle and upper bay are more diluted with increasing 

distance from the river (Richman et al. 1984).  



   16	  

The zebra mussel, Dressenia polymorpha, which was introduced to the Laurentian 

Great Lakes in the 1980s, has dramatically changed the Green Bay ecosystem 

(Vanderploeg et al 2002). Dressenia polymorpha is able to filter large volumes of water, 

resulting immediately in increased water clarity and decreased algal abundance 

(MacIsaac et al 1992, Lavrentyev et al 1995). Following the zebra mussel invasion of the 

Great Lakes, this trophic gradient from the inner bay to the outer bay has not changed. 

However, the phytoplankton community structure in Green Bay has significantly shifted. 

Most notably, cyanobacteria, or blue-green algae, now dominates with Microcystis being 

the most dominant phytoplankton taxon in the summer (DeStasio et al. 2014). 

Microcystis is known to form large-scale blooms that have large impacts on aquatic 

communities. Microcystis secretes a noxious compound, microcystin, which may kill 

aquatic organisms or become concentrated in top predators of an ecosystem through 

trophic transfer and bioconcentration (Smayda 1977). 

 

Figure 8. Left: the state of Wisconsin with a star designating the approximate location of Little Sturgeon 
Bay. Right: map of Little Sturgeon Bay 
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Little Sturgeon Bay 
 

Little Sturgeon Bay, a small embayment located about halfway up the eastern 

enclosure of Green Bay, is the study site and is in the midst of the ecological shifts 

discussed above (Figure 8).  Little Sturgeon Bay is approximately 1 mile long and 0.5 

mile wide with a maximum depth of ~4.5 meters. The majority of the shoreline is 

undeveloped or residential, though there is a state park located near the western shore of 

the mouth of the bay. The near-shore habitat varies from rocky on the eastern side to 

weedy on the western side (personal observation). 

 

Importance and Purpose of Study 
 

Given the recent ecological changes in Green Bay—the invasion of zebra mussels 

and shift to cyanobacteria dominance in the phytoplankton community—it is vital that we 

understand how the ecosystem is changing. Changes to phytoplankton community 

structure most drastically and immediately affect zooplankton, since zooplankton 

consume phytoplankton. Negative changes in zooplankton populations may consequently 

impact the fish that consume them, resulting in potential economic hardships for humans. 

Eurytemora affinis is of particular interest for Green Bay since it has proven to be 

a particularly versatile, robust copepod in its success as an invader. In addition, E. affinis 

is able to successfully feed on and in the presence of cyanobacteria (Koski et al. 1999). 

Considering the recent shift in Green Bay towards cyanobacteria dominance, E. affinis 

will certainly have a competitive advantage over other zooplankton that are less 

successful in the presence of cyanobacteria.  However, differences in predation pressure 

could offset those advantages.  Understanding how E. affinis survives in the face of 
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predation pressure therefore is critical for understanding recent and potential future 

changes in the zooplankton communities. 

This study investigates the DVM of E. affinis in Little Sturgeon Bay. In particular, 

I ask whether E. affinis performs DVM in both offshore and near shore habitats. In 

addition, I assess whether life-stage affects predation risk through analysis of the visual 

susceptibility of life-stages of E. affinis. If there are differing predation risks associated 

with life-stage, I predict that more susceptible life-stage groups will perform DVM with 

greater magnitude than less susceptible life-stage groups.  

By studying the migration of E. affinis, we may better understand how it is 

adapting to its non-native environment in Green Bay. Because migration is an adaptive 

response to the pressures that an ecosystem poses to zooplankton, better understanding of 

the migration helps us to comprehend the impact that biotic and abiotic drivers have on 

the survival of E. affinis. 
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Methods 
 
Field Methods 
 

A variety of methods were used to obtain information about zooplankton 

distribution and their vertical environment in Little Sturgeon Bay. Physical & chemical 

data, zooplankton, and chlorophyll samples were collected on 15 Jul, 24 Jul, 07 Aug, and 

14 Aug 2014. Zooplankton and chlorophyll samples were collected twice on each 

sampling date: once around 12:00 and again around 22:00. Physical & chemical data 

readings were taken once at noon each sampling day. 

	  

Figure 9. A map of Little Sturgeon Bay with letters designating approximate locations of sampling sites. 
A) LS-Dock (44.8438 °N, 87.5592 °W), nearshore sampling site and B) LS-E (44.8427 °N, 87.5452 °W), 
offshore sampling site. 
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Two sites, one near shore and one offshore, were selected as sampling locations. 

The first site, LS-E, is located near the middle of the bay (Figure 9; 44.8427 °N, 87.5452 

°W). The second site, LS-Dock, is near shore (Figure 9; 44.8438 °N, 87.5592 °W). At 

LS-E, zooplankton samples, chlorophyll samples, and physical & chemical data was 

taken at one-meter intervals through the water column, which was approximately 4m 

deep. At LS-Dock, only zooplankton samples were 

collected. On 15 Jul and 24 Jul samples were 

collected at 0m, just below the surface of the water. 

On 07 Aug and 14 Aug, samples were taken at 0m 

and at 2m, near the benthos.	   

Zooplankton samples were collected using a 

Schindler trap with a 60um mesh (Figure 10). Three 

samples were obtained at each depth in descending 

order (0m first, 4m last) as to avoid mixing the 

water column. Samples were stored in 500 mL 

plastic Nalgene bottles, labeled, and preserved in a 

4% formaldehyde solution. 

Chlorophyll samples were collected using a water pump at 1m depth intervals at 

LS-E. Samples were obtained at both sampling times (noon and midnight) for all four 

days. Water was collected in 4L opaque jugs and promptly placed on ice. Water samples 

were kept refrigerated in the lab until chlorophyll analyses could be performed no later 

than the day following collection. 

Figure 10. Schindler Trap 
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Physical & chemical data for each 1m depth interval at LS-E were obtained at 

noon on each sampling day. A Hydrolab Multisonde 5 was used to measure temperature, 

dissolved oxygen (DO, both mg/L and %saturation), pH, conductivity, oxidative-

reductive potential (ORP), and total dissolved solids (TDS). A Li-Cor Model 1000 light 

meter with both air and underwater 2-π flat quantum sensors was used to measure light 

penetration for 15 July 2014, 24 July 2014, and 14 August 2014.  A Secchi disk (0.20 m 

diameter) was used in its place on 07 August to measure the depth of light penetration. 

 
Table 2. Summary of sampling methodology across dates and sites. Sample types: z = zooplankton, p= 
phytoplankton, h = hydrolab (physical/chemical data) l = light meter, s = secchi disk 
 LS-E LS-Dock 

0m 1m 2m 3m 4m 0m 2m 
Day Night D N D N D N D N D N D N 

15 Jul 2014 z p 
h l 

z p z p 
h l 

z p z p 
h l 

z p z p 
h l 

z p z p 
h l 

z p z  z   

24 Jul 2014 z p 
h l 

z p  z p  z p  z p  z p z z   

07 Aug 2014 z p 
h s 

z p  z p  z p  z p  z p z z z z 

14 Aug 2014 z p 
h l 

z p  z p  z p  z p  z p z z z z 

 
 
 
Lab methods 
 

Chlorophyll-a Analysis: In laboratory, Chl-a concentration for each depth sample 

was measured using acetone extraction protocol (Wetzel & Likens 1991). Replicate water 

samples from one-meter intervals were filtered onto GF/C filter paper, ground using a 

mortar and pestle, and extracted in 90% alkaline acetone. The resulting liquid-pulp 

mixture was centrifuged to separate particulate matter. A spectrophotometer was then 

used to determine absorbance at the Chl-a wavelength. 
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Counting zooplankton:	  A 

Folsom sample splitter was used to 

subsample zooplankton samples in the 

laboratory, resulting in half or quarter 

of the total sample (Figure 11). The 

decision of how many times to split the 

sample was made based on the 

apparent density of the sample—denser samples were subsampled twice while sparse 

samples were split once. The sample half or quarter was filtered using an 80 micrometer 

mesh cup and rinsed with water. The filtration residue was rinsed into a circular Ward 

counting wheel, and observed using a dissecting microscope. Two subsamples were 

counted from each jar. The following categories of zooplankton were counted in each 

sample: 

 
E. affinis…………………... Male 

Female 
Female with eggs 
Copepodite 

Leptodora  
Bythotrephes longimanus/Cercopagis pengoi  
Mesocyclops edax  
Skistodiaptomus  
Leptodiaptomus  

 
 

E. affinis sexing and life-stage determination: While species identification is 

relatively straightforward for zooplankton, gender and life-stage determination is more 

difficult and time consuming. For the purpose of consistency, a series of guidelines were 

followed to place Eurytemora into appropriate life-stage and gender categories (Figure 

12; Balcer et al. 1984). 

Figure 11. Folsom sample splitter 
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Adult male: Hooked antennae 

Enlarged 5th leg 
 

Adult female: Metasomal wings 
Urosome usually bent 
 

Adult female + eggs: Shows all adult female characteristics 
Carrying two egg sacs attached laterally to urosome 
 

Copepodite: Shows no sexual characteristics, (hooked antenna, metasomal wings), 
but shows species characteristics 

 
 
 
 
 
A) 

 

B) 

 
C) 

 

D) 

 
Figure 12. E. affinis life-stage groups A) adult male B) adult female C) adult ovigerous female D) 
copepodite 
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Image Capture:	  In order to determine whether there 

were significant size and darkness differences between 

sexes and life-stages of E. affinis, microscopic images were 

taken and analyzed. At least 30 organisms of each sex and 

life-stage were isolated from zooplankton samples, 

separated into petri dishes, and photographed. A Sony 

Handycam Model HDR-HC9 camcorder was mounted onto 

the eyepiece of a dissecting microscope (Figure 13). In an 

attempt to control for consistent lighting, images were 

taken with consistent room lighting and the light intensity of the microscope was turned 

to the same level for each photo. To control for appropriate scale, zoom settings on both 

the camera and the microscope were kept consistent throughout the photography process. 

Finally, a stage micrometer was photographed prior to the copepods to calibrate the 

image measurements. 

 
Image Analysis: ImageJ 1.48v was used to analyze images of copepods (ImageJ, 

Rasband 1997). Each copepod was analyzed for length, area, and mean gray value. The 

length of each copepod was defined as the distance between the anterior end (near the 

eye) to the tip of the caudal ramus, excluding caudal setae (Figure 14). The area of each 

copepod was determined to be the entire body excluding antennae, legs, and caudal rami 

(Figure 14). Metasomal wings on females and egg sacs on oviparous females were 

included in area measurements. Mean gray value was determined using the same area 

outline. Mean gray value is defined as the “sum of the gray values of all the pixels in the 

selection divided by the number of pixels.” It is determined in color photos by converting 

Figure 13. Sony Handycam HDR-
HC9 camcorder mounted to a 
dissecting microscope 
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each pixel to grayscale using the following formula: gray = (0.299*red) + (0.587*green) 

+ (0.114*blue) (Ferreira & Rashbad 2010). 

	  
Figure 14. Length (left) and area measurements performed using imageJ 

 
 
Data analysis 
 

ImageJ was used to analyze photographs of copepods. Microsoft excel was used 

to perform transformations on data sets and create physical and biological profiles. The 

PAleontological STastics software program (PAST, Hammer et al. 2001) was used to 

create histograms, boxplots, and perform Pearson correlation, Analysis of Variance 

(ANOVA), Welch F, Levene’s, and the Mann-Whitney pairwise test. 

 
Physical quality comparison: Length, area, and mean gray value (MGV) were 

calculated separately for each animal photographed. Mean gray value was first converted 

to proportion darkness (for MGV, 0=black and 255=white) using darkness = (255-

MGV)/255) and then transformed to arcsine(darkness). Histograms were compiled for 

each physical quality of each copepod group (E. affinis males, females, females carrying 

eggs, and copepodites) to test for normality of distributions. Based on the normality of 

histogram distributions, it was determined that parametric statistical tests were 
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appropriate. Average length, area, and arcsine(darkness) was calculated for each copepod 

group. An ANOVA was used to determine whether copepod group membership had a 

significant effect on physical qualities. If there was homogeneity of variance between 

copepod groups, Tukey’s Pairwise comparison tests were used to determine which 

copepod groups were significantly different from the rest.  

 
Vertical Distribution and DVM: Vertical distribution of zooplankton was 

described by calculating average organisms per liter of each species and life history stage 

at each depth. At each depth, either two or three zooplankton samples were collected on 

each day. Each sample was subsampled twice and counted as described above, resulting 

in four or six calculated zooplankton densities per depth. These densities were averaged, 

then corrected for volume to determine the number of organisms per liter at the given 

depth. The resulting data describes how the densities of zooplankton vary throughout the 

water column. 

In addition to creating vertical profiles of zooplankton abundance, weighted mean 

depth (WMD) was calculated to more succinctly describe migration. WMD takes into 

account the abundances of zooplankton across all depths to calculate a mean depth for a 

population at a given time. A useful way to think about WMD is that it attempts to 

identify the “center” of a population at a given time. Tracking the diel changes in a 

zooplankton population’s “center” gives us a good understanding of a population-wide 

migration. WMD is calculated using the following equation taken from Bollens and Frost 

1989: 

𝑊𝑀𝐷 =
𝑛!𝑑!
𝑛!
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𝑛! = 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒   # 𝐿   𝑎𝑡  𝑑𝑒𝑝𝑡ℎ  𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  𝑖 

𝑑! = 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡  𝑜𝑓  𝑑𝑒𝑝𝑡ℎ  𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  𝑖 
 
The difference in WMD between night and day samples, or ∆WMD, represents the 

direction and amplitude of migration. A positive ∆WMD signifies a negatively 

phototactic migration in which zooplankton move away from the sun during the day and 

to shallower depths at night. A ∆WMD value with a large magnitude represents a 

migration with large amplitude. 
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Results 
 
Assessing Visual Predation Risk via Image Analysis 
 

Analysis of photographs of E. affinis using ImageJ revealed that copepod length 

and area varied based on life-stage, but there was no difference in darkness among life-

stage groups. 

Copepod length differed between life-stage groups (Figure 15). Visual assessment 

of length histograms reveals fairly symmetrical distributions of length within each life-

stage group (Appendix A1). However, Levene’s test confirmed that variances were not 

homogeneous between groups (p=0.0127). Overall, there was a significant effect of life-

stage on animal length based on the Welch F test (F153,3=51.15 , p=2.64E-18). Females 

carrying eggs were significantly longer than all other stages, while males and females 

were longer than copepodites but not significantly different than each other (Mann-

Whitney pairwise comparison test, P<0.01). 

	  

Figure 15.  Boxplot comparing mean lengths of different E. affinis life-stage groups. Box represents the 
Interquartile Range (IQR), whiskers represent 1.5 times the IQR, and dots represent outliers.  A Welch F 
test revealed a significant effect of life stage on copepod length (p=2.64E-18). Mann-Whitney comparison 
revealed significant differences between all life-stage groups except between adult males and females. 
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Similar to length, copepod area also differed between life-stage groups (Figure 

16). Distributions of visual area of each life-stage are less symmetrical than copepod 

lengths, and variances are more heterogeneous (Appendix A2; Levene’s test for 

homogeneity of variance, p=6.001E-06).  Regardless, the Welch F test confirmed that 

there exists a significant effect of life-stage on area (F144,3=136.3, p=1.556E-26). Visual 

area was significantly greatest for females carrying eggs, followed by females, males and 

then copepodites.  Mann-Whitney pairwise comparisons indicated that there are 

significant differences between each life-stage group (P<0.01).  

	  

Figure 16. Boxplot comparing mean areas of different E. affinis life-stage groups. A Welch F test revealed 
a significant effect of life stage on copepod area (p=1.56E-26). Mann-Whitney comparison revealed 
significant differences between all life-stage groups. 

	  
Unlike length and area, copepod darkness does not differ between life-stage 

groups (Figure 17). Despite performing the arcsine transformation on percent darkness 

measurements, distributions of darkness measurements are not all symmetrical, and 

variances are heterogeneous (Appendix A3; Levene’s test for homogeneity of variance, 
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p=0.006194). The Welch F test was unable to confirm an effect of life-stage on darkness 

(F144,3=0.7856, p=0.5055). 

	  

Figure 17. Boxplot comparing mean darkness values of different E. affinis life-stage groups. Darkness 
values are the arcsine(proportion darkness) calculated from mean gray value (MGV) using ImageJ. A 
Welch F test revealed no significant effect of life stage on copepod darkness (p=0.5055).  

 
Offshore Conditions and Migration 
 

Vertical Environmental Gradient: Physical, chemical and chlorophyll data taken 

at one-meter intervals offshore for each sampling date reveal a variety of vertical 

environmental gradients along the water column. Measurements such as light penetration, 

chlorophyll abundance, and temperature varied enough to create unique vertical 

environments on each sampling date. 

 

Light Penetration: Incident light penetration measurements were variable across 

sampling dates, meaning that water transparency varied across sampling dates. Greatest 

incident light penetration was seen on 7 August 2014, meaning that the water was 
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clearest. The least incident light penetration was seen on the day when Little Sturgeon 

Bay was least transparent, 15 July 2014 (Figure 18).  

	  
Figure 18. Incident light penetration (percentage of total surface light) in Little Sturgeon Bay across four 
sampling dates. 24 July 2014 incident light penetration was estimated using a Secchi depth measurement. 
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 Temperature and Oxygen Conditions: There was a clear association between 

temperature and dissolved oxygen structure on each date.  Temperature is the primary 

driver of density in freshwater lakes; therefore, thermal structure often affects chemical 

characteristics of the water, like dissolved oxygen. 

 
15 July 2014: On July 15, Little Sturgeon Bay was isothermal in terms of both 

temperature and dissolved oxygen (DO). Water temperature hovered around 20 ºC all the 

way to the bottom, while DO ranged between 6 mg/L near the surface and 7 mg/L near 

the bottom (Figure 19A). Chl-a abundance peaked at 2m during both sampling times, but 

was overall more abundant during the day than at night (Figure 20A). 

 
24 July 2014: Unlike on the first sampling date, Little Sturgeon Bay was stratified 

in terms of temperature and DO on July 24. Temperature readings began at 22 ºC at the 

surface of the lake. The thermocline was located somewhere between 2 and 3 m where 

the temperature dropped nearly 10 ºC in the span of one meter. Near the bottom of the 

bay, temperatures hovered around 8 ºC. The stratification trend was opposite for DO, 

which was 6 mg/L near the surface, then rapidly increased between 2 and 3m, and was 

nearly 9 mg/L near the bottom (Figure 19B). 

 Similar to July 15, Chl-a abundance peaked around 2m during both sampling 

times, with chlorophyll being more abundant during the day than at night. During the 

day, however, there was a second chlorophyll peak at 0m (Figure 20B). 

 
 07 August 2014: Temperature at the surface of the bay was 22 ºC and decreased 

slightly and steadily until the bottom, reaching a minimum temperature of 18 ºC. DO was 

highest in the first meter of the water column—beginning at 8 mg/L at 0m and peaking at 
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9 mg/L at 1m. DO levels sharply declined to 6 mg/L at 2m and hovered between 6 and 7 

mg/L until the bottom (Figure 19C). 

 In comparison to the previous two sampling dates, Chl-a levels were much lower 

throughout the entire water column, ranging between 2 and 6 ug/L. During the day, Chl-a 

was most abundant at 4m, near the bottom of the bay. At night, however, Chl-a peaked 

between 2 and 3m (Figure 20C). 

 
 14 August 2014: Similar to the first sampling date, both temperature and DO were 

isothermal. The water was 20 ºC and the DO level ranged between 6 and 7 mg/L for the 

entire water column (Figure 19D). 

Similarly, Chl-a levels were quite low, ranging between 1 and 5 ug/L, and 

fluctuated little between depths. However, the chlorophyll profile was opposite that of 07 

Aug 2014. During the day, Chl-a was most abundant between 0 and 2m. At night, Chl-a 

levels peaked at 3m (Figure 20D). 
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A) 15 Jul 2014 

 

B) 24 Jul 2014 

 

C) 07 Aug 2014 

 

D) 14 Aug 2014 

 
 

Figure 19. Temperature and Dissolved Oxygen profiles for Little Sturgeon Bay across four sampling dates 
(A) 15 July 2014 B) 24 July 2014 C) 07 August 2014 D) 14 August 2014) 
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A) 15 Jul 2014  
 

B) 24 Jul 2014 
 
 

C) 07 Aug 2014 
 

D) 14 Aug 2014 
 

 

Figure 20. Chlorophyll a profiles for Little Sturgeon Bay during the day and at night across 
four sampling dates (A) 15 July 2014 B) 24 July 2014 C) 07 August 2014 D) 14 August 
2014) 
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 Offshore Vertical Distributions of E. affinis: For every date except 14 August 

2014, E. affinis had a higher average abundance in the water column at night than during 

the day (Appendix A4; Figure 21A). However, there was little diel difference in 

zooplankton depth profiles, especially for 15 July 2014 and 24 July 2014 (Figure 22A, 

B). For these two sampling dates, E. affinis total abundance peaked at 2 and 4m during 

the day and at night. On 07 August 2014, E. affinis was most abundant at 4m during the 

day, but at 1m at night. In contrast, peak abundances switched on 14 August 2014, such 

that E. affinis was most abundant at 1m during the day and 4m at night. 

 
 Life-Stage Differences in DVM Offshore: The diel difference in average 

abundance of adult E. affinis was greater than the diel difference in average copepodite 

abundance (Appendix A4; Figure 21B, C). While copepodites were present at similar 

abundances in the water column during the day and the night (Figure 21C; Figure 23), 

adults were often absent or present in low abundance during the day and present in higher 

abundances at night (Figure 21B; Figure 23). 

 
A) 
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B) 

 
C) 

 
Figure 21. Average abundances (average of copepod abundances across 5 sampling depths) of A) total, B) 
adult, and C) copepodite E. affinis in Little Sturgeon Bay. 

 
 
 



   38	  

 
 
 
 
 

A) 15 Jul 2014 

 

B) 24 Jul 2014 

 
C) 07 Aug 2014 

 

D) 14 Aug 2014 

 Figure 22.  Depth profiles of total abundance of E. affinis in Little Sturgeon Bay during the day and at night for 
four sampling dates. Error bars represent ±1SEM. 
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Figure 23. Depth profiles of abundance for E. affinis adults and copepodites during the day and at night for 
four sampling dates. 15 July 2014: A) day B) night, 24 July 2014: C) day D) night, 07 August 2014: E) day 
F) night, 14 August 2014: G) day H) night. 
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Correlation Between Water Transparency and Species Density: During the day, 

there was a strong, negative (but non-significant) correlation between water transparency 

and average adult density (r=-0.90, n=4, p=0.10) and a significant negative correlation 

between water transparency and average copepodite density (r=-0.96, n=4, p=0.04) 

(Figure 24A). At night, there were negative relationships between water transparency and 

adult density (r=-0.77, n=4, p=0.23) and between water transparency and average 

copepodite density (r=-0.80, n=4, p=0.20) (Figure 24B). 

Examination of the best-fit lines reveals differing sensitivities of copepod 

densities to water transparency. During the day, copepodite density was more sensitive to 

water transparency than adult density, as evidenced by higher magnitude of the slope of 

the line of best fit (slope(day, adults)=-0.0577; slope(day, copepodites)=-0.1307) (Figure 

24A). At night, copepodites were overall more abundant than adults regardless of water 

transparency, as evidenced by the higher intercept in the line of best fit (y-

intercept(copepodite, day)=0.4214; y-intercept(adult, day)=0.329). However, the slopes 

of the lines of best fit were nearly identical, suggesting that adults and copepodites were 

equally sensitive to water transparency at night (slope(night, adults)=-0.0923; 

slope(night, copepodites)=-0.1047) (Figure 24B). 
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A) 

 
B) 

 
Figure	  24.	  Relationship	  between	  water	  transparency	  (described	  by	  Secchi	  depth)	  and	  E.	  affinis	  adult	  
and	  copepodite	  average	  densities	  in	  the	  water	  column	  during	  the	  day	  (A)	  and	  at	  night	  (B).	  Equations	  
represent	  lines	  of	  best	  fit	  and	  R2	  represent	  goodness-‐of-‐fit	  assessments.	  Pearson’s	  r(adults,	  day)=	  -‐
0.90;	  r(copepodites,	  day)=-‐0.96;	  r(adults,	  night)=-‐0.77;	  r(copepodites,	  night)=-‐0.80. 
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Describing Migration Offshore: Assessment of diel changes in weighted mean 

depth (WMD) indicates that E. affinis performed diel vertical migrations, albeit small 

ones, at the offshore site on each day sampled. Each migration recorded was negatively 

phototactic (moving down, away from light, during the day and up at night) except on 14 

August 2014, which was positively phototactic (Figure 25A). Adults tended to exhibit a 

more pronounced migration than copepodites, having larger changes in weighted mean 

depth (ΔWMD) than copepodites on 24 July 2014 and 07 August 2014 (Figure 25B, C; 

Table 3). Because no adults were observed in the water column during the day on 14 

August 2014, it is not possible to calculate a change in WMD.  This absence is 

presumably due to adults undergoing extreme DVM on that date since they were 

observed in the water less than 12 hours later during the night sampling (Figure 23H, 

Table 3) 
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	   A) Total E. affinis 

 

 
 

B) Adult E. affinis 

 

C) Copepodite E. affinis 

 
Figure 25. Diel changes in calculated Weighted Mean Depth (WMD) offshore for total (A), adult (B), and 
copepodite (C) E. affinis across four sampling dates 
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Table 3. Weighted Mean Depths (WMD) for total E. affinis, adults, and copepodites during the day and at 
night. ∆WMD represents the change in WMD between sampling times. Positive ∆WMD signifies a 
positively phototactic migration. 
Total E. affinis 7/15/14 7/24/14 8/7/14 8/14/14 
WMD (Day) 2.839 3.186 4.071 2.500 
WMD (Night) 2.756 2.908 2.500 4.125 
ΔWMD 0.083 0.278 1.571 -1.625 
Adults         
Day 2.625 4.167 4.000 -- 
Night 2.614 3.389 2.060 3.500 
ΔWMD 0.011 0.778 1.940 -- 
Copepodites         
Day 2.925 3.125 4.100 2.500 
Night 2.862 2.759 2.775 4.269 
ΔWMD 0.063 0.366 1.325 -1.769 

 

  
Near Shore Distributions 
 

Eurytemora affinis were generally more abundant near shore than at the offshore 

site (Appendix A4). For the first two sampling dates, near shore abundances were only 

measured at 0m. For the last two sampling dates, abundances were measured at both 0m 

and 2m. Since it is ineffective to calculate WMD when abundances are only known from 

one or two depths, I instead examined diel differences in abundances of E. affinis at each 

depth independently as an indication of near shore migration behavior. 

The first two sampling dates both provide evidence that E. affinis is more 

abundant near the surface of the near shore site at night than during the day. On 15 July 

2014 at 0m, E. affinis adults were significantly more abundant at night (x̅=0.48, 

SD=0.30) than during the day (x̅=0.15, SD=0.21)  (p=0.03) (Figure 26A). Copepodites 

were also significantly more abundant at night (x̅=1.18, SD=0.55) than during the day 

(x̅=0.38, SD=0.48) at 0m (p=0.01) (Figure 26B). Similarly, on 24 July 2014, adults were 

significantly more abundant at night (x̅=0.77, SD=0.54) than during the day (x̅=0.02, 
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SD=0.04) at 0m (p=0.02) (Figure 26C). Finally, copepodites were also more abundant at 

night (x̅=0.55, SD=0.29) than during the day (x̅=0.17, SD=0.15) (p=0.02) (Figure 26D). 

On 07 August 2014, E. affinis adults were significantly more abundant at both 

depths at night (0m, day: x̅=0.20, SD=0.11; 0m, night: x̅=3.42, SD=0.69; p<<0.01; 2m, 

day: x̅=1.15, SD=0.85; 2m, night: x̅=3.42, SD=0.62; p=0.006) (Figure 26E). However, 

the population distribution switched between day and night. A greater proportion of E. 

affinis adults were found at 2m during the day, but the population was split almost evenly 

between depths at night. Copepodites were significantly more abundant at 0m at night, 

but were more abundant at 2m during the day (0m, day: x̅=1.70, SD=0.85; 0m, night: 

x̅=6.40, SD=1.20; p<<0.01; 2m, day: x̅=20.42, SD=3.63; 2m, night: x̅=7.60, SD=2.15; 

p=0.002) (Figure 26F). During the day, a greater proportion of copepodites were found at 

2m than at 0m. At night, similar to the adults, the population distribution of copepodites 

was split nearly evenly between depths. 

On 14 August 2014, there were diel differences in copepod abundances for both 

copepodites and adults, but only one of these differences reached the level of 

significance. At 0m, adults were significantly more abundant in the water column at night 

(x̅=2.12, SD=0.53) than during the day (x̅=0.06, SD=0.08) (p=0.004) (Figure 26G). At 

2m, adults had a higher mean abundance at night (x̅=1.20, SD=1.17) than during the day 

(x̅=0.24, SD=0.16). Similarly, copepodites were more abundant at 0m and 2m at night 

than during the day (0m, day: x̅=0.40, SD=0.21; 0m, night: x̅=0.76, SD=0.24; 2m, day: 

x̅=0.36, SD=0.24; 2m, night: x̅=0.74, SD=0.62) (Figure 26G, H). 
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Figure 26. Nearshore abundances of E. affinis adults and copepodites during the day and at night. Error 
bars represent ±SEM. Stars designate significant differences. 
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Discussion 
 

Results of our field study demonstrate that E. affinis performs DVM in Little 

Sturgeon Bay both near shore and offshore. The amplitude of this migration differs 

between sampling dates, sites, and life stages of the species. Eurytemora affinis was 

found in much higher abundance and performed a more drastic migration at the near 

shore site. Vertical migration did occur offshore, but was smaller in amplitude and quite 

variable between sampling dates. Across most sampling sites and dates, E. affinis adults 

migrated greater distances than did copepodites. The difference in migration amplitude 

may be explained by differences in predation risk among life-stages of E. affinis. 

Copepodites are shorter in length and smaller in area than adults, making them less 

visible to predators and therefore less likely to migrate as far.	  

 	  
Do Eurytemora affinis migrate? 

Offshore DVM: I hypothesized that if E. affinis performed DVM offshore, there 

would be differences in weighted mean depth of the species from day to night. This 

prediction was realized, since WMD varied on a diel basis for each sampling date. 

However, the distance and direction of the migration was quite variable between 

sampling dates. Our understanding of the variability of the diel changes in WMD may be 

enriched by careful examination of each migration in the context of the biotic and abiotic 

environmental factors for each sampling date.	  

Little Sturgeon Bay provides a highly variable vertical environmental gradient. 

Little Sturgeon Bay is shallow, reaching a little over 4m at its deepest point. For this 

reason, it is susceptible to frequent and sudden mixing when winds are strong. Strong 

water currents entering Little Sturgeon Bay from Green Bay may result in internal 
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seiches, which also mix the lake—breaking down thermal and chemical stratification. In 

our system there is no clear relationship between the presence of physical and chemical 

lake stratification and copepod migration amplitude.	  

Little Sturgeon Bay showed similar thermal stratification on 24 July 2014 and 07 

August 2014. Yet, the migration amplitude on 07 August was approximately 5.5 times 

greater than on 24 July (Figure 25). Similarly, DO also seems to have no bearing on 

migration amplitude. These results are in agreement with previous studies where E. 

affinis has been documented to occupy a wide range of physical and chemical conditions 

on a daily basis (Almén et al. 2014).	  

To understand why migration at the offshore location varied in amplitude and 

direction between sampling dates, we should also consider biotic factors such as food 

availability and predation. Though little data were collected on the abundance or diversity 

of zooplankton predators in Little Sturgeon Bay, planktivorous larval fish were 

occasionally caught in the Schindler Trap. In the classic model of DVM, zooplankton 

occupy deeper depths during the day to avoid visual predators like the larval fish noted 

above (Lampert 1989). Higher food availability at shallower depths is an incentive to 

migrate upwards at night. Alternatively, if food is not scarce in deeper waters, 

zooplankton may not need to migrate upward at night.	  

For this study, Chl-a abundance was used as a surrogate measurement for food 

abundance because Chl-a is produced by phytoplankton, the food of zooplankton. Chl-a 

profiles and abundances varied across sampling dates. Samples from 15 July 2014 

showed a Chl-a profile that was consistently high across all depths and sampling times—

ranging between 5 and 20 ug L-1 (Figure 20A). This amount of chlorophyll indicates that 
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the bay was mesotrophic to eutrophic in nature at that time, with fairly abundant food for 

copepods (Wetzel 2001). In a scenario like this with little food limitation, we would 

expect to see less intense zooplankton DVM. For both 15 and 24 July 2014, days with 

little food limitation, the amplitude of E. affinis DVM at the offshore site, represented by 

ΔWMD, was small (Figure 25).	  

In contrast, results from both 7 and 14 August 2014 showed Chl-a limitation at 

certain depths during different times of day. On 7 August 2014, Chl-a levels were much 

lower overall, indicating oligotrophic conditions but peaked at 4m during the day and at 

2m at night (Wetzel 2001) (Figure 20C). In response, E. affinis performed a negatively 

phototactic migration with greater amplitude than the previous two sampling dates 

(Figure 25). On 14 August 2014, Chl-a levels were similarly low throughout the water 

column, but were highest in the shallowest two meters during the day and the deepest 

meter at night (Figure 20D). As a result, E. affinis performed a positively phototactic 

migration (Figure 25). In summary, it is likely that E. affinis performs DVM at the 

offshore site in response not to physical or chemical conditions, but rather to food 

limitation paired with predation.	  

	  
Near Shore DVM: The near shore habitat of Little Sturgeon Bay, like most 

shallow lakes, presents a different set of resources and challenges to zooplankton than the 

offshore habitat. The near shore habitat was notably weedy, as it was filled with 

submerged macrophytes (personal observation). In general, predation on zooplankton by 

planktivorous fish is lower in habitats rich in macrophytes, since macrophytes provide a 

“hide-out” for zooplankton from their visual predators (Jeppesen et al. 1998). However, 

weedy, near shore habitats also act as a refuge for planktivorous fish from piscivorous 
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fish (fish that eat smaller fish). As a result, planktivorous fish congregate in shallow, 

macrophyte-rich near shore habitats (Turner and Mittelbach 1990).	  

DVM was trickier to quantify near shore for this study, since only two depths 

were sampled. It was therefore futile to attempt to estimate the “center” of the near shore 

zooplankton population by calculating WMD. Instead, differences in diel abundances at 

each depth were assessed to determine whether DVM occurred. Because this location 

was only approximately 2.4m deep, our sampling represented the majority of the vertical 

locations where copepods could occur.	  

 	  
The Diurnal Deficit: One of the most striking trends of E. affinis abundance in 

Little Sturgeon Bay is the diel difference in total abundance of organisms in the water 

column. Eurytemora affinis was consistently more abundant in the water column at night 

than during the day (Figure 21). This “diurnal deficit” has been documented in a variety 

of DVM studies on a variety of zooplankton (Kikuchi 1930, Hutchinson 1967, Bollens 

and Frost 1989, De Stasio 1993). Diurnal deficit in other zooplankton studies has been 

attributed to sampler avoidance (Omorie and Hamner 1982), migration into sediments 

during the day (Hart 1975), or horizontal movement (Moen and Langeland 1989).	  

In the case of E. affinis in Little Sturgeon Bay, it is likely that the disparity 

between day and night abundances is due largely to its vertical migration into or near the 

bottom sediment of the bay during the day. Eurytemora affinis is epibenthic, meaning it 

inhabits the water just above the sediment at the benthos, or the bottom of a lake (Evans 

and Stewart 1977). It is likely that the Schindler Trap sampler used in this study was not 

able to adequately sample close enough to the benthos to account for epibenthic 

organisms, resulting in an incomplete estimate of total zooplankton abundance in the 
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water column during the day.	  

While the diurnal deficit observed in this study may indicate an incomplete 

representation of total zooplankton abundance during the day, it also provides evidence 

that DVM is occurring. Greater abundances of E. affinis in the water column at night 

indicate that some have migrated out of the epibenthic zone, which is, in itself, a vertical 

migration.	  

 	  
Does Life-Stage Affect Predation Risk? 

A major reason for zooplankton DVM is to reduce mortality through predator 

avoidance (Zaret and Suffern 1976, Lampert 1993). In the presence of fish karimones, 

zooplankton become more sensitive to changes in light intensity, inducing strong 

photobehavior in phenotypically plastic zooplankton (Ringelberg et al. 1991). Predation 

can lead to short-term genetic selection, favoring phenotypically plastic, migrating 

individuals over non-migrating individuals (Haney 1988).	  

If DVM is a mechanism for avoiding visual predation, then zooplankton size is 

important. Prey detection by visual predators depends on prey visibility, which increases 

with size (De Robertis et al. 2002, Hays 1995). If there are differences in copepod size 

between life-stage groups of E. affinis, then we should expect to find ontogenetic 

differences in DVM.	  

In Little Sturgeon Bay, life-stage groups were significantly different sizes. In 

particular, E. affinis copepodites were significantly shorter and had a smaller area than 

adults (Figure 15, Figure 16). Based on this size difference, copepodites should be less 

visible, and therefore less vulnerable to visual predation than adults.	  
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Does Differing Predation Risk Lead to Different Migration Trends?	  

If differing visibility leads to differing predation risk between zooplankton life-

stage groups and DVM is a behavior to avoid predation, then we expect to see differing 

DVM patterns between adults and copepodites. In particular, it is expected that adults, 

which face greater predation risk than copepodites, should have a more pronounced 

pattern of migration (Hays 1995, De Robertis et al. 2000). Our results are consistent with 

these expectations, since adults showed DVM of a greater magnitude at both the offshore 

and near shore site (Figure 25, Figure 26).	  

If visual predation risk differs ontogenetically, we also expect to see differing 

sensitivities of copepod densities to water clarity between life-stage groups. This 

expectation is also supported by our results, since copepodite density was significantly 

negatively correlated to water transparency during the day. There was also a negative, but 

non-significant, relationship between adult density and water transparency. The 

magnitude of the relationship between adult density and water transparency was not as 

great as that with copepodites (Figure 24A). The difference in these relationships 

suggests that visual predation risk is consistently higher for adult E. affinis than 

copepodites, discouraging adults from entering the water column even when water 

transparency is low. Alternatively, copepodites suffer less predation risk when water 

transparency is low and may inhabit the water column in high density.	  

The presence of a diel deficit provides additional evidence that zooplankton 

migrates up, out of benthic sediments at night. Differences in diel deficit suggest that life 

stage groups perform DVM with differing magnitudes. The diel deficit for E. affinis 

adults was proportionally larger than the deficit for copepodites at both the offshore and 
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near shore sites, indicating that a greater proportion of E. affinis adults spend daylight 

hours in the epibenthic zone than copepodites. Subsequently, a greater proportion of E. 

affinis adults leave the epibenthos and enter the water column at night to perform DVM 

than do copepodites.	  

 	  
Mechanisms Leading to Differing DVM Patterns	  

If DVM reflects individual zooplankton survival strategy rather than schooling or 

flocking behavior, we expect to see ontogenetic differences in DVM (De Robertis 2002). 

Predation risk differs ontogenetically and, to maximize survival probability, an individual 

of a particular life stage group should adopt a DVM pattern that most effectively 

minimizes predation risk without imposing unbearable metabolic costs. It is possible that 

zooplankton alter DVM amplitude throughout their life to maximize fitness based on 

immediate predation risk and resource availability.	  

It is also possible that the difference in DVM magnitude between life stage groups 

is a result of short-term genetic selection. In an environment with many visual predators, 

predation can lead to short-term genetic selection within a population, shifting a partially 

migrating zooplankton population towards a migrating population (Haney 1988). It is 

likely a combination of these factors—plasticity of behavior and short-term genetic 

selection—that lead to population-wide DVM in Little Sturgeon Bay.	  

 	  
Importance & Conclusions	  

In summary, we found that E. affinis performs DVM in Little Sturgeon Bay. 

Adults, which are more susceptible to visual predation, perform DVM with greater 

magnitude than copepodites. This greater magnitude of migration is indicated by larger 
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diel differences in weighted mean depth as well as diel differences in total abundance in 

the water column. It appears that offshore, negatively phototactic DVM occurs only when 

food is not limited. When food is scarce, E. affinis track food regardless of increased 

predation risk.	  

The fact that E. affinis migrates in Little Sturgeon Bay reveals a few clues about 

its success as an invader within this non-native habitat as well as other freshwater 

environments. Little Sturgeon Bay provides an incredibly variable and dynamic vertical 

environment that may switch between stratified and mixed in a short period of time 

(Figure 19). Chl-a abundance is also quite variable through the summer months. In the 

span of two months, Chl-a levels in Little Sturgeon Bay vary enough to suggest that it 

can be considered a eutrophic and an oligotrophic system at different times (Figure 20). 

DVM likely allows E. affinis to thrive in this highly variable environment. The variation 

in amplitude of E. affinis DVM across sampling dates suggests that the population is 

highly phenotypically plastic and individuals can change their migration behavior to best 

survive the rapidly changing conditions in Little Sturgeon Bay.	  

Genetic studies have revealed that E. affinis is highly phenotypically plastic, 

allowing the species to inhabit a range of marine, brackish, and freshwater environments 

(Lee 2000). The ability of E. affinis to tolerate a wide range of environments makes it a 

particularly good invader. The range of DVM amplitudes between life stage groups and 

sampling dates in Little Sturgeon Bay also indicates phenotypic plasticity within our 

study system. It is possible that plasticity of behavior, and not just morphology, allows E. 

affinis to be a successful invader in Little Sturgeon Bay as well as freshwater systems 

across the world. 
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Appendix 
 
 
 

Appendix A1. Length distributions of life-stage groups (A) adult male N=47 B) adult female N=40 C) 
ovigerous female N=35 D) copepodite N=35) of E. affinis in Little Sturgeon Bay.  

A) ♂

 
 

B) ♀ 

 

C) ♀ + eggs

 

D) copepodite 
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A) ♂ 

 

B) ♀ 

 

C) ♀ + eggs 

 

D) copepodite 

 

Appendix A2. Area distributions of life-stage groups (A) adult male N=47 B) adult female N=40 C) 
ovigerous female N=35 D) copepodite N=35) of E. affinis in Little Sturgeon Bay. 
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Appendix A3. Darkness distributions of life-stage groups (A) adult male N=47 B) adult female N=40 C) 
ovigerous female N=35 D) copepodite N=35) of E. affinis in Little Sturgeon Bay. Darkness measurements 
are the arcsine(proportion darkness), as determined by ImageJ.   

A) ♂ 

 

B) ♀ 

 

C) ♀ + eggs 

 

D) copepodite 
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Appendix A4. Average abundance of total, adult, and copepodite E. affinis in the water column near shore 
and offshore on four sampling dates. Average abundance is the mean of abundances at each depth. 

 
Average abundance (organisms/L) 

OFFSHORE  Total Adult Copepodite 

 
Day Night Day Night Day Night 

15-Jul-14 0.2694 0.3945 0.0770 0.1684 0.1924 0.2261 
24-Jul-14 0.1227 0.1828 0.0072 0.0433 0.1155 0.1395 
7-Aug-14 0.0185 0.1563 0.0048 0.0601 0.0120 0.0962 

14-Aug-14 0.0640 0.0640 0.0000 0.0120 0.0640 0.0520 

       NEAR SHORE  
      

 
Day Night Day Night Day Night 

15-Jul-14 0.5283 1.6597 0.1469 0.4845 0.3814 1.1752 
24-Jul-14 0.1924 1.3229 0.0241 0.7697 0.1684 0.5532 
7-Aug-14 11.7351 10.4152 0.5893 1.8581 11.0586 6.9996 

14-Aug-14 0.5300 2.4100 0.1500 1.6600 0.3800 0.7500 
 
 
Appendix A5. Diel changes in average abundance of E. affinis. Changes were calculated by subtracting 
average day abundance from average night abundance shown in Appendix A4. 

 
Diel change in average abundance (organisms/L) 

OFFSHORE (LS-E) Total Adult Copepodite 
15-Jul-14 0.1251 0.0914 0.0337 
24-Jul-14 0.0601 0.0361 0.0241 
7-Aug-14 0.1379 0.0553 0.0842 

14-Aug-14 0.0000 0.0120 -0.0120 
    
NEAR SHORE (LS-DOCK) 

   15-Jul-14 1.1314 0.3376 0.7938 
24-Jul-14 1.1305 0.7457 0.3849 
7-Aug-14 -1.3199 1.2688 -4.0590 

14-Aug-14 1.8800 1.5100 0.3700 
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