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Preface 

 This paper highlights the symbiotic relationship between industry and basic research. 

Often basic research results in discoveries that allow for the innovation of new technology by 

industry. In turn this new technology, provided by industry, produces new or more 

economically accessible instruments for conducting basic research. One recent technological 

example of this phenomenon is the Blu-ray disk player. Its advantage over conventional DVDs 

stems from using 405 nm blue lasers as opposed to 650 nm red lasers which are used in DVD 

players. This shorter wavelength light allows more data to be encoded onto a disk and hence 

better picture quality. Prior to this particular application of the blue laser, very few blue lasers 

existed and the few that did were expensive, difficult to acquire and cumbersome to work with. 

Blu-ray disk players allowed an economical means for industry to develop and optimize the 

production of blue lasers. Now blue lasers are mass produced so cheaply they can be 

incorporated into consumer electronics. Consequently, basic research that requires a blue laser 

can be done much more easily and cheaply than before the invention of the Blu-ray disk player. 

 This paper explores how another type of recently developed technology could catalyse 

basic research and how this basic research could provide proof of principle for a serendipitous 

technological application. This type of technology is known as time-of-flight imaging 

technology. It was originally developed for motion sensitive video gaming applications. 

However, the basic research I did on this camera explores how this technology could be applied 

to fluorescence imaging, a flourishing topic in modern scientific research. 1-4 A specific 

application I have explored for this technology is the imaging of fluorescently labelled tumors, a 
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new technique for identifying tumors in surgery. Because this technology was originally 

developed for the video game market, it can be produced relatively cheaply allowing for the 

possibility of producing less expensive medical imaging devices and consequently lower health 

care costs when these instruments are used.  Hence, like the Blu-ray disk player, this technology 

shows the potential to stimulate basic research by providing a means for fluorescence imaging. 

This basic research can explore another application of this technology which could provide 

industry with a proof of principle for building new medical imaging devices. This paper explores 

the feasibility of this technological metamorphosis.  

 

 

 

 

 

 

 

 

 

 

 



5 

 

I. The Role of Imaging in Fighting Cancer 

Along with radiation treatments and chemotherapy, the surgical removal of tumors 

remains one of the primary techniques physicians use to treat cancer. Often one or more of 

these techniques are combined to treat an individual patient5. Since an individual cancer cell 

can grow into an arbitrarily large tumour, often surgery is used to remove all of the tumors that 

can be found, and then chemotherapy is used to treat the few small tumors that remain6. 

Chemotherapy however, is notoriously difficult on the patient. Since chemotherapy uses drugs 

that disrupt rapid cell division, rapidly dividing cancer cells are killed, but so are other cells that 

rapidly divide under normal circumstances such as those found in hair follicles, bone marrow 

and the digestive tract. The death of these cells results in numerous adverse side effects for the 

patient such as suppression of the immune system, lowering of blood platelet count, and hair 

loss.7  Studies have shown that chemotherapy is more successful and of shorter duration when 

preceded by a surgery that removed a larger amount of the total cancerous tissue in the body. 

This results in an overall better prognosis for the patient8. Therefore, removing as much 

cancerous tissue as possible is of the utmost importance for ensuring that cancer patients 

receive the most successful and least problematic treatment. 

Identifying cancerous tissue is often non-trivial. The degree of difficulty varies with the 

type of cancer. Ovarian cancer is one of the most notoriously difficult. Due to the degree of 

difficulty, much research has been conducted in recent years investigating a technique in which 

the tumors are labeled with fluorescent dye so they can be identified much more easily. 

Recently, this technique has been applied in a handful of ovarian cancer surgeries6. These 
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fluorescent dyes are injected into the patient two hours prior to surgery and utilize a folate 

receptor to concentrate in the cancerous tissue. Because the fluorescence pathways of these 

dyes are in the visible spectrum, the tumors light up when exposed to a diffused visible light 

laser beam during surgery6. Prior to the invention of this technique, the smallest tumors that 

could be readily detected by eye were 3 mm in diameter; however, with this technique, 

physicians are able to identify tumors as small as 100 microns across.8 

        

Figure 1: Both of these images are from an ovarian cancer surgery. The image on the left is 

the surgeon’s current unassisted view of the tissue. In this image picking out the tumors is 

rather difficult. The image on the right is the fluorescence image of the same tissue. In this 

image not only are the large tumors much easier to distinguish from the rest of the tissue, 

but a number of smaller tumors can now be found that would otherwise have been 

undetectable. This figure is adapted from reference 6. 

 

One of the difficulties surgeons still face in the operating room (even with the 

introduction of this technique) is that only tumors at or near the surface of the tissue can be 
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imaged. Visible light does not penetrate far into the tissue. Some tumors have unusual 

branches and twists that run deep into the tissue. To find these hidden tumors, one needs a 

detection technique that can penetrate further into the bulk of the tissue. This allows a surgeon 

to identify a tumor that is deeply imbedded into the tissue and to cut through tissue to remove 

it. This desire for imaging beyond the surface motivated the search for an infrared fluorescent 

dye9 that could replace the previously used visible light fluorescent dye because infrared light is 

capable of penetrating further into the tissue than visible light. Although we cannot see 

infrared light, the type of infrared light emitted by this dye (750-900 nm) can easily be imaged 

with cameras that use standard silicon based detector chips. On the surface using light that the 

human eye cannot see may seem to be a setback; however, endoscopic surgeries (which 

require a camera anyway) *  are becoming more prevalent in managing ovarian cancer10.  This is 

because endoscopic surgeries are minimally invasive and consequently result in a shorter and 

less painful recovery for the patient11.   By using endoscopic cameras to capture the infrared 

fluorescent signal, the deep-tissue tumors can be visualized. 

The subject of this paper is the technology a potential endoscopic camera could use to 

detect the infrared fluorescence signal of the smallest tumors possible considering the 

constraints of a camera that is used in an endoscope. One can list a number of different 

properties that would be ideal for a fluorescence endoscopic camera. Some of the principle 

ones include: being able to see the fluorescence image and the conventional white light image 

at the same time so the surgeon does not lose any information but gains the information from 

                                                            
* Endoscopic surgery is performed using a flexible tube that is inserted into a cavity or a small incision as oppose to 
conventional “open surgery” where the incision has to be large enough for the physician to view the area of the 
operation. Some endoscopes use fiber optics to lead the signal to a camera outside of the endoscope. 
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the infrared fluorescence signal, being small enough in size so that it could fit in an endoscope, 

and being able to successfully image a fluorescence signal. 

The strength of a fluorescence signal (i.e. the fluorescence signal to noise ratio) is 

determined by a number of different parameters. For one, the amount of fluorescent dye 

present in the tissue will determine the strength of the signal. However due to the toxicity of 

the dyes being used, the amount of dye that can be safely injected into the patient is limited. 

Another way to increase the fluorescence signal to noise ratio is to increase the amount of light 

used to excite fluorescence. However, exposing the internal organs to high optical power both 

is technologically more difficult (in such a small space) and is potentially harmful to the organs. 

A third way to increase the fluorescence signal to noise ratio is to increase the sensitivity of the 

camera used. This paper addresses the possibility of a new technology originally developed for 

video gaming applications that would have a surprising level of sensitivity for this endoscopic 

application. 

 

II. How Video Game Technology can Help Fight Cancer 

Over the past few decades the video game industry has grown substantially with 

revenues exceeding 74 billion dollars in 201112. As the industry has grown, so has the economic 

incentive to develop new technologies for gaming. One of the most recent innovations in this 

industry is the ability of the gaming console to detect the three dimensional motion of the 

human body and use this information as an input for the game.  This allows for a number of 
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appealing gaming applications. For example, this technology allows sports to be played using 

the actual physical activity necessary for playing the real sport as opposed to merely hitting an 

arbitrary series of buttons on a control. Consequently, a multitude of different motion sensitive 

technologies have been developed with this application in mind. One of these technologies is 

known as time-of-flight imaging technology 13. Although this technology to date has not been 

incorporated into any mainstream video gaming system, due to the way this technology works, 

a possible serendipitous application of this motion sensitive gaming technology could be 

endoscopic fluorescence imaging. 

Time-of-flight imaging technology works by measuring the phase shift between emitted 

and detected infrared light at a high modulation frequency. These cameras have built-in LEDs 

(light emitting diodes) that emit light modulated at 20 MHz (see figure 2). This light then 

reflects off objects in front of the camera and is detected by the camera. The camera uses a 

combination of an infrared bandpass optical filter and a four bin lock-in detection scheme for 

each of the 40k pixels to ensure that it is able to pick out what part of the total signal it receives 

is modulated at 20 MHz and in the infrared. The phase shift between the emitted and detected 

signals is then used (in conjunction with the speed of light) to calculate the distance at which 

the reflection occurred for all 40k pixels resulting in a distance image (see figure 3). 
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Figure 2: Time-of-Flight Camera Distance Measurement Scheme 

 

 

Figure 3:  Time-of-Flight Images: On the left is a distance image.  Here a color scale is used 

to display distances with close objects labeled in red and distant objects labeled in blue. On 

the right is an image which displays the intensity of the infrared light reflected back to the 

camera. This is similar but not identical to a conventional black and white image. This 

figure is adapted from Reference 14. 

 

 In order to configure this camera to acquire fluorescence images (as is needed for the 

proposed endoscopic application), a number of modifications need to be made to the camera 
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(see figure 4). The electric signal originally sent to the built-in LEDs needs to be sent to a 

different LED of the proper power and fluorescence excitation wavelength light. A short pass 

filter needs to be placed in front of this LED to ensure that no photons emitted by the LED could 

be mistaken for fluorescence. The camera also needs the infrared band-pass filter removed and 

a long-pass filter placed in front of it to ensure that the camera only sees the fluorescence 

signal. This new configuration (see figure 4) will allow for the fluorescence signal to be detected 

and the non-fluorescent background to be largely suppressed. The advantage of this camera for 

fluorescence imaging is that the high modulation and detection frequency allows for all lower 

frequency noise, normally present in a fluorescence image, to be eliminated from the image. By 

pushing the desired signal to such a high frequency and consequently low noise regime the 

sensitivity of this camera to the fluorescence signal is increased substantially. As we shall see in 

the next chapter, not only does noise exist below the MHz regime, but in many circumstances is 

actually much more common at lower (<10 kHz) frequencies. 

 

Figure 4: Fluorescence Imaging Scheme  
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III. Theory 

A common problem with fluorescence imaging is achieving a good signal to noise ratio. 

Because only a small number of the excitation photons stimulate fluorescence and fluorescent 

photons are emitted in all directions, the optical power of the fluorescence signal can easily be 

three or four orders of magnitude smaller than the excitation signal. Thus being able to 

distinguish fluorescent photons from other (and often much brighter) sources of light is of the 

utmost importance for acquiring a good fluorescence image. 

One way to distinguish the fluorescence signal from other sources of light is to modulate 

the fluorescence signal at one frequency and detect only the signal that occurs at this 

frequency. This is known as lock-in detection. As one might hypothesize, the amount of noise 

that can be eliminated with this technique is dependent on the frequency of modulation. The 

less common the noise is at the frequency of modulation, the better the signal to noise ratio.  

 Noise in an image can arise from a variety of different sources including fluorescent 

lights, fans, electrical interference, mechanical and acoustic vibrations and thermally generated 

electrons in the detector. Other than thermally generated electrons in the detector, all of these 

sources should have a 1/f dependence.15 Thus the Fourier transform of the noise signal should 

show a 1/f dependence on the frequency until frequency independent shot noise dominates 

the signal (which arises from the thermally generated electrons in the detector. This is 

illustrated in Figure 5 which shows how even daylight contains this 1/f dependence. 
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Figure 5: Fourier Transform of Daylight: On the left side of the graph, the 1/f characteristic 

of noise can be identified by the line of slope -1 whereas on the right side of the graph the 

level of noise is frequency independent which implies it is shot noise from the detector. 

 

As shown in figure 5, noise becomes less common at higher frequencies until the shot 

noise limit is achieved. Thus the ability of time of flight cameras to modulate and detect light in 

the MHz regime offers the potential to substantially reduce the noise in a fluorescence signal by 

placing the signal in a regime where only shot noise is present. Although the technique of 

modulating fluorescence signals is not new16, the ability of these cameras to detect at such high 

frequencies for 40k pixels is unprecedented. 
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In order to detect a signal only occurring at a specific frequency, time-of-flight cameras 

utilize a four bin lock-in detection scheme in which each bin collects for one fourth of the 

modulation period (for example 250 ns for a 1 MHz modulation). The signal is integrated for 

many modulation periods; however, each bin receives only a specific fourth of the modulation 

period as can be seen in figure 6.  

 

Figure 6: Four Bin Lock-in Detection Scheme: Each of the four bins collects light for one 

fourth of the modulation period over many periods of the modulation. 

  

From the amount of counts collected in each bin, the signal occurring at the modulation 

frequency can be calculated using the equation 
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From the above equation, one can see that the differences between the bins 180 

degrees out of phase are used as a measure of signal at the modulation frequency. To see how 

this subtraction technique is able to limit the noise that the camera is exposed to, we start with 

an equation for N modulation periods† in which the second half of the period τ is subtracted 

from the first which yields the expression 

 

Here we assume the Fourier transform of noise N(ω) is an arbitrary function of ω which 

is motivated by figure 5.  This equation can be reduced to  

 

Although, it may appear rather convoluted at first, in the high N limit the last factor in 

the integrand approaches the Dirac delta function in shape with the spike occurring at the 

modulation frequency (as can be seen in figure 7). This is multiplied by the noise Fourier 

transform (which is displayed in figure 5 for daylight) function meaning that only noise near the 

modulation frequency will be acquired and how close to the modulation frequency is necessary 

is determined by the number of modulation periods being integrated. For the full derivation of 

this equation, please see the appendix.  

                                                            
† It should be noted that this derivation assumes a two bin lock-in detection scheme (not the four bin scheme 
actually used by time-of-flight cameras and described in Figure 6. The derivation for four bins would just contain 
extra terms that would needlessly complicate the derivation without providing any additional insight as to how 
lock-in detection is able to suppress noise. 
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Figure 7: Graphs of the last term of the integrand: Both graphs use a modulation period of 

1 μs and an integration time of 50 ms (N=50,000). The top graph is the response of this 

term within 1 kHz of the modulation frequency. This graph shows how the response 

approaches zeros as the frequency deviates from the modulation frequency. The bottom 

graph is a plot of the function within 150 Hz of the modulation frequency. This graph 
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demonstrates how the width of the largest peak is the inverse of the integration time (20 

Hz in this case).   

 

In summary, this equation demonstrates that only a small quantity of noise in the 

vicinity of the modulation frequency will be acquired when this modulation technique is 

applied.  Due to the modulation frequency being so high, much more common lower frequency 

noise (demonstrated in figure 5) can be eliminated from the signal. In the next chapter, this 

theoretical hypothesis will be tested by analyzing how this technique impacts the amount of 

noise in the signal. 

IV. The Calibration 

Two different experiments were conducted. In both experiments the time-of-flight 

camera tested was a PMD[vision]® CamCube 3.0. This chapter discusses the calibration of this 

camera which was designed to provide a quantitative measure of the amount of noise that 

could be eliminated using this high frequency modulation technique. The next chapter 

discusses the imaging of fluorescently labeled mouse tumors. The role of this section is to 

demonstrate the camera acquiring fluorescent images and to show that the camera is capable 

of imaging fluorescently labeled dyes at concentrations that are safe for patients.  

In order to quantitatively define the sensitivity of the camera to a fluorescence signal, 

the noise in the signal had to be measured. To do this a calibration was conducted in which the 

optical power equivalent of the noise was measured. This was done by measuring the 
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proportional response of the detector to light. Together with the amount of noise occurring in 

both the 1 MHz modulated and non-modulated images, the optical power equivalent of the 

noise for both images were calculated. These data show the improvement in the detection limit 

when the modulation technique is used and provides a lower limit for a detectable fluorescence 

signal. 

 

Figure 8: The Calibration Setup 

 

In order to obtain the optical power equivalent of the noise in both the non-modulated 

and 1 MHz modulated signals from the camera, a method for calibrating the camera was 

developed (displayed in figure 8) The setup consisted of using a combination of neutral density 

filters and a 785 nm laser diode to create a variety of different low intensity laser beams with 

powers ranging from 25 to 300 nW. A wavelength of 785 nm was used because it was close to 

the wavelength of the fluorescent signal that we wished to detect and it is a commonly 

manufactured wavelength for inexpensive laser diodes. The laser diode was operated at 2 mW 

and was focused using a 25 mm focal length plano-convex lens. The beam then passed through 

a combination of neutral density filters positioned at approximately 10 degrees to the normal 

of the incident beam.  The low intensity beam that emerged from the filters was approximately 
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1 cm in diameter when arriving at the camera. The beams ranged in power from 25 to 300 nW 

depending on the neutral density filters chosen. These powers were measured using a power 

meter consisting of a photodiode and a decade amplifier. This power range was chosen in order 

to ensure that the beam was not so intense that the pixels of the camera were saturated but 

not so low that the beam was hard to distinguish from the noise background that was acquired 

when the laser beam was blocked. The camera’s built-in LEDs were disabled electronically and a 

band-pass filter (810-830 nm) that was installed by the company that manufactures the camera 

was removed so the 785 nm light could be detected. Even though the built-in LEDs were 

disabled, the fans attached to them were provided power in order to avoid thermal 

fluctuations. This resulted in a relatively consistent (± 10%) signal after one hour of operation 

which is when all calibration measurements were taken. All data were collected while the 

camera was in an optically shielded box in order to ensure the signal acquired was not 

contaminated by ambient light in the lab. A manual shutter was used to block the beam to 

provide a background signal. 
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Figure 9: Graph of Calibration. The x-axis is the power of the filtered laser beam the 

camera was exposed to.  The y-axis is the number of counts that the camera acquired when 

exposed to these beams minus the number of counts the camera acquired when the beam 

was blocked. The error bars represent an estimate of the first standard deviation of the 

uncertainty in each of the measurements. The black line is a linear least squares fit of the 

data which has an R squared value of 0.9771.  The red line labeled “Noise at 1 MHz” 

corresponds to the total number of counts achieved in 50 ms at 1 MHz. 

 

 The results of the calibration are displayed in figure 9. In this calibration, each data point 

corresponds to a different optical power laser beam. Each measurement has an uncertainty 

from the power meter’s measurement and the measurement of the number of counts 
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corresponding to the laser beam. One standard deviation estimates of these uncertainties are 

displayed in figure 10 as the error bars. The slope of the linear least squares fit of these data 

was used to obtain the number of counts per unit of light intensity. By inverting this quantity 

and multiplying by the number of counts achieved when the camera was optically shield, the 

optical power equivalent of the noise was acquired. For the 1 MHz modulated image the 

number of counts achieved was 1.7 ± 0.1 million (which is displayed as the red line in figure 9) 

and for the non-modulated image the number of counts was 800 ± 40 million (which is off the 

graph in figure 9).  The optical power equivalents of the noise were then divided by the number 

of pixels (40k) to acquire the optical power equivalent of the noise per pixel. This measurement 

was done for both the signal acquired with a 1 MHz modulation and for the non-modulated 

signal to provide a comparison. The optical power equivalent per pixel was found to be 1.2 ± 

0.1 nW for the non-modulated image and 2.6 ± 0.3 pW for the 1 MHz modulated image for a 50 

ms integration time. This implies that the 1 MHz modulation technique has resulted in an over 

400-fold improvement in the detection limit when compared to the non-modulated image and 

that for a signal to noise ratio of 1:1, the fluorescence signal must be 2.6 pW per pixel.  The next 

chapter discusses how this 400-fold improvement was applied to imaging of fluorescently 

labeled mouse tumors. 
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V. Fluorescence Imaging 

 

 Figure 10: Fluorescence Imaging Setup  

 

A setup quite different from the calibration setup was used in order to acquire 

fluorescence images. Like the previous setup, the built–in LEDs had to be disabled; however, in  

the fluorescence imaging setup, the electronic modulation signal emitted by the camera that 

previously went to these LEDs had to be electronically manipulated and used as an input to a 

different LED. This MHz modulated electronic signal was first sent to a home built modulator. 

The modulator allowed for control of the DC component of the modulation signal. As different 

wavelength LEDs operate at different voltages, being able to adjust this voltage was paramount 

for optimizing the signal for the ideal LED for exciting fluorescence. The AC signal should 

similarly need to be optimized; however, for the LED used the AC component of the signal at 1 
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MHz was so close to the optimal value that the slight improvement that could potentially be 

obtained was not worth pursuing with customized electronics. Using only a DC adjustment of 

10.5 V, the current flow through the LED was measured to be a square wave with a minimum of 

no current and a maximum of 400 mAmps. As the recommended limit by the manufacturer of 

the LED was 600 mAmps, the potential marginal 200 mAmps was not seen as worth pursuing as 

configuring a circuit that could make an AC adjustment at such a high frequency is non-trivial. 

The LED chosen for fluorescence imaging was a 1 W optical power 740 nm centered LED 

with a half-width of 30 nm. This LED was chosen because of its high optical power (to compete 

with the diffuse laser beams presently in use with current fluorescence imaging setups in the 

operating room6) and central wavelength near the absorption peak for the infrared fluorescent 

dye that was used as a fluorescent label. 

The fluorescent dye used is known as IRDye 800CW. This dye is an organic molecule with 

a molecular weight of slightly over 1000 g/mol. 17 This dye is somewhat unusual among other 

fluorophores because its entire fluorescence pathway is in the near infrared as shown in Figure 

11. 
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Figure 11: Fluorescence Absorption and Emission Spectra for CW 800 dye. The solid blue 

curve is the absorption spectrum. The dashed red curve is the emission spectrum. The 

vertical blue and red lines correspond to the cutoff wavelengths for the filters used in the 

apparatus described in figure 10. This figure is adapted from Reference 18.  

 

 In order to image mouse tumors labelled with a safe concentration of dyes, 6-8 week 

old mice were seeded with tumors. When the tumors grew to 6-8 mm in diameter, the mice 

were injected with 100 μg of IRDye 800CW. After 6 days the mice were sacrificed to maximize 

the concentration of the dye in the tumors. The tumors were then harvested and embedded in 
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paraffin wax.19 This sample was then imaged using the setup shown in Figure 8. Three different 

tumors were imaged. 

 

 

Figure 12: (a) full (200 by 200 pixels) non-modulated image of wax with mouse tumor. (b) 

Zoomed in (100 by 100 pixels) non-modulated image of the area near the tumor. (c) Image 

b with the 1 MHz modulated image of the tumor overlaid in color. 

 

 When the 1 MHz modulation technique was used to image mouse tumors labeled with 

fluorescent dye, the images in figure 12 were obtained. Figure 12 a and b show the non-

modulated image. In these images only the paraffin wax the tumor is embedded in can be seen.  

If one looks closely at figure 12b, perhaps a faint hue of part of the tumor can be seen. 

However, if the 1 MHz image is examined (the color in figure 12c) the whole tumor can be 

clearly identified in the wax. Thus the tumor is almost entirely outside the detection limit of the 

non-modulated image, but well within the detection limit of the 1 MHz modulated image. 
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Therefore, this modulation technique has allowed for this camera to image tumors labeled with 

a physiologically safe amount of dye using only an LED as the light source.  

 

VI. Conclusion 

Imaging plays a pivotal role in treating cancer.  Surgeons need to be able to identify 

tumors in order to remove them. Often smaller tumors cannot be identified by the human eye 

alone. The use of fluorescent dye labels and fluorescence imaging to identify these tumors is a 

new but promising technique for pushing the detection limit to smaller tumors. Furthermore, 

the use of infrared fluorescent dyes allows for imaging tumors embedded into the tissue. 

Because only a small quantity of dye can be injected into the patient safely, having an imaging 

device that is sensitive to the fluorescent signal of these dyes is paramount. One class of 

cameras originally developed for motion sensitive gaming applications that could provide this 

sensitive level of fluorescence imaging are time of flight cameras. Because these cameras are 

able to detect signals modulated at frequencies as high as 20 MHz using lock-in detection, they 

show great promise for eliminating lower frequency noise from a fluorescence image.   

I have shown that by modulating at 1 MHz, the level of noise in the image can be 

reduced by more than 400-fold when compared to the non-modulated image when the camera 

is optically shielded. Subsequent studies20 on this camera have shown that this more than 400-

fold reduction is not dependent on modulating at MHz level frequencies as my original 

hypothesis indicated. Even at frequencies as low as 20 Hz, a similar level of noise reduction was 
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obtained. This implies shot noise dominates over 1/f noise at frequencies greater than 20 Hz in 

an optically shielded environment. Consequently the MHz level modulation is not necessary to 

lower the level of noise when the camera is optically shielded. However, when the camera is 

exposed to ambient light (light not being used to excite or being emitted by fluorescence), the 

detection limit is improved substantially by modulating at frequencies much higher than 20 Hz. 

The advantage over the non-modulated image can be seen in figure 12 as these images were 

taken in ambient light. Figure 5 supports that ambient light has components at frequencies 

above 20 Hz.  Therefore, the MHz level modulation is useful for noise reduction when in the 

presence of ambient light, but not useful when the camera is optically shielded as a 20 Hz 

modulation results in the same level of noise. Since the proposed application is an endoscopic 

camera, this feature could prove useful as ambient light sources are likely to be present in the 

operating room.  
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Appendix 

Derivation of Lock-in detection noise response for a square wave modulation. 

If we let τ be the modulation period and the noise function be an arbitrary function of omega 

where 






   deNtN ti)()(

 

Then net noise detected over N cycles will be the difference between the integral over the first 

half of the modulation period and the integral over the second half of the modulation period. 

 

By factoring out a phase shift term from the second integral with respect to t, both integrals 

with respect to t can be combined. 

 

By integrating with respect to t 

 

This is algebraically equivalent to 
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The sum at the end of the integrand is a geometric series allowing for the expression to be 

written as 

 

This is algebraically equivalent to  
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