
Lawrence University
Lux

Lawrence University Honors Projects

5-31-2012

Discovery of a Novel Antibiotic from a Bacillus
Bacterium Cultivated from its Natural Environment
Patrick J. McMonagle
Lawrence University, pjmcmon@gmail.com

Follow this and additional works at: https://lux.lawrence.edu/luhp

Part of the Bacteriology Commons, and the Pathogenic Microbiology Commons
© Copyright is owned by the author of this document.

This Honors Project is brought to you for free and open access by Lux. It has been accepted for inclusion in Lawrence University Honors Projects by an
authorized administrator of Lux. For more information, please contact colette.brautigam@lawrence.edu.

Recommended Citation
McMonagle, Patrick J., "Discovery of a Novel Antibiotic from a Bacillus Bacterium Cultivated from its Natural Environment" (2012).
Lawrence University Honors Projects. 20.
https://lux.lawrence.edu/luhp/20

https://lux.lawrence.edu?utm_source=lux.lawrence.edu%2Fluhp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lux.lawrence.edu/luhp?utm_source=lux.lawrence.edu%2Fluhp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lux.lawrence.edu/luhp?utm_source=lux.lawrence.edu%2Fluhp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/49?utm_source=lux.lawrence.edu%2Fluhp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/52?utm_source=lux.lawrence.edu%2Fluhp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lux.lawrence.edu/luhp/20?utm_source=lux.lawrence.edu%2Fluhp%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:colette.brautigam@lawrence.edu


Discovery	  of	  a	  Novel	  Antibiotic	  

	   1	  

 

 

 

 

 

Discovery of a Novel Antibiotic from a Bacillus Bacterium Cultivated from its Natural 

Environment 

 

 

 

 

 

Patrick J McMonagle 

Faculty Advisor: Ron Peck 

Department of Biology 

Lawrence University, Appleton, Wisconsin 

 

 



Discovery	  of	  a	  Novel	  Antibiotic	  

	   2	  

 

I hereby reaffirm the Lawrence University Honor Code 

 

 

 

 

 

P. McMonagle 

 

 



Discovery	  of	  a	  Novel	  Antibiotic	  

	   3	  

Table of Contents 
Abstract ................................................................................................................................................... 4	  
Acknowledgements ............................................................................................................................. 5	  
Introduction........................................................................................................................................... 6	  
Defining	  Antibiotics........................................................................................................................................6	  
The	  Reason	  to	  Continue	  Searching	  for	  New	  Antibiotics.....................................................................6	  
Antibiotics:	  A	  History .....................................................................................................................................8	  
Antibiotic	  Classes	  and	  their	  Mechanisms	  of	  Action .......................................................................... 11	  
Recent	  Approaches	  to	  Antibiotic	  Discovery........................................................................................ 17	  
My	  Approach .................................................................................................................................................. 20	  
Overview ......................................................................................................................................................... 22	  

Methods.................................................................................................................................................24	  
Obtaining	  environmental	  isolates	  of	  microbes.................................................................................. 24	  
Paper	  Disk	  Assay .......................................................................................................................................... 26	  
Pure	  Culture ................................................................................................................................................... 27	  
Colony	  Morphology...................................................................................................................................... 27	  
Storage	  and	  Freezer	  Stock......................................................................................................................... 28	  
DNA	  Extraction	  and	  Sequence	  Analysis ................................................................................................ 28	  
Gel	  Electrophoresis	  and	  Photography................................................................................................... 29	  
DNA	  Analysis .................................................................................................................................................. 30	  
Antibiotic	  Extraction	  Procedures	  –	  Trial	  1 .......................................................................................... 30	  
Re-activation	  of	  Antibiotic	  Production ................................................................................................. 31	  
Antibiotic	  Extraction	  Procedures	  –	  Trial	  2 .......................................................................................... 31	  
Extraction	  of	  Antibiotic	  Agent	  for	  HPLC ............................................................................................... 32	  
High	  Performance	  Liquid	  Chromatography	  (HPLC)......................................................................... 33	  

Results ...................................................................................................................................................34	  
Sampling	  for	  Antibiotic	  Activity,	  identification,	  and	  16S	  rDNA	  Analysis .................................. 34	  
Initial	  Extraction........................................................................................................................................... 36	  
Extraction	  and	  Analysis	  of	  Antibiotic	  Compound.............................................................................. 37	  
Extraction	  and	  Analysis.............................................................................................................................. 40	  

Discussion.............................................................................................................................................47	  
Initial	  Sampling............................................................................................................................................. 47	  
Initial	  Extraction........................................................................................................................................... 47	  
Promoting	  production	  of	  the	  antibiotic	  agent.................................................................................... 48	  
Trials	  of	  extraction ...................................................................................................................................... 49	  
HPLC.................................................................................................................................................................. 52	  
Conclusion ...................................................................................................................................................... 52	  
Further	  Directions ....................................................................................................................................... 53	  

Works	  Cited..........................................................................................................................................54	  
	  
 



Discovery	  of	  a	  Novel	  Antibiotic	  

	   4	  

Abstract 
The current primary method of treating bacterial infections is using antibiotics. However, 

this continued treatment of these illnesses caused by pathogenic bacteria is causing the rate of 

evolution of these disease-inducing organisms to increase. Antibiotic resistance is forcing 

scientists to search for new forms of antibiotics to compete with these new ‘super bugs.’ I 

pursued the search for novel antibiotics through their natural source – antibiotic-producing 

microorganisms. As microbes have a direct advantage when producing antibiotics, it is my 

thought that they will be the best resource to discovering new and effective antibiotics. I 

conducted an exploratory search for antibiotic-producing microbes by sampling for microbes in 

the environment of the Lawrence University Campus. Once samples were cultured, I tested for 

the production of an antibiotic agent, and characterized the organisms. I then used a series of 

methods to extract, isolate, and identify the antibiotic agent. I extracted and identified an 

antibiotic agent from a microorganism in the Bacillus genus.  
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Introduction 

Defining Antibiotics 
 An antibiotic is any class of organic molecule that inhibits or kills microbes by specific 

interactions with bacterial targets (Davies 2010). Naturally-produced antibiotics are typically 

extracted from microorganisms but can also be produced by plants and mushrooms. Antibiotics 

may also be synthesized by altering the chemical structure of previously discovered antibiotic 

agents. Useful antibiotics are selectively toxic. Selective toxicity is the ability of an antibiotic 

agent to be toxic for a desired pathogen, without being toxic to host cells. Penicillin is an 

example of a selectively toxic antibiotic as it targets the cell wall of a pathogen. Since human 

cells do not have cell walls, it is selectively toxic against bacteria, but is harmless to human cells.   

The Reason to Continue Searching for New Antibiotics 
 We continue to treat illnesses caused by pathogenic bacteria with antibiotics, causing the 

emergence of antibiotic-resistant strains to increase.  As the antibiotics are killing off the 

antibiotic-sensitive variants, those that survive the assault are continuing to infect humans.  

There are very limited treatment options against these antibiotic-resistant variants.  Antibiotic 

resistance is forcing scientists to search for new forms of antibiotics to compete with these new 

“superbugs.” The term “superbugs” is defined as microbes with an enhanced mortality caused by 

multiple mutations giving the microbe a high level of resistance to antibiotic classes (Davies 

2010). Fortunately, just as pathogenic bacteria are evolving increased resistance, other microbes 

continue to develop their own novel antibiotics in an on-going arms race.  These antibiotic-

producing bacteria are developing new killing agents to defend themselves and their environment 

from encroaching organisms.  Thus, it is beneficial for microbiologists to search for these 

antibiotic-producing bacteria in hopes of finding new ways of killing pathogens.    
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Microorganisms create antibiotics for their own survival.  By secreting a substance that 

kills organisms around them, it protects the organism from other microbes that may try to cause 

them harm.  Releasing this substance into their environment also decreases the need to fight for 

space and resources within the environment.  It protects the microbe from being out-competed in 

their niche.  As a result, it is evolutionarily advantageous for the microbes to produce these 

agents in order to better survive and reproduce.  Just as it is advantageous to create these 

antibiotic agents, it is also advantageous to gain resistance to these substances. Resistance to 

antibiotics occurs when a microbe with a specific characteristic that protects it from the 

antibiotic’s effects survives in the presence of the antibiotic and reproduces.   

Most antibiotic resistance develops through lateral gene transfer (Clardy 2009).  Lateral 

gene transfer is the transfer of genetic material across species barriers.  Lateral gene transfer 

allows individual genes, organelles, or fragments of genomes to move horizontally from one 

lineage to another (Freeman and Herron 2007).  Lateral gene transfer typically occurs using 

plasmids; small loops of DNA that can self-replicate (Sadaca et al. 2011).  The rate of this 

phenomenon increases under strong selective conditions of antibiotic medication in humans.  

Consequently, the antibiotic-resistant microbes will be the only ones to survive in the 

environment to continue to spread and exhibit pathogenic activities.  Infrequent or improper use 

of antibiotics exacerbates the selection for resistant strains of bacteria, which are then harder to 

treat effectively.  As a result, informed physicians have become more careful in prescribing 

antibiotics.  

Currently, antibiotics are the main tools known to fight against bacterial infections.  The 

World Health Organization (WHO) reported that about 440,000 new cases of multidrug-resistant 

tuberculosis (MDR-TB) emerge annually, causing at least 150,000 deaths.  This creates a dire 
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need to decide how to remedy this phenomenon.  While over 8000 antibiotics are known to exist 

and hundreds more are discovered yearly, few prove to be commercially useful (Al-Ajlani, MM 

2006).  Just as with past scientists, it is the duty of modern scientists to continue to 

experimentally derive new and innovative ways to discover novel antibiotics and methods to 

treat illnesses.  It is thus my goal to assist in the search for novel antibiotics through exploratory 

research. 

Antibiotics: A History 
 Selman Waksman first coined the term ‘antibiotic’ in 1941 and defined it as any small 

molecule made by a microbe that antagonizes the growth of other microbes (Clardy 2009).  

Presently, ‘antibiotic’ is defined as, “a chemical or protein, which kills bacteria by disrupting a 

particular biochemical process” (Sadaca 2011).  The first to isolate an antibiotic was Alexander 

Fleming in September of 1928 when a mold contaminated a plate containing Staphylococcus 

colonies. A large colony of a contaminating mold caused the Staphylococcus colonies to become 

transparent and the colonies were determined to be undergoing lysis (Fleming 1929).  This 

phenomenon spurred a curiosity to discover what was creating this inhibitory area.  In 1929, 

Fleming published a paper titled, “On the Antibacterial Action of Cultures of a Penicillium, with 

Special Reference to their use in the Isolation of B. influenzae,” in which he discusses his 

observation of the “bactericidal” and his experimentation to determine the characteristics of the 

antibiotic agent and its spectrum of effectiveness across the domain.   

Penicillin was not immediately recognized to have clinical potential as Sulfa Drugs were 

widely used during that time.  However, sulfa drugs were limited to treating gram-positive 

bacteria such as Streptococcus [Davies 2010].  Most other bacterial infections were 

uncontrollable.  Gerhard Domagk first discovered sulfa drugs in the 1930s, creating the first 

synthetic antibiotic. The first synthetic antibiotic was named Prontosil.  They resulted from a 
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screening of chemicals for activity against streptococcal infections in experimental animals.  

Sulfa drugs are a series of growth factor analogs, which inhibit the growth of bacteria.  The most 

common sulfa drug is Sulfanilamide, an analogue of p-aminobenzoic acid.  P-aminobenzoic acid 

is a part of the vitamin, folic acid – a nucleic acid precursor.  Sulfanilamide is selectively toxic 

by blocking the synthesis of folic acid; thus inhibiting the synthesis of nucleic acid. Daniel Bovet 

of the Pasteur Institute later identified the active ingredient, Sulfanilamide. 

 Resistance occurs when the organism develops the ability to take up folic acid from its 

environment (Davies 2010). Therefore, while sulfa drugs were highly used, there was still a need 

for a more successful antibiotic. In 1929, Howard Florey and his colleagues developed a process 

for producing penicillin on a large scale. Penicillin was dramatically effective in controlling 

staphylococcal and pneumococcal infections in military personnel.  It was also more effective at 

treating staphylococcal infections than sulfa drugs (Sykes 2001).   

 In 1945, penicillin became available for general use.  Pharmaceutical companies began to 

look for, and develop, other antibiotics; leading to drugs that revolutionized the treatment of 

infectious diseases.  These major classes of antibiotics include the tetracyclines, macrolides, 

aminoglycosides, cephalosporins, chloramphenicol, glycopeptides, and rifamycins (Madigan et 

al. 2012).  

From the 1960s to the 1970s, antibiotic-resistant bacteria began to emerge in the hospital 

environment, creating the urgency and drive to search for new antibiotic compounds.  “Most of 

the low-hanging antibacterial natural products fruit had already been picked from microbial 

fermentations” (Fernandes 2006).  After the late 1960s, screening methods were only discovering 

known antibiotics.  No longer able to find new antibacterial agents led to chemists developing 

semi-synthetic antibiotics.  “Overall, these new semi-synthetic antibiotics were more potent, less 
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susceptible to inactivating enzymes that cause resistance, or simply tighter binders to their 

bacterial targets” (Fernandes 2006).  By improving previously established, naturally-occurring 

antibiotics, selectivity and low toxicity were already presented within the “antibiotic backbone.”  

Many of these semi-synthetic antibiotics were immediately successful and continue to be used 

highly in the medical field.  

In the 1980s, two decades worth of developing analogues led to a dried-up well. There 

are a limited number of changes that can be made to the chemical structure of an antibiotic in 

order to counter resistance while still maintaining its effectiveness. Thus, once chemists had 

created all of the possible analogues from the known antibiotics, no new possibilities were left.  

Pharmaceutical companies were finding it impossible to find any new leads from old natural 

products (Devasahayam et al 2010). Concurrently, bacteria were continuing to develop resistance 

to antibiotics - as the antibiotics became an evolutionary selective pressure (Fernandes 2006). 

Moreover, no new antibiotic classes were being found and compounds that were discovered were 

so complex that they were difficult to synthesize and thus could not be modified.  

A brief moment of relief came from the discovery of the fluoroquinolone class, which 

was developed by modifying nalidixic acid (Fernandes 2006).  This discovery led to new 

quinolone programs in almost every pharmaceutical company (Fernandes 2006). Just as before, 

the boom of the fluoroquinolones and the analogues produced from them declined after two 

decades. Companies began to redirect their efforts to screening small-molecule libraries, a source 

already found to have successful results (Fernandes 2006). While this is the same method 

Domagk used when he discovered Prontosil, the spread of screening increased as well as the 

libraries being screened. In addition, the knowledge of what to screen and what to look for 

became more defined. 
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Recently, these libraries have not produced a significant amount of new antibiotic agents. 

Some companies have reverted back to analyzing old antibiotic compounds that did not 

originally meet optimal potency levels or target levels when they were first discovered. It is 

thought that analogues from known compounds will be less likely to fail because of toxicity than 

completely new classes of compounds (Fernandes 2006).  

Antibiotic Classes and their Mechanisms of Action 
In order to fully grasp the need for this research, it is necessary to first understand the 

different antibiotic classes, what they target in pathogenic organisms, and how resistance may 

occur. As there are so many classes of antibiotics and mechanisms of action, the search for new 

antibiotics could lead to a wide range of results. It is thus important to know what novel 

antibiotics might be similarly related to and how they will interact with pathogens in order to 

fully understand a newly discovered antibiotic agent.   

 Many antibiotics are derived from microorganisms.  It appears that many bacteria and 

fungi produce these antibiotics for the sole purpose of inhibiting or killing other microorganisms.  

We now know thousands of different antibiotics that have been produced, but less than one 

percent of these come to be useful (Al-Ajlani 2009).  The majority of the lack of clinical uses is 

Figure	  1:	  Major	  antimicrobial	  agents	  and	  their	  mechanism	  of	  
action.	  It	  also	  displays	  the	  major	  targets	  exploited	  by	  antibiotics.	  
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because they are not selectively toxic, and thus is severely toxic to hosts. They may also lack the 

ability for host cells to uptake them.  As a result, several antibiotics are artificially modified in 

order to enhance their efficacy and decrease their toxicity.  These antibiotics are classified as 

semi-synthetic. 

There is a wide spectrum of antimicrobial activity due to the targets of the antibiotic. An 

antibiotic target is a part of the pathogenic organism that the antibiotic binds to causing cell death 

or preventing reproduction. Important targets include ribosomes, cell wall, cytoplasmic 

membrane, lipid biosynthesis, and DNA replication and transcription elements [Figure 1].  

Antibacterial agents are classified according to their chemical structure, or their target within the 

bacterial cell.  Each antibiotic affects a very limited and specific group of microorganisms.  

Some agents are so specific that they only affect the growth of microbes within a single genus.  

In fact, some of the most useful antibiotics are directed against unique structural features of 

bacteria.  

Gram staining is a method used to determine the chemical and physical characteristics of 

a bacterial species’ cell wall. Essentially, the stain detects a 

molecule called peptidoglycan, which is the major 

component in the cell wall of gram-positive bacteria. It thus 

divides bacteria into two large groups, gram-positive or 

gram-negative. The effectiveness of antibiotics that target the 

cell wall depends on whether the cell wall is gram-positive or gram-negative. Penicillin for 

example generally affects all gram-positive bacteria but gram-negative bacteria are naturally 

resistant (Madigan et al. 2012). Broad-spectrum antibiotics are typically effective against both 

groups.  They have proven to be very successful for medical use and have a wider use than 

Figure	  2:	  The	  chemical	  structure	  of	  
Cephalosporins.	  Important	  sections	  of	  the	  
structure	  include	  the	  Acyl	  side	  chain	  and	  the	  
essential	  ß-lactam	  ring.	  The	  Dihydrothiazine	  
ring	  classifies	  the	  structure	  as	  a	  Cephalosporin	  
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narrow spectrum antibiotics.  Examples of broad-spectrum antibiotics are ß-lactams and 

tetracyclines, which are described in further detail later in this section.  Limited-spectrum 

antibiotics are effective against fewer pathogens, but are typically advantageous for controlling 

those that fail to respond to other antibiotics.  For example, vancomycin is a narrow-spectrum 

glycopeptide antibiotic that is highly effective against gram-positive bacteria, which are resistant 

to penicillin - commonly from the genera of Staphylococcus, Bacillus, and Clostridium (Kahne et 

al. 2005).   

 Cell wall synthesis is a very common antibiotic target. Cell wall synthesis and its 

synthesis mechanisms are unique to bacteria and therefore inhibitors are likely to be selectively 

toxic. Penicillins, Cephalosporins, and Cephamycins are all ß-lactam antibiotics.  ß-lactam 

antibiotics are one of the most important groups of antibiotics - both historically and medically.  

They account for over half of all antibiotics produced worldwide. ß-lactam antibiotics share a 

structural component called the ß-lactam ring [Figure 2] (Nussbaum 2012).  

An important enzyme required for bacterial cell wall synthesis is transpeptidase. 

Transpeptidase enzymes bind to penicillin or other ß-lactam antibiotics.  When transpeptidases 

bind to penicillin, they cannot catalyze the transpeptidase reaction but cell wall synthesis can be 

continued.  As a result, the newly synthesized bacterial cell wall is no longer cross-linked and 

thus cannot maintain its strength.  The antibiotic-transpeptidase complex also stimulates the 

release of autolysins – enzymes that digest the existing cell wall.  This action results in a 

weakened and self-degrading cell wall.  The osmotic pressure differences between the inside and 

the outside of the cell cause cell lysis (Nussbaum et al. 2012).  
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 Penicillin is active against gram-positive bacteria.  Gram-negative bacteria are 

impermeable to the antibiotic. Chemically modifying the structure can create significant changes 

to the properties.  Many chemically modified, semisynthetic types of penicillin are effective 

against gram-negative bacteria.  Structural differences in the n-acyl group of semisynthetic 

penicillins allow the antibiotic to be transported inside the gram-negative outer membrane in 

order to inhibit cell wall synthesis [Figure 3].  Penicillin is sensitive to ß-lactamase, an enzyme 

produced by a number of penicillin-resistant bacteria.  To counteract this in patients, oxacillin 

and methicillin are two widely used semisynthetic penicillins that are resistant to ß-lactamase 

(Madigan et al. 2012). Vancomycin is another cell wall synthesis inhibitor, but does not bind to 

PBPs.  Instead, it binds directly to the terminal D-alanyl-D-alamine peptide on the peptidoglycan 

precursors; thus blocking transpeptidoglycan synthesis [Figure 3].   

Cephalosporins are a group of clinically important ß-lactam antibiotics; produced by the 

fungus, Cephalosporium sp.  Cephalosporins are a semisynthetic antibiotic with a broader 

spectrum of activity than penicillins.  They are more resistant to enzymes such as ß-lactamase 

that destroy ß-lactam rings because they differ structurally from penicillins.  The structure is the 

ß-lactam ring connected to a 6-member dihydrothiazine ring [Figure 2], instead of a 5-member 

Figure	  3:	  The	  cell	  wall	  structure	  of	  gram-positive	  (left)	  and	  gram-
negative	  (right)	  bacteria.	  Notice	  the	  width	  of	  the	  peptidoglycan	  layer	  
as	  it	  is	  the	  essential	  target	  for	  cell	  wall	  inhibition.	  
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thiazolidine ring.  They maintain the same mechanism of action as penicillins - they bind 

irreversibly to PBPs and prevent the cross-linking of peptidoglycan.   

Quinolones interfere with bacterial DNA gyrase therefore preventing the supercoiling of 

DNA in the bacterial cell.  Since DNA gyrase is found in all bacteria, fluoroquinolones are 

effective for treating both gram-positive and gram-negative bacterial infections (Madigan 2012). 

 Inhibiting transcription, RNA synthesis is another successful target. Rifampin and the 

streptovaricins inhibit RNA synthesis by binding to the B-subunit of RNA polymerase.  These 

antibiotics work specifically against RNA of bacteria, chloroplasts, and mitochondria.  

Actinomycin inhibits RNA synthesis by binding to DNA and blocking RNA elongation.  

Actinomycin binds strongest at guanine-cytosine base pairs by fitting into the major groove in 

the double strand where RNA is synthesized (Madigan 2012).   

 Protein synthesis is an important target for antibiotics as it causes inhibition of cell 

growth by interacting with the ribosome and disrupting translation.  The 

interactions are specific and several involve binding to rRNA.  Several 

antibiotics that inhibit protein synthesis are found to be medically useful.  

However, the mechanism of action is very different for different inhibitors 

of protein synthesis.  For example, puromycin binds to the A site of the 

ribosome [Figure 4].  Growing peptide chains are transferred to the 

puromycin instead of the amino acyl-transfer RNA complex.  The puromycin-peptide complex is 

then released from the ribosome.  Thus halting elongation prematurely.  In contrast, 

chloramphenicol inhibits elongation by blocking formation of the peptide bond (Madigan 2012).   

Tetracyclines are protein synthesis inhibitors, which interfere with 30S ribosome subunit 

function.  Tetracycline is produced by several species of Streptomyces, and has a vast medical 

Figure	  4:	  Diagram	  of	  a	  
Ribosome	  and	  is	  function	  



Discovery	  of	  a	  Novel	  Antibiotic	  

	   16	  

use including veterinarian medicine.  They were some of the first broad-spectrum antibiotics 

capable of inhibiting both gram-positive and gram-negative bacteria.  The active portion of their 

structure consists of a naphthalene ring system.  Substitutions to the basic ring structure occur 

naturally and form new analogues.  Semisynthetic analogues have also been developed.  

Tetracyclines and ß-lactam antibiotics are the two most important groups of antibiotics in the 

medical field (Madigan 2012).   

Aminoglycosides contain amino sugars bonded by glycosidic linkage, which is clinically 

useful against gram-negative bacteria.  They inhibit protein synthesis by targeting the 30S 

subunit of the ribosome.  An example of an aminoglycoside is streptomycin, produced by 

Streptomyces griseus.  Streptomycin was the first effective antibiotic used for the treatment of 

tuberculosis.  Currently a synthetic antibiotic is the regular treatment.  Aminoglycosides, such as 

neomycin, are found in most topical medications. Oral medications of aminoglycosides are rare 

as it can be toxic to several organs including kidneys and nerves.  In addition, resistance 

develops quickly.  Thus, its use is reserved for when other antibiotics fail (Madigan et al. 2012).   

Many antibiotics inhibit ribosomes of organisms from only one phylogenetic domain.  

Chloramphenicol and streptomycin specifically target the ribosomes of bacteria whereas 

cycloheximide only affects the cytoplasmic ribosomes of eukarya. 

Macrolides are broad-spectrum antibiotics, comprised of lactone rings bonded to sugars.   

Variations of both the ring and the sugars lead to a large number of macrolide antibiotics.  

Erythromycin, produced by Streptomyces erythreus, represents twenty percent of the total world 

production and use of antibiotics.  Macrolides target the 50S subunit of bacterial ribosomes, thus 

inhibiting protein synthesis.  Macrolides are typically used in patients who are allergic to 

penicillin or other ß-lactam antibiotic (Nussbaum 2012).   
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Daptomycin is also produced from the Streptomyces genus and has a unique mechanism 

of action.  Its structure is comprised of a cyclic lipopeptide.  It is used mainly to treat gram-

positive infections.  Daptomycin binds specifically to cytoplasmic membranes, forms a pore, and 

induces rapid depolarization of the membrane.  The depolarized cell quickly loses its ability to 

synthesize macromolecules such as nucleic acids and proteins, resulting in cell death.  

Alterations in the cytoplasmic membrane structure accounts for very rare instances of resistance 

(Madigan 2012).   

Platensimycin is a new antibiotic, produced from Streptomyces platensis.  It selectively 

inhibits a bacterial enzyme, which is key to the biosynthesis of fatty acids, thus disrupting 

biosynthesis.  It possesses a broad range of activity against gram-positive bacteria, including 

nearly untreatable infections caused by Methicillin-resistant Staphylococcus aureus (MRSA) and 

vancomycin resistant Enterococci.  It has already been known to be effective in eradicating S. 

aureus in mice and shows no signs of toxicity (Madigan 2012).   

Recent Approaches to Antibiotic Discovery 
 There have been a series of methods that have contributed to discovering and developing 

new antibiotics since the boom of antibiotic discovery.  After resistance became a serious 

problem, companies began to search for new methods to discovering or creating new antibiotics.   

 Metagenomics became an important method in the search, beginning in the 1990s.  

Metagenomics is the study of genetic material recovered directly from environmental samples.  

The reasoning behind this approach was based on the notion that only a small sample of 

microorganisms in any environmental sample can be cultured by standard techniques (Peláez 

2006).  In other words, some microorganisms worth studying further, will either be out-competed 

by other microorganisms that have been sampled and studied before, or may not survive well in 

the synthetic environment created in a laboratory.  As a result, a vast genetic pool is left 
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unexplored by these conventional methods.  It was thought that environmental DNA might 

possess genes involved in secondary metabolite biosynthesis (Peláez 2006). Metagenomics has 

yet to offer expected leads that would be useful towards antibiotic development. One theory on 

this unfortunate occurrence is that there currently is not a good method for translating the “early 

proof-of-concept experiments into a technology suitable for drug discovery at the industrial 

scale” (Peláez 2006).  Consequently, most of the companies that began these studies have since 

abandoned this strategy or have chosen a new route (Peláez 2006).  As a result, it is unlikely that 

new useful antibiotics will come from this strategy.  

 Scientists are discovering useful antimicrobial peptides as a new group of natural 

products.  These peptides vary in mass, below 25-30 kDa. They are composed mainly of cationic 

and hydrophobic amino acids (Peláez 2006).  The structure is believed to be the cause of their 

ability to disrupt cell wall membranes.  The peptides carry a positive charge, making them 

selective against bacterial cell membranes.  It is still unclear how successful these peptides will 

be for therapeutic purposes.  

 Microorganisms regulate their metabolic processes to adapt to different environments so 

varying growth conditions may cause them to produce substantially different, yet potentially 

useful, compounds.  Unfortunately, using a high number of conditions forces researchers to limit 

study to only a few strains due to feasibility.  Concurrently, maximizing the number of strains is 

also a significant parameter as it increases the evolutionarily variability of the genes they 

possess.  When sampling from the environment it also becomes difficult to decide which 

conditions should be given to the organism to optimize production of a potential antibiotic 

without previous knowledge of the organism (Peláez 2006).  In addition, setting growth 

conditions at random will most likely result in redundancy of metabolites screened.  
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 One recent approach to ease the difficulties of maximizing metabolic potential is to grow 

the microbes in a microtiter plate [Figure 5] which allows researchers to 

handle multiple strains at the same time, making it easier to experiment 

with multiple variables (Peláez 2006).  This system has been piloted using 

Streptomyces with success (Peláez 2006).  

 Another recent approach is high-throughput screening (HTS).  

HTS studies have been initiated in the hopes of discovering bacterial proteins as potential targets 

for antibiotics. These targets have then been cloned to produce proteins for HTS in order to find 

inhibitors from previously established combinatorial libraries. Some promising enzyme 

inhibitors have been found through this method of screening (Fernandes 2006).  Unfortunately 

these leads have yet to produce effective antibacterial agents.  Thus, it is clear that a good 

enzyme inhibitor does not necessarily guarantee it to be a good antibacterial agent.  In addition, 

the complexity and diversity of the molecules established from HTS do not carry the same 

degree of tight binding and multi-site inhibition, as do naturally occurring antibiotics (Peláez 

2006).  

 Combinatorial biology is a growing field in small companies and labs, focusing on 

cloning and expressing genes, or clusters of genes, from antibiotic-producing bacteria to make 

“unnatural antibiotics.”  The bacteria being used to pilot these experiments are antibiotic-

producing Streptomycetes.  This approach to accelerate evolution has produced several new 

chemical entities.  However, scientists face the same problem of, “how to obtain significant 

improvements in activity while maintaining safety [or preventing toxicity] and scale-up 

production” (Fernandes 2006).  

 Scientists have also begun to design new antibiotics based on natural host-defense 

Figure	  5:	  An	  example	  of	  
a	  microtiter	  plate	  
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peptides isolated from high-level eukaryotes such as frog skin and human immune system cells.  

It is thought that this approach may produce antibiotics for superficial infections, but “systemic 

administration of membrane active agents” will not be as widely used except for multidrug-

resistant infections because of the high chance for toxicity (Fernandes 2006).  

 Interestingly, theories and methods are developing around genetically modifying bacterial 

strains to either over-express or under-express essential genes, thus rendering them resistant or 

hypersensitive to antibiotics acting on the specific targets when compared to a wild-type strain.   

The modified strains can be used in experiments with wild-type strains to enable the detection of 

antibiotics acting specifically on a desired target (Peláez 2006).  Another strategy would be to 

use empiric screening to look for activity against a specific target microbe, a common method 

perform in earlier antibiotic research (Peláez 2006). Thus, only the extracts acting on the desired 

targets would be prioritized in further studies.   

My Approach 
In my project, I pursued the search of novel antibiotics from natural sources.  As 

microbes have a direct advantage in producing antibiotics, it was my thought that they will be the 

best resource for discovering new and effective antibiotics. Thus, it was my hypothesis that a 

novel antibiotic could be discovered and isolated from a microbe found in the environment. 

Much like initial discoverers of antibiotics, I sampled the surrounding environment for 

antibiotic producing microbes.  I then introduced the sample to growth media in order to 

encourage the growth of a microbe that out-competes the others.  Hopefully, one of the reasons 

for their advantage in the media is their ability to produce antibiotics.  Once grown, I tested each 

experimental organism against a gram-negative and a gram-positive model microorganism.  If 

the microbe is able to create a zone of inhibition against one or both microbes, preventing the 

intrusion of the model organism, it can be assumed that the experimental microbe is producing 
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an antibiotic agent.  Once I identified antibiotic-producing microbes, I isolated them and created 

pure cultures. I then isolated and extracted the antibiotic from the microbe and its environment.  

The ultimate goal was to identify the antibiotic agent’s chemical structure.   

 Searching for novel antibiotics using previous methods is again a promising strategy 

because of our advances in technology and our increased understanding of the microbial world. 

Screening and isolation methods have greatly improved due to modern purification and 

analytical characterization tools.  We now have the technology to rapidly identify known 

antibiotics with modern day chromatography and mass spectrometry (Fernandes 2006).  Now 

mere traces of these “novel structures” can be identified and characterized.  Thus, products can 

be isolated and analyzed fairly quickly and without the difficulties of attempting to mass-produce 

an antibiotic that may not even prove useful. In addition, new research, including and 

metagenomics, has shown that the microbial diversity is much greater than previously thought. 

This creates an opportunity to re-explore environments for potentially new antibiotic producers 

that were previously not known to exist. 

 With all of the trial and error of attempting new approaches to discovering new antibiotic 

agents, we know that nature has a history of successfully producing new structures and will 

continue on this trend.  Microbes have coexisted with other microbes and fungi in the 

environment and it is thus thought four billion years of natural selection has likely resulted in a 

large diversity of antimicrobial compounds.  Recently, new chemical leads for novel antibacterial 

agents have resulted from old, and previously underdeveloped antibiotics (Fernandes 2006).  For 

example, hygromycin and pleuromutilin are two old antibiotics that have been used for several 

years in veterinary medicine have recently been modified to create new classes of antibiotics 

(Fernandes 2006).  In addition, the protein crystal structure of these old antibiotics bound to the 
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bacterial targets of interest is being studied to learn new binding sites for potential analogues.  

“The complexity of the molecules and their multifaceted interactive sites make them more useful 

as starting points for designing new antibacterial agents” (Fernandes 2006). 

 Still more scientists continue the argument supporting this with other ideas including the 

following: the unparalleled structural diversity that can be found in nature, the fact that natural 

antibiotics have apparently been shaped by evolution to make them effective in killing 

microorganisms, and the suggestions that the field still unexplored is huge. The vast microbial 

diversity supports this argument, carrying the potential for researchers to trigger the expression 

of silent pathways by manipulating the conditions of cultivation (Peláez 2006).  Moreover, the 

number of molecular targets still to be exploited for antibiotic therapy is unknown. This 

structural diversity has historically been crucial to the progress that has already been made in the 

discovery, research, and implementation of these antibiotic agents.  

Overview 
 I conducted an exploratory search for antibiotic-producing microbes by sampling for 

microbes in the environment of the Lawrence University Campus.  I then tested the samples to 

determine if any microbes secreted an antibacterial agent into their environment, which inhibited 

the growth of two known model microbes that I introduced to the synthetic environment.  If the 

experimental microbe is able to create a “barrier” between itself and the competing microbe, then 

I can assume that the experimental microbe is producing and releasing an agent into the 

environment that is killing, or inhibiting the growth of, the other organism.  Once the antibiotic-

producing microbes were discovered, they were grown in a pure culture, identified, and 

characterized based upon their colony morphology and DNA sequence. 

I then attempted several different methods to isolate and extract the antibiotic from the 

microbe and its environment. I discovered a successful method for extracting and isolating a 
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novel antibiotic from an experimental isolate. I was able to identify, extract, and isolate an 

antibiotic agent. The promising results from discovering and extracting the antibiotic agent could 

lead to further exploration, including discovering the agent’s chemical makeup and determining 

its molecular target in bacteria.  
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Methods 

Obtaining environmental isolates of microbes 
Microbial isolates were obtained by swabbing surfaces with sterile cotton swabs. Thirty 

samples were collected across the Lawrence University Campus [Table 1].  Two samples were 

taken from each site using a sterile cotton swab, and stored in a sterile test tube for each sample.  

Table 1: Recorded locations of each site where sampling occurred along with descriptions of the location when necessary. 
Temperature was also recorded.  

Sampling 1 (9/19/11) 
Name Location Comments Temp (°C) 
A, A’ Compost pile of SLUG Dirt, decomposing vegetables 63 °C 
B, B’ Drain pipe of WCC Murky water, dirty 63 °C 
C, C’ Fox River water  Shallow was clear and deep was murky 18 °C 
D, D’ Tree stump on River Walk  63 °C 
E, E’ Mushroom on stump Large, white, flat 63 °C 
F, F’ Iron pin from railroad bridge Rusty 63 °C 
G, G’ Fallen tree in river Base of tree 63 °C 
H, H’ Mushroom on River Walk Green/gray and spirally 63 °C 
I, I’ Ashtray outside WCC Muddy 63 °C 
J, J’ Trash dumpster outside Phi Kappa Tau  63 °C 
K, K’ Grill ashes outside Russell Sage Hall  63 °C 
L, L’ Keyboard from second floor of WCC  63 °C 
M, M’ WCC rock sign  63 °C 
N, N’ Light post Loaded with cob webs and dead river flies 63 °C 
O, O’ Door handle of Steitz Hall (3rd floor)  63 °C 
Sampling 2 (10/3/11) 
AM, AY Compost pile of SLUG Dirt, decomposing vegetables 75 °C 
BM, BY Drain pipe of WCC Dusty 75 °C 
CM, CY Fox River water Cloudy Water 16 °C 
DM, DY Tree stump on River Walk  75 °C 
EM, EY Mushroom on Stump Large, white, flat 75 °C 
FM, FY Iron pin from railroad bridge Rusty 75 °C 
GM, GY Fallen tree in river  Base of tree 75 °C 
HM, HY Mushroom on River Walk Green/gray and spirally 75 °C 
IM, IY Ashtray outside WCC  75 °C 
JM, JY Trash dumpster outside Phi Kappa Tau  75 °C 
KM, KY Grill ashes (sage)  75 °C 
LM, LY Keyboard from second floor of WCC  75 °C 
MM, MY WCC rock sign   75 °C 
NM, NY Light post Cob webs and dead river flies 75 °C 
OM, OY Door handle of Steitz Hall (3rd floor)  75 °C 
PL, PM, PY River Bed soil  17 °C 
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Unless otherwise noted, all items were sterilized using an autoclave. In the lab, each swab 

was broken in half, leaving the cotton end in its original test tube. Lysogeny Broth (LB) (10 mL) 

was added to each sample’s test tube. LB is a nutrient-rich medium, which is comprised of 

tryptone, yeast extract, and NaCl – essential materials for bacterial growth. Therefore, the most 

efficient bacteria for this laboratory environment will be able to out compete other organisms and 

grow in the media, potentially by producing a chemical that inhibits the growth of other 

microbes. All samples were initially tested in LB to assure the sample sites contained microbes 

as it contains all essential materials a microbe will need to survive and reproduce.  

After inoculation, the test tubes were placed in an incubator at 37˚C shaking at 250 rpm, 

and left to grow overnight. 37˚C is an optimal growth temperature for many bacteria. Shaking 

the samples during incubation allows a continual supply of oxygen to be added to the media, 

enabling the bacteria to grow rapidly.  

One week later, a second sampling was performed from the same locations. As before, 

two samples were taken from each site. Two new media were added to these samples, in the 

hopes of growing different organisms than those originally cultivated, but found in the same 

locations. In this sampling, M9 and YPD media were used. M9 is a defined media, lacking amino 

acids necessary for cell growth. As a result, organisms unable to produce their own amino acids 

will be unable to grow. YPD is an optimal growth media for fungi. It has been previously 

observed that some fungi produce antibiotics, thus it is beneficial to attempt to grow such 

organisms.   
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Paper Disk Assay  
Once the cultures were grown, the experimental bacteria were tested against two different 

model bacteria, Staphylococcus aureus and Escherichia coli. Lab strains of these organisms were 

chosen because each possesses different characteristics such as cell wall structure: S. aureus is 

gram-positive and E. coli is gram-negative. In 

addition, these lab strains are related to 

pathogenic organisms. Although they are not 

pathogenic themselves, they possess similar 

characteristics as their pathogenic relatives. The 

experimental bacteria were given identifying 

labels based on their order of sampling and their 

culture media. The bacteria were tested using a 

paper disk assay. This assay involved creating a lawn 

of the model organism across an LB agar plate. Two 

sets of plates were created, one for S. aureus and the 

other for E. coli for each sample. Immediately after 

inoculating the agar with the model organism, a filter 

paper disk was dipped into the experimental bacteria 

and applied directly on top of the freshly created 

lawn. Four different experimental bacteria were 

applied to each plate. The plates were incubated at 37˚C for approximately 24 hours. Once the 

bacteria were allowed to grow, zones of inhibition were measured in millimeters (mm). Zone of 

Figure	  7:	  :	  Diagram	  of	  how	  to	  identify	  a	  zone	  of	  inhibition	  

Figure	  6:	  An	  example	  of	  an	  actual	  zone	  of	  
inhibition.	  Zones	  can	  be	  seen	  on	  B	  and	  C.	  	  
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inhibition is the location between the experimental bacteria and growth of the model bacteria 

[Figure 6]. If the model organism was placed across the 

entire plate, then growth should have been observed in 

these regions. The observation of this zone implies that 

there is an agent in that region that is killing off the 

model organism. This agent is assumed to have antibiotic 

properties. Observed antibiotic producing bacteria were 

measured and recorded. 

Pure Culture 
After measuring the zones of inhibition, those experimental bacteria in which a zone was 

observed were applied from the test plate and streaked onto a new LB agar plate in order to 

create a pure culture [Figure 8]. The plates were placed in an incubator set to 37˚C and left to 

grow overnight. These pure culture plates were used for further antibiotic testing and for growing 

liquid pure cultures.  

Colony Morphology 
Once the cultures were grown and a pure culture was observed their colony morphology 

was recorded. Colony Morphology is qualified using several defining characteristics (Smibert 

and Krieg 1994).  

The diameter of each experimental colony was measured in milimeters. The pigmentation 

of the colonies were then described. The form, elevation, and margin was observed along with an 

analysis of whether the colonies were smooth (shiny glistening surface), rough, (dull, bumpy, 

granular, or matte surface), or mucoid (slimy or gummy appearance) [Figure 9]. Finally, the 

opacity of the colonies (transparent, translucent, or opaque) was recorded and the texture of each 

colony was tested using an inocculating need - defininging the texture as butyrous (buttery 

Figure	  8:	  Diagram	  of	  Streaking.	  
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texture), viscous (gummy), or dry (brttle or powdery). 

 

Figure 9: Diagram illustrating the descriptions for form, elevation, and margin 

  

Storage and Freezer Stock 
 In order to preserve the experimental bacteria, freezer stocks were created from the pure 

cultures. 400 microliters (µL) of eighty percent glycerol were added to 1600 µL of each 

experimental bacteria liquid pure culture and placed into a cryovial. Two cryovials were 

generated for each experimental organism; one was placed in a liquid nitrogen (N2) container and 

the other was placed in an -80˚C freezer.  

DNA Extraction and Sequence Analysis 
 DNA was extracted from all desired microbes in order to perform a Polymerase Chain 

Reaction (PCR) to allow sequencing. DNA was extracted using the QIAquick DNeasy Blood & 

Tissue Kit (Qiagen, Valencia, CA) following the protocol for Gram- bacteria. 16S rDNA was 

amplified using PCR with the primers AGAGTTTGATCCTGGCTCAG and 

AAGGAGGTGATCCAGCC with the following temperature program (Wiesburg et al. 1991).   
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 Recipe used for PCR: 

 35 µl genomic DNA 
 10 µl 5x reaction buffer 
 1 µl dNTP mix (10mM concentration of each dATP, dTTP, dGTP, dCTP) 
 0.25 µl 100 µM fD1 universal eubacterial 16S rDNA primer 
 0.25 µl 100 µM rD1 universal eubacterial 16S rDNA primer 
 0.5 µl Taq polymerase (Promega, Madison, WI) 
 
Program used for PCR: 

 95˚C for 5 minutes  
 Then 25 Cycles of the following 3 steps: 
 95˚C for 2 minutes 
 42˚C for 30 seconds 
 72˚C for 4 minutes 
 Then a final elongation step: 
 72˚C for 20 minutes 
Then a hold temperature to prevent DNA degradation 
 8˚C until placed in refrigerator  
Primers and PCR program obtained from the article Weisburg et al. (1991)  
 
 The PCR product was then purified using the QIAquick PCR Purification Kit (Qiagen, 

Valencia, CA to assure that only the desired DNA was present in the sample.  

Gel Electrophoresis and Photography 
 Gel Electrophoresis was performed to test if the appropriate length of DNA was cloned 

and amplified from the DNA extraction and PCR, before purification. A gel was cast using 40 g 

agarose gel with 40 mL of 1x TBE buffer to make a 1% agarose gel. 2 µl of loading dye were 

added to 8 µl of the purified PCR product. 10 µl of DNA marker were added to the first slot in 

each row in order to measure the base pair (bp) length. The gel was run with TBE buffer at 100v 

for 45 minutes. After it was run, the gel was bathed in ethidium bromide for 10 minutes and then 

was laid in an ultraviolet lamp and photographed at three separate exposures (55, 60, and 65) in 

order to assure a decisive visual measurement. Ethidium bromide is used as a fluorescent tag for 

DNA. When the ethidium bromide is exposed to ultraviolet light, it will fluoresce with an orange 
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color.  

DNA Analysis 
 4 µl of PCR product were added to 2 µl of primer and 6 µl of sterile, double-deionized 

water for each experimental bacterial DNA. Both primers were used for sequencing (forward and 

reverse) in case a difference is observed. Excess PCR purified product was placed in a freezer 

container for storage. Samples prepared for sequencing were sent to the DNA analysis facility on 

Science Hill at Yale University.  

Antibiotic Extraction Procedures – Trial 1 
 Two antibiotic testing experimental procedures were designed in order to extract and test 

the antibiotic agent produced by the experimental bacteria. The first test was an attempt to 

extract the antibiotic through the agar, which the bacteria were grown on. The experimental 

bacteria were plated heavily on one-third of an LB agar plate. It was then incubated for four days 

at 27˚C, which is an optimal growth temperature for producing materials. S. aureus was then 

spread across the remaining two-thirds of the plate and incubated for two days at 37˚C, the 

optimal temperature for growth. The zones of inhibition were measured and then cut out using a 

sterile razor. The razor was sterilized using ethanol and then passed through a Bunsen burner to 

remove excess ethanol. The removed zone was placed in a sterile test tube. Approximately 3 mL 

of 50% aqueous solution acetone were added to the test tube and the mixture was ground using a 

tissue grinder until the agar was well lysed. The mixture was tested using the paper disk assay. 

The agar mixture was centrifuged at 8,000 rpm for two minutes. The supernatant was added to a 

new centrifuge tube and left in a hood overnight to evaporate the solvent.  

 The second test involved centrifuging a liquid culture of the experimental bacteria and 

testing the supernatant. A liquid culture of the experimental bacteria was incubated at 27˚C, 

shaking at 250 rpm for two days. 1 mL of the liquid pure culture was added to a sterile centrifuge 
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tube and centrifuged for 2 minutes at 14,000 rpm. 700 µl of the supernatant were filter sterilized 

and added to a new sterile centrifuge tube. The sterilized supernatant was then tested for 

antibiotic activity using the paper disk assay against both E. coli and S. aureus. 

Re-activation of Antibiotic Production  
After a pause in experimentation, a sample of the culture from the freezer stock was 

taken, incubated in 10mL of LB and re-tested for antibiotic production using the paper-disk 

assay. The freezer stocks of the experimental organisms had lost their antibiotic-producing 

characteristic. An experiment was designed in order to encourage the microbes to continue 

antibiotic production. 10 mL of LB were inoculated for each experimental microbe and slowly 

grown to approximately 50% of maximum turbidity based on visual observation of the media. 

The microbes were grown at room temperature without shaking in order to control the rate of 

growth. The liquid culture of experimental microbes was divided into two test tubes of 5 mL 

each. An additional 5mL of sterilized LB were then added to each tube. The test tubes were 

inoculated with 100 µL of E. coli or S. aureus saturated culture and incubated in a shaking 

incubator at 37˚C for 24hrs. Paper-disk assays were conducted to test antibiotic production 

against both E. coli and S. aureus for both test tubes.   

Antibiotic Extraction Procedures – Trial 2 
 A second set of experiments was designed to attempt to extract the antibiotic agent. The 

first test involved separating the antibiotic agent using a solvent. The experimental bacteria were 

grown in LB (50 mL) in an Erlenmeyer flask and incubated at 27˚C, shaking at 150 rpm for 

approximately four days. The culture was then added to a separating funnel along with 50 mL of 

chloroform. The mixture was shaken well and then left to sit for 20 minutes to clear. Three 

phases were formed and each was collected in individual sterile flasks. Each phase was then 

tested against S. aureus and E. coli for antibiotic activity using the paper disk assay.  
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 The second test again was an attempt to isolate the antibiotic from the supernatant. The 

experimental bacteria were incubated in 10 mL of LB at 27˚C, shaking at 150 rpm, for four days. 

1 mL of the culture was centrifuged at 14,000 rpm for 5 minutes and filter sterilized. The 

sterilized supernatant was then tested for antibiotic activity, using the paper disk assay. Both 

methods were ineffective so modifications were made.  

 The third trial involved similar testing with slight changes. The experimental bacteria 

were incubated in 50 mL of LB broth in an Erlenmeyer flask at 30˚C, shaking at 150 rpm for 

approximately 24hrs. 30 mL of the culture were centrifuged at 20,000 x g for 15 minutes. The 

supernatant was added to a separating funnel along with 30 mL of chloroform. The mixture was 

shaken well and let stand to clear for approximately 20 minutes. The three phases were collected 

in separate sterile flasks and tested for antibiotic activity. The original supernatant was also 

tested for antibiotic activity.  

 From the previous experiments, it was understood that the interface was the most 

important phase to collect and test. A fourth trial involved the same procedure as the third. The 

interface was collected in a centrifuge tube and purified by removing aqueous and organic layers, 

which were mixed with the interface. The interface was tested against S. aureus and E. coli for 

antibiotic activity. After the initial activity test, the interface was centrifuged at 14,000 rpm for 5 

minutes. The new interface was then removed and tested for antibiotic activity.   

Extraction of Antibiotic Agent for HPLC 
100 mL of LB were inoculated with a single colony of the experimental bacteria from 

microbe B in a 150 mL Erlenmeyer flask. The media were incubated in a shaking incubator for 

24hrs at 150 rpm at 27˚C. The liquid culture was centrifuged at 20,000 x g (12,900 rpm in 

Sorvall SS-34 rotor) for 20 min at 4˚C. The supernatant was added to a separating funnel with 

100 mL of chloroform. The mixture was shaken vigorously and let stand for approximately 20 
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minutes to clear. It was then shaken several more times to optimize yield and purity of 

supernatant. The organic and aqueous layers were collected and used as a control. The interface 

was collected and allowed to resolve overnight in the refrigerator. Removing excess organic and 

aqueous layers using a P200 pipette, which were collected along with the interface, further 

purified the interface. 300µL of hexanes were added to the interface to obtain a clear phase 

containing solely the antibiotic agent.  

High Performance Liquid Chromatography (HPLC) 
 An HPLC procedure for antibiotic analysis was adapted from previous (Al-Ajlani 2006). 

The clear phase containing the antibiotic compound was applied to a C18 column (250mm length, 

4.6 mm inner diameter) with eluent A (0.1%(vol/vol) trifluroacetic acid and 20%(vol/vol) 

acetonitrile) and eluted with segmented gradients of eluent B (0.1%(vol/vol) trifluoracetic acid 

and 80%(vol/vol) acetonitrile). Eluents were made using Milli-Q HPLC grade water. The 

gradient was applied using 40% of eluent B for 30 min and followed by 40% to 100% eluent B 

for 10min.  
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Results 

Sampling for Antibiotic Activity, identification, and 16S rDNA Analysis 
 Environmental isolates were first cultured from a variety of locations [Table 1]. Each was 

immediately tested for the production of an antibiotic agent using the paper-disk assay. The 

microbes were tested against both S. aureus and E. coli. 

 
Figure 10: Initial test to determine production of an antibiotic agent. Purple bars represent microbes that inhibited the 
production of E. coli and orange bars represent microbes that inhibited the growth of S. aureus. Zones of inhibition of 
were measured in millimeters and a larger zone of inhibition indicates more potential antibiotic produced.  

Zone of inhibition were determined for each microbe observed to be preventing the 

growth of one of the model organisms. Three isolates (LY, O, and L) inhibited the growth of E. 

coli, while the remaining isolates (LY’, LM, IM, EY, O’, M’, L’, K’, J’, G’, and F’) inhibited the 

growth of S. aureus [Figure 10]. No experimental microbe was found to produce a compound 

which inhibited both E. coli and S. aureus.  
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Table 2: Recorded morphology of colonies of each experimental microorganism.  

Colony Morphology 

Microbe 
Diameter 

(mm) Pigmentation Opacity Form Elevation Margin Appearance Texture 16S rDNA 
K' 1.1 Cream Opaque Circular Flat Entire Smooth Butyrous n/a 
J' 0.6 Cream/orange Opaque Circular Convex Erose Smooth Viscous Acinetobacter 
L 3.0 Cream Opaque Filamentous Umbonate Filamentous Rough Viscous Bacillus 
L' 3.5 Cream Translucent Rhizoid Raised Undulate Rough Viscous Bacillus 
M' 0.8 Cream Opaque Rhizoid Flat Erose Rough Viscous n/a 
O 1.2 Cream Opaque Circular Flat Entire Smooth Butyrous Bacillus 
O' 1.6 Cream Opaque circular Convex Entire Smooth Butyrous Bacillus 

O'L 4.5 Cream Translucent Irregular Umbonate Filamentous Smooth Butyrous n/a 
O'l2 1.6 Cream Opaque Circular Convex Entire Smooth Butyrous n/a 
LY 1.2 Cream Opaque Irregular Convex Undulate Mucoid Viscous Bacillus 
LM 1.6 Cream Opaque Circular Convex Entire Smooth Butyrous n/a 

IM1 5.5 Cream Translucent Filamentous Flat Filamentous Rough 
Very 

viscous Bacillus 

IM2 2.0 Cream Opaque Spindle Convex 
Slightly 
undulate Smooth Butyrous Bacillus 

LY' 8.3 Cream Translucent Irregular 
Very 

umbonate Lobate Rough 
Very 

viscous Bacillus 
 

Microbes that presented the ability to produce an antibiotic agent were picked from the 

test plates and streaked onto a new plate to create a pure culture of the experimental microbe. 

Once the pure cultures were incubated, the colony morphology of each organism was recorded 

[Table 2]. In addition, DNA analysis of 16S rDNA was conducted to determine the genus of the 

experimental isolates. The PCR was ineffective for some isolates, labeled n/a, and thus an 

accurate sequence was not obtained.  
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Initial Extraction 

 
Figure 11: Initial test to extract antibiotic agent from experimental microbes. Samples were tested against both S. aureus 
and E. coli. Zones of inhibition against S. aureus are colored orange and those against E. coli are colored purple. Zones of 
inhibition were measured in millimeters.  

 Liquid cultures of each experimental microorganism were centrifuged to remove cells 

and the supernatant was tested for the presence of an antibiotic agent using the paper disk assay. 

The supernatant from several isolates (J’, O’L1, O, IM2, K’, LM, LY, EY, and LY’) was found 

to prevent the growth of E. coli, while only a few (M’2, M’, IM1, L, O’, and O’L2) were also 

able to inhibit the growth of S. aureus as well [Figure 11]. The supernatant of L’ was unable to 
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inhibit the growth of either model organism. Microbes exhibiting zones of inhibition greater than 

1 mm were pursued in further analysis. 

Extraction and Analysis of Antibiotic Compound 
New cultures of the experimental isolates were grown from the freezer stocks after a 

pause in experimentation. The cultures were tested for antibiotic activity. It was found that the 

environment of the freezer caused the isolates to stop production of their antibiotic agent. In fact, 

only three isolates (LY’, LM, and O’) were observed to produce a partial zone of inhibition 

[Figure 12].  

 

Figure 12:  Test for antibiotic production from cultures incubated from freezer stock. Graph represents only microbes 
which produced a zone of inhibition. The purple bars represent inhibition against E. coli and the orange bar represents 
inhibition against S. aureus.  

It was then necessary to attempt to stimulate the isolates to continue antibiotic 

production. Model organisms, S. aureus and E. coli, were introduced to a diluted sample of each 

experimental microbe in order to encourage the isolates to continue, or increase, production of 

their antibiotic agent.   
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The introduction of S. aureus promoted the production of an antibiotic agent for three of 

the experimental microbes (O’L1, O’, and LY’), when tested against S. aureus. Only four of the 

experimental microbes (IM2, LM, LY’, and O’) were able to produce a zone of inhibition when 

tested against E. coli [Figures 12 and 13].  
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Figure	  14:	  Attempt	  to	  encourage	  antibiotic	  production	  using	  S.	  
aureus	  to	  promote	  production.	  Activity	  was	  tested	  against	  E.	  coli.	  

Figure	  13:	  Attempt	  to	  encourage	  antibiotic	  production	  using	  S.	  aureus	  
to	  promote	  production.	  Activity	  was	  tested	  against	  S.	  aureus.	  
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In the next experiment, E. coli was used to promote the production of antimicrobial 

compounds. Zones of inhibition were only observed against S. aureus from three microbes (O, 

O’, and LY’) [Figure 15]. Only two microbes (LY’ and O’) were able to resume producing an 

antibiotic agent again that was successful at inhibiting the growth of E. coli [Figure 16]. 

 

 

 

 

Figure	  16:	  Attempt	  to	  encourage	  antibiotic	  production	  using	  E.	  coli	  to	  
promote	  production.	  Activity	  was	  tested	  against	  S.	  aureus.	  

Figure	  15:	  Attempt	  to	  encourage	  antibiotic	  production	  using	  E.	  coli	  to	  
promote	  production.	  Activity	  was	  tested	  against	  E.	  coli.	  
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After observing four microbes which demonstrated substantial antibiotic production, 

additional experiments were pursued with these isolates. Experiments were then narrowed to the 

three experimental microbes with the highest results of inhibition. These microbes were then 

renamed for simplicity purposes [Table 3]. 

Table 3: The renaming of the experimental microbes with the highest results of inhibition.  

 
 

 

 

 

Extraction and Analysis 
After narrowing the isolates for experimentation, pure cultures were incubated for each. 

Several experiments were then designed and conducted in hopes of extracting the antibiotic from 

the microbe and its environment. Liquid cultures were made from the pure cultures and were 

then extracted with an organic solvent. Each extract was tested for activity against S. aureus and 

E. coli.  

Renaming of Experimental Microbes 

Old Name O’ LY’ LM 

New Name A B C 
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 The organic layers presented inhibition against both model organisms from each 

experimental microbe reaction [Figure 17]. The organic layer is simply leftover chloroform. 

Given this, a control was made using the organic solvent, chloroform, without the presence of a 

microbe to determine if the solvent alone would be toxic to the model organisms. Interestingly,  

the aqueous phase, which is the remaining supernatant, never inhibited the growth of the model 

organisms.  

The supernatant of microbe A was the only experimental microbe to inhibit a model 

organism [Figure 17]. In fact, inhibition was observed against both model organisms using this 

supernatant. The interface of microbes A and B inhibited E. coli, and interface A was also able to 

inhibit S. aureus as well. The interface and supernatant of microbe C presented no signs of 

inhibition against either model organism. 
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Figure	  17:	  The	  first	  trial	  to	  design	  an	  experiment	  capable	  of	  extracting	  the	  antibiotic	  from	  the	  microbe	  
and	  its	  environment.	  
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The second trial was derived from modifying the first trial and was found to present 

similar data as the first trial. As before, the organic phase caused similar inhibition, as it is 

simply toxic to the model organisms. The interface of microbes B and C presented strong 

inhibitions against each model organism. A strong inhibition from the interface of B used against 

E. coli was identified [Figure 18]. No inhibition was observed from the interface or supernatant 

of microbe A.  
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Figure18:	  The	  second	  trial	  attempting	  to	  design	  and	  implement	  an	  experiment	  
capable	  of	  extracting	  the	  antibiotic	  agent	  from	  the	  microbe	  and	  its	  environment.	  	  
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After determining that the interface demonstrated the most potent inhibition, A third trial 

was designed and conducted, focusing solely on the interface. Trial 3 involved testing the 

interface before and after centrifuging the interface, hoping to isolate the antibiotic agent in a 

purified, clear liquid to allow further analysis. The interface was first tested for inhibition prior to 

centrifugation. S. aureus was tested as a negative control for inhibition - assuring that there were 

no other molecules isolated from the supernatant and that there were no other factors causing 

inhibition [Figure 19]. It was observed that S. aureus did not make an inhibitory molecule, 

therefore the reaction must be isolating some molecule from the experimental isolates. The 

interface from each experimental microbe caused inhibition against E. coli. The interface from 

microbes B and C caused inhibition against S. aureus [Figure 19]. Inhibition was much stronger 

for each microbe against E. coli than S. aureus.  
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Figure	  19:	  Trial	  3	  to	  attempt	  to	  extract	  the	  antibiotic	  agent	  from	  the	  microbe	  and	  its	  
environment.	  	  This	  figure	  presents	  results	  of	  inhibition	  before	  centrifugation.	  	  
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Centrifugation caused a re-separation of the interface. Thus there were again three phases 

and each was tested for inhibition. As seen in previous experiments, the organic phase caused 

inhibition against each model organism. The new interface showed no signs of inhibition from 

any of the experimental microbes against either of the model organisms [Figure 20]. 

Interestingly, the aqueous phase of microbe B presented a strong zone of inhibition against E. 

coli.  
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Figure	  20:	  Trial	  3	  to	  attempt	  extraction	  of	  the	  antibiotic	  agent	  from	  the	  microbe	  and	  its	  
environment.	  	  This	  figure	  presents	  results	  of	  inhibition	  after	  centrifugation.	  	  
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After determining that the clear phase from the interface of microbe B inhibited the 

growth of E. coli, we analyzed that phase to attempt to identify the molecule responsible for that 

inhibition. HPLC was conducted to determine if a single molecule was being isolated. Therefore, 

if a single compound was shown, then it is probable that that is the antibiotic agent. In addition, 

the HPLC will not show peaks from any solvent that enters the system, so when the antibiotic 

compound was dissolved in hexanes to make a clear solution, then it will not affect the analysis.  

 

 
Figure 21: HPLC in absorbance by time (m) at 213 nm. Clear phase containing the antibiotic (blue) was compared to 
aqueous solution (red) to analyze peaks.  The absorbance for the supernatant was shifted upward in order to be observed.  

 After extraction from the supernatant with chloroform and hexanes, the clear phase from 

the interface of microbe B was analyzed by HPLC to potentially identify molecules that have 

antimicrobial properties. The aqueous layer of microbe B was analyzed as a negative control. As 

it is hypothesized that the compound will be found in the interface, the aqueous layer, or excess 

supernatant, was tested to assure that there was no longer anything of interest in that layer. The 
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clear phase presented a strong peak at 16.76 min with a trace of 213 nm [Figure 21]. The 

supernatant presented no strong peaks. However a reduced level of the same peak from the 

antibiotic was observed in the supernatant. This can be expected from previous results.  

 
Figure 22: HPLC in absorbance by wavelength at time 16.76 min. Absorbance of clear phase containing the antibiotic 
(blue) was compared to all wavelengths at 16.76 min.  The absorbance for the supernatant was shifted upward in order to 
be observed. 

 The HPLC run was also analyzed at the specific wavelength where a peak was observed. 

This will determine if absorbance occurred at that wavelength at another moment in time during 

the program. An absorbance peak of the antibiotic occurred only at 213 nm at time 16.76 min 

[Figure 22]. There are no other observed peaks at this time for the antibiotic. The supernatant 

presented with no peaks at this time.  
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Discussion 
	   In	  search	  for	  a	  novel	  antibiotic	  compound,	  I	  sampled	  the	  environment	  to	  cultivate	  a	  

microorganism	  with	  the	  hypothesis	  that	  I	  would	  find	  an	  isolate	  which	  produced	  an	  

antibiotic	  agent.	  I	  planned	  to	  use	  model	  organisms	  with	  relation	  to	  pathogenic	  organisms	  

as	  a	  means	  to	  determine	  antibiotic	  activity	  as	  well	  as	  a	  series	  of	  methods	  to	  attempt	  to	  

extract	  the	  antibiotic.	  I	  also	  planned	  to	  use	  HPLC	  to	  analyze	  the	  substance	  I	  was	  able	  to	  

analyze.	  	  

Initial Sampling 
 The initial sampling found 16 promising isolates that inhibited the growth of E. coli or S. 

aureus [Figure 10]. Any samples that showed a clear zone of inhibition was measured. It is 

interesting to see that from the very first antibiotic test, there were isolates which presented very 

strong zones of inhibition. J’, L’, L, and O’ had large zones of inhibition, relative to the others 

suggesting that the isolates were producing a large quantity of an antibiotic agent which it was 

secreting into its environment. This means it was prepared to defend its environment from other 

microbes. More isolates were able to inhibit S. aureus than E. coli. This is to be expected as S. 

aureus is gram-positive because any antimicrobial agent, secreted by a microbe, which targets 

cell wall synthesis will likely inhibit a gram-positive organism like S. aureus.  

Initial Extraction 
 The first test to isolate the antibiotic agent was a fairly simple test as a way to begin to 

understand the location of the antibiotic. Meaning, it was designed to determine whether or not 

the antibiotic agent could be found in the supernatant or the cells.  We determined that the 

antibiotic agent was in the supernatant and not the pellet. We also deduced that the antibiotic 
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agent would not  be forced down the centrifuge tube and into the pellet because at this speed, the 

centrifugation would not separate molecules - they would all be in the supernatant. Only cells are 

left in the pellet. From this extraction test, it can be seen that most of the isolates’ supernatants 

inhibited a model organism. Most organisms inhibited E. coli, while only a few were also able to 

inhibit S. aureus. Only the supernatant of one isolate, L’, was unable to inhibit either organism. 

The inhibition of both model organisms by six supernatants is interesting because it indicates that 

the antibacterial agent of these isolates was targeting a characteristic that both organisms possess. 

This is an important find as further analysis of these organisms can lead the discovery of a broad-

spectrum antibiotic.  

Promoting production of the antibiotic agent 
 Pure culture plates are only viable for a few months. When experimentation was paused, 

it caused a need to create new cultures from the freezer stock – the very reason these stocks were 

made. Given that the isolates were forced into a very harsh environment, it is possible that the 

isolates would stop producing the antibiotic agent. Losing production can be due to focusing all 

energy left on surviving in the extreme environment. In addition, there were no competing 

microbes within the media, thus there was no advantage to continuing to produce an antibiotic. 

Given this, when creating liquid cultures from the freezer stock, it was necessary to determine if 

the isolates were still producing the antibiotic agent. After incubating the new cultures, it was 

found that most of the isolates had indeed lost their ability to produce an antibiotic agent. 

However, three isolates maintained the function even after freezing [Figure 12].  

 Once it was observed that most of the isolates lost the function to produce the antibiotic, 

a procedure was designed to promote the production of the antibiotic agent. The procedure was 

effective for only a few of the isolates. When S. aureus was introduced to the isolate, it promoted 

the production of the agent for O’L1 to inhibit S. aureus on an LB agar plate. It also encouraged 
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production for LM and IM2 to inhibit the growth of E. coli [Figure 13]. Two isolates, O’ and 

LY’, were able to inhibit both model organisms [Figures 13 and 14].  

 This experiment was repeated using E. coli as the stimulating organism. When tested 

against S. aureus, O was able to inhibit the growth of S. aureus on the LB agar plate. Again, LY’ 

and O’ were able to inhibit both model organisms. These experiments have provided promising 

results. From the experiment to determine if antibiotic production was still occurring O’, LM, 

and LY’ were still producing the agent. Attempting to encourage production again in all of the 

original isolates, O’, LY’ and LM were again able to inhibit the model organisms again [Figure 

15 and 16]. These microbes consistently produced antibiotic throughout experimentation, so I 

focused on these isolates to attempt to characterize a novel antibiotic. Moreover, the freezer 

stocks of all of the isolates were saved, so experimentation could also occur with these microbes, 

especially after some experiments were well-refined.  

Trials of extraction 
 Each trial conducted to extract the antibiotic agent produced results which led to the 

modifications in the next trial. The first trial to extract the antibiotic through the agar had several 

difficulties. The various sizes of the zones which were cut out made it difficult to determine how 

much acetone to add in order to completely dissolve the agar. The procedure was performed 

before the pause in experimentation and thus was performed on all isolates cultivated from the 

beginning. The final supernatant was left to dry, but it was never determined which solvent 

would be optimal to re-suspend the antibiotic without it inhibiting the model organisms. In 

congruence with this procedure, a second one was designed to determine if the antibiotic agent 

was found in the supernatant. This procedure was quicker to perform and therefore the results of 

this experiment were obtained first. Testing the supernatant showed inhibition for most of the 

isolates against the model organisms. Thus it was determined to continue on the route of using 
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the supernatant instead of dealing with the agar.  

 The next experiments designed and conducted focused on isolating the antibiotic 

compound from the rest of the materials in the supernatant. These experiments occurred after the 

pause in experimentation and thus were only conducted on the three most promising isolates.  

The first experiment again tested the supernatant but also attempted to extract the compound 

from liquid cultures of the isolates using a solvent, chloroform. Extraction was unsuccessful for 

isolate C. This isolate showed no zones of inhibition except for the organic phase, or the 

chloroform, which was determined to be toxic to model organisms by itself. The interface of 

isolate B was found to inhibit E. coli pretty successfully with a zone of inhibition of 2 mm. 

Isolate A was able to inhibit both model organisms using the interface. A strong zone from the 

aqueous phase, of isolate A, against S. aureus was also observed [Figure 17].  

 The second trial attempted to use the solvent to isolate the antibiotic compound from the 

supernatant. Once the sample was centrifuged, the supernatant underwent the same treatment as 

the culture in the previous experiment. When the culture was centrifuged, isolating the 

supernatant, the isolates observed more inhibition of the model organisms than when the culture 

was not centrifuged. As the supernatants were originally able to inhibit a model organism, it was 

expected that separating the compound using a solvent would be successful at inhibiting the 

model organism from either the aqueous phase or the interface. As hoped, the interface of 

isolates B and C were able to inhibit both model organisms [Figure 18]. This result shows that 

the solvent was able to separate the antibiotic agent from the rest of the supernatant. It is one step 

closer to identifying the supernatant. Unfortunately, isolate A showed no inhibition for any of the 

phases against either model organism. Once these findings are understood, it is clear that the 

interface is the more important result to analyze.  
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It is interesting that the supernatant stopped inhibiting the model organisms after the first 

supernatant test, especially for isolate A which inhibited both model organisms in the first trial 

with the solvent [Figure 16] but lost the function with later trials. One possible reason for this 

was the change in centrifugation. With later trials, a larger sample of the experimental isolates 

were centrifuged and at a different speed and duration. The larger samples were centrifuged at a 

slightly reduced speed and for an extra 10-15 minutes. In addition, the larger sample was kept at 

a cooler temperature during centrifugation. The small samples of cultures were centrifuged at 

room temperature, while the larger samples were cooled down to 4˚C. Since the procedure was 

changed so drastically, it is possible that the antibiotic was degraded.  

 The experiment was repeated, collecting the interfaces to make sure that the results from 

the previous experiment were accurate, and not a fluke. In addition, the experiment was 

performed on S. aureus as a control to make sure there were no other factors causing inhibition. 

One possible outside factor could be chloroform within the supernatant which was causing 

inhibition. This possibility was excluded as no compounds were extracted from S. aureus 

following the same procedure  that inhibited either of the model organisms. This control 

demonstrates that the results from the experiment of the other isolates were accurate and that the 

previous experiment had valid results. This indicates that the microbes produced an antibiotic 

and was not just a general effect of the procedure. In this trial, the interface from all three isolates 

was able to inhibit a model organism. Isolates B and C were able to inhibit both model 

organisms, as seen in the previous experiment. Surprisingly, isolate A was able to inhibit E. coli. 

Reasons for this could be that this culture of A produced more of the antibiotic agent, so more of 

it was isolated and thus able to inhibit the model organism. 

 



Discovery	  of	  a	  Novel	  Antibiotic	  

	   52	  

HPLC 
 The final experiment to extract the antibiotic compound was repeated for isolate B to 

prepare a sample for HPLC analysis. Isolate B was chosen as it was always found to have 

substantial zones of inhibition. Thus it was determined to use this isolate to make sure that the 

experiments were actually finding a compound of interest. In addition, the aqueous phase from 

isolate B was also able to inhibit E. coli in the final test – furthering the deduction that isolate B 

will have successful results [Figure 19].  

 Throughout the entire HPLC program for the antibiotic agent sample, a single peak was 

observed. In fact, the peak was quite prominent. After 16.76 minutes, the antibiotic compound 

ran off the column with a strong absorbance at 213 nm. The observation of only one peak means 

that the solvent extracted a single compound. Thus it can be deduced that the compound we 

isolated and observed is very likely to be an antibiotic agent.  

 All wavelengths were analyzed at 16.76 minutes to determine if any other wavelengths 

were found at that time. It was found that there were no other peaks observed at that time. It can 

thus be determined that the absorbance at that wavelength was isolated to only that time. 

Meaning that absorbance of other compounds to did not occur at that wavelength at any other 

point in the experiment. This furthers the conclusion that we isolated a single compound.  

Conclusion 
 In this project, potentially-novel antibiotic compounds were extracted from a series of 

environmental isolates. The specific bacterium cultured was analyzed using 16S rDNA and was 

determined to be of the Bacillus genus. The experimental organism was found on a keyboard 

from the second floor of the Warch Campus Center, at Lawrence University in Appleton, 

Wisconsin. Through HPLC, it was determined that the antibiotic compound produced by this 

experimental microorganism could be extracted from the supernatant of the culture, using 
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chloroform.  

Further Directions 
The next direction would be to determine the chemical structure of the isolated 

compound. One possible method would be to use Liquid Chromatography-Mass Spectrometry 

(LC-MS) to determine the molecular mass of the compound. LC-MS would enable us to apply 

the small sample obtained through extraction using the solvent, and running the experiment with 

similar conditions as the HPLC. If the compound was analyzed effectively with the HPLC, using 

a non-polar column to separate a polar compound, it will require the same method for the LC-

MS. LC-MS uses the physical separation ability of the liquid chromatography and pairs it with 

the capability of the mass spectrometry to analyze the masses of the various parts of the 

compound.   

Following this analysis, and determining the chemical structure, we could then determine 

which antibiotic class it is closely related to. By doing so, we would determine a strong 

possibility of what the compound’s target is within the pathogenic cells. We would then have a 

fairly streamlined set of experiments to isolate and analyze compounds of interest from 

experimental microorganisms. We could then look at the other promising isolates determine 

what antibiotic compounds were isolated from these microbes.  
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