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Abstract

The finite difference methods of Godunov, Hyman, Lax-Wendroff
{two-step), MecCormack, Rusanov, the upwind scheme, the hybrid
scheme of Harten and Zwas, the antidiffusion method of Boris
and Boolk, and the artificlal compression method of Harten are
compared with the rendom choice method known as Slimm's method.

The methods are used to integrate the one-dimensjionzl equations
of gas dynamlcs for an inviscid fluid, The results are comparad

and demonstrate that Glimm's method has several advantages.

I. Intreoduction

In the past few yesars many finite difference schemes have -
been used for solving the one-dimensional eguatlons of gas
dynamics for an inviscid fluid. Recently the random cholce methed
(Glimmls method) introduced by Glimm [6], has been developed for
hydrodynamics by Chorin [3). Due to the nonstandardness of
Glimm's method, as well as the difficulty in programming, its
arceptance as an 2ffectlve and efficient numerlcal ool may be

restricted.




In the following sections a brief discussion of the methods
1z given, their sclution to a sample one-dimensional problem is
compared, the adventages of Glimm's method gre discussed, and
finally the equations used by Glimm's meihod are derived and a

flow chart for the programming of it is given.

Basic Equations. The one-dimeneional equatione of gas dynamice

may be written in the {(conservation) form:

atp +axfpl-1] =0, {1]
=

By +3, (- +p) = 0, (2)

3, ¢ +5af% (e+p)) = O {3)

whare p is the density, u iz the velocity, m = pu is momentum,
P 1sg preseure, and € is energy per unit volume. We may wrlite
e = pE-+%-puE, where g ie the internal energy per unit mass.

Asgume the gas is polytropic, in which case

e = 585 (4a)

where v is a constant greater than one. Furthermore, from (4a)

we have
p = A{s)p? (4b)

where 5 denoter entropy.

Equations {1)-(3) may be written in vector form

Et+EEH}K =0 |:5)

where




i e
2
= im| and F(U) = [T +p .
|
LEJ %{eﬁ-p]

In order to deal with solutions which contaln shocks, we
write the equations in integral form, which iz obtained by -
integrating equations (1)-{3) {or equation (5)) over any region
in the upper half of the {x,t) plane and applying Green's theorem

to obtain the following contour integrals

T oax + G mat = 0, (6)
f-mdx +“f{§+p}dt-ﬂ, (7)

fedx +Ef-(g (et+p))dt = 0 . (8)

II. Description of the Methods

The methods of Godunov [5], Lax-Wendroff {(two-step) [16],
Maclormack [18)], Pusanov [2p], and the upwind difference
gcheme [19] have been widely used and no benefit can be
obtained by desceribing them herae. Hence, these schemes
will merely be listed In Table I. The remaining methods under

conslderation will be briefly discussed.

Glimm's Method. Consider the nonlinear system of equations {5).

Divide time into intervals of length At and let Ax be the spatial
increment. The solution is to be evaluated at time nAax, where n

iz a nonnegative integer at the spatial increments 1ax,

i={0,81,%22,,,. and at time {n1~%}&t at {i+—%}ax.




The method is & two-step method. Let 52 approximate
U{1Ax,nAt) and Eg:i?i approximate U{{i+1/2)Ax,(n+1l/2)At).
n+l/2

To find the solution Hy41/2
the system (%) along wilth the plecewise constant initial

data

—1+1 , x > (1+1/2)ax
U{x,nAt) = (93

ufl s x < (i+1/2)4x .

Thls deflines a sequence of Rlemann problems. I At< §TT%%:ET’
where ¢ ig the loecal z2o0und speed, the waves generated by the
different Riemann problems will not Interact. Hence the sol-
ution v{x,%t) to the Rlemann problem can be combined into

a single exact szclution. Let En be zn aquidiatributed
random variazble which 1s given by the Lebesgue measure on

the Intarval [—%,%]. Define

n+l/2 1
- +_ .
Ei*l‘le 1‘:{1"{.“}&}[, (n E}At} {10}
At each time step, the sdlution is approximated by a plece-
wise constant function. The solution is then advanced in time
exactly and the new vazlues are sampled. The method depends
on the possibility of scelving the Riemann problem exactly and

lnexpenaively.

arid thus deflne the method, consider




Chorin [ 3] {se2e also Sod [21)) modified an iterative method due
to Godunov [U] whieh will be desaribed below.
L : '
Consider the system (5) with the initisl data
S.ﬂ = fpgluE:DE] 1 Xx =<0 LI
ufx,0) = (11)
B, = (ppauypy) s EZO.
The soluticm at later times looks like (see [1U4]) Pig. 1, where
g, and S, are either a shock or a centered rarefaction wave.
The region 3, is.a steady state. The iines Ei and EE are slip
lines separating the states. The slip line dx/dt = u, separates
the state 5, 'into two parts with possibly different wvalues of p,,
but.equal values of u, and p*.'
Using this iterative methed we first evaluate p, in the
sﬁate 3.~ Deflne the guantity
P; =Py
-t :
M, 5, (12)
If the left wave im a shock, using the jump condition Uﬁ{p] = (pul,
wa obhtzain
!If[E = pE(UE -UE) = p*{u*— UE} : {13}
where UE is the velocity of the left shock and p, is the deneity
in the portion of S, adjoining the left shock. Similarly, define
_ the quantity
P.-P
¥ o=t {14}

r 'I.lr—l.l*




If the right wave is a shock, using
Ur[p] = [pu], we obtain

My = -pp(u, -Up} = ~p

where U, is the velocity of the rig

in the portlon of 5, adjolning the

the jump condltions

*{u*- UI'} {15}

ht shock and p, is the density

right shock.

In either of the two cases ({(12) or (13) for M, and {14}
and {15) for Hr) we obtain
M. = /p 0. $(ru/7,) » (16a}
M, = /p, 0, (p./pP,) (16b)
where
PEavdgt , oxz1,
${z) = < , Ln (17)
x1- — 1.
a/7 1-x¥-+/2y ' *z
k -
Upon elimination of wu, from (12) and (14) we obtain
F o
r, ¢
Pe = T . T * {18}
;5

Equations {1%a), [16b), and {18} represent three equations in three

unknowns for whleh it can be seen that there axista a real solution.

Upon choosing a starting value pf {
_ equations (16a), (16b), and (18),
values see Chorin [3] and Sod [21).

or Mg and Mi], we lterate using

For details of the starting




After py, M,, and M_ have been determined we may obtain u,

E’
by eliminating p, from equations {12 ) and {14),

) pﬂ - P, +H£u£ +Mrur

*. HJE+HI'

u . (19}

The finite difference method due to Godunov [5] in Table

I iz for the Eulerian form of the equations of pas dynamica.
The method developed by Godunov [4] for the Lagranglan form

is also a two-step method where the second step is the second
ntl/2

halfl step 1in Tablé I. However, the values of Ui41/2 and
pgiiﬁg are replaced by u, (1%2) and py {18) from the Riemann

problem at i+1/2.

Artificlal Viscosity. In the methods of Godunov, MacCormaci,

and Lax.Wendroff (two-step) ap artificial viscnéity term was

added. The -artificial viscosity term ugzed was introduced by

Lapidus [13}. It has the advantage that it is very easy to add to

an existing scheme and It retains the high order accuracy of the
i+l

scheme. Let "~ be the approximation at time {n+l)At obtained by

any one of the above schemes. This value is replaced by the new

approximation
o+l _ ~n+l vat L, el o+l
= . + »
u; u; e 8 [lﬁ ui+l| A'd, T (20)

where 5‘@? = EE 'Eg-l and v is an adjustable constant.

This eguation (20) is a Ffractional step for the numerical

solution of the following diffusion equation

- uAt
E‘t = —ﬂifﬁxﬁjfluxlgx]x .




It is shown (see Ladidus [13]) that thls new difference scheme
{obtained by adding the artificial viscosity) satisfies the same
conservaticon law that the previous equation did. The values of
the constant v used varled from methed to method. This is
discussed in the section on numerical results. This artificiazl

viscosity was not added In the smooth regions.

Harten's Corrective Method of Artificial Compression. In this

section we discuss the Artificial Compression Method [ACM)
developed by Harten [8]. This method is designed to be used in
conjunction with an already existing finite difference scheme,
The purpcee of this methcd is to sharpen the reglons which contain
discontinuities whether shocks or contact discontinuities.

Only the basic idea of the ACHM wlll be discusszed for the
ease of a 5ingle conservation law. Let u(x,t} be a solution of

the conservation law

u, +flu), =0 {21}
which contains a discontinuity {uL(t}, uR[t}, 5(t)), where u, and
u, are the values on the left and right of the jump and 8 is the
speed of the discontinuity. The discontinuity is either a shock
or A contact. Assume, without loss of generality that at any
given time t the solution u deves not take on any values between

uL{t} and uR{t]. Consider the function g{u,t) with properties

glu,t) sgn [uR(t] -uL{t]] = for ue (uL{t},uH[t}} B {22]

glu,t) = 0 for u ¢ (u (t),ug(t)) . (23)




This function g will be called an artificial compression flux,
It can be zseen that u iz slec 8 =clution of the conservation

law

ut-i-{f(ufH-g{u,t]]x =0 . (2h)

By (23) we see that when u is smooth the equation (py) is identical
with eguation {21 ) and the shock spesed 2(t) remains the sane,

Finally 1t is observed (from (22)} that if (u ,up,8) is & shoeck

or contact for equation (21} then it is a shoek for the modifiad
equation {24},

The artificlal compression method sclves the modified equa-
tion {24} rather than the original equation (1)« For a conplete
discussion of the implementation of the method sse Harten [R].
n+1

o
Let b,

obtained by using any one of the above finlte difference methods.

represent the spproximate selution vector to {5)

In solving the modified system (analogous to (24)) we use operator
splitting. We first define the difference representation By of

the artificial compression flux g,

£1 = %8y » (25)
where
8 o493
and
| min “51.’;1,’2'-'511{ 1/p" 5&n {51;4-1;’2”
a; = max{ 0,min T = (26)
) k lﬁ1+J.,,r’2| + lﬁ1-1;’2'

~ _k _ (k) (k)
where k refers %0 the k-th component of the u, ﬁi+1f2 P R P
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R k
Let Ei+1}2 represent the vector whose k-th component is sgh (Ei+1f2}'
Then the difference schemé which applies the ACM to the given solu-
tion §2+1 is
n+l aatl At
W =Y ==y (&;41 '«51-1]I
+ oot (| -8, |8 - lg; - g, 118 ) (27a)
TEx MBiv1 ~81 12541727 165 T Bjl1iBi 10
antl AL n n
= Uy - 3ax CGreaze - 8120 (27b)

where §2+1;2 - E? - 52+1 - |E§+1 - E;' S441/2+ 8Pplied component-
wise. See Harten [T].

The method of artifical compresslion is desipgned for first
order schemes and cannct be applied directly to higher order
schemes. The idea of ACM 12 based on the exlstence of a viscous
profile. See Harten [8]). Higher order schemes introduce
other Clux terms so that one obtains different (nonphysical)

speeds of propagation.

Self-Adjustine Hybrid Schemes. The 1dea of self-adjusting hybrid

schames was introduced by Harten and Zwas [11]). Consider a

noneseclillatory first order scheme L. and a k-th order (k > 2)

1
acheme Lk’
_ At 1 1
Llui - ui - .ﬁx {fi-l-l,/.? - 1_1;2)’ {EB}
L.u, = u at {fk - ¥ } {29}

ki 1 T Ax ‘ti#1/2 i-1/27.

30 as not to wiolate the conservatlon, hybridize L1 and Lk through

thelr numerical fluxes. Deflne the hybrid operator L by
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_ At
Lug =4y - ax Faar/n - fyoys2)s {30)
wheare
£ = 6 rl + (1 -8 ) rk (31)
14172 1+1/2 1341s2 1+1727 Yisrs2 ®

&1+1KE iz a scalar quantity {called a switch) which satisfiles
Q0 <« Bi+1f2 < 1. At discontinultles the automatlc switeh is

such that 8 = 1. Hence at the discontinuities the hybrid scheme
iz essentisally the nonoseillatory first corder 2cheme.

Equation (30} can be wrltten 1n the form

- At 1 k
Ly = Ly + Ex CBaaye Yinge - Tieagz’
1 k
- 8y 72 By 1,2 - Tig2)] (32)

20 that 1f & is o(axP) where the zolution 1z smooth, then ror

p > k-1 we have

_ k+l
Lui = Lkui + ofax 7. {33)

There are many cholces for such schemes. The =cheme chosgen
here 1s discussed 1n Harten [9]. Taking k = 2 we choose
MacCormack's scheme and by adding the artiflclal viscosity

term

!
B Curye Wag mwyd = 0y (g Uy ) (34

ta MacCormack's scheme we obtaln the {irst corder scheme.

The hybridized scheme becomes for the system (5)



i2

n+ n &t n n
Uy =0 - ax By - F) (35)
n+l _ 1 i+l R« PO At n+l _ n+l
U =35 (0 Uy) - 7ax (Ey Fi-1)
+ 1

n n n n n n
F (0354170 (Uggy = U0 - 84,5 €Uy - Uy 00 (36)

The stzbility conditien for the flrst order scheme 1s

At /3
max(fu|+e} Ax S o
this belng 2tricter than the stabllity condition for MacCormack's

scheme. So this is the stability condition for the hybrid

soheme .,

It remailns o describe how the swltch 8 1s chosen. There

are many possible cholces, the one selected is described in

Harten [9]. Let ﬂ1+132 = B4y - Py Define

- =
18541721 = 1845 /51

. J 18341/2] + 124yl
o, =

(37}

\D » otherwlse.

In this case p = 1 and ¢ > 0 is chosen as a measure of negligible

varliatlon in the density p. We define the switeh 8 by

Bip172 = max{8,,0,,,).

Since 1in areas which contaln a discontimulty the hyhrid

scheme is about first order we may apply the artlficial
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compresslion method discussed above. However, fthe ACM must
nat be used in smooth regions. For thls purpose the switeh

is used again, 1.e. eguation {(27b) may te replaced with

n+l _ nn+l At

4y " T4y - gax (O

te172 Savrpn m Yilyg0 G0 (38)

Angidiffusion Method of Pordz and Book. In thils saction we

shall discuss briefly the antidiffusion method developed by
Boris and Book [1]). The purpose of this speclal technigue
known as "flux correction” is to achieve high resolution
without osecillatlions.

It can be ahown that a flrst order difference scheme

¢an be represented by an equation of the form

ug ¢ £, = ac [ g fu ], (39)

where g(u,%&] ig the coefficlent of the diffusion term.

The basls of the antidiffu=icn method 13 L0 use a stable
miegdification of a diffusive difference scheme. Let the
orlginal scheme be represented by (39), the mpdification 1a

represented by

u, + £ = st [(e(e.bD) - reutoe |, (40)

where r 1s a positive function, ©One can introduce the anti-

diffusion term by operator splitting. The first step consists

of solving
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ut + f(U}x - ﬁp (41)

+
wilth the original difference scheme, say u m" 1 Lu?. Then
in the second step let A be a difference Dpera:ur approximating

the diffusion equaticon
a, + at[r(u,tE) u ], =0 (42)
£ 1AX X|x *

The second step 18 the antldiffusion step, which 15 unstable

by 1tself since 1t approximates the backward heat equation.

We define
o+l _ Rhntl n
thy = Aui = ALui.
It can be seen that 1f
g, 59 - r(u,8Yy » (43)

then the combined scheme AL Is stable. However, {(43) places

more of a restriction on %% than thke stability condition for L.

We chose for L the two=step Lax=Wendroff scheme. Following

Boriz and Book [ 2], the procedure is

Uiiiss = 3 (@ + o) - ALY,y - B (4fa)
- - ER - B Cut)
ﬁ2+1 = ﬁn + n(U2+1 - 92 + g;_lj, (44e)
o = O - s - £ ) (44d)

where
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L] .a.'-'. Sug
Ble172 = ° {E§+i B 22+1}’
_ Mn#l An+l
S TSP R P R
o _ A
Li41s2 = SEnldy ) /0! ma“|“=

A - A
min sgn{ﬂi+1fgiﬂi_1;g'|51+1KE|’Bgntﬂi+1f2}ﬂi+3lel'

The parameter n is the diffusionsantidiffusion coefficient.

stabllity condition 1z
max{|u[+e} %& < 1.

Hyman's Predictor-Corregtor Method. In [12] Hyman describes

a predictor-corrector type scheme., The spatial derivatives
are approtimazted by a second order difference gperator while
the time derivative (or time integrator) uses the improved
Euler scheme. The improved Euler scheme combines a First
order expliclt predictor with a second order trapazoidal
rule corrector.

For stabllity and to insure proper entropy production an
artificial viscosity term 1s a2dded. The artificial viscosity
term used is similar to that ugsed by Rusanov [20].

The scheme 15 glven by

ntl/2 _ . n 3| Il _ 4N
iy = uy - ot (OF) - 80y, ,p — % 1000
n n
= uy - At ?,
n+tl _ . n At n+l/2 n
w1 = o - 8 e v e,

The

{45a)

{Ush)
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where

no_ 1 n n n n
DEy = Trax (Faea * ®Eyyy -8E;5 5 + By o)

n - 1 n n n n
i1+1;'2 T Tax %y Y 5) (Meyy - M

'-"I; = {u + ﬂ]n:l-

and ¢ is the local socund speead.
The stabllity of the scheme depends on the number of
applications of the corrector {45b) and on 6. We took as the

stabillity condition

max (Ju} +¢) f% < 1,

In order to maintain stabllity, the artifiecial viscosity must
not be completely removed in the smooth reglons. However, it
can be reduced in these regions by using a2 type of swltch.

i}
The ohe chosen was suggested by Hyman [12]). Replace ii+1KE in

{45a) by ﬂ12+1f3 where

1 noo, nog A
3o AL @7 9y 3

1 , otherwlse.

ﬁ:

This type of switch greatly reduces the smearing of the
contect discontlnuity as well as the shock wave. This switeh

15 a type of artificlal compression.

ILII. The Shock Tube FProblem

Figure 2 represents the inltial conditions in a shock tube.
A diaphragm at Xn Separates two regions (regions 1 and 5} which
have difference density and preszures. The two regione are in &

constant state., The initlal conditions are P, > ps, P1 > Pge and
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U =y =0, i.e. both fluids are initielly at rest. At time

5
t » O {see Fig. 3) the diaphrsgm is broken, Consider the case
before any wave has reached the laft or right boundary., Polnts
X and X represent the location of the head and tail of the
rarefaction wave (moving to the left), Although the solution is
continucus in this region (region 2) some of the derivatives of
the fluid gquantities may not be continucus. The point Xy is the

position that an element of fluid inltially at X, has reached by

QO
Lime t. X is called a contact discontinuity. It is seen that

a&cross a contact discontinulty the pressure and the normal

component of velocity are continuous. However, the density and
the tangentiel component of velocity are not continuous arross R
contact discontinuity. The point Xy iz the location of the shock
wave {moving to the right). Across a shock all of the quantities
{p, m, &, and p) will in general be discontinuouns.

In the study of the aboeve mumerical methodz the following

test problem was considered: P = 1., Py = 1., wy = 0., = (3,125,

g
p5 = 0,1, and u5 = s The ratio of specific heats v was chosen to
be 1.4. In all af the caleculations &x = 0.0l. For the

Rusanov scheme the valea of w was taken to be 1.0. In the

scheme of Boris and Book the parameter n was taken to bhe 0.125,

For Hyman's scheme the value of & was taken to be 0.8. The constant

in the artificial viscosity term v was taken to be 1.0 in all

hut one ease. Alao the value of ¢ (see Table 1) was taken to be 0.9.
In Glimmt's original constructlon a new value of & was

chosen Tor each grid point 1 and sach time level n. The

practical effect of such a cholce with finite ax 1s

disastercus; since our initlal data 1z not close to constant

{which was an assumption made by Glimm). In fact, 1f & 1is

chosen for each 1 and n, 1t 1s possible that a state will
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propagate Lo the left and to the right and thus create a spurious
state. An improvement due to Chorin [3) is to choose En only once
per time step {hence the subscript n). The details of the method
of selection of the random number are found in Chorin [3] and

Sod [21].

Figure 4 indicates the results using the firat order accurate
Godunov scheme. The corners at the endpoints of the rarefaction
wave are rounded. The constant state between the contact dis-
continuity and the shock has not been fully realized. The transi-
tion of the contact digcontinuity occcuples T-8 zoneg while the
transition of the shock occupies 5-6 zones.

Flgure 5 indicates the results using the Godunovy scheme with
artificial compression. It should be noted that for thie case the
constant in the artificial viecosity term was taken to be 2.0 to
insure that the solution before application of artificial ccmpres-
gion was oscillation free. For the artificlal compreszslon cannot
ke applied in the presence of oscillatlions. The corners at the
endpoints of the rarefaction wave are stlll rounded, since the
artificial c¢ompression methed is not applied in smoocth regions.
There iz a slight undersheot at the right corner of the rarefaction.
Also there are pacillations at the contact discontinuity. The
transition af the cmntacf discontinuity occupies 3-4 zones while
the transition of the shock cccuples only l-2 EZOneEs.

Figure & shows the results of the two-step Lax Wendroff scheme.
There are very slight overshoots at the contact discontinuity and
more notjceable overshoote at the shock. The rarefaction wave is

quite sccurate. The corners at the endpointe of the rarefaction
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are only slightly rounded. The transition of the contact dis-
continuity occuples 6-8 zones while the shock wave occupies 4-6
‘zones. It is pbserved that the plots in Figure é are guite similar
to those in Figure 7 obtained by MacCormack's mgﬁhcd.

Plgure 7 represents the results of the second order MacCormack
scheme. There are slight overshoots at the contact discontinuity
and more noticeable overshoots at.the gshock wave. The rarefaction
wave is guite accurate. The corners at the endpolnts of the rare-’
facﬁioﬁ are nﬁly slightly rounded.  The transition of the éuntact
discontinuity ccocuples T-8 zones whille the transition of the shock
accuﬁies -6 zones. ' '

Figure 8 represents the first order accurats Rusanov schepne.
The contaét'discontinuity is harely visible in the density profile.
The corners at the epdpoints of the rarefactiorn wave are extremely
ruunded; The cocnstent atate.between the contact discontinuity and
the shock wave is barely existent. The transition of the eantaﬁt
discontinuity occupies 14-16 zones and the transition ﬂf the shock
cccupies 6-8 zones. This scheme is extremely diffusive. This
scheme will even diffuse entropy ror zero flow fields.

Pigurs Q represents the Rusanov scheme with artificial com-
fression. The results with artificial compression are greatly
improved. The corners at the endpoints of the rarefaction wave are
£ti11 rounded since the artificial compresslion method is not applied
in this area. The constant state between the contact ﬁiscontinuity
and the shﬂcklis much more visible., The transition of the contact
discontinuity occupies 2-3 zones while that of the shock wave

occupies only 1-2 zZones.
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Figure 10 represents the uypwlnd difference scheme. It
is observed that between the lelft constant state and the
left endpoint of the rarefactlion wave is a shock (discontinulty).
This 1s clearly a nonphysical solution., This 12 a result of
the methed used to stgbalize the seheme, by using centered
differences for the pressure term in the momentum eguation.

Figure 11 shows the resuits of the Glimm scheme. The shock
wave z2nd the contact discontlnuity have been computed with infinite
rezolution, l.e. the pnumber of zones over which the variation
gecurs 1s zero. Due to the randomness of the method the positions
of the shock and the contact dizcontinulty are not exzect. However,
on the average their positions are exact. The corners st the
endpolnts of the rarefaction wave are perfectly sharp. It is
observed that the rarefaction is not smocth, yet 1t 1s extremely
clceae to the exaet selution. The constant states are perfectly
realized.

The Glimm =cheme requires between 2 and 3 times as much
time (see below) as the other finite difference schemes tested.
However, the Glimm scheme requires far less spatlal grid pelnts
for the same resclutlon. This le displayed in Table II, where
9 interioer gzrld points are used. All detalls are visible.

The Glimm scheme on the average 1s conservative. One
other check on the =zocuraey 13 to uee the conservation lews .

(mass, momentum, and energy}. For example, the total mass is
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evalusted by

Q, = 'L:‘o{inx) AX.

In Table IIT the values of the total mass, momentum, and
energy are displayed. The masg and the ensrgy are scen to

be consarved on the average, i.e. there are flucteations

but they are contalined within a small interval. The momentum
iz seen to lnerease linearly on the average (allowlng for
fluctuations?.

Figure 12 shows the results of the antidiffusion methed
of Boris znd Book applied to the two-step Lax~Wendroff scheme.
There 15 a slight overshoot &t the right corner of the
rarefaection . The rarefactlcon wave is very accurately computed.
The corners at the endpolnts of the rarefaction are only slightly
rounded. The ceoenstant state between the contact discontlinuity
and the shock wave ls only partially reallifed. The transition
of the contact discontinulty occuples 5-T7 zones and the
transition of the shock occuples 1-~2 fones. The rescolution is
much better than the two-step Lax-Wendroff scheme alone
(see Fig. 6).

Figure 13 repsents the hybrid scheme (35) and (36) of
Harten and Zwas., The scluticn 1s Ifree of oscillatlons. The
corners at the endpolnts of the rarefaction wave are only
slightly rounded. The constant state beftween the contact

discontinuity and the shock is only partly realized. The trans-
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ition of the contact dlscontinuity occupies 8-9 zones and the
transitioh of the shock oecupies 5-0 zones.

Figure 14 represents the hybrid scheme of Harten and Iwas
with the use of artiflecal compresslon. Since the artifical
compresslion is not applied 1n smooth reglons the rarefaction
iz the same as in Pig. 13. The transition of the contact
discontinuity oceuples 3-4 zones and the transition of the

shoclk wave occuples Z=3 2ones.
Figure 1% represents the results of Hyman's predictor=

corrector acheme, where ithe corrector has been applied once.
The scluticon is cscillation free. The corners at the endpoint:z
of the rarefaction are almost perfectly sharp. The constant
states between the rarefaction and the contaet discontinulty
and between the contact discontinuity are sxtremely well
defined. The transitlon of the contact discontinuity occupies
6-2 zonez while the ftransition of the shock oceuples 3-U4 zones.
The timing results for all of the methods are listed in
Table I¥. The times are for 100 spatial grid polnts. The anly
substantialtﬂifference in timing iz between Glimm's scheme
and the other finlte difference schemes., For Giimm's scheme
requires between 2 and 3 times as much time. However, Glimm's
scheme can give the same resolution with far less points
{as seen in Table II}. From the poilnt of view of the least
number of grild polnts per desired resclution, the Glimm scheme

cann be seen to be much faster.

IV. Conclusions

Of all the finilte difference schemes tested, without the

use of corrective procedures, (odunov's and Hyman's methods
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produced the best results.

Tt 1s obvious from the flgures that the Glimm scheme gives the

best resolutlon of the shocks and contact discontinuities.
Glimm's scheme 1s at hest first arder accurate (see

Chorin [3]) so that boundary conditions are easlly handled.
It i= possible that the rarefaction wave obtalned by
Glimm's method can be smoothed cut by a type of averaging.

This 1s presently being considerad.
The hybrid method of Harten and Zwas comblnes first and

high order schemes 1n such & way as $£o extraet the best
features of both. The high order scheme preoduces better
approximations £o the smooth parts of the flow,.

The corrective procedures of Boris and Bocok and Harten
improve the reselutlion of a given scheme. 'The artifical com-
presslon method belng restrizted to flpst order schemes except
when used in conjunction with the hybird type Schemes
produces far better results than the antldiffusion method of
Borisz and Book. Both methods are easily added to exlsting
programs {as a subroutine}. The antidiffusjion method requires
5lightly more storage than the artificial zcompression method
since the former must retain two time levels of information
for the computation of intermediate results (equation (#ic)).

A major disadvantage of the antidiffusion method of
Eoris and Book, the hybrid scheme of Harten and 2Zwas, and
the artificlial compression method of Harten is that there
are a number of parameters to be chosen, whieh depend on the
glven problem. In the antldiffusicon method the coefflicient
of diffusionsantidiffusion must be chosen. The value of this

parameter can greatly affect the results. In the hybrid
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scheme a tolerance muet be chosen for the automatic switceh which
is taken to be a measure of negliigible variation in entropy or
density for example. This tolerance depends on the glven problem.
In the artificiel compression methoed a test must e included to
locate the rarefaction {and other smooth regions). Meny of the
standard tests fail to work well enough for the use of artificizal
compression.

With the method described for scolving the Riemann problem
in the Glimm scheme, it can only be used for the equations of gas
dynamics in rectangular coordinates. It is possible to generalize
Glimm's method to other coprdinate systems apd different equa-
tiong. See Harten and Sod [10].

The appllcabllity of Glimm's method to other geometries has
only just started to be explored. One successful application is
to the equations of gas dynamicas for a cylindrically or apheri-

cally symmetric Flow. BSee Sod [24].
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Appendix: IDmplementation of Glimm's Method

In this appendix we discuss the equations required for the
computer implementation cof Glimm's method.

As in Fig. 1, the f1uid Initially at x < 0 is separated
from the fluid initially at x = © by & slip line g% = u,. There

aré a Lotal of 10 ¢aseés to consider.

I. The sample point gnﬂx lies to the left of the s1ip line

( E A% < u nt/2).

{a) If the left wave is a shock wave (p, > pE] and (1) if
§.0% lies to the left of the shockline %%-= g+ We have p = p,,
u =y, and p = p,, {2) if g 8% lies to the right of the shockline
%% = U,, we have p = p,, U = U, P = [, where p, can be ohtained

from {13)
p* = -D—'Eu* - {46’}

{b) If the left wave is a rarefaction wsve (p, = PEJ'

Define the sound speed to be ¢ = !%F. The rarefaction wave 1is

bounded on the left by the line defined by %% = u, -cg, where
YP, . dx _
c, = {——=, and on thes right by the line defined by = U,- C,;
¢~ 175, IE

YPx

*

this region A({S8) in (4b) is a constant, denpted by A, and we

= The flow iz adiabatic in smooth regions, so in

where ¢, = !

obtain the isentropic law p = Ap', Py 15 obtained by using the

igentropic law

PEPET = P*p;T = A, “'T}
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Then we obtain from (U6}

o = GMT (ug)
{1} Ir gnﬁx lies to the left of the rarefaction wave, then
pP=pp U= U, and p = P,
{2) If Enﬂx lies inzide the left rarefaction wave, we eguate
the slope of the characteristic %% = u=-0c to the slope of the lins
through the origin and [En&x,atKE], obtaining

28 _AX
T
With the constancy of the Riemann invariant
=1 -1
2e{y=1l) " +u = Ecsfy-l] tu, (50)

the jigentrople law, and the definition of ¢, we can cbtain p, 4,

and p. Using the isentropic law we obtain
P =D,p,'p’ =ap. {51)
AN
Using equation {50) we cobtain, by solving for ¢
_ -1
¢ = e + 2o (u,-u) . (527

By substitution of (52) into {#9) and solving for u we obtain

26 _AX _
u--,rfI (—1‘3-5-+c£+-{1§3—} u,} . {53)

By substitution of (53) into {52} c¢ is obtained; by substitution

of [ g52) into the definition of ¢ and solving for p we obtain
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CE}lfyﬂl

p = [$§ . (53)

(3) 1f En&x lies to the right of the left rarefaction wave

we obtain p = p., U=y, ahd P = P.

II1. The sample point gnﬂx Iies to the right of the slip line

(& A% > wat/2).

. {a) If the right wave is a shock wave (p, » pr} and (1) if
ﬁnﬁx lies to the left of the shockline defined by %% = Ur’ wWe have

P = pyr w=u,, and p = p,, where p, is obtained from {15)

-M
e il G4 )

(2} If £,0% lies to the right of the shockline defined by

dx
qat

Ur’ we have p = p., U = u, and p = P

(b) If the right wave 1s a rarefaction wave (p, < pr). The

rarefaction wave is bounded on the 1eft by the line defined by

o
%% =y, +¢,, where ¢, = —gi and p, can be obtained from the
¥

izentropic law
PrPp’ = Pupy’ = A . 55 )

Then we obtain from (55 ]

Py 1
Pa = f1; Y ; G6 )

dx _ _ JYPy
and on the right by the line defined by It - ur+ Cps € = j-E;.
(1) If £ ax lies to the left of the rarefaction wave, then

p = Pgs U= U, and p = DP,.
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{(2) If E nx lies inside the right rarefaction wave, we

equate the slope of the characteristic %% = u+c to the slope of

the line through the origin and {Enﬁx, at/2), ohtaining

u+~:=—&1.1r, {57)

With the constancy of the Riemann invariant

Ech-l]'l- u = E‘Gr[‘f-l)_l- {56

U
the iseniropic law, and the definition of ¢, we can obtain p, w,

end p. Using the isentropic law we obtaln
P = pontel = Ap? . {59 )
lising equation (58 ) we obtain, by solving for ¢
= b L
e =c +I= {u-uw). 6o )

Substitution of {#0.) inte ( 57} and solving for u we obtain

EE.-'_\.x
ws By (ot B w) 61)
By substitution of {4, 1) into (60) ¢ is obtained; by substitution

of (59} into the definition of ¢ and solving for p we obtain

lf?-
o = (g . C (62)

(3) If £ A% lies to the right of the right rarefaction wave
we obtain p = Pps U = L,
Equations ( 4&) - ( 62) are the key to the programming of

and p = p..

Glimm's method. For a summary sees the flow chart, Fig.l1l6 .




Table 1
ORIGINATOR ORDER  SCHEME SPABILITY"
S T R R R C N S
o 8 YA - YD
Laa-Venarosr I H 7 AE KRR VRS R /RIS AL
g7 -8 - D
MacCormack 2 E;Tl Q? - % ifil_'_l - g <1
A R AR
Rusanov 1 H2+1 = Q: - E%E (EE+1 - E?_l} + g <1
o w £ :‘T

1 h 4] g n -
gllagyy * ey - &) -

n n
- ui—].}(_uni - Hi"l}}’

=
L™
l.‘-‘siﬁ H
= ot =3

{u+c}g

*
g = max (Jul + e) %&, where ¢ denotes the local sound speed.

62




Upwind

Table I continued

oo ny &t ,.n _ on

0y Uy ~ senlup) (b - Upsquy? - @ &1
At . .n I
FAx ‘Sisy " §1_1]r

where 5 = (G,p,u}T and

-1 if ug > 0
sf{u} =

Il
lirf Uy < Q

419
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Table II
X P u D _ e -
0.1 1.000 0.000 1.000 2.500 2.958
0.2 1.000 0.000 1.000 2.500 2.958
0.3 0.869 0.164 0.8z2z2 2.363 2.958
0.4 0.426 0.927 0.303 1.778 2.958
9.5 0.426 0.927 0.303 1.778 2.958
0.6 0,426 0.927 0.303 1.778 2.958
0.7 0.426 0.927 0.303 1.778 2.958
0.8 0,266 0.927 0.303 ?.853 3.624
0.9 ¢.125 0.000 0.100 2.000 2.646

!
F+ 13 the Riemann invariant \'E_l + % » where ¢ 1s the logal

sound speed.
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Table III
t/at 2, Q,
1 0.54%7 0,018
2 0.550 0.01.9
3 0.554 0,032
4 0.550 0.039
5 0.552 0.047
6 0.550 ¢.059
[ 0.549 0.070
8 0.550 0.079
3 0.545 0.090
10 0.546 0.047
11 0.548 0.110
12 0.545 0.119
13 0.549 0.122
14 0.552 0.136
15 D.5%9 0.143
16 0.553 0.143
17 0.550 0.158
18 0.546 0.164
13 0.550 0.178
20 0.543 0.190

2.213%

2.217
2,218
2.219
2.223
2.222
2.221
2.224
2.232
g.2u7
2.258
2.267
2,266
2.266
2.269
2.275%
2,266
2.267
2.267
2.272




SCHEMES

Godunov
Lax-Wendroff
MacCormack
Rusanov
Upwind

G1imm
Antidiffusion
Hybrid

Hyman

—

Table

WITHOUT ACHM

33

¥
Iy

0.

0.

0
0
a
.
0
o
1]

226

L2286
224
224

225

. 364
242
.258

276

WITH ACM
0,247

Times include computation of exact solution, calls to printing and

plotting routines, which were the same for all czses.



34

-
X

Figure 1




35

Reglon 1 : Reglon 5
Pl |
1
Fl |
1
!
05
]
u,=0 _I.F_5=U

Pigure 2




36

| .
Regilon 1 [ Reglon 2 4&;104 EEEiun J Region 5
3 1
Py ! I ! ug ! uy !
{ l !
Py T I LS
F-*————ai b
| o3 | DL
! ! L5
4 I | 1 Ug
Xy Xy X, Xy x




PRESSURE

DENSITY

37

1.20

1.00

P00
8
‘g..
'm-

.25

1.20

.30

8

~30

——

Figure 4



38

1-C0

T

1.00

=7

2
A9YENT

Ei

“b.00

Figure U continued




G aJnATI

-

PRESSURE
.30 .80

DENSITY
.30 60

52"

0s

=)

oot t

6E



peNUTIU0D § aandTy

X

|

ENERGY
60 2.2

-E.-

tEI-

ﬂ.’l

00 0

L

A
1

Ok



DENSLTY

41

-B0

PRESSURE,

.ISEI

Plgure &



panutiues g aandty

X

; VELOCITY

&l -00 1.60 EhERGE,ﬂu 2.50 3.00 0.00 .30 60 . 1.20
-8 i —t 1 E .- 1 T 1
m....
'8.-.
:ﬁ-- i

1

;

oD 1

Zh




DENSITY
0 80

-

g =

PRESSURE
30 w80

§ '
T

90 1,20

2
00" .,
8

00",

) sanBTyg

£n




panuUTIUOT } aJndfd

VELOCITY
30 .60

2,50 3.00 .00 .

.Lég

L.20

alle

ool

00"q.
8

oo 1

ki




.00

PRESSURE
.30 -G0

0o q,

0ot 1

e

DENSITY
.30 M)

o’

(L1l

S



ENERGY
.50 2.00

3 :

VELOCITY
3 .60 .80 1.20

1 b F
L

2.50 3.00 .00 .

L

os* sz

pINUTIUCD § 8JNITI

aL!

oot

M

oo i




6 2JN2TJ

DENSITY
3? -60

a2
"

a5

~ T
i [<

90" 4,

oot [

L



1.00

275

.50

LB

021 (1, (1 oc-
AL1J0713A

. '
L]

1.00

X

05" 2

00'2
ADYINT

05 i

Pigure 9 contlnued




0T 21091

00

PRESSURE
-30 .60

00",

oot

'y
L)

1.20

.;nnENSITTsﬁ

1 ‘.Eﬂ

00" 1

Il
|

3



PanNUTUQd LT SJANETY

=1

ENERGY
1.50 2.00

00" 0_

oo 1

oo 1

VELOCITY
.20 .80

.80 I:Eﬂ

—
T

05




1T 2aIn3BL X

PRESSURE
.00 30 60
5 . 4
é{..
'8..
1

ol

.20

SL°

DENSITY
-30 -?ﬂ

oot 1

.20

TS



52

1.00

75

25

e,
¥

u

os-e

X

Figure 11 continued




PRESSURE

DENSLETY

33

400
8
ﬁ--
8
HJ

I

5

L0

0

..EEI

.IBI]

L]

25 50 75 1.00
X

Figure 12

P00
e




PSNUTYUCD 2T 2anFig

X

gli

ENERGY
1.60 2.00

000

o5

0o 1

¢.50 3.00

VELOCITY
-30 .60

il
L]

(L1

1.2

hé




£1 aanaty

PRESSURE
.30 £0

%0

00° 1

00rq,
8

00

5%



pPeanUTIUuC) £T &INSTA

.00

ENERGY
1 2

VELBCITY
0 B0

A il

I'm [

.00 2,60 3.00

> %

.80 .20

00" 0

X

gi;f

00" 1

iR
1

2

E.‘ e

>
Q.-
[c] o Gﬂ
e O o R
=

95



PRESSURE

DENSITY

5T

.80

50

2

25

50 25 1.0
X

Pigure 14




panUTAUGD KT 2INITJ

ENERGY
1.60 2.00

1 1

001

001

VELOCITY
.30 .60

89




PRESSURE
.30 .60

g =+
(3]

'-u

[

®

H -

]

H »

vh o=
o
a+
a

1 1

DENSITY
.30 .60

-
~-

oe o,

.20

65



ENERGY

VELOCITY

60

1.00

.50

0.00

-.50

. o1-00

3.00

2.50

2.00

1.50

.50 5 1.00

o} 00
8

X

Figure 15 continued




61

(orm ' wul w -7

e mnrirm) o v
ey, P
m.|g‘:;qll #ofs, -,

[ L EJ -I'I

L '?4# @

-"'II"III

HImG 3 111 il CLEM W Al g - £ djal W B]SeT InEE
L i, 1 bl | by
LN ehy [ BN N
* e e
[

.:[:‘51. __“t]ﬁ Elil;rurrn. an N 1 ..h- };];h

Figure 16



Tables.
Table T.

Table II.

Tabvle III.
Table IV.

Figures.
Figure 1.

Figure 2.
Figure 3.
FPlgure 4.
Figure 5
Figure 6
Figure 7
Flgure B.
Figure 4
Figure 1
Figure 11.
Figure 12.
Pigure 13.
Pigure 1M4.
Figure 15.

Figure 16.

bz

List of Captions

Standard finite 4difference methods.

Profiles obtalned by Glimm's method for 9 interior

grid points.
Tetal mazs, momentum,

Running time per time

Solution of a Riemann
Shock tube at t = 0.
Shoek fube at & > 0.
Godunov's method.
Geodunov's method with
Two=step Lax=Wendroff
MacCormack's method.
Rusanov's first order

Ruzanov's first order

and energy for Glimm's scheme.

gstep {in seconds).

problem.

ACHM.

method.

mehod.
method with ACH.

Upwind differernce method.

Glimm's method.
Antidirrfusion methed.

Hybrigd methed.

Hybrid method with ACM,

Hyman's predletor- corrector method.

¥low chart of Glimm's

method.




63

Bibliography

[1] J. P. Boris and D. L. Book, J. Comp. Phys, 11, 38 (1573).

[2] .and K. J. Hain, J. Comp. Phys.

18, 248 (1975).
[31 A. J. Chorln, J. Comp. Phys. 22, 517 (1974).
[4] 8. K. Qecdunov, Mat. Sbornik, 47, 271 (1959).

Is] » A. ¥. Zabrodin, and G. F. Prokopov, J. Comp.

Math. Math. Phys., USSR, 1, 1187 (1962).

I6] J. Glimm, Comnm. Pure Appl. Math., 18, 697 {1965}).

I7] A. Harten, The Method of Artificial Compression, AEC Reszearch
and Development Report CO0-3077-50, New York University (1974).

ra) , The Artificial Compression Method for Shocks and
Contact DMscontinuities: I Single Conservation Laws, Comm,

Fure Appl. Math., to appear.

[9] s The Artificial Compression Method for Shocks and
Contact Ddscontinuities: III Self=-Adjusting Hybrid Schemes,
Lo appear.
Tic] and #. Socd, A Generalized Version of Glimm's
Methoed, to appear.
[11] and G. Zwas, J. Comp. Fhys., 6, 56B (1372).

[12] J. M. Hyman, On Robust and Accurate Methodz for the

Caleulation of Compresszible Fluid Flows I, to appear.

3] A. Lapidus, J. Comp. Phys., 2, 154 {1967).

Il43 P. D. Lax, Comm. Pure Appl. Math., 7, 159 (1954).

151 s Comm. Pure Appl. Msth., 10, 537 (1957).

el and B. Wendroff, Comm. Pure Appl. Math., 13, 217

{1960},



{17]
[18]

112.3

[20]
[21]

[22]

64

B. van Leer, J. Comp. Phys., 3, 473 (1969}.

R. MacCormeck, Prnceedinga of the Second International
Conference on Numeriecsl Methods in Fluid Dypnamics, Lecture
HNotes in Physics, Vol. 8, ed. M. Holt, Springer-Verlag,

New York (1971).

R. Richtmyer and K. Marton, Difference Methods for Inlitizl-
Value Problems, 2nd ed., Interscience (1967).

V. V. Rusanev, J. Comp. Math. Math. Phys., USSR, NHo. 2 (1862}.

G. A. 30d, The Computer Implementaticn of Glimm's Methed,
UCID-17252, Lawrence Livermore Laboratory, University of
California (15976).

s+ A Numerical Study of a Converglng Cylindrical
Shoek, J. Fluld Mech., te appear. Alsc ERDA Researchhand

Development Report C00-3077-144, New York University (1977).




&5

This report was prepared as an account of
Government sponsored work. Nelther the
linited States, nor the Adminlstration,
ner any peiscn acting on behalf of the
Administration;

A. Makes any warranty or representation,
express or implied, wlth respect to the
accuracy, completensss, or usefulness of
the Informgticn ceontalred in this report,
or that the use of any informatiocn,
apparatus, method, or process diaclosed
in thls report may not Infringe privately
owned rights; or

B. Assumes any liabllities with respect teo
the use of, or for damages resulting from
the use of any Information, apparatus,
method, or process disclosed in this
raport.

As used in the above, "person acting on behall
of the Adninistration™ includes any employee
ar contractor of the Adminlstration, or
employee of =uch contractor, to the extent
that such employee or contractor of the
AMministration, or employee of such contractor
prepares, disseminates, or provides acecess to,
any information pursuant to his employment or
contract with the Administration, or his
employment with such contracstor.,



