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This dissertation focuses on studying the impact that weighting schemes can have on forecast-

ing performance and dynamic analysis in global vector autoregressive (GVAR) models. The first

chapter discusses an existing gap in the literature regarding weighting scheme choice and develops

a simple, yet powerful method for defining richer spatial linkages in a way that doesn’t sacrifice

economic context. The new technique called convex weighting, extends the set of available options

for defining spatial linkages in models that handle the curse of dimensionality via compression and

offers a justifiable approach to alleviating uncertainty. The second and third chapters apply the

newly developed convex weighting method to regional and international level models to show that

improvements in forecasting performance are possible and that inferences drawn from dynamic

analysis can be highly sensitive to the underlying weighting scheme.

Although it has been pointed out as an important issue, the GVAR literature has minimally

focused on the issue of weighting schemes and has instead liberally applied the most popular schemes

which are forms of distance for regional applications and most prominently import-export share

weightings for international applications. While in certain circumstances, there might be sufficient

theoretical justification for a given linkage mechanism, a greater issue is the lack of attention payed

to robustness across schemes. Even with great care given to robustness, existing approaches are

limiting in that they still ultimately require the specification of single linkage mechanisms. The

first chapter addresses the single-specification limitation by showing how, with special attention

to standardization, an arbitrary number of weighting schemes can be combined convexly in an

elementwise fashion. This concept of convex mixing opens up the possibility of optimization which

is undertaken in chapters two and three.
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Chapter two presents a regional application of the Texas housing market and shows that by

optimizing the parameters of the convex weighting, forecasting performance can be improved beyond

that of pure non-convex weighted alternative models. The application also shows that impulse

response functions can be sensitive to the underlying weighting scheme and illustrates how the

use of an optimized convex weighting can allow researchers to be more confident in their findings.

Beyond the technical contributions are several core substantive findings. First, it is shown that

housing markets in Dallas and Houston respond in a highly similar way to all national level shocks

while Austin is effected roughly half as much and San Antonio is largely unaffected. Second, it

is shown that the housing markets of Houston and San Antonio experience a significant short run

spillover effect equal to roughly 50% the magnitude of a Dallas housing price shock while the Austin

market experiences no spillover at all. Overall, chapter two suggests that models utilizing convex

weights can perform well on small universe type questions for which distance weights are popular.

The third chapter further extends the convex weighting method by combining it with the existing

concept of mixing on variables and models the global economy using one of the most popular global

macro datasets. The central focus of the third chapter is on how conclusions, or inference, drawn

from impulse response functions can differ across models with different weightings. To accomplish

this, an algorithm is developed for categorizing impulse response function significance and is applied

exhaustively to show that impulse response inferences between the optimized convex weighted model

and a purely trade weighted baseline differ significantly in no less than 30% of cases. Lastly, it is

shown that the convex weighted model yields a more coherent picture of the global economy than

the trade weighted baseline.

The primary concern of this dissertation is in the area of foreign parameter weighting for GVAR

models. A flexible method to address an existing gap in the literature is developed and is applied

at both the regional and international levels over which it’s performance is shown to be favorable.

Researchers looking to utilize the GVAR model will no longer, by the methods proposed in this

dissertation, need to concern themselves with the exact specification of the linkage mechanism

and will no longer have to sacrifice the economic context that existing alternatives required. This

dissertation provides a meaningful contribution to the GVAR literature in the area of weighting

scheme choice and lays a plentiful foundation for future applications.
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CHAPTER 1

Methodological Overview of Convex Weights for GVAR Models

1.1 Introduction

Macroeconomic policy analysis and forecasting require careful consideration of interdependencies

that exist across space. In better efforts to understand such linkages, questions such as how a

certain phenomenon in one location might impact other locations have become a popular topic

within the fields of research in economics. Understanding both spatial and temporal dynamics

requires special attention as modeling many locations in a consistent and cohesive manner can

lead to econometric difficulties. Specifically, in handling many locations at once, the number of

parameters can quickly exceed the number of observations thus forcing econometricians to make

decisions over model sparsity.

One particular method for handling this complication is through compression. Spatial econo-

metricians have been utilizing compression for many years, dating all the way back to Anselin et al.

(1980) which first describes how variables across space can be aggregated through weighted aver-

aging techniques. The Global VAR (GVAR) model, which was developed by Pesaran et al. (2004)

and further expanded by Dees et al. (2007), takes this technique for spatial regression models and

applies it to the foreign variables of each spatial unit in a VAR model, thus resulting in a rich

spatio-temporal model that yields the same properties of a traditional VAR model such as impulse

responses and forecast error variance decompositions. The GVAR model has gained popularity in

recent years and is particularly attractive not only due to the wide range of questions that it is

well positioned to address, but also due to it’s clever and simple handling of the parameterization

problem.

There is, however, a common issue that researchers face in utilizing GVAR models. To make

use of the weighted averaging compression technique and to subsequently specify a GVAR model,

a weighting scheme must first be decided upon. Because of the vast array of international level

questions that can easily be formulated, GVAR models have largely been applied to answer how

spillovers and transmission effects occur between countries. Careful review of the literature covered

in the survey paper Chudik and Pesaran (2016) reveals that a substantial majority of papers utilizing

GVAR models to answer international macro questions (over 85%) have relied upon import and

export data for the construction of trade based weights with the remaining portion of papers relying

on various financial or distance type weighting schemes. While the use of trade weights may be
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perfectly valid in many settings, this chapter contributes to the relatively small amount of research

that has focused on the development of alternative weighting schemes.1.

Among the papers that specifically address weighting schemes is the recent work by Martin

and Cuaresma (2017), which in building on concepts in Eickmeier and Ng (2015), brings to light

that the choice of weighting schemes in GVAR models has historically been “done in an ad hoc

fashion” and provides evidence that trade weights may not always be best. Martin and Cuaresma

(2017) tests the forecasting performance of nine weighting schemes including several forms of each

trade, financial, and distance type weights and finds that, depending upon the horizon and variables

of interest, financial and distance weights could perform better than trade weights. Interestingly,

it was also found that mixing models of differing weights after estimation, in the sense of an

ensemble, resulted in relatively worse performance than non-mixed models. Perhaps because of

this unexpected finding, it was recommended that further research be conducted on alternative

approaches to mixing weights. This chapter directly addresses the weight mixing question through

the development of a new convex weighting technique which extends the set of available options

for defining spatial linkages in models that handle the curse of dimensionality via compression and

offers a justifiable approach to alleviating uncertainty.

This chapter also extends the work of several other papers that have focused on weighting

schemes. Specifically, Feldkircher and Huber (2016), like Martin and Cuaresma (2017), tests nine

weighting schemes of the same categories while incorporating weight mixing on variables (i.e., eco-

nomic variables with trade weights and financial variables with financial weights) and also tests

various combinations of models through an ensemble-type procedure but focuses mainly on sub-

stantive impulse results rather than forecasting. This chapter introduces “pre-averaging” as an

alternative to “post-averaging” (i.e., ensemble-type procedures) with the subsequent chapters pre-

senting real world applications at differing levels and focusing on forecasting and impulse response

sensitivity. Eickmeier and Ng (2015) specifically studies impulse sensitivity to weightings but focuses

mainly on mixing on variables. Their findings show that mixing on variables improves performance

and ultimately suggest that “a GVAR based on more sophisticated and carefully chosen weighting

schemes can characterize the data better.” Chapters two and three follow this trend by showing

that additional complexity improves, rather than hinders, performance in GVAR models. The

idea for convex weight mixing comes from Sun et al. (2013) who first proposes the combination of

weights before estimation as “the sum of trade flows and foreign exposure positions.” However, the

main focus of their work is not methodological in nature and thus the emphasis is not on weighting

scheme sensitivity or performance. Also, the construction of their combined weights requires that

1 Roughly 15% of the literature, as identified by the author, appears to specifically address the choice of weighting
schemes and it’s subsequent impact.
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the underlying units of the weighting schemes be the same2. The method proposed in this chapter

eliminates this requirement and provides a clarified and straightforward way to combine weighting

schemes. Lastly, the survey paper Chudik and Pesaran (2016) in review of the existing GVAR

literature to date states that “selection of optimal weights could be an important issue.” To this

point, this dissertation lays out a foundation for how to arrive at an optimum without sacrificing

economic context3.

The remainder of this chapter is organized as follows: Section 1.2 formally presents the GVAR

model and the generalized impulse response functions that are used in dynamic analysis. Section 1.3

shows how to compute weighting matrices and formally presents convex weights. Lastly, Section 1.4

provides some context and prefaces the following chapters.

1.2 The GVAR Approach

The GVAR approach was originally developed by Pesaran et al. (2004) to provide a global

modeling framework capable of generating forecasts while allowing for interdependencies between

a set of regions or countries. The framework has since been furthered by works such as Dees

et al. (2007) who advanced the model in a number of directions and by Chudik and Pesaran

(2013) who contributed an advance with the inclusion of a dominant unit within the GVAR. This

chapter advances the framework by providing a relatively straightforward way to construct linkages

between spatial units for which any realistic linkage may be less obvious or obtainable due to data

availability or some other reason. This is particularly the case when investigating a universe that

is smaller than the global scale, such as an intranational or intrastate scale. Critically, analysis

of such smaller universes has typically relied on spatial methods, covered extensively in Anselin

(1988), that don’t focus on dynamics and rely heavily on the distance class of weighting schemes

which may in some cases seem unreasonable4. For example, Vansteenkiste (2007) uses pure distance

weights to link states together in an investigation of regional housing prices. In the case of states

linked via pure distance though, California and New York are minimally related simply due to

being far away from each other; a consequence which may or may not be reasonable. Similarly,

contiguity weighting schemes by construction result in far fewer linkages and thus might for the

same reasons be unbelievable. Hence, a more tractable weighting scheme beyond a single choice

2 For clarity, it should be noted that other papers, namely Chudik and Fratzscher (2011) and Bussière et al. (2011),
have utilized multiple weighting schemes without this requirement. However, these papers still rely on “ad hoc”
specifications of coefficients.
3 Gross (2018) also develops a method for arriving at an optimal GVAR weighting by estimating the weights
endogenously as part of the system. This endogenous approach is novel and may be well suited for certain applications
but in those where it might be of interest to understand how the cross-sectional units are linked, another method is
necessary since a consequence of the fully endogenous estimation is that any economic context is lost.
4 Elhorst et al. (2018) provides a thorough overview of the intersection of spatial econometric methods and the
GVAR model.
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within the distance class is presented here. First, the GVAR model is presented and second, details

regarding the weighting scheme are presented.

When dealing with smaller universes, as does the application in chapter 2, it is of interest to

understand how units respond not only to cross-sectional shocks but also to common factor shocks

from an above universe. In the case of a city, national level variables, such as the interest rate or the

oil price, are shared among all cross-sectional units and represent variation from a higher universe.

To allow for such higher level interactions, a GVAR specification that includes a dominant unit

containing all common factors or global variables is presented. Because the model in chapter 2

uses a small number of cities as cross-sectional units, the dominant unit model, as is discussed in

Chudik and Pesaran (2013), is presented without feedback effects because a small number of cities

in a single state could reasonably be assumed not to substantially impact national (interest rates)

or truly global (oil price) variables.

1.2.1 A Generic Dominant Unit Global VAR Model

This section formally presents the GVAR model to be used in the applications that follows.5

The application in chapter 2 mirrors the model that is presented in this chapter and the application

in chapter 3 mirrors the model in Dees et al. (2007) which excludes the dominant unit. Beginning

with the dominant unit, denote it’s variables by the mω × 1 vector of observables ωt and consider

the following VAR(pω) specification

ωt = µt + µ1t+ φ1ωt−1 + . . .+ φpωωt−pω + ηt (1.1)

where pω is the lag order of the vector of observables ω and is selected by information criterion6.

Such an inclusion . In the presence of I(1) variables, eq. (1.1) can be rewritten in error correction

representation under case IV (unrestricted intercept, restricted trend) as

∆ωt = c− αωβ′ω[ωt−1 − κ(t− 1)] +
∑pω−1

j=1
Γj∆ωt−j + ηt (1.2)

where αω and βω are mω×rω vectors, and rω denotes the number of cointegrating relations. Denote

the rω × 1 vector of error correction terms by ξω,t−1 = β′ω[ωt−1 − κ(t − 1)], and it’s estimate by

5 The Appendix of the User Guide for the GVAR Toolbox 2.0 by L. Vanessa Smith & Alessandro Galesi provides an
excellent reference for understanding GVAR models. Readers are highly encouraged to explore the GVAR Toolbox
as it represents a powerful contribution to the GVAR community.
6 For clarification, eq. (1.1) can be augmented by lagged granular cross-sectional averages of non-dominant units to
account for possible unobserved common factors. See Chudik and Pesaran (2013) for details.
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ξ̂ = β̂′ω[ωt−1 − κ̂(t− 1)]. The remaining parameters of eq. (1.2) are estimated by OLS applied to

∆ωt = c+ δξ̂ω,t−1 +
∑pω−1

j=1
Γj∆ωt−j + ηt (1.3)

where ξ̂ω,t−1 is taken as given from the first stage estimation. Following estimation, eq. (1.3) can

be re-expressed as eq. (1.1) which is then used in the second stage for establishing the dynamic

properties of the global model.

In addition to the dominant unit model that captures global variables, individual spatial units

are modeled under the following VARX*(pi, qi) structure for the ith spatial unit

xit = ai0 + ai1t+ φi1xi,t−1 + . . .+ φipixi,t−pi + Λi0x
∗
it + Λi1x

∗
i,t−1 + . . .

+ Λiqix
∗
i,t−qi + Ψi0ωt + Ψi1ωt−1 + . . .+ Ψiqiωt−qi + uit,

(1.4)

for i = 0,1, . . . ,N . where xit is a k-dimensional column vector of domestic variables for cross-

sectional unit i in period t, ai0 is a vector of constants, ai1t is a linear trend, x∗it are k∗-dimensional

column vectors of weighted foreign variables (assumed weakly exogenous), ωit is the mω-dimensional

vector of global variables, and uit is a k-dimensional vector of serially uncorrelated error terms. φit,

Λit, and Ψit are corresponding coefficient matrices7. Foreign variables x∗it in the GVAR model are

highly similar to spatially lagged variables in a spatial regression model. That is to say, assuming

k∗ = ki = k for all i, they are constructed as weighted averages of other spatial units

x∗it =

N∑
j=0

wijxjt, wii = 0 (1.5)

with wij , j = 0,1, . . . ,N being a set of weights such that
∑N
j=0 wij = 18.

Defining in terms of zit = (xit x
∗
it)
′, a vector that stacks domestic and foreign variables, and

assuming the lag orders on domestic and foreign (global) variables pi = qi are equal for expositional

purpose, we have

Gi0zit = ai0 + ai1t+Gi1zi,t−1 + . . .+Gipizi,t−pi

+ Ψi0ωt + Ψi1ωt−1 + . . .+ Ψiqiωt−qi + uit,
(1.6)

with Gi0 = (Iki , − Λi0) and Gij = (φij ,Λij) for j = 1, . . . ,pi. Using the identity zit = Wixt where

Wi are link matrices containing bilateral exposures between the spatial units at hand and xt is a

K × 1 vector including all non-global endogenous variables of the system, eq. (1.6) can be written

7 In practice, the macroeconomic variables in the VARX* models typically have unit roots and it is possible that
they have cointegrating relationships among themselves. Due to this, it is plausible to estimate equation eq. (1.4) in
error correction form (VECMX*). See Section 33.3 in Pesaran (2015).
8 A complete description on weighting matrix construction is provided in Section 1.3
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as

Gi0Wixt = ai0 + ai1t+Gi1Wixt−1 + . . .+GipiWixt−pi + Ψi0ωt

+ Ψi1ωt−1 + . . .+ Ψiqiωt−qi + uit.

These individual models are then stacked to yield the model for xt given by

G0xt = a0 + a1t+G1xt−1 + . . .+Gpxt−p + Ψ0ωt + Ψ1ωt−1 + . . .+ Ψqωt−q + ut (1.7)

where both the contemporaneous and lagged values of ωt now appear on the right hand side of

eq. (1.7) with p = max(pi) and q = max(qi) and

G0 =


G00W0

G10W1

...

GN0WN

 , Gj =


G0jW0

G1jW1

...

GNjWN

 , j = 1, . . . ,p,

a0 =


a00

a10
...

aN0

 , a1 =


a01

a11
...

aN1

 , ut =


u0t

u1t
...

uNt

 .

The ηt and ut error terms are assumed to be uncorrelated.

Defining the (k +mω)× 1 vector yt = (x′t, ω
′
t)
′, and eq. (1.7) for p = p̃ = q̃ = q can be written

as

H0yt = h0 + h1t+H1yt−1 + . . .+Hpyt−p + ζt (1.8)

where

H0 =

[
G0 −Ψ0

0mω×k Imω

]
, h0 =

[
a0

µ0

]
, h1 =

[
a1

µ1

]
,

Hj =

[
Gj −Ψj

ΛjWj φj

]
, j = 1, . . . ,p, ζt =

[
ut

ηt

]
,

or

yt = c0 + c1t+ C1yt−1 + . . .+ Cpyt−p + et (1.9)
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with

cj = H−10 hj , j = 0,1; Cj = H−10 Hj , j = 1, . . . ,p, et = H−10 ζt.

To specify and estimate the spatial unit-specific models given by eq. (1.4), standard procedure

suggested in Pesaran et al. (2004) is followed whereby x∗t and ωt are combined and treated jointly

as weakly exogenous. The models are then estimated using the Pesaran et al. (2000) I(1) modified

version of Johansen (1991) reduced rank regression techniques now for VECMX* models where

Johansens trace and maximal eigenvalue statistics are used to determine the rank order of each

spatial unit VARX* model. Lag orders in chapter 2 are determined by SBC with an assumed

maximum lag order p = q = 12 while both AIC and SBC are tested in chapter 3 with maximum

order matching that of Dees et al. (2007).

1.2.2 Impulse Responses Analysis with GVARs

To analyze shocks in a way that combats ordering complications, which without theoretical

guidance is a large problem particularly in GVAR models due to having to decide over the spatial

dimension, the Generalized Impulse Response Function (GIRF) is used. The GIRF approach which

was proposed in Koop et al. (1996) and developed for vector error-correcting models in Pesaran

et al. (2000) reports how shocks to one variable affect the other variables of the system, on impact

and over time, regardless of the source of the change, but taking into account the possibility that

the error terms of the GVAR are contemporaneously correlated. Formally,

GIRFζj (h) = E(yt+h|ζjt =
√
σjj ,It−1)− E(yt+h|It−1)

=
RhH

−1
0 Σej√
e′jΣej

(1.10)

for j = 1,2, . . . ,k + mω and h = 0,1,2, . . . where σjj = E(ζ2jt) is the size of the shock which is set

to one standard deviation of ζjt, I = {yt, yt−1, . . .} is the information set consisting of all available

information at time t, Σ is the sample covariance matrix of the error term in the global model, ej

is a (k + mω) × 1 selection vector of weighted non-zero values only for elements associated with

the variable to be shocked for the cross sectional units involved, and the matrices Rh are obainted

recursively as

Rh =

p∑
j=1

CjRh−j with R0 = Ik+ω and Rj = 0 for j < 0.

Since consideration of the exact nature of shocks lies beyond the scope of the applications in this

dissertation, the GIRF is a well positioned alternative to the more traditional orthogonolized impulse
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responses analysis originally proposed by Sims (1980). Even without theoretically motivated a priori

beliefs over the ordering, the GIRF approach can provide useful information about how variables

respond across space. In the results of the following applications, figures display bootstrap estimates

of the GIRFs and their associated 90% confidence bounds9.

1.3 Convex Weights

One of the core factors behind the GVAR framework is how it approaches and handles the

curse of dimensionality by compressing foreign variables through weighted averaging techniques via

eq. (1.5). However, this only reframes the underlying issue into a selection problem. To execute the

compression, a weighting scheme must be constructed that will ultimately define the transmission

between the cross-sectional units of the model. Traditionally, when conducting analysis at the

international level with countries as cross-sectional units, researchers have used bilateral import-

export balances to construct trade weights. A range of other weighting schemes have also been

used though, including but not limited to portfolio investment, foreign direct investment, banking

claims, trade costs, and geodesic distance. Martin and Cuaresma (2017) study comprehensively

in the international setting the forecasting performances of each of these weighting schemes and

find generally mixed results. Their study also tested model averaging techniques, of which various

ensemble models were found to perform surprisingly poorly.

An interesting problem presents itself when the scope of the analysis is less than international,

however, specifically when the above listed weights may not be available or even exist. In these

cases, such as in the analysis of states within a country or cities within a state, a different linkage

mechanism must be chosen. At this sub-international level, many researches have chosen weighting

schemes of the distance class10. Distance weights have been very popular in spatial econometrics

since the development of the spatial regression in Anselin et al. (1980) and have been used to

analyze causal effects of variation in one location on variation in another. The core schemes of the

distance class are pure distance, threshold distance, contiguity, or a combination thereof where the

same principle generally governs how much weight is given to units; the further away a unit is, the

less weight is attributed to it. Interestingly, Martin and Cuaresma (2017) report that some of the

best performing forecasting models are those utilizing either distance weights or financial linkages

and suggest that further research to assess optimal approaches to combining data on weights for

GVAR models should be undertaken. To that end, this section begins to address their suggestion in

presenting a way to combine information from multiple weighting schemes prior to model averaging.

The weighting scheme procedure proposed in this section is tractable in that it provides a way

9 All bootstraps throughout this dissertation are conducted with 1000 replications.
10The term ‘class’ is used informally in a computer programming sense because the distance class contains different
templates for creating objects, which in this case are weighting matrices.
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to construct bilateral pairs from non-bilateral data by exploiting the original purpose of foreign

variable compression. This could be particularly useful when pure distance weights might seem

unsatisfactory, as could be the case for certain financial variables whose relation across space is

digital, or in the case where other bilateral measures simply aren’t available. The final weighting

scheme proposed here is essentially an elementwise convex combination of weights that undergo a

series of standardizations. In the application in chapter 2, geodesic distance and output are used

at the metro level and thus for simplicity, the formal presentation of convex weights is restricted to

those variables. Note however, that it is trivial to expand on the number of matrices included in

the convex combination using the framework presented below.

To begin, define the arc-distance between two spatial units i and j as follows

dij = arc distance.

Then, so as to conform to Tobler’s first law which implies a distance decay effect, a continuous

parameterized function of distance itself is applied

hij = f(dij ,γ),

with ∂hij/∂dij < 0 and γ as a choice parameter that controls the strength of distance decay. In

other words, the function ensures that less weight is attributed as distance grows. Throughout the

applications in the chapters that follow, the inverse function hij = 1/dαij is used with α = −1 . In

practice, α is typically set to a value of -1 to represent standard inverse weights or to a value of -2

to represent gravity weights. Conventionally, the diagonal elements of the spatial weights are set

to zero and are not computed (i.e., plugging in a value of dii = 0 would yield division by zero for

inverse distance weights).

The inverse distances hij are row standardized to yield relative weights for each bilateral pair

hij(s) = hij/
∑
j

hij .

The standardized weights are then arranged into a weighting matrix as follows

H =


h11(s) . . . h1n(s)

...
. . .

...

hn1(s) . . . hnn(s)

 = (hij(s)) ∈ RN×N.

The H matrix is then transposed so as to conform to the GVAR toolbox which requires column

standardized weights rather than row standardized. Define the column standardized bilateral matrix

as:
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B = H′

Up to this point, nothing beyond the standard way for calculating distance weights has been pre-

sented. Importantly though, any bilaterally structured data can be used in place or in addition to

distance so long as it’s B matrix is hollow and column standardized. Following this however, we

depart by incorporating non-bilateral vectors, denoted as “global vectors”, since their measure is

the same across all spatial units. In what follows, we allow for c bilateral matrices and k global

vectors to be incorporated. First define the k raw valued global vectors as follows

Gr1 = [g11 g12 . . . g1n]′

...

Grk = [gk1 gk2 . . . gkn]′

and standardize each in the usual way

gij(s) = gij/
∑
i

gij for all
i = 1, . . . ,k

j = 1, . . . ,n

to get

Gs1 = [g11(s) g12(s) . . . g1n(s)]
′

...

Gsk = [gk1(s) gk2(s) . . . gkn(s)]
′

Since the purpose of the weighting scheme in the GVAR model is to construct foreign variables

that account for activity occurring outside of a given domestic unit, the value in each domestic unit

can be dropped so that the global vectors now only contain foreign contributions of the otherwise

complete total. To do this efficiently, N ×N global matrices are formed for each global vector by

duplicating the vector N number of times

Gm1 = [Gs1 Gs1 . . . Gs1]

...

Gmk = [Gsk Gsk . . . Gsk].
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To drop the domestic contribution, the diagonal elements of the Gm matrices are set to zero and

together with the other non-zero elements, global hollow matrices can be denoted as

G
m(h)
k =


0 gk,m1,2 · · · gk,m1,n

gk,m2,1 0
. . .

...
...

. . . 0 gk,mn−1,n

gk,mn,1 · · · gk,mn,n−1 0

 .

Each global hollow matrix is then column standardized in usual way to yield finalized global matrices

of which the kth can be written as

G
m(f)
k =


g
m(f)
(k)11 · · · g

m(f)
(k)1n

...
. . .

...

g
m(f)
(k)n1 · · · g

m(f)
(k)nn


with

g
m(f)
(k)ij =

gk,mij∑n
j=1 g

k,m
ij

.

With bilateral and global matrices that are both standardized, it is now straightforward to construct

convex combinations. Begin by defining the bilateral weights θρ and global weights αδ such that

the following conditions are met:

θρ ∈ (0,1) for each ρ = 1, . . . ,c

αδ ∈ (0,1) for each δ = 1, . . . ,k

c∑
ρ=1

θρ +

k∑
δ=1

αδ = 1

The share of weight given to bilaterally defined matrices is represented by θρ while αδ represents the

shares given to global type weights. The convex combination weighting matrix is then constructed

by computing elementwise convex combinations of the bilateral Bρ matrices and global G
m(f)
δ

matrices in the following way:

Wij =

c∑
ρ=1

θρBρ,ij +

k∑
δ=1

αδG
m(f)
δ,ij , for

i = 1, . . . ,n

j = 1, . . . ,n
(1.11)

Furthermore, since the bilateral matrices B and the global matrices G are of equal dimension, they
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can be combined into a single representative unit so that the final form of the convex weights is as

follows:

Wij =

|M |∑
ρ=1

θρMρ,ij , for
i = 1, . . . ,n

j = 1, . . . ,n
(1.12)

where M is a weighting matrix, θ are the convexity parameters, and |M | represents the cardinality of

the set of weighting matrices. As is mentioned earlier, the application in chapter 2 uses one bilateral

matrix (distance) and one global vector matrix (output) and thus the weightings are notated in the

spirit of Equation (1.11). The application in chapter 3 utilizes more matrices and thus the results

are notated in accordance with Equation (1.12). Without loss of generality, the convex weightings

presented above can be applied in a time varying way similarly to how trade weights were applied

in Dees et al. (2007).

1.4 Choice Parameters

Choice parameters up to the econometrician are always typically a matter of interest. Chosen

improperly, the results of the model could quickly become unbelievable. Chosen in an ad hoc

fashion, the model might lose it’s proper footing in the real and instead move too far towards the

abstract, thus losing interpretability. In the case of the standard GVAR model, there are several

choice parameters that the econometrician must consider. First and foremost are the variables

that go into the model, of which such decisions are beyond the scope of this work. Secondly,

are decisions over the technical workings of the model such as the rank of the individual VARX*

models or the lag orders for which well developed techniques exist to aid in the decisions over these

factors. The primary concern of this dissertation is in the area of foreign parameter weighting,

for which there isn’t yet any particularly well established techniques to help govern our decision

making. Decisions over the choice of weighting schemes have historically been made, as Martin

and Cuaresma (2017) state, in an “ad hoc” fashion particularly with the substantial prevalence of

trade weights. Critically, the issue lies not with the use of trade weights specifically but rather with

the requirement of exact specification. The fact that the econometrician must choose a weighting

scheme means that there will always be room for discussion over his method of choosing. Thus,

the aim of the applications that follow is to relax the requirement of exact specification through an

optimization procedure over the convex weighting scheme developed in this chapter. By replacing

choice with optimization, the magnitude of any uncertainty over whether the weighting scheme was

adequate should be minimized. To properly put any further discussion of weighting optimality into

context, Chapter 2 develops a small scale GVAR model for illustrative purposes and Chapter 3

develops a full scale model with the aim of showing a real world empirical example of inference

sensitivity to weighting.
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CHAPTER 2

Regional Application on the Texas Housing Market

2.1 Introduction

This chapter presents the first application of convex weightings in a GVAR model. Of particular

interest in this chapter is forecasting performance and the sensitivity of impulse response functions to

differing weights. In favor of simplicity, the scope of this chapter is local rather than international

so that the popular usage of purely distance weights can be clearly contrasted with the convex

alternative. Specifically, using a metro level model of the Texas housing market, the core issue to

be revealed is that the outcomes, both forecasting and dynamic analysis, can vary meaningfully

across models with different weights. Due to this finding, an important issue is brought to light

which is the fact that, to date, only a very small portion of the literature has presented findings

with specific focus on robustness to weights.

Regarding forecasting performance, this chapter shows that models utilizing convex weights

can outperform those utilizing pure weights1. In consideration of the generally understood trade-

off between complexity and forecasting accuracy, this finding is somewhat surprising2. However,

the forecasting performance improvement is not completely unexpected taking into account the

substantial parameter variability across differing weighting schemes shown in Gross (2018) and the

forecasting improvements from utilizing the mixing on variables concept developed by Eickmeier

and Ng (2015) that are shown in Martin and Cuaresma (2017).

As for the sensitivity of impulse response functions to weighting scheme choice, this chapter

lays the foundation for the more in depth analysis of chapter 3 by showing that the conclusions

reached from analyzing impulse responses can differ greatly across models utilizing different weight-

ing schemes. This finding is extremely relevant in its illustration that the conclusions argued by a

researcher might drastically change if only he were to estimate under a different weighting scheme.

The demonstration of significant impulse response sensitivity in the simple but relatable context of

this chapter in combination with the prevalence of the distance class at the regional level and trade

weights at the international level leaves something to be desired among the existing literature3.

1 Concerning robustness, the GVAR models are compared to more rudimentary methods and are found to outperform
in all cases except for at the shortest horizon. See Table 2.9 for details.
2 Green and Armstrong (2015) reviews evidence from 32 papers on the accuracy of forecasts from complex vs. simple
methods and finds that complexity fails to improve accuracy in all but 16 of 97 comparisons.
3 The meaning of significance in terms of impulse response sensitivity is illustrated by the case for which a researcher
might conclude that a response is significant under one weighting scheme but insignificant under another.
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A major concern is that any research not having presented robustness to weighting might be

in question. Of course, such questions don’t apply to cases where the linkage mechanism had

theoretical justification but for those cases where the weighting scheme may have been “determined

in an ad hoc fashion,” to quote Martin and Cuaresma (2017), the question may be more than

relevant. Furthermore, this chapter shows that beyond the simulation exercises in Gross (2018),

weighting scheme sensitivity is more than just a theoretical issue.

The remaining sections of this chapter are organized as follows: Section 2.2 presents the data and

the model as well as a brief discussion on it’s place among the existing regional GVAR literature after

which subsections detailing the convex weightings and the standard diagnostics follow. Section 2.3

discusses forecasting performance and the notion of an optimal weighting scheme. Section 2.4

covers impulse response sensitivity to weighting and provides context for the substantive spillover

and transmission effects results. Section 2.5 concludes.

2.2 Regional Application (1990-2017)

The small scale GVAR to be used for the illustration of weighting optimality covers the four

largest Metropolitan Statistical Areas (MSA) in Texas shown in Table 2.1. With the current

coverage, the present GVAR model accounts for just over 80% of the state’s total output and

around 75% of the state’s population.

Table 2.1: MSA’s in the GVAR Model

Dallas, TX San Antonio, TX

Houston, TX Austin, TX

The models are estimated over the period 1990(1)2017(10). The use of monthly data is in itself

an improvement over the existing literature that most commonly use quarterly data4. In order to

capture more fully the possible effects of the global economy on localities, the US GDP (yt), the US

Fed Funds rate (rt) to represent the nominal short-term rate, the oil price (oilt), the S&P 500 closing

price (qt), and inflation (πt) are included as global variables. Other variables included are local

total monthly wages across all industries (wit), local total employment across all industries (eit),

and local housing prices (hpit) as well as the foreign housing counterpart (hp?it). More specifically,

yt = ln(GDPt/CPIt), pt = ln(CPIt), qt = ln(EQt/CPIt),

ρSt = .083̄× ln(1 +RSt /100), hpit = ln(HPit/CPIt), wit = ln(Wit/CPIt),

eit = ln(Eit), oilt = ln(OILt)

4 Vansteenkiste and Hiebert (2011), Jannsen (2010), and Cipollini et al. (2018) all focus on housing prices and use
quarterly data.
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where GDPt is the nominal Gross Domestic Product, CPIt the consumer price index, EQt the

S&P500 closing price, RSt the short-term rate, OILt the West Texas Intermediary (WTI) closing

price, HPit the nominal housing price, Wit the total wages, and Eit the total employment for MSA

i in period t5. All global variables are collected from Federal Reserve Economic Data (FRED), with

employment and wage data coming from the Bureau of Labor Statistics (BLS), and the housing

price variables from the Real Estate Center of Texas A&M University.

The only MSA specific foreign variable, housing price hp∗it, is constructed using eq. (1.11) with

distance and output weights. Vansteenkiste (2007) uses distance weights to describe the linkages of

housing prices in the United States at the state level and concludes that the weighting scheme works

well, but Martin and Cuaresma (2017) shows that the forecasting performance of distance weights

is significantly worse than some other weights. Other weighting schemes such as contiguity have

been used by Cipollini et al. (2018) and Choi and Chudik (2017) in small universe type analyses,

however, contiguity weighting is fundamentally the same as inverse distance weighting with high

decay so it is reasonable to assume that the conclusion of Martin and Cuaresma (2017) might also

hold in regard to contiguity. Initially, fixed weights are used based on the average over the three

year period 2013-2016. Allowing for time-varying weights is straightforward and is considered in

Section 2.3

With the exception of the dominant unit model, all models include the MSA-specific foreign

variable hp∗it and the global variables yt, eqt, ρ
s
t , oilt, pt as weakly exogenous in the sense discussed

in Dees et al. (2007). The dominant unit model contains all global variables exclusively without

feedbacks.

2.2.1 Weighting Schemes

The baseline convex combination weights using distance and output to construct the MSA-

specific foreign variables are given in the 4× 4 matrix below:

5 Quarterly nominal GDP is converted to monthly frequency by fitting a local quadratic polynomial for each observa-
tion of the quarterly series, then using this polynomial to fill in all observations of the monthly series. The quadratic
polynomial is formed by taking sets of three adjacent points from the quarterly series and fitting a quadratic so that
the average of the monthly frequency points matches the quarterly frequency data. This procedure is carried out in
Eviews.
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Table 2.2: Convex Combination Weights

MSA Dallas Austin Houston San Antonio

Dallas 0.000 0.340 0.467 0.316

Austin 0.293 0.000 0.296 0.356

Houston 0.482 0.347 0.000 0.328

San Antonio 0.224 0.313 0.237 0.000

Note: Convexity parameters: θ1 = α1 = 0.5. Columns

sum to unity.

In this case, the convex weights are computed as follows: wij = θ1(dij) + α1(GDPij) where i and

j are locations in the ij location pair, θ1 and α1 are convexity parameters, dij is the ijth element

from the column standardized inverse arc distance hollow B matrix, and GDPij is the ijth element

from the column standardized nominal output hollow G matrix.

First considering Dallas, in contrast to purely distance weights where Houston would receive a

much smaller share simply due to being further away, under the convex weighting scheme it receives

the largest share of the cities included, as it arguably should, since it is a much larger and more

influential city. Regarding Austin, notice that rather than San Antonio receiving greater than 50%

and Dallas and Houston receiving less than 30% as would be the case under pure distance, all cities

receive roughly uniform weight. Dallas receives the largest share for Houston, and the weights for

San Antonio are roughly the same as Austin. The weighting behavior in Table 2.2 is a result of

the chosen convexity parameters θ1 = 0.5 and α1 = 0.5. The complete range of θ and α values is

considered in Section 2.3

2.2.2 Unit Root Tests

Pesaran et al. (2004) is followed with the assumption that the variables included in the model are

integrated of order one (I(1)) so that we can distinguish between short-run and long-run relations

and interpret the latter as cointegrating. To test this assumption, ADF tests are conducted on

each individual series in levels, first difference, and second differences. Following Dees et al. (2007),

Table 2.3 reports unit root t-statistics based on weighted symmetric (WS ) estimation of ADF type

regressions introduced by Park and Fuller (1995). The lag length employed in the WS unit root

tests is selected by the SBC based on standard ADF regressions6.

6 In results not reported, additional unit root tests using sequential-t and MAIC described in Ng and Perron (2001)
to select lag orders are conducted to which no meaningful differences are found.

16



Table 2.3: Weighted Symmetric ADF Unit Root Test Statistics - Domestic/Foreign Variables

Variable Critical Value Dallas Austin Houston San Antonio

e -3.24 -2.73 -2.41 -2.79 -2.07

∆e -2.55 -2.53 -2.79 -3.91 -3.96

w -3.24 -1.76 -1.62 -1.99 -1.57

∆w -2.55 -5.36 -4.62 -5.69 -8.18

hp -3.24 -1.09 -1.69 -2.07 -3.32

∆hp -2.55 -14.15 -13.60 -5.61 -8.48

hp? -3.24 -2.44 -2.19 -1.96 -2.01

∆hp? -2.55 -14.55 -14.87 -12.16 -11.91

Note: WS statistics for all levels variables are based on regressions

including a linear trend. Lag orders are based on SBC Order Selection.

Total employment, total wages, local housing prices, and foreign housing are generally I(1)

across all MSAs. Total employment in Dallas and local house prices in San Antonio are borderline

I(0)/I(1) but are very close. Broadly speaking however, the test results for domestic and foreign

variables support the unit root hypothesis.

Next regarding global variables, Table 2.4 reports WS statistics for consumer prices, the nominal

short-term rate, real output, the oil price, and equity prices which all are I(1). These results are

also in support of the unit root hypothesis.

Table 2.4: Weighted Symmetric ADF Unit Root Test Statistics - Global Variables

Variable Critical Value Statistic

p -3.24 -0.07

∆p -2.55 -11.87

r -2.55 -1.21

∆r -2.55 -6.59

y -3.24 -1.62

∆y -2.55 -10.42

oil -3.24 -2.23

∆oil -2.55 -10.71

q -3.24 -1.64

∆q -2.55 -11.51

Note: WS statistics for all levels variables are based on regressions includ-

ing a linear trend, except for the nominal short rate variable. Lag orders

are based on SBC Order Selection.
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2.2.3 Specification and Estimation of the MSA-Specific Models

The current version of the model imposes the same specification across the MSA-specific models,

however this need not be the case. For each model, local employment (e), local total wages (w),

and local housing prices (hp) are included as endogenous variables. Foreign housing prices (hp?),

the national consumer price index (p), the national nominal short-term rate (r), the national real

output (y), the oil price (oil), and real equity prices (q) are included as weakly exogenous. The

inclusion of the global variables allows for each model to be more fully integrated in the national

economy and hence to take a more satisfactory account of the second round effects in the national

economic system as a whole. Hence it is crucial that the weak exogeneity of these variables be

tested, as is done in Section 2.2.4

After having specified the variables to be included in the individual models, the corresponding

cointegrating VAR models are estimated and the rank of their cointegrating space is determined.

In the models that are considered in this chapter, the order of the individual MSA VARX*(pi,qi)

models is determined by SBC where pi is the lag order on domestic variables and qi is the lag order

on foreign variables7. Note that pmax and qmax are equal to 12 in accordance with the monthly

frequency of the data. We then proceed with the cointegration analysis, where the MSA-specific

models are estimated subject to reduced rank restrictions8.

The orders of the VARX* models and the number of cointegration relationships are reported in

Table 2.5. For most MSAs, a VARX*(4,1) specifications seemed to be satisfactory. For San Antonio

however, a VARX*(2,1) was favored by SBC. Regarding the number of cointegrating relationships,

2 are found for all MSAs except for Austin for which 1 is found. The cointegration analysis follows

Dees et al. (2007) with results based on the trace statistics (at the 95% critical value level).

7 SBC is used throughout this application due to the findings of Koehler and Murphree (1988) who compare AIC
and SBC and conclude that SBC is superior for forecasting applications.
8 The rank of the cointegrating space for each MSA model is computed using Johansens trace and maximal eigenvalue
statistics as set out in Pesaran et al. (2000) for models with weakly exogenous I(1) regressors, under case IV.
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Table 2.5: VARX* order and number of cointegration
relationships in the MSA-specific models

VARX*(pi,qi)
# Cointegrating

relationships

Country pi qi

Dallas 4 1 2

Austin 4 1 1

Houston 4 1 2

San Antonio 2 1 2

Note: The rank of the cointegrating space for each MSA was computed using Johansen’s

trace and maximal eigenvalue statistics as set out in Pesaran et al. (2000) for models with

weakly exogenous I(1) regressors, in the case where unrestricted constants and restricted

trend coefficients are included in the individual country error correction models.

2.2.4 Testing Weak Exogeneity

The main assumption underlying the estimation strategy is that the foreign aggregate variables

x? are weakly exogenous with respect to the long-run parameters of the conditional models. This

section presents a formal test of this assumption and the corresponding results of testing the foreign

star variables and the global variables.

Table 2.6: F -statistics for testing weak exogeneity of
MSA-specific foreign and global variables

MSA Foreign and Global Variables

hp∗ p r y oil q

Dallas F(2,295) 0.36 3.29∗ 0.28 3.87∗ 0.05 1.01

Austin F(1,296) 1.63 0.08 0.01 0.03 2.18 0.11

Houston F(2,295) 0.86 2.47 0.55 3.15∗ 1.03 0.75

San Antonio F(2,295) 2.65 0.19 1.59 0.10 1.17 0.15

Note: ∗ denotes statistical significance at the 5% level.

The weak exogeneity test conducted here is the same as is used in Dees et al. (2007) who

describe it’s origination from Johansen (1992) and Harbo et al. (1998). A test is carried out of the

joint significance of the estimated error correction terms in auxiliary equations for the MSA-specific

foreign variables, x∗it. Specifically for each lth element of the x∗it the following regression is carried
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out:

∆x∗it,l = µit +

ri∑
j=1

γij,lECM
j
i,t−1 +

si∑
k=1

ϕ′ik,l∆xi,t−k +

ni∑
m=1

θ
′
im,l∆x̃∗i,t−m + εit,l

where ECM j
i,t−1, j = 1,2,...,ri are the estimated error correction terms corresponding to the ri

cointegrating relations found for the ith MSA model and ∆x̃∗it = (∆x′∗it ,∆pt,∆rt,∆yt,∆oilt,∆qt)
′.

The test for weak exogeneity is an F -test of the joint hypothesis that γij,l = 0, j = 1,2,...,ri in the

above regression. The lag orders si and ni, need not be the same as the orders pi and qi of the

underlying MSA-specific VARX* models. In the test that is carried out, the lag order was chosen

by SBC and under these specifications, 3 out of 24 cases are found to be significant at the 5%

significance level. The test results for this specification are reported in Table 2.6

For the set of MSAs, as can be seen from this table, the weak exogeneity assumptions are rejected

only for inflation, in Dallas, and output in both Dallas and Houston. Since the vast majority of the

weak exogeneity tests are rejected, the tests suggest that the foreign and global variables can be

considered as weakly exogenous and that the key assumptions that underlie the GVAR modelling

are not generally violated.

2.3 Forecasting Sensitivity

In the context of a GVAR model, just as any specification change can alter the results of a

model, so too should the choice of weighting scheme since it alters the underlying data behind the

specification. This section addresses the impact that weighting matrices can have on the underlying

data, shows how convex weightings computed via Equation (1.11) can lead to improvements, and

outlines a procedural approach for how to think about weighting optimization through an example.

2.3.1 Foreign Variable Sensitivity

In the preceding analysis, baseline convexity parameters θ1 = α1 = 0.5 were used simply on

the grounds that they give equal weight to both distance and output. Moving beyond this, it is

helpful to first illustrate what the convexity parameters actually control. Hence, the foreign housing

variables (hp∗) is computed across the range θ1 ∈ [0,1] in increments of 0.1 under both fixed and

time varying settings. Although eq. (1.11) can be computed under either setting, it is commonly

found in many applications that fixed and time varying weights typically correlate strongly and

thus the utilization of the relatively more simple fixed weights is justified. Another justification

for fixed weights is their necessity in the generation of forecasts. Unless time-varying weights are

endogenously determined, usually weights from the last available observation are used as fixed to

generate forecasts. This inconsistency is unappealing and hence it is more satisfying to show that
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fixed weights are entirely sufficient. Before discussing convex weighting optimality, this section

first provides evidence of the relationship between the various weighting parameter choices in the

simple case of the two parameter application. Table 2.7 provides correlation coefficients of the MSA

specific foreign housing price variables hp∗ across the θ1 range in the fixed setting while Table 2.8

provides correlation coefficients between fixed and time varying settings at each θ1 value.

Table 2.7: Correlation coefficients of MSA-specific foreign housing price
variables using different values of θ1

Housing Price - Levels - 2016 Fixed Weights

MSA / Convexity 0.0 - 0.5 0.2 - 0.5 0.4 - 0.5 0.6 - 0.5 0.8 - 0.5 1.0 - 0.5 0.0 - 1.0 0.1 - 0.9

Dallas 0.9994 0.9998 1.0000 1.0000 0.9995 0.9982 0.9956 0.9974

Austin 0.9966 0.9987 0.9998 0.9998 0.9985 0.9955 0.9843 0.9900

Houston 0.9983 0.9992 0.9999 0.9999 0.9983 0.9933 0.9849 0.9911

San Antonio 0.9974 0.9990 0.9999 0.9999 0.9985 0.9950 0.9854 0.9908

Housing Price - 1st diff. - 2016 Fixed Weights

MSA / Convexity 0.0 - 0.5 0.2 - 0.5 0.4 - 0.5 0.6 - 0.5 0.8 - 0.5 1.0 - 0.5 0.0 - 1.0 0.1 - 0.9

Dallas 0.9662 0.9855 0.9981 0.9977 0.9759 0.9240 0.7941 0.8668

Austin 0.9456 0.9770 0.9970 0.9966 0.9668 0.9037 0.7153 0.8105

Houston 0.9730 0.9878 0.9983 0.9978 0.9741 0.9088 0.7880 0.8675

San Antonio 0.9310 0.9693 0.9958 0.9950 0.9494 0.8522 0.6024 0.7318

Note: Recall that the convexity weights are computed via Equation (1.11). Each column presents

the correlation of the foreign housing price variable under the respective θ1 value to the baseline

case of θ1 = 0.5 (e.g., the third column ‘0.4 − 0.5’ presents the correlation between the foreign

housing price variables under the two cases θ1 = 0.4, α1 = 0.6 and θ1 = α1 = 0.5). In all cases θ1 is

calibrated such that θ1 + α1 = 1. The last two columns report the correlations between the cases

θ1 = 0 to θ1 = 1 and θ1 = 0.1 to θ1 = 0.9 respectively.

As is evidenced by the results in Table 2.7, across all θ1 specifications, there is little difference in

the foreign variable values to the baseline in either levels or in first differences. However, focusing

more on first differences as the foreign housing price variables are likely to be I(1), the last two

columns show that there is at least a moderate difference between pure GDP weights (θ1 = 0) and

pure distance weights (θ1 = 1) with the correlation coefficients ranging from 0.60 to 0.79. This is

evidence, although not statistically formal, that unsurprisingly a difference exists between weighted

foreign aggregates computed under purely distance and purely GDP weighting schemes. Hence, we

might expect the results to differ if not meaningfully for impulses, perhaps to a more noticeable

degree for forecasting. Furthermore, the non-unity correlation suggests that some optimal mix

exists which captures the best blend between distance and GDP.

Lastly regarding robustness to fixed versus time varying weighting schemes, Table 2.8 shows the
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correlations between each temporal strategy for the same θ1 specification.

Table 2.8: Correlation coefficients of MSA-specific foreign housing price
variables using fixed and time varying weights while varying θ1

Housing Price - Levels - Fixed to Time Varying Correlation

MSA/θ1 0.0 0.2 0.4 0.6 0.8 1.0

Dallas 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000

Austin 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000

Houston 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

San Antonio 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000

Housing Price - 1st diff. - Fixed to Time Varying Correlation

MSA/θ1 0.0 0.2 0.4 0.6 0.8 1.0

Dallas 0.9985 0.9990 0.9995 0.9998 1.0000 1.0000

Austin 0.9989 0.9993 0.9996 0.9998 1.0000 1.0000

Houston 0.9995 0.9997 0.9999 0.9999 1.0000 1.0000

San Antonio 0.9985 0.9990 0.9995 0.9998 1.0000 1.0000

Note: Each column represents the correlation between fixed weights and time varying weights at

each respective θ1 value. The first panel reports levels and the second reports first differences.

Simply by definition, as θ1 approaches unity the correlation coefficients approach unity. Across

all values of θ1 however, the coefficients are extremely close to unity and thus it is unlikely that

the use of time varying weights would meaningfully impact either the impulse responses or the

forecasts. Thus, the exclusive use of fixed weights is justified.

2.3.2 Convex Optimality

To follow the discussion in section section 1.4 on parameter choice, the definition of optimality

is also of critical importance. Informational evaluation methods such as AIC and SBC are based on

the trade-off between the goodness of fit and model simplicity and while these methods are certainly

helpful, they are not the only methods. Alternatively, model predictability as was argued by Milton

Friedman in his 1953 work on Positive Economics 9, is paramount to success of any theory. It was

argued that without any accurate predictions, a theory is nothing more than useless. To this end

and in a similar manner to Martin and Cuaresma (2017), while informational methods are later

entertained, forecasting accuracy is focused on as the chief evaluation method.

9 Chapter seven of Friedman (1953) presents a discussion on the benefits of focusing on positive rather than normative
economics and emphasizes that in order to move closer to the positive, one must focus on the forecasting performance
of a model.
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Model complexity is an issue not only related to information criterion but also one that is

central to the ability of a model to forecast well. As more and more degrees of freedom are used

up, the noisiness of coefficient estimates increases and as a result, so too does the forecasting

performance degrade. This issue over complexity is particularly of interest here even prior to any

discussion over weighting schemes. Since the GVAR in itself is a relatively more complicated model

with more parameters than some of it’s simpler predecessors, it should first be illustrated that a

GVAR model is even necessary in forecasting applications. In order to assess forecasting ability, a

period of roughly 25 years starting in January of 1990 and ending in October of 2014 is used for

training, leaving 36 months (2014M11-2017M11) available for out-of-sample forecasting evaluation.

Following Martin and Cuaresma (2017), out-of-sample forecasting performance is assessed using

the root mean squared forecasting errors (RMSE) relative to the RMSE that would be obtained

using a random walk prediction.

Housing prices are forecast for each MSA using a series of different models and are evaluated

across seven time intervals ranging from one month ahead (h = 1) to three years ahead (h = 36).

The models tested include two ‘naive’ VAR models, both with lag orders optimally selected via

SBC, of which the first includes only the housing prices of the four MSAs and the second includes

the global variables as well. Also included in the testing are SBC optimal univariate ARIMA models

for each location. As for GVAR models, three are initially tested with one utilizing convex weights.

The two non-convex weighted GVARs are those weighted by pure distance and pure GDP. The

convexly weighted GVAR model is the baseline model that mixes equally between distance and

GDP. Each GVAR model is exactly specified in accordance with what is described in Section 1.2

To best evaluate the overall performance, irrespective of location, RMSEs can be averaged across

locations at each horizon and then compared to the random walk forecast RMSE. These results are

presented in Table 2.9 and illustrate the general advantage of utilizing GVAR models in particular

but also GVAR models with mixed weights. In this sense of overall performance, GVAR models

perform better than their non GVAR counterparts in all horizons except for the one step ahead

forecast, for which the ARIMA models performed best. Across the other six horizons, 100% of

the winning models are from the GVAR with mixed weights. Another noteworthy finding is the

increased performance over the random walk as the horizon lengthens. In the one step ahead

forecast, averaged RMSEs from the best performing model are only 23% lower than the random

walk RMSE while at three year horizon, averaged RMSEs from the best model are 32% better.
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Table 2.9: Predictive Accuracy Results - Model Comparison

Model (SBC Lag) Average Universal Performance - Housing Prices

h=1 h=6 h=12 h=18 h=24 h=30 h=36 avg

VAR(2) - Only hp 2.089 1.915 1.790 1.642 1.527 1.419 1.362 1.678

VAR(3) - All Variables 1.872 1.752 1.631 1.493 1.383 1.284 1.228 1.520

SBC Optimal Univariate ARIMA 0.769 0.841 0.772 0.748 0.714 0.684 0.668 0.742

GVAR : Pure Distance 0.890 0.864 0.739 0.683 0.639 0.591 0.579 0.712

GVAR : Pure GDP 0.780 0.813 0.748 0.732 0.689 0.642 0.625 0.718

GVAR : 0.5 Dist + 0.5 GDP 0.833 0.805 0.692 0.658 0.624 0.579 0.571 0.680

Note: Bold figures indicate minima. Average universal performance is calculated as the average

RMSE across the four included MSAs relative to the Random Walk RMSE.

The results in Table 2.9 provide strong evidence for convex weights defined by Equation (1.11)

and directly imply that an optimal weighting must exist since, for a given horizon, the performance

of the mix is better than the performance at either convexity bound10. To find the best performing

mix, a grid search procedure is conducted with 21 GVAR models estimated at each mix across the

θ1 range in intervals of 0.05. The results from this grid search are presented below in Table 2.10.

10 In results not reported, the null hypothesis of the Diebold and Mariano (2002) test of equal predictive accuracy
to the baseline is rejected for every forecast within Table 2.9 which further illustrates that the convexly weighted
GVAR resulted in better forecasting performance.
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Table 2.10: Convex Weights Grid Search - RMSE Results
Detailed Tabular Representation

Model (sbc lag) Average Universal Performance - Housing Prices

h=1 h=6 h=12 h=18 h=24 h=30 h=36 avg

GVAR : 0.00 Dist + 1.00 GDP 0.780 0.813 0.748 0.732 0.689 0.642 0.625 0.718

GVAR : 0.05 Dist + 0.95 GDP 0.781 0.822 0.756 0.737 0.692 0.644 0.627 0.723

GVAR : 0.10 Dist + 0.90 GDP 0.783 0.828 0.761 0.740 0.694 0.646 0.628 0.726

GVAR : 0.15 Dist + 0.85 GDP 0.786 0.836 0.767 0.743 0.696 0.648 0.630 0.729

GVAR : 0.20 Dist + 0.80 GDP 0.788 0.844 0.774 0.747 0.699 0.650 0.632 0.733

GVAR : 0.25 Dist + 0.75 GDP 0.791 0.853 0.781 0.751 0.702 0.653 0.634 0.738

GVAR : 0.30 Dist + 0.70 GDP 0.795 0.862 0.788 0.756 0.705 0.655 0.636 0.742

GVAR : 0.35 Dist + 0.65 GDP 0.798 0.872 0.796 0.760 0.708 0.657 0.638 0.747

GVAR : 0.40 Dist + 0.60 GDP 0.802 0.882 0.804 0.764 0.711 0.660 0.640 0.752

GVAR : 0.45 Dist + 0.55 GDP 0.806 0.892 0.812 0.768 0.714 0.661 0.641 0.756

GVAR : 0.50 Dist + 0.50 GDP 0.833 0.805 0.692 0.658 0.624 0.579 0.571 0.680

GVAR : 0.55 Dist + 0.45 GDP 0.839 0.812 0.698 0.662 0.626 0.581 0.573 0.685

GVAR : 0.60 Dist + 0.40 GDP 0.845 0.818 0.702 0.664 0.628 0.582 0.574 0.688

GVAR : 0.65 Dist + 0.35 GDP 0.851 0.824 0.707 0.666 0.629 0.583 0.574 0.691

GVAR : 0.70 Dist + 0.30 GDP 0.857 0.830 0.711 0.669 0.631 0.584 0.575 0.694

GVAR : 0.75 Dist + 0.25 GDP 0.863 0.836 0.716 0.671 0.632 0.585 0.576 0.697

GVAR : 0.80 Dist + 0.20 GDP 0.868 0.841 0.721 0.674 0.634 0.586 0.576 0.700

GVAR : 0.85 Dist + 0.15 GDP 0.874 0.847 0.725 0.676 0.635 0.587 0.577 0.703

GVAR : 0.90 Dist + 0.10 GDP 0.879 0.853 0.730 0.679 0.637 0.589 0.578 0.706

GVAR : 0.95 Dist + 0.05 GDP 0.884 0.859 0.735 0.681 0.638 0.590 0.579 0.709

GVAR : 1.00 Dist + 0.00 GDP 0.890 0.864 0.739 0.683 0.639 0.591 0.579 0.712

Note: Bold figures indicate minima. Average universal performance is calculated as the average

RMSE across the four included MSAs relative to the Random Walk RMSE. Lag order for all models

is selected via SBC.

Interestingly, the midpoint mix θ1 = α1 = 0.5 resulted in the best performance at every horizon

except for the the shortest. To better illustrate the results in Table 2.10 and to further exemplify any

patterns, Figure 2.1 presents a graphical representation of the all horizon average relative RMSE.

While the convexity mix θ1 = α1 = 0.5 coincidentally resulted in the lowest relative RMSE, the

trend towards better performance as θ1 declines is consistent across the entire range but with a

performance break at θ1 = 0.45.
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Figure 2.1: Convex Weights Grid Search - RMSE Results
Select Graphical Representation

Upon inspection of the lag orders of each GVAR model in the grid search, it is found that

pi|θ1<0.5 6= pi|θ1≥0.5. Specifically in this case, the lag order for domestic variables in the San Antonio

model is where the change occurs (i.e., psan = 4 when θ1 ≥ 0.5 and psan = 2 when θ1 < 0.5). Hence,

it can be said that a ‘lag break’ occurs at the critical point θ1 = 0.5.
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Table 2.11: Convex Weights Grid Search - Log Likelihood and Information Criterion

Model (sbc lag) Average Universal Performance

logLik Akaike
Schwartz

Bayesian

GVAR : 0.00 Dist + 1.00 GDP 2797.771 2753.521 2672.632

GVAR : 0.10 Dist + 0.90 GDP 2797.878 2753.628 2672.739

GVAR : 0.20 Dist + 0.80 GDP 2797.900 2753.650 2672.762

GVAR : 0.30 Dist + 0.70 GDP 2797.791 2753.541 2672.652

GVAR : 0.40 Dist + 0.60 GDP 2797.564 2753.314 2672.425

GVAR : 0.50 Dist + 0.50 GDP 2811.753 2763.003 2673.888

GVAR : 0.60 Dist + 0.40 GDP 2811.564 2762.814 2673.699

GVAR : 0.70 Dist + 0.30 GDP 2811.278 2762.528 2673.413

GVAR : 0.80 Dist + 0.20 GDP 2810.955 2762.205 2673.091

GVAR : 0.90 Dist + 0.10 GDP 2810.604 2761.854 2672.739

GVAR : 1.00 Dist + 0.00 GDP 2810.232 2761.482 2672.368

Note: Bold figures indicate maxima. Average universal performance is calculated as the average

log likelihood or information value across the four included MSAs. Maximum values are considered

best for AIC/SBC due to the Dees et al. (2007) formulation. Increments of 0.1 are reported for

brevity.

This prompts an inspection of the information criterion of the models within the grid search.

Table 2.11 presents the log likelihood, AIC and SBC values for each model and reveals an identical

pattern. It is, however, worth noting the rule of thumb outlined in Burnham and Anderson (2004)

which states that if the difference in information between the ith model and the best performing

model is less than the value of 2, then there is still substantial support for model i. Given that

this is indeed the case across the results of the entire grid search, information criteria evaluation

methods are hardly helpful and suggest that the choice of weighting has a minimal impact. This is

to be expected though as the models are of the exact same specification, only with the underlying

data of one foreign variable being minimally altered (recall column seven of Table 2.7). Hence, this

is additional evidence that it is more useful to rely upon evaluations of forecasting performance.

Nevertheless, the same pattern being found in both forecasting evaluation and information criteria

indicates that yet a greater improvement could be made. It should be noted though that the

potential for refinement is conditional on a single break, as is the case in this application, or a

harmonious group of ‘breaks’. To formalize, under the single lag break observed above, the following

conditions can provide guidance:
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(
δRMSE

δθ1

)
> 0 =⇒ Use Maximum θ1 Lag Order(

δRMSE

δθ1

)
< 0 =⇒ Use Minimum θ1 Lag Order

In words, if the slope of the relative RMSE curve on both sides of the lag break is increasing (and

since lower relative RMSE is better), then an improvement beyond the mix suggested by the initial

grid search could be made by fixing the lag order at the order selected under the maximum value

of θ1 instead of allowing it to be automatically selected via criterion11. To evaluate this claim, a

second grid search, hereafter referred to as the CX-Refinement, is run with lag orders fixed at the

θ1 = 1 (maximum value / pure distance) order (i.e., pi = pi|θ=1 and qi = qi|θ=1. Results of the

CX-Refinement grid search are reported below.

Table 2.12: CX-Refinement Grid Search - RMSE Results
Detailed Tabular Representation

Model (θ1 = 1 lag order) Average Universal Performance - Housing Prices

h=1 h=6 h=12 h=18 h=24 h=30 h=36 avg

GVAR : 0.00 Dist + 1.00 GDP 0.780 0.767 0.673 0.651 0.621 0.578 0.571 0.663

GVAR : 0.10 Dist + 0.90 GDP 0.789 0.775 0.677 0.653 0.622 0.579 0.572 0.667

GVAR : 0.20 Dist + 0.80 GDP 0.798 0.780 0.678 0.653 0.622 0.578 0.571 0.669

GVAR : 0.30 Dist + 0.70 GDP 0.809 0.787 0.682 0.654 0.622 0.578 0.571 0.672

GVAR : 0.40 Dist + 0.60 GDP 0.821 0.796 0.687 0.657 0.623 0.579 0.571 0.676

GVAR : 0.50 Dist + 0.50 GDP 0.833 0.805 0.692 0.658 0.624 0.579 0.571 0.680

GVAR : 0.60 Dist + 0.40 GDP 0.845 0.818 0.702 0.664 0.628 0.582 0.574 0.688

GVAR : 0.70 Dist + 0.30 GDP 0.857 0.830 0.711 0.669 0.631 0.584 0.575 0.694

GVAR : 0.80 Dist + 0.20 GDP 0.868 0.841 0.721 0.674 0.634 0.586 0.576 0.700

GVAR : 0.90 Dist + 0.10 GDP 0.879 0.853 0.730 0.679 0.637 0.589 0.578 0.706

GVAR : 1.00 Dist + 0.00 GDP 0.890 0.864 0.739 0.683 0.639 0.591 0.579 0.712

Note: Bold figures indicate minima. Average universal performance is calculated as the average

RMSE across the four included MSAs relative to the Random Walk RMSE. Lag order for all models

is fixed at the θ1 = 1 sbc selected order.

Table 2.12 shows that improvements are made across all horizons from taking the best performing

model from the CX-Refinement grid search (θ1 = 0) over the best performing model from the

CX-Automatic grid search (θ1 = 0.5) with a magnitude of improvement around 2.5%. Figure 2.2

11To simplify the terminology, the initial grid search is referred to as the CX-Automatic grid search since the lag
orders and ranks of each model are determined automatically using selection criterion.
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illustrates graphically the improvement for the all horizon average relative RMSE from fixing the

lag order.
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Figure 2.2: CX-Refinement Grid Search - RMSE Results
Graphical Performance Comparison

The specific magnitudes of improvement from the entire procedure are illustrated in Table 2.13.

Starting from a commonly used non-convex baseline pure distance weighting scheme, performing

the CX-Automatic grid search resulted in identification of a Dist-GDP mixed weights model that

performs around 4.5% better. Moving further to the CX-Refinement procedure with fixed lag order,

a model performing 2.6% better than the CX-Automatic optimal model was identified. The overall

performance from the entire procedure resulted in an increase of nearly 7% over the baseline before

convexity or refinements are introduced.

Table 2.13: Overall Performance Increases
Convex Weights and Refinement

Model
Average

Horizon

Relative

Gain

Total

Gain

Pure Distance 0.712

CX-Automatic 0.680 -4.5%

CX-Refinement 0.663 -2.6% -6.9%

Note: CX models with the best performance.

Gains are reported as the percentage reduc-

tion in relative RMSE from one row to the

next.

Up to this point, the discussion has revolved around what was found in the simple illustrative

application with only four spatial units. It is worth noting that the guidance for improvement
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beyond interior convexity (fixed lag/rank grid search) and thus the CX-Refinement procedure uti-

lized here cannot without loss of generality be expanded to cases for which multiple lag breaks,

rank breaks, or any combination of more than a single change occurs or to cases where the signs

of the slopes of the respective zones are not the same. It may also become less than feasible to

conduct the refinement in the presence of convex mixes containing more than two units, however

we can remain hopeful that this particular issue might resolve itself as computing power continues

to increase. Presently though, it is likely best to trust the model selection criterion as the largest

improvement occurs when moving from the baseline to the initial convex mix under automatic lag

and rank selection. The guidance presented here only serves as a starting point for what can be

done with regard to weighting matrices and illustrates that improvements are possible. Another

last point of interest is on how the optimality is defined. In the case of the model presented here,

it is over universal performance where in practical applications one might choose to optimize on a

single location or on an average of two or more locations that are of specific interest to the problem

at hand. It suffices to say that regardless of definition, convex weight mixing and optimization

should at least be entertained as an alternative to exact specification.

2.4 Impulse Response Sensitivity

Beyond forecasting, an extremely common exercise performed in modern applied macroeco-

nomics is impulse response analysis. This type of analysis, as defined by Pesaran (2015) in his

recent econometric manual, is used to “measure the time profile of the effect of shocks at a given

point in time on the (expected) future value of the variables within a system.” The focus of this

section is to investigate the sensitivity of impulses to changes in weighting schemes. In addition to

this, standard consideration is also given to each shock since the coverage of the model is substantial

for the housing markets in Texas. The following set of shocks is considered: (1) a one standard

error negative shock to US real GDP; (2) a one standard error negative shock to US equity prices;

(3) a one standard error negative shock to oil prices; (4) a one standard error positive shock to the

US interest rate; (5) a one standard error positive shock to housing prices in Dallas12. A formal

summary of the GIRF method which is used throughout this section is presented in Section 1.2.2.

2.4.1 Shock to US GDP

Consider first the GIRFs for a one standard error negative shock to US GDP. This shock is

equivalent to a fall of around 0.18% in US GDP per month. As is the main focus of this section,

Figure 2.3 reports the response of Austin housing prices using four different weighting schemes.

12 In the discussion of sensitivity for each shock, a single location is presented for illustrative purposes. The full set
of responses for all locations to all shocks can be found in Appendix A.1.
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Of these four are two pure (distance and GDP) weighted models and both the CX-Automatic and

CX-Refinement optimal models from each respective grid search. As expected, the responses show

a highly similar shape across specifications but more critically, by inspection of the distance and

GDP panels, it is seen that the confidence bands are indeed different. These top two panels directly

illustrate, albeit not in the most extreme way, that the choice of weighting scheme could influence

the strength to which an author might argue that a certain effect exists. Specifically, if pure distance

weights were used, the top left panel indicates that we might strongly argue that housing prices in

Austin are negatively impacted in a significant way. However, if pure GDP weights were used, the

top right panel would indicate that the Austin housing market might only marginally be impacted

over the long run. Hence, even in this small scale application we see how two moderately different

arguments could be formed from what has traditionally been an ad hoc choice. The bottom two

panels report the responses of the optimally selected models from each of the CX-Automatic and

CX-Refinement grid searches respectively which appear quite similar and are more resemblant to

the pure distance weights in terms of significance.

Figure 2.3: GIRFs of a negative (1 s.e.) shock to US GDP (bootstrap mean estimates with 90%
bootstrap error bounds). Austin housing price response under each weighting scheme.

As for more traditional considerations, Figure 2.4 reports the responses of each metro to the same

national GDP shock using the CX-Automatic grid search optimal model. To briefly summarize the
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findings, the transmission to each housing market takes place rather quickly and in a moderately

homogeneous way across each metro. Regarding on impact effects, Dallas, Austin, and Houston

are all impacted negatively with monthly declines ranging from around -0.15% to -0.30%. These

negative effects are only significant in Dallas and Houston however. San Antonio is the only metro

to have a positive point estimate response on impact, although the confidence bands clearly show

that the effect is not significantly different from zero. The temporal effects over the first year are

negative across all metros with Houston and Dallas having the steepest average monthly declines

with an impact after twelve months of -0.80% for both locations. Austin is impacted about half

as much as Dallas or Houston and the effect on the San Antonio housing market isn’t statistically

different from zero. Concerning the long run, all metros show a permanent negative impact again

with San Antonio as the outlier for statistical insignificance.

Figure 2.4: GIRFs of a negative (1 s.e.) shock to US GDP (bootstrap mean estimates with 90%
bootstrap error bounds). CX Automatic optimal model housing price responses.

The greater impacts in Dallas and Houston could be driven by a number of factors but it

would seem that the effect could simply be related to the size of the metro. Dallas and Houston

are substantially larger than Austin and San Antonio and we see that both Dallas and Houston

appear to be affected more substantially. Understanding the exact causal impacts of these minimally

heterogeneous effects is beyond the scope of this chapter and is a potential path for further research.
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2.4.2 Shock to US Equity Prices

Consider next the GIRFs for a one standard error negative shock to US equity prices. This shock

is equivalent to a fall of around 2-3% in US real equity prices per month. Figure 2.5 compares the

Austin housing market response across different weighting schemes where it can be observed from

the top panels that the point estimates exhibit substantial sensitivity.

Figure 2.5: GIRFs of a negative (1 s.e.) shock to US Equity Prices (bootstrap mean estimates
with 90% bootstrap error bounds). Austin housing price response under each weighting scheme.

The top left panel shows the response from the pure distance weighted model where a negative

but insignificant response is observed that persists over the long run. Contrast this with the top

right panel that reports the response from the purely GDP weighted model which has a positive

and lasting response across the entire horizon. Focusing on the confidence intervals of the top two

panels, the conclusion drawn from the distance weighted model would be that housing prices in

Austin are not significantly impacted by the equity price shock whereas the conclusion from the

GDP weighted model would be that of a borderline positive effect. This case specifically illustrates

the danger in estimating and drawing conclusions from a single weighting scheme without checking

robustness.

Regarding the transmission to the major housing markets in Texas, Figure 2.6 reports the
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responses of each metro from the CX Automatic grid search optimal model.

Figure 2.6: GIRFs of a negative (1 s.e.) shock to US Equity (bootstrap mean estimates with 90%
bootstrap error bounds). CX Automatic optimal model housing price responses.

Responses across all spaces take place rather quickly and in only a moderately heterogeneous

way again with San Antonio as the outlier. Regarding on impact effects, Dallas and Houston are

impacted positively with Dallas seeing a monthly price jump of 0.16% and Houston to a lesser degree

0.06%. Conversely, Austin and San Antonio are negatively affected on impact with magnitudes of

-0.08% and -0.25% respectively. Over the first two years however, Dallas and Houston appear to

be more resilient than Austin and San Antonio with the responses being largely insignificant. The

temporal effect in Austin and San Antonio do appear significant though but in opposite directions.

Austin is impacted negatively by 0.19% on average for the first year while San Antonio is impacted

positively by 0.26%. After the first year, effects are clearly insignificant everywhere save for San

Antonio where the effect is only borderline. It is worth noting that, in results not reported, under a

purely distance weighted model the lower bound for the San Antonio response lies below zero and

thus a researcher might alter his argument by stating that the long run response is insignificant

across the board whereas utilization of the CX-Automatic optimal model makes such a statement

less plausible since the San Antonio bounds are borderline.

The heterogeneous impacts could be driven by a number of factors but it would seem that the
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resiliency of a metro to stock prices movements could be due to the same reason listed for the

GDP shock. Dallas and Houston are substantially larger than Austin and San Antonio and we see

that neither Dallas or Houston appears to be affected. Another contributing factor could be the

diversification of labor forces or even more simply, differential abilities across metros in permitting

and construction lead times. Again, the exact causal impacts of these heterogeneous effects is

beyond the scope of this work and is a potential path for further research.

2.4.3 Shock to Oil Prices

The third shock of interest, a positive one standard error shock to the oil price, represents a

monthly increase of around 5-6%.

Figure 2.7: GIRFs of a positive (1 s.e.) shock to Oil Prices (bootstrap mean estimates with 90%
bootstrap error bounds). Dallas housing price response under each weighting scheme.

Figure 2.7 reports the Dallas housing market response sensitivity across weighting schemes

and similarly to the previous shocks, the distance panel and GDP panel directly illustrate a case

where the argument of a researcher would be altered just based on the scheme that he chose.

Under distance weights, the researcher would say Dallas housing prices are significantly negatively

impacted whereas under GDP weights he would not be able to make such a claim. Convex weights

and the subsequent optimization procedures provide a straightforward way to clean up the ad hoc
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problem in a much more economically characteristic way due to it’s basis of maximization. Certainly

it could be that responses from the use of convex weights and optimization are still borderline, but

in any case, the point is to remove uncertainty and to increase the justification and strength of any

argument made from a set of generated results.

Figure 2.8: GIRFs of a positive (1 s.e.) shock to Oil Prices (bootstrap mean estimates with 90%
bootstrap error bounds). CX Automatic optimal model housing price responses.

Similarly to the results of the GDP shock, Figure 2.8 shows a moderate level of response het-

erogeneity across space from the oil price shock as well. On impact, all metros except for Houston

are negatively impacted with effects ranging between -0.04% in Austin to -0.12% in Dallas. Over

the first year, San Antonio surprisingly experiences an insignificant positive shock but is otherwise

unaffected. Over the same period, Dallas, Houston, and Austin are significantly negatively im-

pacted with effects after twelve months falling around -0.39%. San Antonio is the only metro that

appears unaffected. In the long run, the positive oil price shock results in a permanent housing

market decline in Dallas, Houston, and Austin which all show negative significant impacts across

the horizon.

These findings are in the expected direction, with the exception of San Antonio, particularly

in the sense that they can be viewed through the lens of the real GDP response. GDP averages

a response of -0.27% through the first year and up to -0.39% for the second and is significantly
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negative throughout. Regarding the resilience of San Antonio, one reason could be it’s respectively

less diversified and larger involvement in oil and gas industry than other areas. It would not come

as a surprise that, when the oil price appreciates, places more heavily involved in the extraction

and sale of oil would be able to benefit from its appreciation and hence any negative impacts from

a contractionary response in the broader market would be offset to a larger extent.

2.4.4 Shock to Short-Term Interest Rates

We now turn attention to a one standard error positive shock to the interest rate, which amounts

to a monthly percentage increase of around 10 basis points. In the simplest sense, interest rates

directly impact borrowers access to lending and when rates rise, it becomes more difficult to qualify

and thus less individuals can secure funding. Ceteris peribus, less individuals with funding means

less demand for home ownership and thus we should see a decline in housing prices. In terms of the

long run response, this is exactly what we observe across space in the response of housing prices

to the positive interest rate shock, save for Austin which appears largely unaffected. Regarding

sensitivity however, figure Figure 2.9 reports the Austin housing market response sensitivity to

weighting and presents another clear illustration of the case where the responses from each pure

weighted model are significantly different. Just as before, if a conclusion were to be drawn about how

the housing market in Austin responds to interest rates, the conclusion would be that it is completely

resilient if the model were estimated under distance weights but that it is negatively impacted, albeit

in a borderline way, if the estimation were under GDP weights. This again illustrates the danger

that blind weighting can have and just via visual inspection it is not unreasonable to conclude that

blind weighting is equivalent to blind results. The bigger problem with such blind weighting is not

the obvious question of whether the response should be interpreted as significant but rather that

the question wouldn’t even be addressed without considering multiple weighting schemes which of

course then begs optimality.
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Figure 2.9: GIRFs of a positive (1 s.e.) shock to US Short-Term Interest Rates (bootstrap mean
estimates with 90% bootstrap error bounds). Austin housing price response under each weighting

scheme.

Regarding heterogeneous transmission, we again observe some differences in the magnitude of

the declines across space. While each housing market in Dallas and Houston appears effected only

in a borderline way, it is clear that they are effected substantially more than the markets in Austin

and San Antonio.
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Figure 2.10: GIRFs of a positive (1 s.e.) shock to US Short-Term Interest Rates (bootstrap mean
estimates with 90% bootstrap error bounds). CX Automatic optimal model housing price

responses.

On impact, effects over space are mixed and range range between -0.04% and 0.28%. Over the

first twelve months more prominent pattern begins to emerge with housing markets in Dallas and

Houston averaging impacts of -0.20% and -0.25% respectively. Interestingly, the average of the point

estimates for Austin and San Antonio are both positive over the period but when considering the

effect in terms of confidence intervals, it is clear that both metros are not impacted in a way that

is significantly different from zero. The impact on the markets in Dallas and Houston however is

much closer to significant, especially in through the first twelve months and then borderline across

the rest of the horizon.

2.4.5 Domestic Shocks

A variety of global shocks have been considered, all with moderately heterogeneous results falling

in the expected directions save for San Antonio. In contrast to global shocks, this section addresses

potential spillovers from one metro to another by presenting a one standard error positive shock to

housing prices localized solely in Dallas. This housing price shock amounts to a monthly increase in

housing prices of around 1.7% in Dallas. First concerning weighting sensitivity, Figure 2.11 presents
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the Houston housing market response under each weighting and illustrates again how minor changes

in weightings can impact the conclusions that a researcher might reach. In this case, the question

is in the duration of significance and in the magnitude of impact. Utilization of distance weights

would lead a researcher to conclude that a spillover from the Dallas housing market to the Houston

housing market might only last in any significant way for around one quarter and be limited in

magnitude to around 31% of the size of the Dallas shock. Utilization of GDP weights on the

other hand would lead a researcher to conclude that the spillover might last at least three quarters

and be around 106% of the magnitude of the Dallas shock for the first quarter. Again without

testing multiple weights, a researcher wouldn’t be aware that such differences even exist. To help

clarify which effect should be believed, the response from the CX Automatic grid search optimal

model has both the duration of significance and the magnitude falling between each distance and

GDP weighted model. The CX Automatic optimal model response shows that the housing market

in Houston responds positively to the Dallas housing market shock for around 6 months with a

magnitude of roughly 65% of the size of the Dallas shock over the first quarter.

Figure 2.11: GIRFs of a positive (1 s.e.) shock to Dallas housing prices (bootstrap mean estimates
with 90% bootstrap error bounds). Houston housing price response under each weighting scheme.

Regarding the broader transmission across space, the other metros in the analysis experience

modestly different on impact responses ranging from 0.01% to 0.17%. Over the first year, the
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average impacts in Houston and San Antonio are each around 0.12% while the effect in Austin is

null. Focusing on the confidence intervals, both Houston and San Antonio are positively impacted

in a significant way for around at six months following the onset of the shock whereas Austin seems

to be less sensitive and shows an entirely insignificant response.

Figure 2.12: GIRFs of a positive (1 s.e.) shock to Dallas housing prices (bootstrap mean estimates
with 90% bootstrap error bounds). CX Automatic optimal model housing price responses.

An interesting point of note is the geographical one. Austin lies closer to the origin of the

shock than either Houston or San Antonio yet the transmission only appears in a significant way

in the latter metros. A potential explanation could be that the prices in Austin’s real estate

market are substantially higher than the other three metros. Moreover, the Austin market may be

meaningfully different enough from the other three metros, perhaps through it’s unique positioning

in the technology space or through it’s building regulations and policies, that the transmission is

dampened to the point of insignificance.

2.5 Concluding Remarks

Addressing spatial linkages is an important aspect of modern applied macroeconomics and is

central to adequately modelling spillovers and transmission effects. Handling spatial linkages in

an imprecise or casual way may yield questionable results, for which extra caution must then be
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exercised over their use in forecasting or policy analysis. Interestingly, only a small minority of

papers within the GVAR literature have considered the impact of weighting schemes, the primary

method for defining such linkages. In all cases presently known to the author, the GVAR literature

has yet to address pre-averaging but has instead focused on mixing on variables or post-averaging

despite the recent call for further research in the specific area by Martin and Cuaresma (2017).

Through the development of convex weighting chapter 1 and the subsequent optimization procedure

utilized here, this chapter extends the set of available options for defining spatial linkages in models

that handle the curse of dimensionality via compression, such as the GVAR model, and offers a

justifiable approach to alleviating uncertainty.

For testing the performance of the newly developed convex weighting scheme, a set of GVAR

models on local housing markets are estimated. These models include the four largest metros in

Texas, covering roughly 80% of state output, and are estimated over a period of nearly 25 years

(from 1990 to 2014). Using these models, forecasting and impulse response sensitivity to weighting

scheme choice is specifically investigated. Forecasting performance from models utilizing convexly

optimized weights are shown to outperform both naive models but also GVAR models relying on

more traditional weighting schemes such as pure distance. Regarding impulse sensitivity, a number

of different shocks are passed through the models for which we learn how choices over weighting

schemes can critically impact the results and hence shape the arguments that researchers might

make. Moreover, by substituting optimization for choice, it is illustrated that convex weighting is

well position to solve this complication and hence should allow researchers to be more confident in

their findings.

Beyond the technical contribution of this chapter are the substantive impulse response results.

In the preceding section, it is shown that Texas housing prices are impacted in moderately hetero-

geneous ways across space over a set of national level shocks including GDP, equity prices, the oil

price, and the short term interest rate. To investigate spillovers and domestic transmission effects

to other metros, a localized shock to housing prices only in Dallas is passed through the model.

Highlights from the results are as follows: (1) housing markets in Dallas and Houston respond in

a highly similar way to all national level shocks with the Austin market being effected at roughly

half the magnitude and the San Antonio market being largely unaffected, (2) housing markets in

Houston and San Antonio experience a significant short run spillover effect of roughly 50% the

magnitude of a Dallas housing price shock while the Austin market experiences no spillover at all.

Overall, the results suggest that convex weight mixing can perform well on smaller universe

type questions for which distance weights are popular. A clear path for future research is on the

performance of convex weights at the international level where countries are cross-sectional units

and where the assumption that trade weights are sufficient has long been widely accepted. This

question is addressed in chapter 3.
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CHAPTER 3

International Application on the Global Economy

3.1 Introduction

This chapter presents a full-scale GVAR model of the global economy and represents a major

extension to the seminal work by Dees et al. (2007) and to the literature on GVAR weighting

scheme selection. The primary focus of this chapter is on providing a real-world understanding of

how the choice of weighting scheme can impact inferences drawn from impulse response analysis.

In this undertaking, a number of further innovations regarding weighting schemes are developed

and demonstrated.

Specifically, the Convex Weights developed in chapter 1 are utilized in combination with the

existing weighting scheme concept of mixing on variables that was first introduced in Eickmeier

and Ng (2015). As a result, this approach leads to a substantial number of possible weightings

over which the optimal is determined by employing a full-search algorithm over a time-series cross-

validation of in-sample fit1. Results from the optimally weighted GVAR model, referred to as

the cross-validated convex weights model (CV-CX), are then compared to a pure trade weighted

baseline model for which three distinct findings emerge: (a) that significant difference exist between

the impulse responses generated from each model, (b) that the bootstrap confidence bands from

the CV-CX model are substantially tighter than the baseline model, and (c) that the results of the

CV-CX model tell a more coherent story of the global economy.

Regarding the first finding, another contribution of this chapter is in the development of an

inference classification algorithm that has the capability to categorize the direction of impulse

responses as significant, borderline, or insignificant for a given horizon. Comparison of classified

inferences generated from the baseline and CV-CX models shows that, at any horizon, differences

exist in no less than 30% of cases2. This is a chilling result when considering just how commonly

used global macro data is and that over 85% of the global macro GVAR literature has, up to

this point, utilized exclusively trade weights3. Generally, the evidence put forth in this chapter

1 A modified version of the GVAR toolbox is utilized to search over 11,011 GVAR models. The modified toolbox
as well as the scripts and functions set up for conducting the grid-search and inference exercises presented in later
sections are available from the author on request.
2 Cases are combinations of countries and variables for which there are 123.
3 As a starting point for analyzing the commonality of variables in the global macro literature, a review of the papers
listed in the survey paper Chudik and Pesaran (2016) revealed the following usage among papers utilizing GVAR
models with countries as cross-sectional units: output (85%), inflation (63%), equity prices (47%), exchange rates

43



suggests that, in those circumstances where the linkage mechanism may be in question, a simple

re-evaluation under the CV-CX approach may prove fruitful.

As for the second finding, it does not come as a surprise that the CV-CX model results in tighter

confidence intervals since it ultimately fits the data better. Such a finding may prove extremely

useful for financially oriented GVAR studies where any form of worst-case scenario analysis might

be utilized. Additionally, the tightening of confidence intervals as a result of the cross-validated

improvement procedure is beneficial to our understanding since it is the confidence intervals by

which inference is commonly derived.

Touching on the third finding, the CV-CX model tells a more economically intuitive story of

global financial markets. Particularly, in response a negative US equity price shock, the baseline

model paints a counter-intuitive picture of equity and bond markets while the CV-CX model results

in the expected inverse relationship.

In terms of this chapter’s place in the literature, it represents a parallel and an alternative to

Gross (2018) who has suggested a fully endogenous method for determining the optimal weighting in

GVAR models. The method put forth in this chapter represents an appealing balance between the

fully endogenous weighting estimation approach and the specification of a single linkage mechanism

that the literature has so heavily relied upon. The mixed-on-variables convex weights approach

alleviates the strenuous assumption implicit in the single specification approach while also preserving

the economic context that is lost with the fully endogenous method. Specifically, in retaining the

economic context of the linkage mechanism, the global model in this chapter revealed that economic

variables are best linked by trade while financial variables are best linked by a combination of a

county’s portfolio investment and it’s distance from other countries.

The rest of this chapter is laid out as follows: Section 3.2 presents the model and the standard

diagnostics and details the procedure underlying the weighting scheme. Section 3.3 presents the im-

pulse response inference classification algorithm and reports the results of the dynamic simulations

and inference sensitivity analysis while Section 3.4 concludes.

3.2 Global Application (1979-2016)

The GVAR models developed in this chapter mirror that of the model in Dees et al. (2007,

DdPS) but with expanded temporal coverage. Whereas the DdPS model is estimated over the

period 1979(2)-2003(4), the models in this chapter are estimated over an extended period which

is 13 years longer now ending at 2016(4). This addition is equivalent to a 52% extension to the

total length of the time series. Additionally, the new coverage includes the periods over which

(64%), short-term interest rates (63%), long-term interest rates (41%), oil prices (66%). The same literature is also
used to assess the percentage of papers utilizing trade weights.
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the financial crisis transpired and thus as an added bonus to the main findings, each intermediate

result is compared with it’s DdPS equivalent and can be interpreted through the lens of the financial

crisis’ impact. The GVAR model in this chapter includes 30 countries accounting for roughly 82% of

global output as is measured by 2016 Purchasing Power Parity GDP. The coverage here is the same

as the DdPS coverage except for the exclusion of the Latin American countries that experienced

hyperinflation during the late 1980’s4. The decision to exclude these countries was made to increase

the stability of the model since the overall purpose of this chapter is to provide a sound evaluation

of the impact that convex weighting procedures can have at the global level. Table 3.1 presents each

of the countries in the model with each under it’s respective regional categorization. As was done in

DdPS, the 8 included European countries that joined the European Union in 1999 are aggregated

together and modeled as a single cross-sectional “Euro” unit.

Table 3.1: Countries and Regions in the GVAR Model

USA Euro Area Rest of W. Europe

China Austria Norway

Japan Belgium Sweden

UK Finland Switzerland

France

Other developed economies Germany

Australia Italy

Canada Netherlands

New Zealand Spain

Rest of Asia Latin America Rest of the World

Indonesia Chile India

Korea Mexico Saudi Arabia

Malaysia South Africa

Philippines Turkey

Singapore

Thailand

4 Specifically Argentina, Brazil, and Peru are excluded from this chapter’s analysis. Collectively, these countries
account for less than 4% of the total coverage (2016 PPP-GDP) of those included in the model. As is documented in
Kiguel and Liviatán (1995), annual inflation peaked at around 3100%, 2900%, and 7500% for each Argentina, Brazil,
and Peru respectively between 1989-1990.
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Concerning the variables in model, the standard macroeconomic collection is included. More specif-

ically,

yit = ln(GDPit/CPIit), pit = ln(CPIit), qit = ln(EQit/CPIit),

eit = ln(Eit), ρSit = 0.25 ∗ ln(1 +RSit/100), ρLit = 0.25 ∗ ln(1 +RLit/100)

where the variables are defined exactly as in DdPS. That is, GDPit is nominal Gross Domestic

Product, CPIit is the consumer price index, EQit is the nominal equity price index, Eit is the

exchange rate in terms of US dollars, RSit is the short-term interest rate, and RLit is the long-

term interest rate. All data is from the 2016 Vintage release of the GVAR database compiled by

Mohaddes and Raissi (2018).

In the DdPS model, country-specific foreign variables, y∗it, π
∗
it, q

∗
it, ρ

∗S
it , ρ∗Lit were constructed

exclusively from trade weights. This chapter shares the same weighting scheme in it’s baseline model

that utilizes fixed trade weights computed as the average of trade flows over three years 2012-2014.

Justification for the use of fixed weights is twofold. First, in the context of these exact variables,

it has been shown that the correlation between country-specific foreign variables constructed from

fixed and time-varying weights is so high that there would be practically no loss from utilizing the

fixed specification5. Second, because this paper expands on the ideas of Martin and Cuaresma

(2017) who investigate a wide range of linkages constructed from bilateral financial flows data that

only have available data extending back to around 2005.

In total, the models in this chapter include 23 cross-sectional units6. With regard to model

specification, the DdPS specification is followed exactly. Specifically, each country model except for

the US includes all six country-specific foreign variables, y∗it, π
∗
it, q

∗
it, ρ

∗S
it , ρ∗Lit an the log of oil prices

(pot ), as weakly exogenous while the US model excludes foreign equity prices and interest rates.

3.2.1 Weighting Schemes

The primary focus of this chapter is on the sensitivity of inference to weighting schemes in the

global setting. To investigate this while managing complexity, only the best performing weighting

schemes that have been utilized in the literature are included. Specifically, the most comprehensive

study on weighting scheme sensitivity to date, Martin and Cuaresma (2017), test the following nine

schemes:

• Bilateral trade flows

• Inward portfolio investment

5 See DdPS table VIII for exact details. The average correlation for all focal foreign variables is 0.96 in levels and
is .89 in first differences. These correlations were so high that the authors of DdPS determined that the utilization
of fixed weights was justifiable.
6 Models include 22 individual countries as well as the Euro unit which is made up of a 2012-2014 PPP-GDP
weighted average of the 8 European countries specified in Table 3.1
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• Outward portfolio investment

• Inward foreign direct investment

• Outward foreign direct investment

• Inward banking claims

• Outward banking claims

• Trade costs

• Geodesic Distance.

In their analysis of pre-crisis forecasting performance, models utilizing banking claims and trade

costs were never the winning model and thus those are excluded from the analysis here7. As for

the remaining schemes, I compress the inward and outward versions of foreign direct investment

and portfolio investment respectively by elementwise averaging. Justification for this is that cross-

correlation coefficients between inward and outward matrices are very high8. After throwing out

banking claims and trade costs for poor performance in Martin and Cuaresma (2017) and combining

inward and outward matrices for similarity, we are left with four distinct weighting schemes.

Regarding the details of each weighting scheme used in this chapter, trade weights are con-

structed as the average of the import and export annual figures provided by the IMF Direction

of Trade Statistics. The data for 2012-2014 exports and imports is averaged and then used to

construct the trade weights. Bilateral portfolio investment data are obtained from Table 8 of the

IMF Coordinated Portfolio Investment Survey (CPIS) and bilateral foreign direct investment data

is from Table 6.1-o of the IMF Foreign Direct Investment Survey (CDIS). Portfolio investment and

foreign direct investment data over the period 2012-2014 is averaged in the construction of these

respective weighting schemes similarly to how trade weights are constructed. For the same reasons

stated in Martin and Cuaresma (2017), fixed weights are used to avoid time related bias when com-

paring the performance of specifications. As for the fourth weighting scheme, geodesic distances

have been derived form CEPIIs GeoDist dataset. Lastly, I construct a fifth weighting scheme as

a global vector weighting of GDP9. Cross-correlations between each of these five matrices are pre-

sented in Table 3.2. This table reveals that the maximum similarity between matrices is between

trade and foreign direct investment (0.74) and the minimum is between distance and GDP (0.05)

with all others falling in-between. This collection of matrices provides a reasonable balance between

complexity and variation.

7 See Martin and Cuaresma (2017) Table 4 for details
8 Cross-correlations coefficients are computed as corr(vec(A),vec(B)) where A and B are matrices.
9 See Section 1.3 for the description of how “global vector weights” are constructed.
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Table 3.2: Weighting Scheme Correlation Matrix

trade fdi port dist gdp

trade 1.00

fdi 0.74 1.00

port 0.56 0.58 1.00

dist 0.51 0.38 0.22 1.00

gdp 0.65 0.61 0.73 0.05 1.00

Note: Entries represent correlation coefficients between weighting schemes

constructed from bilateral trade flows, foreign direct investment, portfolio

investment, geodesic distance, and PPP GDP respectively.

A key component of this chapter is the concept of mixing on variables. This concept was

introduced by Eickmeier and Ng (2015) and further extended by Martin and Cuaresma (2017).

Mixing on variables refers to the usage of different weighting schemes for different variables in the

GVAR context. As the number of variables included increases, obviously so also does the number

of combinations. Put more elegantly, the concept of mixing on variables can be expressed as a

k-permutation with repetition for which the number of possible k-permutations with repetition of

n objects is

P ′n,k = nk

where, in this case, n is the number of matrices and k is the number of variables in the GVAR model.

Considering the standard macroeconomic variable mix in combination with just two matrices, the

number of permutations is equal to 64. In the case of Martin and Cuaresma (2017) who use all six

variables but consider nine matrices, the number exceeds half a million10. To combat this level of

complexity, researchers have made use of categorizations and have restricted the scope of mixes. By

categorizing variables as either economic or financial, the number of permutations can be drastically

reduced. The literature has tended to categorize GDP and inflation as economic while assigning

equity prices, interest rates, and exchange rates as financial. Under this categorization, the number

of permutations is now limited to the square of the number of matrices. This reduction however

may still result in an undesirably high (81) number of permutations as was the case in Martin

and Cuaresma (2017) who further reduce the number by only considering mixes with trade weights

on the economic variables which ultimately gave them 15 mixes. In this chapter, I categorize the

variables in the same way but because we are interested in combining the concept of mixing on

variables with the concept of convex weighting, the number of matrices when viewed through the

10The number of possible k-permutations for nine matrices and six variables in the case of Martin and Cuaresma
(2017) is P ′9,6 = 69 = 531,441
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lens of mixing on variables is actually equal to six since we add an additional ‘convex’ matrix that

allows for any combination of the five pure weight matrices. The mixes on variables are shown in

Table 3.3. The number of permutations for this scenario is equal to P ′6,2 = 36 but since each convex

entries houses all of the pure matrices, the full set of permutations can be illustrated in fewer rows.

Table 3.3: Weighting Scheme Concept: Mix on Variables

Model Economic vars. Financial vars.

01 (Baseline) Trade Trade

02 Trade Convex

03 FDI Convex

04 Port Convex

05 Dist Convex

06 GDP Convex

07 Convex Trade

08 Convex FDI

09 Convex Port

10 Convex Dist

11 Convex GDP

12 Convex Convex

Note: Rows illustrate the different combinations for mixing on variables.

Economic variables are GDP and Inflation and Financial variables are Ex-

change Rates, Equity Prices, and Interest Rates (short and long).

To understand this more clearly, consider that each convex entry in Table 3.3 actually repre-

sents a convex hull rather than a single matrix. Abstracting from the element-wise notation in

Equation (1.12), consider a convex weightings in terms of the constrained convex hull

Conv(W ) =


|W |∑
ρ=1

θρWρ

∣∣∣∣∣∣(∀ρ : θρ ∈ Θ) ∧
|W |∑
ρ=1

θρ = 1


such that:

W = {Trade, FDI, Port, Dist, GDP}
ι = 0.1

Θ = {0ι, 1ι, 2ι, . . . , nι} with nι = 1

where θ are convexity parameters, W are weighting matrices, and |W | represents the cardinality of

the set of weighting matrices. The first condition specifies that the weighting matrices are the ones

that are included in this chapter. The second defines the interval size and the third specifies that

the weights must conform to the interval size. These three conditions together characterize the full

set of convex matrices for which a grid search can be conducted to test each unique combination

on the grounds of a selection criterion. In this chapter, the selection criterion is the sum of squared
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errors over the entire GVAR model. Another factor to consider is lag length selection for which, in

this chapter, only AIC is considered so as to mirror Dees et al. (2007).

Table 3.4: Weighting Scheme Grid Search Results

Model Trade FDI Port Dist GDP SSE

01-trade-trade 0 0 0 0 0 36.56553

02-trade-convex 0 0 0.4 0 0.6 33.41677

03-fdi-convex 0 0.3 0.7 0 0 37.84087

04-port-convex 0 0.3 0 0 0.7 38.11174

05-dist-convex 0 0 0 0 1 35.14017

06-gdp-convex 0 0 0.6 0 0.4 34.24129

07-convex-trade 0.4 0 0 0.1 0.5 35.89563

08-convex-fdi 0.6 0 0 0 0.4 34.57329

09-convex-port 0.7 0 0 0 0.3 33.64182

10-convex-dist 0 0 0 1 0 44.34379

11-convex-gdp 0.7 0.1 0 0 0.2 33.48794

12-convex-convex 0.3 0 0.1 0 0.6 34.39359

Note: SSE is the error sum of squares obtained as the sum of the squared

residuals from each GVAR model. Bold value represents minimum. Model

names are encoded as follows:

number - econ. var. weights - fin. var. weights

A full search of the convex hull under each mix on variables combination in Table 3.3 is con-

ducted. The results from this procedure are presented in Table 3.4 which reports the best performing

combinations of each mix along with it’s respective weighting coefficients and the overall sum of

squared errors (SSE). From the above results, the winning model in terms of overall in-sample

fit is the model with trade weights on economic variables, convex weights being made up of 40%

portfolio investment and 60% GDP on financial variables, and using AIC to determine lag length.

The fit of this model is around 9% better than the baseline pure trade weighted AIC model that

is estimated in DdPS. A point of critical importance when selecting models based on in-sample

metrics is how robust the selection is. To check the robustness, I conduct a form of time series

cross-validation whereby I incrementally move the end of the sample backwards in time. The results

of this procedure are presented graphically in Figure 3.1 where it can be seen that the performance

of the winning model is consistent. In results not reported, the convexity parameter values are

also surprisingly consistent over the cross-validation11. In the results and discussion that follows,

references to the cross-validated convex model (CV-CX) are regarding the best fit combination of

mixing on variables and convex weighting; specifically the 02-trade-convex model.

11 In all periods except for the last, the parameters on the 02-trade-convex model were 0.5 port and 0.5 gdp. The
parameters of the last period are found in Table 3.3.
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Relative Performance of Select Models

Time Series Cross Validation

Figure 3.1: Time series cross-validation of relative performance of models across samples with
different ending periods. Relative performance is the ratio of the select model SSE to the baseline
model SSE.

Table 3.5 provides a tabular representation of the actual baseline pure trade weighting matrix

for the same eight focal economies (seven countries plus the euro area itself, composed of eight

countries) as DdPS, with a Rest category showing the trade shares with the remaining 7 countries

in our sample. Note that since the table is row standardized (rows sum to unity), each row represents

a country and each column represents the share of weight a corresponding country gets.

First considering the USA, we can see that the China accounts for the slightly over 18% of trade

while the included Euro area countries account for under 15%. Comparing this to the older trade

weights from the averaged period 2001-2003 that are reported in DdPS, the share of trade with

China has grown substantially from just over 7% at the expense of trade with Japan that is now

down to only 7% from over 12%.Trade with the Euro area countries has only minimally declined

from 15.5% to its current level. Looking at the last column and comparing to the earlier weights,

the trade share of focal countries for the US has picked up slightly.

Regarding the Euro area, trade with the US has fallen substantially over the last decade from

nearly 23% to now only around 15%. The Euro area’s trade share with China however has grown

from only around 5.5% to more recently over 16%. As for the other focal countries, a similar pattern

can be observed. China has gained trade share across the board, in most cases having more than

doubled, at the cost of lessened trade from the Euro area and the USA.
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Table 3.5: Trade Weights Based on Direction of Trade Statistics

Country/Region USA Euro area China Japan UK Rest of Europe Resta

Sweden Switz. Norway

USA 0.000 0.146 0.181 0.070 0.037 0.006 0.017 0.004 0.540

Euro area 0.152 0.000 0.164 0.043 0.188 0.057 0.098 0.038 0.259

China 0.198 0.173 0.000 0.144 0.026 0.006 0.012 0.003 0.439

Japan 0.168 0.097 0.268 0.000 0.018 0.003 0.012 0.003 0.432

UK 0.110 0.512 0.076 0.022 0.000 0.028 0.051 0.045 0.156

Sweden 0.059 0.550 0.054 0.016 0.096 0.000 0.013 0.123 0.089

Switz. 0.098 0.654 0.051 0.033 0.053 0.009 0.000 0.004 0.097

Norway 0.065 0.429 0.052 0.018 0.233 0.108 0.011 0.000 0.084

Note: Trade weights are computed as shares of exports and imports displayed in rows by region such

that a row, but not a column, sums to one. a ‘Rest’ gathers the remaining countries. The complete

trade matrix used in the baseline GVAR model is given in Appendix B.0. Source: Direction of

Trade Statistics, 2012 2014, IMF.

Comparing the above trade weights to the convex weights reported in Table 3.6, fairly sub-

stantial differences are evident. The convex weights in Table 3.6 are calculated as the elementwise

combination of the portfolio investment weighting matrix and the geodesic distance weighting ma-

trix with coefficient values 0.6 and 0.4 respectively. This particular convex weighting scheme applied

to the financial variables in combination with pure trade weights on economic variables resulted in

the lowest SSE of any mix on variables or convex weighting12

Inspecting the US in the first row, the most evident major change is that China now receives a

far smaller weight under the convex scheme than under trade weights. Specifically, China’s share

of the US under the convex weighting is only 11% whereas it was 18% under pure trade which

equates to china’s impact being lessened by roughly 40%13. This roughly 40% reduction in China’s

importance holds across all countries as the average share for China under pure trade weights is

15% but only around 9% under convex weights14. As for the other focal countries pertaining to

the US, under convex weights Japan, the UK, and the other non-EU European countries have all

gained in importance. Lastly, regarding the rightmost column for the US, it can be seen that the

rest of the world now only accounts for just over 26% which is down from over 50%. This alone is

an interesting finding in that particularly in terms of foreign exchange rates, the rest of the world

appears to matter less than trade weighting would suggest for the US15. This isnt that surprising

12The weighting scheme in Table 3.6 is selected from Table 3.4 as the row with the minimum SSE (3rd row).
13Note that in this discussion of magnified or lessened importance, any mentioned change is only in reference to the
impact of country-specific foreign financial variables. This is due to the selected mix on variables which specifies
trade weights for economic variables and convex weights for financial variables.
14See Appendix B.0 for the complete weighting matrices.
15Recall though that the only US-specific foreign variables included in the model are GDP, Inflation, and the
Exchange Rate of which only the latter is classified as financial. Hence, the convex weighting for the US model will
impact the total SSE less than other countries that have the full set of foreign variables.
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though because one would expect the major countries to matter more in terms of exchange rates.

Table 3.6: Convex Weights Based on Portfolio Investment and Distance

Country/Region USA Euro area China Japan UK Rest of Europe Resta

Sweden Switz. Norway

USA 0.000 0.250 0.118 0.190 0.113 0.017 0.024 0.025 0.263

Euro area 0.334 0.000 0.108 0.144 0.144 0.020 0.038 0.031 0.181

China 0.350 0.182 0.000 0.090 0.082 0.009 0.012 0.015 0.262

Japan 0.385 0.203 0.096 0.000 0.104 0.010 0.016 0.021 0.165

UK 0.341 0.244 0.090 0.101 0.000 0.013 0.018 0.022 0.169

Sweden 0.271 0.277 0.087 0.104 0.060 0.000 0.026 0.037 0.137

Switz. 0.379 0.194 0.087 0.079 0.073 0.017 0.000 0.025 0.145

Norway 0.269 0.240 0.087 0.133 0.072 0.040 0.023 0.000 0.136

Note: Convex weights are computed as the linear combination of portfolio investment and geodesic

distance (coefficient values given in Table 3.4) and are displayed in rows by region such that a row,

but not a column, sums to one. a ‘Rest’ gathers the remaining countries. The complete convex

matrix used in the convex optimal GVAR model is given in Appendix B.0. Sources: Distance from

CEPIIs GeoDist database; Portfolio Investment from International Financial Statistics (IFS) Table

8, 2012-2014, IMF

Concerning the country shares for the Euro Area, a similar set of changes is observed from pure

trade to convex weights. First, the share attributed to the US has more than doubled under the

convex weights to more than 33% which highlights the extent to which the major financial markets

are linked and is indicative that purely trade based weights don’t fully capture the relationships

between the major economies in terms of financial markets which are now almost exclusively digital.

Other changes from trade to convex weights include the drastic over threefold increase in the share

attributed to Japan which under convex weights is over 14%. The shares from China, the UK, and

the other non-EU European countries having declined fairly substantially.

Other focal countries experience similar changes primarily with the United States and Euro

Area receiving greater shares than under trade weights and China receiving less. Overall, apart

from any individual differences, the information within the previous two tables suggests that trade

does not properly characterize the cross country linkages between financial markets and that the

fit can be improved by utilizing both concepts of mixing on variables and convex weight mixing.

3.2.2 Unit Root Tests

Following the standard techniques of the GVAR literature and what is done in chapter 2, it is

necessary to test the integration properties of the variables in the GVAR. To carry this out, Park

and Fuller (1995) type weighted symmetric ADF tests are implemented for which, in accordence

with the I (1) assumption in Pesaran et al. (2004), we would like to see all variables fail to reject

53



the null in levels and reject the null in first differences, indicating that all variables are I (1)16.

Table 3.7: Unit Root Test Statistics for Domestic Variables

Domestic Country/Region

Variables U.S. E.A. China Japan U.K. Sweden Switz. Norway

y -1.63 -1.23 -2.46 -0.40 -2.36 -3.19 -3.34 -0.65

∆y -4.98 -4.83 -3.84 -5.75 -3.71 -5.16 -4.59 -6.13

∆p -1.47 -1.92 -3.33 -3.18 -2.38 -3.79 -5.53 -3.03

∆2p -10.57 -8.87 -7.75 -8.21 -8.86 -7.50 -8.50 -8.95

eq -2.18 -2.44 -1.94 -1.83 -2.84 -2.07 -3.33

∆eq -7.20 -5.74 -7.79 -8.14 -7.73 -7.39 -6.21

ep -2.19 -1.11 -1.87 -2.21 -2.43 -2.60 -2.32

∆ep -7.86 -7.73 -5.64 -6.24 -7.70 -8.44 -8.13

r -1.33 -1.25 -1.44 -1.84 -1.13 -1.29 -1.98 -1.43

∆r -4.13 -4.39 -6.71 -5.46 -7.33 -8.77 -5.51 -9.26

lr -1.30 -0.65 -0.54 -0.08 -0.36 -0.95 -0.79

∆lr -6.48 -5.71 -6.08 -8.70 -7.63 -6.63 -8.43

Note: The WS statistics are based on univariate AR(p) specifications in the level of the variables

with p≤ 5, and the statistics for the level and first differences of the variables are all computed

based on the same sample period, namely, 1979Q2-2016Q4. The WS statistics for all level variables

are based on regressions including a linear trend, except for the interest rate variables. The 95%

critical value of the WS test for a regression with a linear trend is -3.24, and for a regression with an

intercept only is -2.55. The unit root test statistics for all the countries are available upon request.

Table 3.7 reports WS statistics for the domestic variables in the focal countries for which the

only specific issues lie with inflation. Where ∆p was I (1) for all countries in DdPS, there are

several countries for which it doesn’t appear to be I (1), but fortunately it is for the larger focal

countries. Generally though, for the domestic variables the test results broadly support the unit

root hypothesis.

Since this chapter estimates both a baseline and a CV-CX model, it is important to check the

integration properties of both the baseline trade weighted country-specific foreign variables and

their convex weighted counterparts. Table 3.8 reports the test statistics for the country-specific

foreign variables computed via trade weights. These tests reveal that all variables excluding several

country-specific foreign inflation variables are I (1). The country specific inflation variables that

appear to be borderline I (0)/I (1) are the US and Japan. Again, generally the test results for

country-specific foreign variables generated from trade weights support the unit root hypothesis17.

16The null hypothesis of the ADF tests is that there is a unit root. Statistics smaller in absolute value than 3.24
for variables with a trend (y, ∆p, eq, qp) or 2.55 for those without a trend (r, lr) signify rejection. Failing to reject
variables in levels and rejecting in first differences means that variables become stationary in first differences and are
thus I (1). Also note that inflation is already in first differences. This is because p was I (2) in DdPS and in order to
make proper comparisons, I stick to the specification used there.
17Regarding inflation, comparing the unit root results for all countries in this chapter to those reported in DdPS
reveals that any issues encountered are shared. Updating the sample to 2016 does not appear to change the integration
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Table 3.8: Baseline Model Unit Root Test Statistics for Foreign Variables

Domestic Country/Region

Variables U.S. E.A. China Japan U.K. Sweden Switz. Norway

y -2.49 -2.66 -1.04 -1.76 -1.46 -1.36 -1.35 -1.87

∆y -6.18 -5.54 -6.00 -5.11 -5.35 -5.36 -5.09 -5.06

∆p -3.58 -3.04 -1.80 -3.41 -2.40 -2.56 -1.97 -2.08

∆2p -9.29 -7.62 -8.87 -7.94 -8.01 -8.09 -7.85 -7.86

eq -2.99 -2.34 -2.59 -2.61 -2.39 -2.30 -2.27 -2.21

∆eq -8.11 -7.97 -7.95 -8.12 -8.03 -8.13 -8.00 -7.96

ep -2.14 -2.64 -2.11 -2.20 -2.29 -2.27 -2.21 -2.25

∆ep -8.08 -8.24 -7.86 -7.40 -7.94 -8.02 -7.99 -8.02

r -1.18 -1.12 -0.87 -0.97 -1.07 -0.84 -1.02 -1.09

∆r -6.75 -5.74 -5.56 -6.41 -5.14 -6.91 -5.20 -4.97

lr -0.51 -0.34 -0.22 -0.22 -0.55 -0.46 -0.53 -0.29

∆lr -5.70 -6.59 -6.44 -6.83 -6.04 -6.00 -5.96 -6.26

Note: The WS statistics are based on univariate AR(p) specifications in the level of the variables

with p≤ 5, and the statistics for the level and first differences of the variables are all computed

based on the same sample period, namely, 1979Q2-2016Q4. The WS statistics for all level variables

are based on regressions including a linear trend, except for the interest rate variables. The 95%

critical value of the WS test for a regression with a linear trend is -3.24, and for a regression with an

intercept only is -2.55. The unit root test statistics for all the countries are available upon request.

Lastly, Table 3.9 reports the unit root test statistics for the country-specific foreign variables

generated with the cross validated convex model. Note that only the financial variables are included

in Table 3.9 because the CV-CX model mixes on variables such that convex weights are only applied

to the foreign financial variables. Hence, the foreign economic variables are still generated with trade

weights and will yield the same results as the previous table because they are unchanged. In terms

of integration, all financial variables are I (1) under convex weights.

properties for any variables, including inflation.
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Table 3.9: CV-CX Model Unit Root Test Statistics for Foreign Variables

Domestic Country/Region

Variables U.S. E.A. China Japan U.K. Sweden Switz. Norway

eq -2.43 -2.34 -2.42 -2.26 -2.38 -2.31 -2.31 -2.30

∆eq -8.01 -7.76 -7.93 -7.75 -7.80 -7.83 -7.76 -7.79

ep -2.14 -2.09 -1.89 -2.50 -2.21 -2.21 -2.29 -2.16

∆ep -8.36 -8.44 -8.17 -8.11 -8.20 -8.31 -8.24 -8.31

r -0.89 -1.38 -1.00 -0.94 -0.98 -0.90 -1.00 -1.06

∆r -5.17 -4.43 -4.24 -5.33 -5.04 -5.08 -4.97 -4.60

lr -0.36 -0.52 -0.55 -0.62 -0.63 -0.53 -0.60 -0.50

∆lr -5.83 -6.39 -6.05 -6.22 -6.12 -6.10 -6.07 -6.13

Note: The WS statistics are based on univariate AR(p) specifications in the level of the variables

with p≤ 5, and the statistics for the level and first differences of the variables are all computed

based on the same sample period, namely, 1979Q2-2016Q4. The WS statistics for all level variables

are based on regressions including a linear trend, except for the interest rate variables. The 95%

critical value of the WS test for a regression with a linear trend is -3.24, and for a regression with an

intercept only is -2.55. The unit root test statistics for all the countries are available upon request.

Overall, there is support for the unit root hypothesis among domestic variables and foreign

variables under both model weightings (baseline and CV-CX). Due to this, the ability to distin-

guish between short-run and long-run relations and interpret the long-run relations as cointegrating

remains intact.

3.2.3 Specification and Estimation of the Country-Specific Models

I begin the modelling exercise under the two core assumptions of the literature. First, that

country-specific foreign variables are weakly exogenous I (1) variables, and second that the pa-

rameters of the individual models are stable over time. Each of these assumptions are considered

formally in turn in sections that follow. Also of note, in following what has been presented thus

far in this chapter, since two models are estimated, results for each are presented. The first model

which represents the baseline is estimated under pure trade weights and is the 01-trade-trade model

from Table 3.4. The second and more interesting model is the CV-CX model that corresponds to

the 02-trade-convex specification of Table 3.4. In each model, the variable selection is the same

and is matched to the original DdPS specification while the lag orders and ranks are allowed to

differ due to being determined by selection the AIC selection criteria and formal statistical tests

respectively.

Specifically regarding model specification, individual country models are allowed to have dif-
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fering variables18. All country-specific models except for the US contain y, ∆p, eq, ep, ρS , ρL19.

Additionally, they include foreign aggregates of these variables and the oil price as weakly exoge-

nous. As for the US model, due to its status as a globally dominant economy, the oil price is

included as endogenous to allow the evolution of global macroeconomic variables to influence it.

Also, the US model excludes eq∗, ρS∗, and ρL∗ as they are unlikely to significantly impact the

financial sector of the US. Lastly, ep is excluded because the dollar exchange rate is determined

outside of the US model. However, the US model includes both y∗ and ∆p∗, as in DdPS, so as to

allow global feedback effects to impact the US.

After specification, VAR models are estimated and their rank is determined. The order of the

individual country VARX*(pi,qi) models is determined by AIC where pi is the lag order on domestic

variables and qi is the lag order on foreign variables. Note that pmax is set to 2 while qmax is fixed

to one. After the selection of lag orders, the number of cointegrating relations for each individual

country specific VARX* model is determined by Johansens trace statistics as set out in Pesaran

et al. (2000) for models with exogenous I (1) regressors for the case of unrestricted intercepts and

restricted trend coefficients (case IV).

Table 3.10: Baseline Model VARX* Order and Number of
Cointegration Relationships in the Country-Specific Models

VARX*(pi , qi)
# Cointegrating

relationships

Country pi qi

USA 2 1 2

Euro area 2 1 1

China 1 1 2

Japan 2 1 2

UK 2 1 1

Sweden 2 1 3

Switzerland 2 1 2

Norway 2 1 2

Note: The rank of the cointegrating space for each country is computed using Johansen’s

trace and maximal eigenvalue statistics as set out in Pesaran et al. (2000) for models with

weakly exogenous I(1) regressors, in the case where unrestricted constants and restricted

trend coefficients are included in the individual country error correction models.

The orders of the VARX* models and the number of cointegration relationships for the focal coun-

tries are reported for the baseline model in Table 3.10 and for the CV-CX model in Table 3.11.

18This is due to data availability, particularly with long-term interest rates. However, the primary reason is to match
as close to the DdPS specification as possible.
19Owing to data availability, the following countries exclude ρL: China, Chile, Indonesia, Malaysia, Mexico, Philip-
pines, Saudi Arabia, Singapore, Thailand, and Turkey. Furthermore, eq is excluded from China, Indonesia, Mexico,
Saudi Arabia, and Turkey and ρS is excluded from Saudi Arabia all for the same reason.
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A VARX*(2,1) is selected for all baseline models except Canada, China, and Malaysia for which

a VARX*(1,1) was selected. In the CV-CX model, the same orders are found except for Canada

which had a VARX*(2,1). As for the number of cointegrating relations, there are more differences

between the baseline and CV-CX models. However, the USA, Euro area, and China had 2, 1, and 2

cointegrating relations respectively in both cases. For the other focal countries though, Japan, the

UK, and Switzerland had one fewer cointegrating relation under CV-CX than under the baseline

and Sweden had one more.

Table 3.11: CV-CX Model VARX* Order and Number of
Cointegration Relationships in the Country-Specific Models

VARX*(pi , qi)
# Cointegrating

relationships

Country pi qi

USA 2 1 2

Euro area 2 1 1

China 1 1 2

Japan 2 1 3

UK 2 1 2

Sweden 2 1 1

Switzerland 2 1 3

Norway 2 1 2

Note: The rank of the cointegrating space for each country is computed using Johansen’s

trace and maximal eigenvalue statistics as set out in Pesaran et al. (2000) for models with

weakly exogenous I(1) regressors, in the case where unrestricted constants and restricted

trend coefficients are included in the individual country error correction models.

3.2.4 Testing Weak Exogeneity

As was mentioned earlier, the core assumption of the GVAR modeling strategy is that the

country-specific foreign variables are weakly exogenous20. To formally test this assumption, this

chapter follows the same procedure as the prior application by estimating the Johansen (1992)

and Harbo et al. (1998) style auxiliary equations for the country-specific foreign variables, x∗it.

Specifically, for each lth element of x∗it, the following regression is estimated:

∆x∗it,l = µit +

ri∑
j=1

γij,lECM
j
i,t−1 +

si∑
k=1

ϕ′ik,l∆xi,t−k +

ni∑
m=1

θ
′
im,l∆x̃∗i,t−m + εit,l

where ECM j
i,t−1, j = 1,2,...,ri are the estimated error correction terms corresponding to the ri

cointegrating relations found for the ith country model and ∆x̃∗it = (∆x′∗it , ∆(e∗it− p∗it), ∆pot )
′. The

20Beyond country-specific foreign variables, the oil price variable that is included in every individual country model
is treated as weakly exogenous in all models except for the US model. In results not reported, the oil price is weakly
exogenous in all cases.
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test for weak exogeneity is an F -test of the joint hypothesis that γij,l = 0, j = 1,2,...,ri in the

above regression. Due to the arguments made in DdPS and for simplicity, I fix the lag orders si

and ni to be the same as pi and qi of the underlying country-specific VARX* models. The test is

carried out separately for the baseline and for the CV-CX model, of which the results are reported

in Table 3.12 and Table 3.13 respectively.

Table 3.12: Baseline Model F -statistics for Testing Weak Exogeneity of Foreign Variables

Country Foreign Variables

y∗ ∆p∗ q∗ ρ∗S ρ∗L po e∗ − p∗

USA F(2,136) 0.59 3.46† 0.57

Euro area F(1,134) 1.91 1.52 1.32 0.19 0.80 0.01

China F(2,135) 0.31 0.65 0.18 1.29 1.92 0.90

Japan F(2,133) 0.82 1.04 0.17 2.05 1.11 0.18

UK F(1,134) 2.04 2.15 0.07 0.03 3.36 3.71

Sweden F(3,132) 0.75 0.35 0.41 0.83 0.08 0.16

Switzerland F(2,133) 1.80 2.43 1.50 0.06 0.59 0.96

Norway F(2,133) 3.15† 6.05† 2.07 0.03 0.25 3.01

All Countries 10% 9% 26% 9% 9% 0% 5% 0%

Note: † denotes statistical significance at the 5% level.

Under the baseline model, there are several noteworthy findings. First and perhaps not sur-

prisingly, the weak exogeneity of foreign inflation in the US model is rejected21. The question

of foreign variable influence on the US model was discussed specifically in DdPS of which doubt

was expressed by the authors as to whether the weak exogeneity of the foreign economic variables

would be rejected in the US model. As it turned out in their shorter sample, which shares the same

specification, weak exogeneity of foreign inflation in the US fails to be rejected. This is in contrast

to the rejection in Table 3.12 and thus is evidence that in more recent years, most likely due to the

financial crisis, there may now be long-run feedback from ∆p0t to ∆p∗it which implies that ∆p∗0t

has become long-run forcing for ∆p0t, such that the error correction term of the US VECM now

enters the marginal model of ∆p∗0t
22. Having too many rejections is problematic for the validity

of inference, however with regard to the purpose of this chapter the overall number of rejections is

still within reason. The last row in table Table 3.12 reports the percentage of countries for which

rejections occur. Across all variables and countries, the weak exogeneity assumption is violated 10%

(14 out of 135 cases) of the time if measuring at the 5% level. The total proportion of rejections

drops 3% (4 out of 135 cases) if measured at the 1% level.

21 In the baseline model weak exogeneity test, the p-value for ∆p∗ for the US is 0.034 which indicates that the
rejection may only be moderately strong.
22Let 0 represent the US model
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Table 3.13: CV-CX Model F -statistics for Testing Weak Exogeneity of Foreign Variables

Country Foreign Variables

y∗ ∆p∗ q∗ ρ∗S ρ∗L po e∗ − p∗

USA F(2,136) 0.01 5.01† 0.82

Euro area F(1,134) 1.06 0.80 3.78† 1.51 0.03 0.70

China F(2,135) 0.18 0.54 0.57 1.91 2.48 1.25

Japan F(2,133) 1.23 0.57 0.28 2.78 2.51 2.16

UK F(1,134) 0.94 1.78 0.05 0.18 3.80 4.61†

Sweden F(3,132) 2.44 0.00 0.64 0.04 0.43 0.06

Switzerland F(2,133) 1.53 2.43 2.12 1.43 0.27 1.22

Norway F(2,133) 2.96† 3.94† 1.02 1.03 0.65 3.16†

All Countries 10% 9% 17% 9% 9% 5% 14% 0%

Note: † denotes statistical significance at the 5% level.

Under the CV-CX model, very similar results are achieved with more rejections being observed

on oil prices rather than inflation. The total proportion remains the same with exactly 14 out of

135 cases being rejected at the 5% level. At the 1% level, the number of rejections falls below 3%

with only 3 cases being rejected. Broadly speaking, the weak exogeneity results in both models

are acceptable for the purpose of this chapter. If the objective were instead to generate a model

measuring and interpreting specific spillovers and transition effects, the problematic country-specific

foreign variables would need to be handled. Due to the fact that it is necessary to have identical

specifications across both models to isolate the effect of changing the weighting scheme and because

weak exogeneity rejections don’t occur on the same country-variable combinations for both baseline

and CV-CX models, the level of rejection is viewed as acceptable.

3.2.5 Testing for Structural Breaks

Another key issue to be investigated is the incidence of structural breaks and parameter stability.

To investigate this, the standard suite is applied which includes the following: Ploberger and Krämer

(1992) maximal OLS cumulative sum (CUSUM) statistics, denoted PKsup; its mean square variant,

denoted PKmsq; Nyblom (1989) tests for parameter constancy against non-stationary alternatives,

denoted <; the Wald form of Quandt (1960) likelihood ratio statistics, denoted QLR; the mean

Wald statistics of Hansen, denoted MW ; and Andrews and Ploberger (1994) Wald statistics based

on exponential average, denoted APW . Robust versions of the last three are also considered. The

first two tests are tests of parameter stability while the last three are Wald type tests utilizing a

single break at an unknown point.
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Table 3.14: Baseline Model Number of Rejections of the Null of Parameter Constancy Per Variable
Across the Country-Specific Models at the 5% Level

Alternative
test statistic

Domestic variables Numbers(%)

y ∆p eq ep ρS ρL

PKsup 3(13.0) 4(17.4) 0(0.0) 2(8.7) 3(13.0) 0(0.0) 12(9.8)

PKmsq 1(4.3) 1(4.3) 0(0.0) 2(8.7) 3(13.0) 0(0.0) 7(5.7)

< 1(4.3) 7(30.4) 4(17.4) 10(43.5) 6(26.1) 7(30.4) 35(28.7)

robust-N 0(0.0) 2(8.7) 1(4.3) 5(21.7) 4(17.4) 3(13.0) 15(12.3)

QLR 9(39.1) 12(52.2) 11(47.8) 16(69.6) 18(78.3) 11(47.8) 77(63.1)

robust-QLR 2(8.7) 4(17.4) 9(39.1) 6(26.1) 5(21.7) 7(30.4) 33(27.0)

MW 5(21.7) 9(39.1) 9(39.1) 12(52.2) 8(34.8) 7(30.4) 50(41.0)

robust-MW 0(0.0) 6(26.1) 5(21.7) 8(34.8) 3(13.0) 5(21.7) 27(22.1)

APW 9(39.1) 11(47.8) 12(52.2) 16(69.6) 18(78.3) 11(47.8) 77(63.1)

robust-APW 2(8.7) 5(21.7) 7(30.4) 6(26.1) 5(21.7) 7(30.4) 32(26.2)

Note: The test statistics PKsup and PKmwq are based on the cumulative sums of OLS residuals, <
is the Nyblom test for time-varying parameters and QLR, MW , and APW are the sequential Wald

statistics for a single break at an unknown change point. Statistics with the prefix ‘robust’ denote

the heteroskedasticity-robust version of the tests. All tests are implemented at the 5% significance

level.

Table 3.14 reveals a small number of rejections for the PK tests, with the rejection range

falling around 6-10%, which indicates that the parameters are relatively stable. The Nyblom tests

and Wald type statistics, on the other hand, show a very high number of rejections even when

considering the robust versions that allow for possible changes in error variances. Comparing the

number of rejections between the robust and non-robust versions indicates that a sizable number

of rejections is due to breaks in error variance. Specifically, allowing for possible changes in error

variances in these tests (going from non-robust to robust) brings the rejection range down from

around 28-63% to around 12-27%. The rejection range of the robust versions is somewhat closer

to being in line with that of the PK and if those specific tests were to be believed, there is little

statistical evidence with which to reject the hypothesis of coefficient stability in the case of 90%

of the equations comprising the GVAR model. Considering the worst case Wald tests, one might

conclude that the coefficients in only 73% of the equations comprising the GVAR model are stable.

Comparing Table 3.14 to Table V. in DdPS, it is clear that the financial crisis almost certainly is a

major contributing factor to the new-found instability. Further inspection of each table reveals very

little evidence of instability (PK tests) or structural breaks (robust Wald type tests) in economic

variables over the earlier sample. Considering the full sample of this chapter, which includes the

financial crisis, we see greater evidence of parameter instability and structural breaks particularly

manifesting more so for inflation than GDP. As for the financial variables, there is substantially

more evidence of structural breaks specifically concentrated among equity prices and the bond

markets. There also exists additional evidence of instability among exchange rates and short-term
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interest rates but to a much lesser degree. Generally speaking, Table 3.14 provides a picture of

where the financial crisis was most impactful and with hindsight, the predominant effects being on

the bond market and then equity markets makes perfect since in the context of the reasons for the

crisis23.

Lastly, Table B.0.1 in Appendix B.0 presents the suite of stability tests on the CV-CX model.

Comparing across Table B.0.1 and Table 3.14, there are no meaningful differences and thus we can

conclude that both the baseline and the CV-CX model are equal in terms of parameter stability.

Overall, just as in DdPS, there is evidence of instability but to a heightened degree now due to

the sample including the financial crisis. Due to this, the focus of the main results is not on point

estimates but on bootstrap means and confidence bounds.

3.2.6 Contemporaneous Effects of Foreign Variables on their Domestic Counterparts

Table 3.15 presents the contemporaneous effects from the baseline model of foreign variables on

their domestic counterparts together with robust t-ratios computed using Whites heteroskedasticity-

consistent variance estimator where the estimates can be interpreted impact elasticities. Looking

across variables, we can see that output is fairly elastic in the focal countries and is significant

in all focal countries except Norway. Impact elasticities for USA and the Euro Area both have

values around 0.5% which implies that a 1% change in foreign real output will result in a 0.5%

change in domestic output on impact. Comparing the output elasticities of Table VI in DdPS

to those reported in Table 3.15, there are two meaningful changes. First, China has gone from,

being insignificantly impacted to being among the most elastic. This can be interpreted as evidence

of China’s increased global connectedness in recent years24. Second, Norway’s elasticity has now

become completely insignificant.

Regarding inflation, the elasticity among focal countries that are significantly impacted ranges

from 0.28% to 0.94% with an average of 0.6%. The level and variance of elasticities among inflation

is highly similar to that of output and is evidence that economic variables behave similarly and

in contrast to financial variables25. This could be a potential reason why pure trade weights are

assigned to economic variables in the CV-CX model. Comparing the inflation elasticities reported

in DdPS, the only meaningful change is that the UK inflation elasticity has gone from insignificant

to significant. This suggests, in combination with the finding that the UK short-term interest rate

23Any differences between Table 3.14 and Table V. in DdPS can be interpreted as impacts of the financial crisis.
In the sense of an event study framework, the longer sample in this chapter isolates the impact of the financial
crisis. It is expected that the bond markets would be most impacted by the crisis due to the unprecedented level of
securitization of mortgages through collateral debt obligations. See Verick and Islam (2010) for details on the causes,
consequences and policy responses of the Great Recession.
24See Feldkircher and Korhonen (2014) for a detailed exposition of the role of China in the modern global economy.
25 It could be the case that the linking of variables by trade weights, which are largely recognized to characterize
global business cycles well (see Baxter and Kouparitsas (2005) and Imbs (2004)), is responsible for the similarity
between the elasticities of economic variables.
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elasticity has also become significant, that the financial crisis has increased the global integration

of the UK financially26.

Table 3.15: Baseline Model Contemporaneous Effects of Foreign Variables
on Their Domestic Counterparts

Country Domestic variables

y ∆p eq ρS ρL

USA 0.53 0.13

[5.16] [1.18]

Euro Area 0.57 0.28 1.10 0.26 0.73

[6.63] [4.04] [25.45] [3.24] [10.04]

China 0.71 0.68 0.04

[3.21] [2.85] [0.36]

Japan 0.63 0.07 0.77 -0.03 0.49

[3.67] [0.89] [7.64] [-0.30] [5.44]

UK 0.59 0.59 0.79 0.68 0.83

[4.56] [5.06] [14.81] [3.26] [7.15]

Sweden 1.19 0.94 1.14 0.47 1.01

[5.39] [5.70] [22.97] [1.26] [7.44]

Switzerland 0.50 0.28 0.87 0.28 0.54

[3.55] [2.27] [15.84] [1.42] [7.27]

Norway 0.29 0.86 1.08 0.31 0.72

[1.32] [2.94] [11.75] [0.77] [4.85]

Note: White’s heteroskedastic-robust t-ratios are given in square brackets

Equity price impact elasticities are highly significant and are very close to unity, averaging

0.96% across focal countries. In some cases the equity price impact elasticity even exceeds unity,

signifying an overreaction. Specifically, this is observed for Euro Area and Norse equity prices and

is an effect that has continued to persist since it’s documentation by DdPS. Regarding short-term

interest rates, there is a good deal of variance among the elasticities across the focal countries with

many effects being insignificant. In the updated sample reported here, the short-term interest rates

of Sweden and Switzerland no long appear to be effected by their foreign counterparts while the

elasticity for UK short-term rates is now highly significant. As for long-term interest rates, the

average impact elasticity among the focal countries is 0.72% with significance across the board.

This effect is up from 0.62% in the DdPS sample which again may simply be a symptom of the

financial crisis and the subsequent unified global downturn.

Impact elasticities generated from the CV-CX model are not meaningfully different from the

baseline model results in Table 3.15. The CV-CX results are presented in Table B.0.2 in Appendix

B.0. Overall, there are few differences between the DdPS results and the results reported in this

26This effect is most likely due to the fact that global short-term interest rates all dropped to zero as leaders pledged
more than 1 trillion dollars to tackle the global financial crisis. (see Ait-Sahalia et al. (2012) for details on the global
policy response).
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paper. It would appear that the financial crisis has had little effect on domestic-foreign impact

elasticities.

3.3 Inference Sensitivity

In a similar vein to the section on impulse response analysis in the regional application of chap-

ter 2, the main results of this chapter are drawn from impulse responses but with increased focus on

inference. Inference by definition is a conclusion reached on the basis of evidence and reasoning and

in terms of impulse responses analysis, is most commonly a judgment of the sign and significance of

a given response based on confidence intervals. Impulse response functions are normally presented

graphically because of the intuitive and efficient nature over the alternative tabular representation,

and thus readers customarily form judgments over impulse responses visually. When viewing im-

pulse response charts, the focus is usually first on whether the response is significant and then later

on any magnitudes. The results here focus on the prior. In determining significance visually, a series

of logical deductions are made which can be formally expressed. Algorithm 1, found below, defines

the logic for classifying significance visually from an IRF chart. This classification of significance

can be thought of as translating from impulse response to inference.

To summarize the classification logic in words, we first look at the direction of the response and

then see if the relevant bound falls in the correct direction. For example, if the response is positive

(negative), one would look at the lower (upper) bound and assess whether it falls above (below) zero

and if it does, the inference would be that the response is positive (negative) significant. Another

classification beyond simply significant is what is commonly referred to as “borderline.” Visual

assessment of a borderline response hinges on the relevant bound falling in the significant direction

but being very close to zero, meaning that the strength of the inference is questionable. Assessment

of whether the relevant bound falls close to zero critically depends upon the scale of the y-axis in

the IRF chart. Typically, well depicted IRF charts will minimize whitespace above and below the

upper and lower bounds respectively, thus a reasonable sense of the y-axis can be inferred from the

difference between the maximum value of the upper bound and the minimum value of the lower

bound across the entire horizon of the graphical depiction. Condition v. in Algorithm 1 defines this

difference as CIrange and is used in the conditional statements in combination with the borderline

scaling parameter θ which serves as a lever for controlling how close a bound must be to zero before

the response is classified as borderline. Throughout the results in this chapter, a value of 5% is used

for θ which means that the relevant bound must fall between 0 and plus or minus 5% of the CIrange

for it to be classified as borderline. This value was set by the author and is the value that resulted

in the maximum number of correctly classified responses. Values above 5% tended to result in too

many responses being classified as borderline when they were in fact significant and values below

resulted in the too many responses being classified as significant when they were clearly borderline.
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Algorithm 1: Impulse Response Inference Classification Algorithm

Input : Impulse Response Function with Confidence Intervals

Output: Classification of IRF significance

1 if sign(IRFmean.,h) = pos. then

2 if CILB,h > θCIrange then

3 Responseh = Positive significant

4 else if θCIrange > CILB,h > 0 then

5 Responseh = Positive borderline

6 else

7 Responseh = Insignificant

8 else

9 if CIUB,h < (−θCIrange) then

10 Responseh = Negative significant

11 else if (−θCIrange) < CIUB,h < 0 then

12 Responseh = Negative borderline

13 else

14 Responseh = Insignificant

where:

i. IRFmed.,h = average bootstrap mean estimate for horizon h,

ii. CILB,h = average confidence interval lower bound for horizon h,

iii. CIUB,h = average confidence interval upper bound for horizon h,

iv. θ is the borderline scaling parameter,

v. CIrange = maxCIUB,{h} −minCILB,{h} where {h} is the set of all horizons

In the results that follow, a framework is presented for analyzing the impact of weighting schemes

on inferences. Specifically, this chapter is interested in the number of inference classifications that

differ between modeling under the baseline model (pure trade weights) and under the CV-CX

model (trade-convex weights). This can be thought of as an empirical parallel to the simulation

analysis in Gross (2018) who finds that GVAR parameters are highly sensitive to weighting scheme

misspecification and often differ significantly.

GIRFs are generated under both the baseline model and the CV-CX model for all variables

of all countries using Equation (1.10) for three different external shocks27: (1) a one standard

error negative shock to US real equity prices; (2) a one standard error positive shock to US short-

term interest rates; and (3) a one standard error positive shock to oil prices. It is important

to note that the bootstrapping procedure takes into account sampling uncertainty in selecting

27The choice of shocks corresponds to that of Dees et al. (2007).
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the convexity parameters θρ. In other words, a complete weighting scheme grid search that is

identical to what is described in earlier sections is performed for each bootstrap sample for the

CV-CX model. Conducting the CX-procedure on each bootstrap sample has several effects on

the impulse responses. First, simply by construction it produces wider confidence intervals than

bootstrapping conditional on weighting. Second, the mean estimates are offset in various directions

and magnitudes. In comparing impulse responses generated from each approach (conditional and

unconditional on weighting), the ultimate results are extremely similar.

Responses are broken into three different time horizons where the short-run is between impact

and 4 quarters, the medium horizon is the period between 4 and 12 quarters, and the long-run

is between 12 and 24 quarters. Algorithm 1 is run on all impulse responses for each horizon to

classify each response as positive or negative significant, borderline, or insignificant. The resulting

set of inference classifications for each model (baseline and CV-CX) is then compared against it’s

counterpart.

In the individual shock analysis sections the same set of figures is presented, each with results

corresponding to that particular shock. Select GIRF responses are first presented to illustrate clearly

the differences in inference between the baseline and the CV-CX models. The next three figures

are bar charts that utilizing the results of running Algorithm 1. The first shows the percentage

of responses by variable and at each horizon for which the inference is not the same under each

model. Following this is a figure that shows each specific type of inference change as a result of

switching from the baseline to the CV-CX model, again broken down by horizon. The last bar chart

aggregates the inference results into two categories; strengthening and weakening. An example for

strengthening of inference would be the case where a given inference is classified as insignificant

under the baseline model but as significant (or borderline) under the CV-CX model. Similarly, a

case for weakening of inference would be one for which under the baseline model a given inference is

classified as significant but under the CV-CX model it is classified as borderline (or insignificant).

This chart also reports results separately by horizon. One of the driving forces behind the results

reported in the bar charts is the tightening of confidence bands from increasing the fit (reducing

SSE). The chart immediately following the bar charts presents reductions in confidence interval

bandwidth by reporting the following formula for each variable:

CICV-CX
range,{h}

CIbaselinerange,{h}
− 1.

The last chart presents globally aggregated (via PPP-GDP) responses across all countries for each

variable from both baseline and CV-CX models.
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3.3.1 Shock to US Equity Prices

Consider first the GIRFs for a one standard error negative shock to US equity prices. This

shock equates to a fall of around 5-6% in US real equity prices per quarter. Figure 3.2 presents

select GIRFs for illustrative purposes of the sensitivity to weighting. Odd rows depict responses

from the baseline model and even rows depict responses from the CV-CX model.

Figure 3.2: Select GIRFs of a negative unit (1 s.e.) shock to US real equity prices. Rows 1 and 3
generated from the baseline model. Rows 2 and 4 generated from the CV-CX model. (bootstrap

mean estimates with 90% bootstrap error bounds)

Each response illustrates a case where an inference change is observed. For example, looking at

the panels in the top-left, one would conclude that Australian GDP is not significantly impacted

by a negative US equity price shock (at any horizon) but only if he used a model with purely
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trade weights. If he were to use the CV-CX model, he would conclude that, while not significantly

effected in the short-run, over the medium and long-run the response of Australian GDP appears

to be positive and significant. Similarly, by inspecting the top-middle panels for New Zealand

GDP, one would conclude negative significance under trade weights but insignificance under CV-

CX weights. The top-right panes illustrate the case of borderline negative under trade weights,

and insignificant under CV-CX weights. The bottom panels illustrate similar cases. Of particular

interest might be the bottom left panel though which depicts the Euro Area short-term interest rate

response. In DdPS, which uses exclusively trade weights, and also here under the baseline model

the conclusion would be that rates drop significantly in response to a negative US equity price

shock. The CV-CX model disagrees though, and shows that the significant portion of the negative

response may only be limited to the short-run rather than across all horizons. The bottom-middle

panels tell the equivalent story for short-term rates in Singapore, although the baseline response is

only borderline. The bottom-right panels show the same sensitivity but for inflation in Switzerland.

The responses depicted in Figure 3.2 were selected to illustrate that the sensitivity ranges across

all dimensions. Looking at individual panels reveals sensitivity across horizons and directions while

the variable and country selection reveals that the sensitivity isn’t limited across space or to certain

variables.

To shed light on the question of how ubiquitous the sensitivity is across variables, Figure 3.3

presents the percentage of countries where any inference change is observed at each horizon as

a result of switching from the baseline model to the CV-CX model28. Regarding the short-run,

Figure 3.3 shows that the variables most susceptible to an inference change are exchange rates and

output, both of which a change is observed in as many as 40% of countries. As for the medium

horizon, differences in inference on short-term interest rates are observed in as many as 45% percent

of countries. Worse yet, inferences in the long-run differ from baseline and CV-CX models in over

60% of countries for long-term interest rates, 50% for short-term interest rates, 40% for exchange

rates, and no less than 20% for other variables. Generally, Figure 3.3 provides evidence that

weighting scheme sensitivity on inferences from impulse responses to a US equity price shock is not

contained across space, variables, or horizons but instead is widespread.

28Any inference change includes all possible combinations of the inference classifications: positive/negative and
significant, borderline, or insignificant.
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Figure 3.3: Percentage of impulse responses for which the inference differs between baseline and
CV-CX models by variable and by horizon. (Results derived from a negative unit (1 s.e.) shock to

US real equity prices)

Figure 3.4: Percentage of impulse responses for which the inference differs between baseline and
CV-CX models by type of inference change and by horizon. (Results derived from a negative unit

(1 s.e.) shock to US real equity prices)

Concerning the types of inference changes that are observed in response to a negate US equity
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price shock, Figure 3.4 aggregates across variables and shows the percentage of responses that fall

into each of six categories29. Recall that each category is interpreted as an inference change that

occurs as a result of switching from the baseline to the CV-CX model. In the short-run, the bulk of

the action is in the case for which a response was classified as borderline under the baseline model

but insignificant under the CV-CX model. Interestingly, this is the case at all horizons. At the

medium and long-run horizons however, the distribution of inference changes includes a broader

range of cases such as significant to insignificant and significant to borderline with the proportion

of cases being relatively consistent across each of these longer horizons. Generally though, as for

most types of changes, the percentage of inference changes increases at longer horizons.

Further aggregating similar effects in Figure 3.4 into cases for which the inference is strength-

ened or weakened, Figure 3.5 illustrates that the majority of inference changes are in the form of

weakening30. Figure 3.5 also reports the sum of all cases where it can be observed that more

Figure 3.5: Percentage of all inferences strengthened and weakened at each horizon as a result of
switching from the baseline to the CV-CX model. (Results derived from a negative unit (1 s.e.)

shock to US real equity prices)

changes occur at longer horizons. This is not entirely surprising as the CV-CX model fits better

than the baseline and as a result would be expected to have tighter confidence intervals for which

29Note that there are no cases for which the extent of the change was great enough that the direction of the finding
changed (i.e., in no case does the inference switch from positive significant to negative significant). Due to this, only
the cases for which inference changes occurred are reported in Figure 3.4 where each case represents a result either
strengthening or weakening but in same direction.
30Recall that weakening includes the following cases: significant to borderline, significant to insignificant, and bor-
derline to insignificant. Cases for strengthening are the reverse.
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the magnitude of tightening compounds over time.

To investigate the claim of tighter confidence bands under the CV-CX in the context of the

negative shock to US equity prices, Figure 3.6 reports the average change in confidence interval

bounds range from GIRFs for each variable31. Surprisingly, in the short-run, minimal reduction

is observed in the bandwidth for most variables and in some cases, such as for inflation and the

interest rate variables the bandwidth is actually wider. As the horizon increases though, substantial

tightening is observed across all variables with magnitudes varying between 15% tighter for inflation

to around 50% tighter for real equity prices in the long-run with the average across all variables

falling around 30% tighter. Figure 3.6 directly clarifies the impact that the improved fit has on

GIRF confidence intervals. Curiously, if one regresses the data in the bottom panel of Figure 3.6

on a time trend, the coefficient is highly significant and equal to roughly -1%.

Figure 3.6: Percent change in GIRF 90% bootstrap confidence interval range (CIUB −CILB) from
baseline to CV-CX model. Each panel displays an averaged result across all countries. Negative

values indicate tighter confidence intervals under the CV-CX model. (Results derived from a
negative unit (1 s.e.) shock to US real equity prices)

This implies that for each additional quarter beyond impact, one can expect the confidence intervals

31The formula used in the computation of Figure 3.6 is given towards the end of Section 3.3.
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to be 1% tighter under the CV-CX model than under the baseline model. It may simply be a

coincidence that the quarterly tightening is approximately equal to a factor of one tenth of the

fitness improvement though. More research would need to be done to strengthen any such claim32.

A final point of interest in terms of the baseline and CV-CX models is the resulting global

responses. Global responses are computed as PPP-GDP aggregations of individual responses. Fig-

ure 3.7 reports the global responses of each variable to the negative US equity price shock from each

model for which there are several noteworthy points. Beginning with the differences in magnitudes

between the models, generally the CV-CX model paints a milder picture of the global response than

the baseline model does. However, while both models agree on output, equity prices, and short-term

interest rates, key differences exist in responses of inflation, exchange rate, and long-term interest

rates. Looking first at inflation, the baseline model response is counter-intuitive. Ordinarily we

would expect the decline in short-term rates to cause inflationary pressure, however the baseline

model shows a deflationary response. The inflation response from CV-CX model on the other hand

falls in the expected direction. The models also disagree on the global response of long-term interest

rates.

Figure 3.7: Global response to a negative unit (1 s.e.) shock to US real equity prices. Panels
report PPP-GDP aggregated responses from the both the baseline and the CV-CX model.

(bootstrap mean estimates)

The baseline model has equity prices and long-term interest rates moving together while the CV-CX

model has them moving inversely. The upward pressure on the long-term interest rates under the

CV-CX model shows that the bond markets tend to react more to inflation expectations rather than

32How confidence interval tightness is related to the overall fit in GVAR models is an extremely specific question. If
one deemed such a pursuit worthy of further investigation, a simulation study would likely be the best place to start.
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to growth prospects. Moreover, under the CV-CX model the bond and equity market reactions are

consistent with each other whereas their response is inconsistent under the baseline model.

Generally, a more coherent story of the global economy is produced with the CV-CX model.

Starting with the equity price decline, global output falls, and central banks to drop short-term

interest rates to combat the economic slowdown. The reduction in short term rates means more

money in the economy or increased inflation and thus increased inflation expectations which ulti-

mately creates upward pressure on long-term interest rates and causes the yield curve to steepen.

Lastly, global currencies show an appreciation and then a subsequent depreciation against the dollar

with the action occurring sooner under the CV-CX model. This is evidence that the rest of the

world overreacts to the US equity price decline in terms of monetary policy in the long-run.

3.3.2 Shock to Oil Prices

The second shock of consideration is the positive one standard error shock to oil prices in the

US model. A one standard error positive shock results in a 12-13% increase per quarter in the

price of oil. Figure 3.8 presents GIRFs for select country-variable combinations for which various

inference changes are observed. Just as in the previous section, the GIRFs presented were selected

to illustrate the sensitivity both across space and across variables. Several shocks are of particular

interest as they were also presented in DdPS and thus their presentation in this section offers an

opportunity to compare across time in addition to the comparison to weightings. The top-middle

panel presents the Euro area short-term interest rate response to the positive oil price shock. The

GIRF response reported in DdPS shows short-run borderline positive response that is comparable

to the baseline model’s response in this chapter. The CV-CX model on the other hand shows that

the response is positive significant across all horizons. This is evidence that perhaps the monetary

response in the Euro area to oil prices is more sensitive than was previously suggested. The second

noteworthy shock in Figure 3.8 is the bottom-middle panel that depicts the US equity price. Since

DdPS primarily focuses on transmission and spillover effects between the US and the EU, this shock

is also included in their set of focal responses. Again, the baseline model response reported in this

chapter is highly similar to the response in DdPS which shows a negative borderline response in the

short-run becoming significant in the medium to long-run. By contrast, the CV-CX model shows

a much dampened effect that is insignificant at all horizons which is evidence that the US stock

market may be more resilient than has been previously suggested.
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Figure 3.8: Select GIRFs of a positive unit (1 s.e.) shock to oil prices in the US model. Rows 1
and 3 generated from the baseline model. Rows 2 and 4 generated from the CV-CX model.

(bootstrap mean estimates with 90% bootstrap error bounds)
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Figure 3.9: Percentage of impulse responses for which the inference differs between baseline and
CV-CX models by variable and by horizon. (Results derived from a positive unit (1 s.e.) shock to

oil prices in the US model)

Figure 3.9 presents the inference sensitivity by variable. In the short-run, the sensitivity is

fairly evenly distributed across variables with the majority of changes occurring in equity prices

(> 50%) followed closely by output (> 45%). In the medium horizon, the number of countries for

which the equity price inference for baseline and CV-CX models differs is even greater with changes

occurring in nearly 70% of countries. Less differences are observed over the medium horizon than

in the short run for other variables though. Generally, the prevalence of inference changes between

the baseline and CV-CX models for the oil price shock is concentrated among equity prices and is

primarily a weakening of the inference which suggests that equity markets are more resilient to oil

price movements than prior models have suggested.
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Figure 3.10: Percentage of impulse responses for which the inference differs between baseline and
CV-CX models by type of inference change and by horizon. (Results derived from a positive unit

(1 s.e.) shock to oil prices in the US model)

Figure 3.10 shows the percentage of oil price shock inferences that differ between baseline and

CV-CX models by type of change. Here again, as was the case with the shock to US equity prices, it

is shown that the most of the action is in responses being considered borderline under the baseline

model and being considered insignificant under the CV-CX model.
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Figure 3.11: Percentage of all inferences strengthened and weakened at each horizon as a result of
switching from the baseline to the CV-CX model. (Results derived from a positive unit (1 s.e.)

shock to oil prices in the US model)

Concerning the categorization of oil price shock inferences into strengthening and weakening

as a result of switching from the baseline to the CV-CX model, Figure 3.11 shows the strength-

ening/weakening breakdown as well as the total percentage of variable/country combinations for

which a difference is observed at each horizon. In response to the oil price shock, it is shown that

across all horizons under the CV-CX model roughly a quarter of the inferences drawn from GIRFs

are weaker in terms of significance than under the baseline model. On the other hand, oil price

shock GIRF inferences drawn from the CV-CX model are only stronger for around a tenth of the

variable/country combinations. Overall, the total number of oil price shock GIRF inferences that

are difference between the baseline and CV-CX models is around 35% across all horizons. This is in

contrast to the inference results from the US equity price shock where there were more differences

as the horizon lengthened.
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Figure 3.12: Percent change in GIRF 90% bootstrap confidence interval range (CIUB − CILB)
from baseline to CV-CX model. Each panel displays an averaged result across all countries.

Negative values indicate tighter confidence intervals under the CV-CX model. (Results derived
from a positive unit (1 s.e.) shock to oil prices in the US model)

Inspecting the bounds range improvement from the CV-CX model over the baseline, Figure 3.12

shows tightening across all variables. Whereas there was only minimal tightening in the short-run

to the US equity price shock, there is tightening across all variables even in the short run with

magnitudes varying between around 2% tighter to over 10% tighter. Equity prices and output are

again the most impacted with the bandwidth being nearly 50% tighter in the long run for equities

and 40% tighter for output under the CV-CX model. Again, a similar compounding tightness is

observed with the effect being roughly 1% tighter under the CV-CX model than the baseline model

per quarter. Broadly speaking, the tightening of bootstrap confidence intervals for oil price GIRFs

is similar in scale to the tightening observed for US equity price GIRFs.
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Figure 3.13: Global response to a positive unit (1 s.e.) shock to oil prices in the US model. Panels
report PPP-GDP aggregated responses from the both the baseline and the CV-CX model.

(bootstrap mean estimates)

Lastly, Figure 3.13 reports PPP-GDP aggregated global GIRF responses to the positive oil price

shock. Generally, the results are in the same directions as the baseline but with mixed differences in

magnitudes. Compared to the baseline model, the CV-CX model suggests that output and equity

prices are less effected by the oil price shock but that interest rates are more effected. Specifically,

the CV-CX model suggests that equity markets are more resilient to oil prices while bond markets

are more sensitive the previously suggested by trade weights.

3.3.3 Shock to US Short-Term Interest Rate

The last shock considered is a positive one standard error shock to short-term interest rates

in the US. This amounts a 0.14% increase in the Fed Funds rate (i.e., around 56 basis points),

measured on a quarterly basis. The magnitude of the shock is smaller than that in DdPS due to

the extended period of time that the rates remained stable around 0 following the financial crisis.
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Figure 3.14: Select GIRFs of a positive unit (1 s.e.) shock to US short-term interest rates. Rows 1
and 3 generated from the baseline model. Rows 2 and 4 generated from the CV-CX model.

(bootstrap mean estimates with 90% bootstrap error bounds)

Figure 3.14 presents select GIRF responses for which significant differences are observed between

the baseline and CV-CX models. The chosen responses, as with the previous shocks, illustrate in-

ference differences across all dimensions. The top panels show that differences exist across economic

variables and exchange rates while the bottom panels show differences to interest rates.

80



Figure 3.15: Percentage of impulse responses for which the inference differs between baseline and
CV-CX models by variable and by horizon. (Results derived from a positive unit (1 s.e.) shock to

US short-term interest rates)

Breaking down the changes by variable, Figure 3.15 reveals that the distribution of changes

across variables at the short and medium term are fairly similar. In the short-run, the percentage

of countries for which the GIRF inference differs is roughly around 30% for all variables except for

the long-term interest rate for which the number of observed differences is less than 10%. As for

the medium term, the percent of observed differences is between 20-30% for all variables except

inflation. In the long-run however, equity price and short-term interest rate inferences drawn from

baseline and CV-CX models differ for around 50% and 40% of cases respectively which, as with

the rest of the evidence, implies that the linkage of financial variables by trade weights may be

questionable. Generally, Figure 3.15 serves to validate the claim that US short-term inference rate

shock GIRF inference differences are not simply limited to a single variable but exist across all

variables and at each horizon.
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Figure 3.16: Percentage of impulse responses for which the inference differs between baseline and
CV-CX models by type of inference change and by horizon. (Results derived from a positive unit

(1 s.e.) shock to US short-term interest rates)

Figure 3.16 shows the type of change observed as a result of switching from the baseline to

the CV-CX model for the US short-term interest rate shock. Similarly to the other shocks, of

the responses where differences exist, the bulk of the action is the case for which responses were

borderline under the baseline model and insignificant under the CV-CX model. Regarding the

distribution of types of observed inference changes in the short-run, this is overwhelmingly the case

with very few other types of changes occurring. As for the medium horizon, there is slightly more

variation among represented cases but still most of the changes are of the the weakening case from

borderline to insignificant. As for the long-run, the distribution of cases is more uniform but still

with the borderline to insignificant case holding the majority. Overall Figure 3.16 shows that, while

the majority is held by a single type of inference change at all horizons, other types of inference

changes are represented and it is not the case that switching from the baseline to the CV-CX model

will alter all of the inferences in the same way.
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Figure 3.17: Percentage of all inferences strengthened and weakened at each horizon as a result of
switching from the baseline to the CV-CX model. (Results derived from a positive unit (1 s.e.)

shock to US short-term interest rates)

To further illustrate the variation in inference changes between the baseline and CV-CX models,

Figure 3.17 presents the strengthening and weakening categorization of types of changes. It is again

shown that the majority of changes at all horizons are those for which the inference is weakened by

the CV-CX model. This is particularly the case in the long run where greater than 20% of inferences

are less significant than under the baseline model. Across all horizons, less than 10% of inferences

are strengthened by changing to the CV-CX model. As for the total number of inferences where a

difference is observed, a higher percentage occurs in the long run which may not be unexpected in

light of the tightening of confidence bounds.
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Figure 3.18: Percent change in GIRF 90% bootstrap confidence interval range (CIUB − CILB)
from baseline to CV-CX model. Each panel displays an averaged result across all countries.

Negative values indicate tighter confidence intervals under the CV-CX model. (Results derived
from a positive unit (1 s.e.) shock to US short-term interest rates)

Specifically regarding confidence interval bandwidth change, Figure 3.18 shows a pattern for all

variables that looks highly similar to that of the bandwidth changes for the first shock to US equity

prices. In the short-run the bands are actually wider (values above 0) under the CV-CX model than

under the baseline model. This is in line with the short-run findings of Figure 3.16 that show a

large percent of impulses that are considered borderline or significant under the baseline model but

are considered insignificant under the CV-CX model. The time it takes the bands to become tighter

greatly differs across variables with bands starting tighter on impact for equity prices but taking

just over 20 quarters for long-term interest rates. The magnitude of improvement in bandwidth

also differs across variables with long-run bandwidths being roughly 40% tighter for equity prices

and 30% tighter for output while just breaking even for long-term rates. Generally, excluding the

odd behavior of the long-term interest rate bounds, fairly consistent tightening is observed across

all variables.
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Figure 3.19: Global response to a positive unit (1 s.e.) shock to US short-term interest rates.
Panels report PPP-GDP aggregated responses from the both the baseline and the CV-CX model.

(bootstrap mean estimates)

Lastly, Figure 3.19 presents the global responses to the US short-term rate hike. Under both the

baseline and the CV-CX models, there are no disagreements in the direction of the responses across

all variables. Magnitudes differ slightly by variables and in a similar way to the oil price shock with

equity prices less impacted and long term rates more impacted. Interestingly, the puzzle referred

to in DdPS regarding the positive output and inflation response is still present but with far smaller

magnitudes under each case. Finally, global exchange rates appreciate against the dollar which

suggests that the global monetary response follows suit but to such a degree as to be considered an

overreaction.

3.4 Concluding Remarks

This chapter presents a full-scale empirical application of the global economy with the intent

and purpose of demonstrating the sensitivity of generalized impulse response inferences to weighting

scheme selection. Together with the innovation of convex weighting presented in chapter 1, this

chapter also proposes an extension of the existing weighting scheme literature by combining the

concepts of weighting scheme mixing on variables with convex weighting. To illustrate the scope

of inference sensitivity to weighting, two separate models are estimated for which inferences from

generalized impulse responses are compared. A baseline model that relies on pure trade weights,

which is analogous to the model found in the seminal GVAR work by Dees et al. (2007), is run on an

updated sample alongside the optimal convex weighted model which is identified via a full search

algorithm. Another contribution of this chapter is the impulse response inference classification
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algorithm that is capable of categorizing the direction of impulse responses as significant, borderline,

or insignificant for any given horizon. This algorithm is used in the analysis of all impulse responses

generated from three individual shock scenarios and the resulting inferences of the baseline and

convex weighted models are compared along a number of dimensions with the primary focus being

on whether any differences exist.

Table 3.16: Any Inference Change - Any Country, Any Variable

Short Run Medium Term Long Run

Neg. shock to US equities 26% 30% 38%

Pos. shock to oil prices 39% 34% 36%

Pos. shock to US short rates 27% 24% 30%

Average 31% 29% 34%

Note: Entries are the percentage of IRFs for which any inference change

occurs as a result of switching from the baseline to the CV-CX model.

Table 3.16 presents a tabular representation of the main results where rows are individual shocks

and elements are the percentage of GIRFs for which a different level of significance was observed

between the baseline and the convex weighted model. The last row presents the average across all

shocks and shows that in no less than practically 30% of impulse responses at any horizon, a different

inference would be reached and thus likely a different conclusion would be argued. In line with the

arguments put forth in chapter 2, if GVAR practitioners are interested in maximizing the strength

of their arguments and minimizing the amount of assumptions they make, some form of weighting

scheme optimization should be employed, such as the procedures set forth and demonstrated in this

dissertation.

Broadly speaking, the GVAR as a model has been used in a wide range of applications, see

for reference Chudik and Pesaran (2016), but the vast majority of the literature to date still relies

on the specification of a single weighting scheme to link domestic and foreign variables together.

While this may be appropriate in select circumstances where the linkage mechanism is abundantly

clear, this dissertation suggests that the real risk is similar to omitted variable bias in the classical

sense. Choosing to estimate only a single weighting scheme that may have been selected in an

ad hoc fashion is to shun the importance of robustness to that dimension. Estimating, analyzing

results, and forming arguments from a single weighting schemes is to ignore the potential that the

weighting scheme might influence the results. Rejecting such potential in favor of economic context

afforded by a user-specified scheme might previously have been preferable to the alternative, which

was the devoid of economic context endogenously estimated weighting proposed in Gross (2018),

but fortunately by the innovations in this dissertation, a simple go-between has been developed

that balances the economic context and considers the sensitivity that weighting schemes may have.
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Although future research would do well to shed additional light on the exact nature and mag-

nitude of the sensitivity of various forecasting and inference-type results in GVAR models to the

choice of weighting, this paper has provided real-world evidence that the choice can have major im-

plications on both. Researches looking to utilize the GVAR method will no longer, by the methods

proposed in this dissertation, need to concern themselves with the exact specification of the linkage

mechanism and will no longer have to sacrifice the economic context that alternatives require. This

dissertation provides a meaningful contribution to the GVAR literature in the area of weighting

scheme choice and lays a plentiful foundation for future applications.
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APPENDIX A.0

Table A.0.1: Distance Weights

MSA Dallas Austin Houston San Antonio

Dallas 0.000 0.217 0.264 0.178

Austin 0.402 0.000 0.415 0.592

Houston 0.309 0.262 0.000 0.230

San Antonio 0.289 0.521 0.321 0.000

Table A.0.2: GDP Weights

MSA Dallas Austin Houston San Antonio

Dallas 0.000 0.436 0.674 0.432

Austin 0.164 0.000 0.170 0.109

Houston 0.687 0.463 0.000 0.458

San Antonio 0.150 0.101 0.156 0.000
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APPENDIX A.1

Figure A.1.1: Dallas - Generalized impulse responses of a negative (1 s.e.)  shock to US GDP (bootstrap 

mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.

Figure A.1.2: Austin - Generalized impulse responses of a negative (1 s.e.)  shock to US GDP (bootstrap 

mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.

Figure A.1.3: Houston - Generalized impulse responses of a negative (1 s.e.)  shock to US GDP (bootstrap 

mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.
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Figure A.1.4: San Antonio - Generalized impulse responses of a negative (1 s.e.)  shock to US GDP 

(bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.

Figure A.1.5: DU - Generalized impulse responses of a negative (1 s.e.)  shock to US GDP (bootstrap mean 

estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.
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Figure A.1.6: Dallas - Generalized impulse responses of a negative (1 s.e.)  shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.

Figure A.1.7: Austin - Generalized impulse responses of a negative (1 s.e.)  shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.

Figure A.1.8: Houston - Generalized impulse responses of a negative (1 s.e.)  shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.
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Figure A.1.9: San Antonio - Generalized impulse responses of a negative (1 s.e.)  shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.

Figure A.1.10: DU - Generalized impulse responses of a negative (1 s.e.)  shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.
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Figure A.1.11: Dallas - Generalized impulse responses of a positive (1 s.e.)  shock to oil prices (bootstrap 

mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.

Figure A.1.12: Austin - Generalized impulse responses of a positive (1 s.e.)  shock to oil prices (bootstrap 

mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.

Figure A.1.13: Houston - Generalized impulse responses of a positive (1 s.e.)  shock to oil prices (bootstrap 

mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.
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Figure A.1.14: San Antonio - Generalized impulse responses of a positive (1 s.e.)  shock to oil prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.

Figure A.1.15: DU - Generalized impulse responses of a positive (1 s.e.)  shock to oil prices (bootstrap 

mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.
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Figure A.1.16: Dallas - Generalized impulse responses of a positive (1 s.e.)  shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.

Figure A.1.17: Austin - Generalized impulse responses of a positive (1 s.e.)  shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.

Figure A.1.18: Houston - Generalized impulse responses of a positive (1 s.e.)  shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.
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Figure A.1.19: San Antonio - Generalized impulse responses of a positive (1 s.e.)  shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.

Figure A.1.20: DU - Generalized impulse responses of a positive (1 s.e.)  shock to US short-rates (bootstrap 

mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.
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Figure A.1.21: Dallas - Generalized impulse responses of a positive (1 s.e.)  shock to Dallas house prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.

Figure A.1.22: Austin - Generalized impulse responses of a positive (1 s.e.)  shock to Dallas house prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.

Figure A.1.23: Houston - Generalized impulse responses of a positive (1 s.e.)  shock to Dallas house prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.
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Figure A.1.24: San Antonio - Generalized impulse responses of a positive (1 s.e.)  shock to Dallas house 

prices (bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.

Figure A.1.25: DU - Generalized impulse responses of a positive (1 s.e.)  shock to Dallas house prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CX Automatic model GIRFs.
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APPENDIX B.0

Table B.0.1: CV-CX Model Number of Rejections of the Null of Parameter Constancy Per
Variable Across the Country-Specific Models at the 5% Level

Alternative
test statistic

Domestic variables Numbers(%)

y ∆p eq ep ρS ρL

PKsup 4(17.4) 1(4.3) 1(4.3) 2(8.7) 2(8.7) 0(0.0) 10(8.2)

PKmsq 3(13.0) 1(4.3) 0(0.0) 2(8.7) 1(4.3) 0(0.0) 7(5.7)

< 3(13.0) 7(30.4) 5(21.7) 10(43.5) 7(30.4) 7(30.4) 39(32.0)

robust-N 0(0.0) 3(13.0) 2(8.7) 5(21.7) 3(13.0) 3(13.0) 16(13.1)

QLR 10(43.5) 12(52.2) 11(47.8) 16(69.6) 18(78.3) 12(52.2) 79(64.8)

robust-QLR 1(4.3) 4(17.4) 6(26.1) 9(39.1) 3(13.0) 6(26.1) 29(23.8)

MW 4(17.4) 10(43.5) 10(43.5) 13(56.5) 9(39.1) 8(34.8) 54(44.3)

robust-MW 1(4.3) 5(21.7) 5(21.7) 8(34.8) 3(13.0) 5(21.7) 27(22.1)

APW 10(43.5) 12(52.2) 11(47.8) 15(65.2) 18(78.3) 12(52.2) 78(63.9)

robust-APW 3(13.0) 4(17.4) 6(26.1) 9(39.1) 3(13.0) 6(26.1) 31(25.4)

Note: The test statistics PKsup and PKmwq are based on the cumulative sums of OLS residuals, <
is the Nyblom test for time-varying parameters and QLR, MW , and APW are the sequential Wald

statistics for a single break at an unknown change point. Statistics with the prefix ‘robust’ denote

the heteroskedasticity-robust version of the tests. All tests are implemented at the 5% significance

level.
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Table B.0.2: CV-CX Model Contemporaneous Effects of Foreign Variables
on Their Domestic Counterparts

Country Domestic variables

y ∆p eq ρS ρL

USA 0.56 0.13

[5.17] [1.13]

Euro Area 0.48 0.30 1.12 0.44 0.61

[5.55] [4.78] [19.91] [4.94] [8.13]

China 0.66 0.72 0.06

[2.93] [3.16] [0.61]

Japan 0.53 0.15 0.79 -0.06 0.57

[2.97] [1.91] [7.61] [-0.45] [5.21]

UK 0.57 0.59 0.89 0.68 0.76

[4.62] [4.70] [18.16] [3.02] [8.05]

Sweden 1.28 0.74 1.25 0.62 0.75

[5.52] [3.85] [15.80] [1.57] [4.87]

Switzerland 0.45 0.29 1.00 0.10 0.49

[3.07] [2.27] [18.81] [0.67] [7.34]

Norway 0.27 0.81 1.06 0.03 0.53

[1.25] [3.01] [9.96] [0.08] [3.57]

Note: White’s heteroskedastic-robust t-ratios are given in square brackets
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Table B.0.3: Trade Weights
Countries austlia can china chl euro india indns japan kor mal mex nor nzld phlp safrc sarbia sing swe switz thai turk uk usa

austlia 0.00 0.00 0.05 0.01 0.02 0.03 0.03 0.06 0.04 0.04 0.00 0.00 0.23 0.02 0.02 0.01 0.04 0.01 0.01 0.04 0.01 0.02 0.01

can 0.01 0.00 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.03 0.02 0.02 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.03 0.21

china 0.28 0.08 0.00 0.28 0.16 0.16 0.16 0.27 0.29 0.17 0.10 0.05 0.18 0.14 0.19 0.17 0.14 0.05 0.05 0.17 0.12 0.08 0.18

chl 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

euro 0.09 0.06 0.17 0.17 0.00 0.18 0.08 0.10 0.08 0.10 0.07 0.43 0.10 0.09 0.26 0.15 0.10 0.55 0.65 0.08 0.48 0.51 0.15

india 0.04 0.01 0.03 0.03 0.03 0.00 0.05 0.01 0.03 0.04 0.01 0.00 0.02 0.01 0.06 0.09 0.04 0.01 0.01 0.02 0.03 0.02 0.02

indns 0.03 0.00 0.03 0.00 0.01 0.05 0.00 0.04 0.04 0.06 0.00 0.00 0.02 0.04 0.01 0.02 0.11 0.00 0.00 0.05 0.01 0.00 0.01

japan 0.16 0.03 0.14 0.10 0.04 0.04 0.16 0.00 0.14 0.14 0.03 0.02 0.08 0.18 0.08 0.14 0.08 0.02 0.03 0.20 0.02 0.02 0.07

kor 0.07 0.01 0.11 0.06 0.02 0.04 0.09 0.08 0.00 0.05 0.02 0.02 0.04 0.08 0.03 0.11 0.07 0.01 0.01 0.04 0.03 0.01 0.03

mal 0.03 0.00 0.04 0.00 0.01 0.03 0.07 0.04 0.02 0.00 0.01 0.00 0.03 0.04 0.02 0.01 0.16 0.00 0.00 0.07 0.01 0.01 0.01

mex 0.01 0.04 0.01 0.04 0.02 0.01 0.00 0.01 0.02 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.16

nor 0.00 0.01 0.00 0.00 0.04 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.01 0.04 0.00

nzld 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

phlp 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.02 0.00 0.00 0.01

safrc 0.01 0.00 0.02 0.00 0.02 0.03 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.02 0.01

sarbia 0.00 0.00 0.03 0.00 0.02 0.08 0.02 0.05 0.06 0.01 0.00 0.00 0.02 0.04 0.05 0.00 0.03 0.01 0.01 0.03 0.03 0.01 0.02

sing 0.05 0.00 0.03 0.00 0.02 0.05 0.14 0.03 0.04 0.16 0.00 0.01 0.04 0.10 0.01 0.04 0.00 0.00 0.01 0.05 0.00 0.01 0.02

swe 0.01 0.00 0.01 0.01 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.02 0.03 0.01

switz 0.01 0.01 0.01 0.01 0.10 0.07 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.00 0.04 0.03 0.05 0.02

thai 0.04 0.00 0.03 0.01 0.01 0.02 0.05 0.05 0.02 0.07 0.01 0.00 0.03 0.06 0.02 0.02 0.04 0.01 0.01 0.00 0.01 0.01 0.01

turk 0.00 0.00 0.01 0.01 0.05 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.02 0.01

uk 0.03 0.03 0.03 0.02 0.19 0.03 0.01 0.02 0.01 0.01 0.01 0.23 0.04 0.01 0.05 0.01 0.02 0.10 0.05 0.02 0.07 0.00 0.04

usa 0.09 0.68 0.20 0.23 0.15 0.13 0.08 0.17 0.13 0.11 0.69 0.06 0.11 0.16 0.11 0.17 0.11 0.06 0.10 0.10 0.10 0.11 0.00

101



Table B.0.4: Convex Weights - 0.4∗Portfolio Investment + 0.6∗Distance
Countries austlia can china chl euro india indns japan kor mal mex nor nzld phlp safrc sarbia sing swe switz thai turk uk usa

austlia 0.00 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.08 0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04

can 0.03 0.00 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.02 0.03 0.04 0.02 0.03 0.07

china 0.09 0.09 0.00 0.09 0.11 0.09 0.09 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.12

chl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

euro 0.17 0.15 0.18 0.16 0.00 0.16 0.16 0.20 0.16 0.16 0.17 0.24 0.14 0.16 0.17 0.27 0.16 0.28 0.19 0.16 0.19 0.24 0.25

india 0.02 0.02 0.02 0.02 0.02 0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03

indns 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

japan 0.14 0.09 0.09 0.07 0.14 0.08 0.09 0.00 0.09 0.08 0.09 0.13 0.12 0.09 0.08 0.06 0.10 0.10 0.08 0.08 0.09 0.10 0.19

kor 0.01 0.01 0.03 0.01 0.02 0.02 0.01 0.02 0.00 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02

mal 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.04 0.00 0.00 0.01 0.00 0.00 0.01

mex 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02

nor 0.01 0.01 0.01 0.02 0.03 0.01 0.01 0.02 0.02 0.01 0.01 0.00 0.01 0.04 0.02 0.01 0.01 0.04 0.02 0.02 0.02 0.02 0.02

nzld 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

phlp 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

safrc 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.01

sarbia 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01

sing 0.02 0.00 0.09 0.00 0.01 0.11 0.09 0.00 0.05 0.10 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.01 0.02

swe 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.01 0.01 0.01 0.02

switz 0.02 0.02 0.01 0.01 0.04 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.03 0.00 0.01 0.01 0.02 0.02

thai 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01

turk 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01

uk 0.07 0.04 0.08 0.07 0.14 0.08 0.06 0.10 0.08 0.08 0.07 0.07 0.07 0.06 0.07 0.24 0.08 0.06 0.07 0.07 0.13 0.00 0.11

usa 0.34 0.47 0.35 0.44 0.33 0.33 0.34 0.39 0.35 0.33 0.42 0.27 0.33 0.33 0.41 0.16 0.36 0.27 0.38 0.35 0.34 0.34 0.00
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Figure B.1.24: Australia - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.25: Canada - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.26: China - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.27: Chile - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.28: Euro - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.29: India - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.30: Indonesia - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.31: Japan - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.32: Korea - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.33: Malaysia - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.34: Mexico - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.35: Norway - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.36: New Zealand - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the 

US model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.37: Philippines - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the 

US model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.38: South Africa - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the 

US model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.39: Saudi Arabia - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the 

US model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.40: Singapore - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.41: Sweden - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.42: Switzerland - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the 

US model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.43: Thailand - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.44: Turkey - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.45: UK - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US model 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.46: USA - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.47: Australia - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.48: Canada - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.49: China - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.50: Chile - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.51: Euro - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates (bootstrap 

mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.52: India - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.53: Indonesia - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.54: Japan - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.55: Korea - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.56: Malaysia - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.57: Mexico - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.58: Norway - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.59: New Zealand - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.60: Philippines - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.61: South Africa - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.62: Saudi Arabia - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.64: Sweden - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.63: Singapore - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.65: Switzerland - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.66: Thailand - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.67: Turkey - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.68: UK - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates (bootstrap 

mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.69: USA - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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APPENDIX B.1

Figure B.1.1: Australia - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.2: Canada - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.3: China - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.4: Chile - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.5: Euro - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.6: India - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.7: Indonesia - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.9: Korea - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.8: Japan - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.10: Malaysia - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.11: Mexico - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.13: New Zealand - Generalized impulse responses of a negative (1 s.e.) shock to US equity 

prices (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.12: Norway - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.14: Philippines - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.15: South Africa - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.16: Saudi Arabia - Generalized impulse responses of a negative (1 s.e.) shock to US equity 

prices (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.17: Singapore - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.18: Sweden - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.19: Switzerland - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.20: Thailand - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.21: Turkey - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.23: USA - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.22: UK - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.24: Australia - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.25: Canada - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.26: China - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.27: Chile - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.28: Euro - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.29: India - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.30: Indonesia - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.31: Japan - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.32: Korea - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.33: Malaysia - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.34: Mexico - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.35: Norway - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.36: New Zealand - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the 

US model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.37: Philippines - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the 

US model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.38: South Africa - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the 

US model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.39: Saudi Arabia - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the 

US model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.40: Singapore - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.41: Sweden - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.42: Switzerland - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the 

US model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.43: Thailand - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.44: Turkey - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.45: UK - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US model 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.46: USA - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.47: Australia - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.48: Canada - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.49: China - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.50: Chile - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.51: Euro - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates (bootstrap 

mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.52: India - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.53: Indonesia - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.54: Japan - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.55: Korea - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.56: Malaysia - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.57: Mexico - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.58: Norway - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.59: New Zealand - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.60: Philippines - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.61: South Africa - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.62: Saudi Arabia - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.64: Sweden - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.63: Singapore - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.65: Switzerland - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.66: Thailand - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.67: Turkey - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.

Figure B.1.68: UK - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates (bootstrap 

mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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Figure B.1.69: USA - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). CV-CX weighted model IRFs.
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APPENDIX B.2

Figure B.2.1: Australia - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.2: Canada - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.3: China - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.4: Chile - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.5: Euro - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.6: India - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.7: Indonesia - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.9: Korea - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.8: Japan - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.10: Malaysia - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.11: Mexico - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.13: New Zealand - Generalized impulse responses of a negative (1 s.e.) shock to US equity 

prices (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.12: Norway - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.14: Philippines - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.15: South Africa - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.16: Saudi Arabia - Generalized impulse responses of a negative (1 s.e.) shock to US equity 

prices (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.17: Singapore - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.18: Sweden - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.19: Switzerland - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.20: Thailand - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.21: Turkey - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.23: USA - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.22: UK - Generalized impulse responses of a negative (1 s.e.) shock to US equity prices 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.24: Australia - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.25: Canada - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.26: China - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.27: Chile - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.28: Euro - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.29: India - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.30: Indonesia - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.31: Japan - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.32: Korea - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.33: Malaysia - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.34: Mexico - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.35: Norway - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.36: New Zealand - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the 

US model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.37: Philippines - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the 

US model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.38: South Africa - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the 

US model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.39: Saudi Arabia - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the 

US model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.41: Sweden - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.40: Singapore - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.42: Switzerland - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the 

US model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.43: Thailand - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.44: Turkey - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.45: UK - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US model 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.46: USA - Generalized impulse responses of a positive (1 s.e.) shock to oil prices in the US 

model (bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.47: Australia - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.48: Canada - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

-0.02

-0.015

-0.01

-0.005

0

0.005

0 4 8 12 16 20 24

Quarters

AUSTRALIA y

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0 4 8 12 16 20 24

Quarters

AUSTRALIA Dp

-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05

0 4 8 12 16 20 24

Quarters

AUSTRALIA eq

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0 4 8 12 16 20 24

Quarters

AUSTRALIA ep

-0.0005
0

0.0005
0.001

0.0015
0.002

0.0025
0.003

0.0035

0 4 8 12 16 20 24

Quarters

AUSTRALIA r

0

0.0005

0.001

0.0015

0.002

0.0025

0 4 8 12 16 20 24

Quarters

AUSTRALIA lr

-0.014
-0.012

-0.01
-0.008
-0.006
-0.004
-0.002

0
0.002
0.004

0 4 8 12 16 20 24

Quarters

CANADA y

-0.001

-0.0005

0

0.0005

0.001

0.0015

0 4 8 12 16 20 24

Quarters

CANADA Dp

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0 4 8 12 16 20 24

Quarters

CANADA eq

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 4 8 12 16 20 24

Quarters

CANADA ep

-0.0005

0

0.0005

0.001

0.0015

0.002

0 4 8 12 16 20 24

Quarters

CANADA r

0
0.0002
0.0004
0.0006
0.0008

0.001
0.0012
0.0014
0.0016

0 4 8 12 16 20 24

Quarters

CANADA lr

187



Figure B.2.49: China - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.50: Chile - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.51: Euro - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates (bootstrap 

mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.52: India - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.53: Indonesia - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.54: Japan - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.55: Korea - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.56: Malaysia - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.57: Mexico - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.58: Norway - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.59: New Zealand - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.60: Philippines - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.61: South Africa - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.62: Saudi Arabia - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.63: Singapore - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.64: Sweden - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.65: Switzerland - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.66: Thailand - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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Figure B.2.67: Turkey - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

Figure B.2.68: UK - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates (bootstrap 

mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0 4 8 12 16 20 24

Quarters

TURKEY y

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0 4 8 12 16 20 24

Quarters

TURKEY Dp

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 4 8 12 16 20 24

Quarters

TURKEY ep

-0.006

-0.004

-0.002

0

0.002

0.004

0 4 8 12 16 20 24

Quarters

TURKEY r

-0.02

-0.015

-0.01

-0.005

0

0.005

0 4 8 12 16 20 24

Quarters

UNITED KINGDOM y

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0 4 8 12 16 20 24

Quarters

UNITED KINGDOM Dp

-0.14
-0.12

-0.1
-0.08
-0.06
-0.04
-0.02

0
0.02
0.04

0 4 8 12 16 20 24

Quarters

UNITED KINGDOM eq

-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

0 4 8 12 16 20 24

Quarters

UNITED KINGDOM ep

-0.003
-0.0025

-0.002
-0.0015

-0.001
-0.0005

0
0.0005

0.001
0.0015

0 4 8 12 16 20 24

Quarters

UNITED KINGDOM r

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 4 8 12 16 20 24

Quarters

UNITED KINGDOM lr

197



Figure B.2.69: USA - Generalized impulse responses of a positive (1 s.e.) shock to US short-rates 

(bootstrap mean estimates with 90% bootstrap error bounds). Trade weighted model IRFs.
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