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Abstract. In this paper, we help NASA solve three Exploration Mission-1 (EM-1) 

challenges: data storage, computation time, and visualization of complex data. NASA is 

studying one year of trajectory data to determine available launch opportunities (about 

90TBs of data). We improve data storage by introducing a cloud-based solution that 

provides elasticity and server upgrades. This migration will save $120k in infrastructure 

costs every four years, and potentially avoid schedule slips. Additionally, it increases 

computational efficiency by 125%. We further enhance computation via machine learning 

techniques that use the classic orbital elements to predict valid trajectories. Our machine 

learning model decreases trajectory creation from hours/days to minutes/seconds with an 

overall accuracy of 98%. Finally, we create an interactive, calendar-based Tableau 

visualization for EM-1 that summarizes trajectory data and considers multiple constraints 

on mission availability. The use of Tableau allows for sharing of visualization dashboards 

and would eventually be automatically updated upon generation of a new set of trajectory 

data. Therefore, we conclude that cloud technologies, machine learning, and big data 

visualization will benefit NASA’s engineering team. Successful implementation will 

further ensure mission success for the Exploration Program with a team of 20 people 

accomplishing what Apollo did with a team of 1000. 
 
Keywords: Big Data, Machine Learning, Regression, Visualization, Cloud Computing 

1 Introduction 

Exploring the Moon and space in general have been dreams of mankind for generations. In the 

1960’s NASA’s Apollo program succeeded in making the dream of going to the Moon a reality. 

The project required a great effort and an extreme level of coordination between all participants 

to achieve a common goal. With a fraction of the budget and hence, a fraction of the manpower, 

NASA will attempt to return to the Moon in 2020. This paper will provide a framework to help 

NASA achieve their goals efficiently and cost effectively. 

1.1 Going to the Moon 

In the early stages of Apollo planning, the team identified more than 10,000 activities to be 

done, with no previous experience of this endeavor’s magnitude to decide what to do 

sequentially or in parallel. Key questions that drove the entire project were: determination of 

the environment in cis-lunar space (volume of the lunar orbit), and on the lunar surface; design 
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and development of the spacecraft and launch vehicles; the conduct of tests and flight missions 

to prove components and procedures; and the selection and training of flight crews and ground 

support to carry-on the mission [1]. 

Constraints on propulsion and performance efficiency triggered the project strategy in the 

Apollo project in the 60’s. The same constraints and requirements are still valid for Exploration 

Mission-1 (EM-1). EM-1 will be the first integrated flight test of NASA’s Deep Space 

Exploration Systems: the Orion spacecraft, the Space Launch System (SLS) rocket, and the 

Exploration Ground Systems at Kennedy Space Center in Cape Canaveral, Florida [3]. The SLS 

rocket includes the Interim Cryogenic Propulsion Stage (ICPS) providing the system with the 

required trans-lunar injection (TLI) burn to reach lunar orbit. 

1.2 EM-1 Data Problem 

EM-1 is currently planned for 2020. Due to rocket performance, orbital mechanics and the 

acceptable launch azimuth (direction angle from north pole clockwise) as allowed from the 

Florida coast, getting to the Moon is not simply a matter of picking a desired launch day any 

time of the year. In fact, during Apollo mission planning, engineers realized that having one 

lunar landing location, along with the performance limitations of the lunar lander, and the 

lighting constraints for landing left only ten viable days in which to launch each year. To 

increase the launch window for Apollo missions, NASA decided that more lunar landing 

locations were required to satisfy these constraints [21]. 

EM-1 will not be landing on the Moon. Even still, we will have all of the orbital mechanics, 

earth-moon geometry, and rocket performance challenges that were part of the Apollo problem. 

To study all the segments of an earth-moon trajectory, the JSC trajectory engineering team 

creates terabytes of data for both trajectory study and final submittal to the flight operations 

team and mission management. This data can be used to determine mission availability. A 

typical one-week launch window will generate about 2TB of data given the standard resolution 

of a trajectory per minute. Therefore, our first task is to determine how best to store and 

manipulate the data in order to find the days available to launch for EM-1. Trajectory scans are 

run at daily and sometimes minute resolutions. These trajectory scans will eventually include 

the entirety of the Exploration Mission Design Matrix which encompasses nominal, alternate 

mission, abort, and missed burn cases (total of 64 cases and 90 TB of data). 

Currently, the engineering team stores their data in standard server file structures and in text, 

csv, or json formats that are the output formats of the trajectory calculation tool called 

Copernicus. While this has data management has sufficed for their current level of data (nominal 

launch scenarios only), the need to integrate alternative and other off-nominal scenarios will 

require further storage capabilities for data handling and elasticity. 

1.3 EM-1 Launch Opportunity Discovery 

Although EM-1 will only perform several orbits around the Moon, there are still many 

performance, communication and lighting constraints that require significant analysis in order 

to have a large enough launch period each month to successfully launch. By studying the 

trajectory and other pertinent mission and sun positioning data, we will determine when these 

launch opportunities exist. Orbital mechanics studies the motion of artificial satellites and space 

vehicles moving under the influence of forces such as gravity, atmospheric drag, and thrust [4]. 
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The constraints to optimize spacecraft performance have designed trajectories to use 

gravitational forces and reduce fuel burns [5]. 

 

Fig. 1.The launch window must be calculated to optimize fuel consumption while getting to the Moon just 

on time. 

The TLI burn is sized and timed to precisely target the Moon as it revolves around the earth. 

The launch window, therefore, is the range of time when the spacecraft can be launched so it 

will intercept the Moon’s orbit at the correct time. The following series of events are depicted 

in Fig. 1:  

 

1. Lift off. At this time the Moon is at a position M1, but it is calculated where it is going 

to be at TLI (M3) and the interception to translunar trajectory (M4).  

2. The vehicle enters a parking orbit around the earth (low Earth orbit). 

3. After the required checks have been performed, the TLI burn is the propulsive 

maneuver that increases the spacecraft’s velocity changing its orbit from the parking 

orbit into its translunar trajectory in a highly eccentric orbit. 

4. The spacecraft intercepts the Moon's sphere of influence, and enters into its orbit. 

 

Our paper includes the ability to pull from the large trajectory data set the required data to 

find the available launch opportunities in a range of time, in order to have several options to 

manage risk.  

1.4 EM-1 Launch Opportunity Visualization 

Next, we need to find a way to visualize these launch opportunities and toggle on and off 

established requirements as well as nice-to-have requirements, or “desirements”, for this EM-1 

mission across the entire Exploration Mission Design Matrix. This matrix will eventually 
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include nominal, alternate, abort, and missed burn mission trajectories. Also, we will need to 

be able to determine and visualize where “cut-outs” exist inside of a launch window. A “cut-

out” is an amount of time where you either cannot launch due to a failure to meet a requirement 

or could signify a timeframe where you lose a “desirement”. 

Our approach requires a way to consolidate all of the trajectory data across the mission design 

matrix and create a subset of data that can be used to visualize launch opportunities. This 

visualization needs to be layered in such a way that the impacts of multiple requirements and 

“desirements” can be quickly demonstrated in order for decision-makers to make informed 

decisions on when to launch. For instance, if we were to choose to have a lighted launch to be 

able to have good imagery of the launch and the ascent phase of the mission, we would lose 

about 1/3 of all the available opportunities in a given year. Additionally, the tool would have to 

have the capability to perform more of a deep-dive into a particular day/week to determine 

whether there are times within an available launch day that preclude you from meeting either 

highly-desired objectives or where you do not have an available abort. 

1.5 EM-1 Machine Learning Approach 

Lastly, with the desired architecture in place that accommodates the storage, sharing, querying, 

and visualizing of the data, we are now able to apply machine learning techniques across the 

growing dataset in order to increase the trajectory scan resolution. Currently, when performing 

trajectory design, scans are run at a one-day resolution to cut down on overall computation time 

and get a “ballpark” trajectory. The drawback of this approach is that the subsequent trajectory 

scan initializes itself with the previous scan which is an inaccurate initial condition. The more 

inaccurate the initial condition, the more time the 3 degree of freedom (DOF) trajectory design 

tool, Copernicus, takes to resolve a valid trajectory. 

We are looking at machine learning approaches using supervised regression that would ease 

the computational burden on different aspects of the overall trajectory calculations. 

Additionally, near flight, if increased resolution on the trajectory scans is requested, the machine 

learning approach could be utilized to provide valid classical orbital elements information that 

could be propagated in Copernicus to create additional valid trajectories (at much smaller 

resolution) but without running a full Copernicus set of scans that can take days to run. 

1.6 Results and Conclusions 

We found that using cloud technologies increases computational efficiency for trajectory 

generation by 125% from current methods. This increased efficiency could be crucial near 

launch when potential changes to the nominal plan could derail the schedule entirely due to the 

time it takes to compute new trajectories. Our machine learning model assists in decreasing 

trajectory creation from hours/days to minutes/seconds with an overall accuracy of 98%. The 

use of Tableau allows for sharing of visualization dashboards and would be automatically 

updated upon generation of a new set of trajectory data. Additionally, decision-makers could 

access the visualizations via an interactive dashboard in the cloud. An additional outcome here 

is that the entire process can be automated such that as soon as a new set of trajectories is run 

in the cloud, a new dashboard is available for studying the new data’s effect on the launch 

opportunities. Therefore, we conclude that cloud technologies, big data visualization, and 

machine learning techniques will benefit NASA’s engineering team. 
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The following is a brief description of the remaining sections of this paper. Chapter 2 

describes the technical concepts around the mission, factors influencing launch opportunities, 

and operational requirements that the selected launch date should meet. It also introduces the 

architecture for the cloud, visualization and machine learning proposals to address the data 

challenges. Chapter 3 explores data structure related to mission concepts. Chapter 4 details the 

processes and methods we followed to solve the problems. Chapter 5 shows the results of our 

solutions for cloud data management, visualization, and machine learning. Chapter 6 discusses 

ethical considerations in machine learning projects. Chapter 7 talks about our conclusions and 

recommended next steps for NASA. 

2 Background and Tutorial 

SLS and Orion will take off from NASA’s spaceport at Kennedy Space Center in Florida. The 

SLS rocket will produce about 8.8 million pounds of thrust during liftoff and ascent to loft a 

vehicle weighing nearly six million pounds to orbit, and it will reach the period of greatest 

atmospheric force within ninety seconds. After jettisoning the boosters, service module panels, 

and launch abort system, the core stage engines will shut down and the core stage will separate 

from the spacecraft. As the spacecraft orbits the Earth, it will deploy its solar arrays. Next, the 

Interim Cryogenic Propulsion Stage (ICPS) will give Orion the push required to leave Earth’s 

orbit and travel toward the Moon. From there, Orion will separate from the ICPS about two 

hours after launch. 

2.1 Exploration Mission-1 Overview 

EM-1 is the first in a series of increasingly complex missions. It is a mission where new 

technologies will be tested as a foundation to support further missions. Fig. 2 illustrates the full 

trajectory of the EM-1 mission. 

 

Fig. 2.This figure shows the EM-1 Mission overview broken out into segments showing the major/minor 

trajectory changing/correcting burns. (Source: NASA Exploration Mission Analysis Office) 
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The outbound trip to the Moon will take several days according to a predefined trajectory, 

which could be corrected as needed. Orion will fly about 62 miles (100 km) above the surface 

of the Moon, and then use the Moon’s gravitational force to propel Orion into a distant 

retrograde (opposite the direction the Moon travels around the Earth) orbit about 40,000 miles 

(70,000 km) from the Moon. The spacecraft will stay in that orbit for approximately six days to 

collect data and allow mission controllers to assess the performance of the spacecraft. 

For its return trip to earth, Orion will use another precisely timed engine firing service 

module in conjunction with the Moon’s gravity to accelerate back toward Earth. This maneuver 

will set the spacecraft on its trajectory back toward Earth to enter our planet’s atmosphere 

traveling at 25,000 mph (11 kilometers per second), producing temperatures of approximately 

5,000 degrees Fahrenheit (2,760 degrees Celsius) – faster and hotter than Orion experienced 

during its 2014 flight test. 

After more than three weeks and 1.3 million miles travelled, the mission will end with a test 

of Orion’s capability to return safely to the Earth as the spacecraft makes a precision landing 

within the capabilities of the recovery ship off the coast of Baja California, Mexico [3]. 

2.2 Factors Affecting Launch Opportunities  

Vehicle performance, launch location, launch azimuth along with earth-moon geometry and 

orbital mechanics all contribute to how many launch opportunities per month are available. 

Ideally, NASA looks for a continuous string of about a week of launch opportunities each month 

to give the best chance of not having to wait a full month until the next opportunity. If there is 

at least a one-minute window on a given day that is enough to plan a launch. Of course, it is 

preferable to have a few hours in which to launch. But even with no additional constraints levied 

on the mission than the agreed upon requirements, the opportunities are few. In fact, with only 

the aforementioned considerations, EM-1 will never have more than a three-hour launch 

window per day. Also, due to ground systems constraints only a two-hour window per day can 

be accommodated. Additional “desirements” have been added to the trade space that would 

make for more optimal conditions (e.g. lighting at launch, communication check outs, etc.). 

Each added criterion, however, only shortens the launch opportunities per month and the length 

of launch window per available day. Table 1 lists the EM-1 requirements, and Table 2 lists the 

EM-1 “desirements”. Each of these plays a role in determining mission availability across a 

given year. 

Table 1.  Exploration Mission-1 List of Requirements 

Target launch date 

Maximum daily launch window of two hours 

Variable launch azimuth—allows for constant post-TLI flight phase duration 

ICPS will perform trans-lunar injection burn on first revolution 

Flight duration between 21 and 42 days 

Destination: Lunar Distant Retrograde Orbit (DRO) 

Nominal and Abort Landing Sites 

Lighting during Splashdown (for proper imagery conditions) 

Orion solar arrays eclipse constraints  
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Table 2.  Exploration Mission-1 List of “Desirements” 

Daylight launch 

Daylight ascent 

RL-10 nozzle deploy lighting 

Orion solar array deploy lighting 

Orion/ICPS separation lighting 

Crew module/Service Module separation lighting 

Daylight for at least five hours post landing 

Communication checkout 

Secondary navigation checkout 

Public Affairs Office imagery (requires good lighting) 

 

To be successful in determining the available launch opportunities, data to calculate all of 

the above requirement and “desirement” effects on each day of the year will need to be extracted 

from the large trajectory data set. 

2.3 Trajectory Data Flow  

The JSC engineering trajectory team (EG) is tasked to find feasible earth-moon trajectories for 

each exploration mission. Using an in-house Fortran tool called Copernicus, the team feeds 

input parameters via a Python-coded tool called DAMOCLES that runs the Copernicus tool, 

takes the output and performs various post-processing tasks in order to make the final dataset 

more useful. It can also change the file format of the output as needed (see Fig. 3). 

Currently, all EG tools used to manipulate Copernicus data are written in Python and utilize 

parallel processing techniques in order to utilize their blade server to compute trajectories. The 

computation of a precision lunar trajectory can only be done by numerical integration of the 

equations of motion, considering the oblate shape of the earth, solar perturbations, solar 

pressure, terminal attraction of the Moon, and ephemeris Moon data which gives the positions 

of the Moon’s orbital elements through time because they are constantly changing (primarily 

due to the perturbative effect of the sun) [6]. This requires intensive computation time and 

generates an incredible amount of data. The data generated with each run is stored as hdf5, csv, 

or json file formats in a simple server file structure to organize the data sets. 

No attempt has been made to use a database, or cloud computing/storage. So far, the 

trajectory team’s consolidated trajectory runs or “scans” cover only the eight nominal launch 

cases. In mid-2019 EG begins to provide the final trajectory runs for EM-1 which will need to 

include all data against all Mission Design Matrix parameters. Since their data is in disparate, 

plaintext files, sharing, querying, and analyzing the data using statistical analysis or machine 

learning is next to impossible. 

Additionally, these datasets are required by the Mission Analysis Office as well as the Flight 

Operations Directorate as inputs to their tools or in order to support decisions on what days are 

good to launch or how certain requirements must either be kept or dropped. These decisions 

affect SLS, Orion, Exploration Ground Systems, and NASA Headquarters where the Mission 

Management team makes the final call on when to launch. Our proposed architecture aims to 
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bridge the gap between how engineering currently provides data and how organizations need 

the data in order to gain insights and visualize the resulting launch opportunities for EM-1 and 

future exploration missions. 

 

Fig. 3. This figure shows the trajectory data flow process. DAMOCLES seeds the core engine 

(Copernicus) and performs post-processing. This output data feeds the Mission Analysis Office where this 

paper’s recommendations reside. 

2.4 Architecture 

The overall architecture discussed in this paper will reside within the Mission Planning Office 

section (Fig. 4). It consists of a repository of authoritative trajectory data that resides in the 

cloud and can easily be queried or studied. Additionally, an application we have developed that 

pairs down the raw trajectory data into a subset of data required to visualize launch availability 

will reside within the cloud. The application will pull out the dates/times across a time span (we 

will look at 2020) that meet all requirements as well as several highly desired conditions. Using 

the big data visualization tool, Tableau, connected to our cloud database, we will then visualize 

the mission availability and provide useful visualizations that will allow for easily choosing the 

best day to launch within a given month/year. Finally, the data stored in AWS will be pulled 

into a machine learning algorithm application to analyze the full data set. 
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Fig. 4. Proposed Cloud Architecture for NASA’s Mission Planning Office 

Cloud Storage and Computing. Due to the sheer size of the data and the need for fast querying 

capability we chose to use Amazon Web Services (AWS) Elastic MapReduce (EMR) service 

offering. AWS EMR allows for the use of YARN with Spark. This cloud architecture (Fig. 5) 

accommodates elasticity of a database that will grow over time and allows the ability to perform 

machine learning tasks with the data co-located.  

 

Fig. 5. Shows the architecture to support our application using AWS S3 storage with a Hadoop Distributed 

File System along with MapReduce and Spark to help querying speed. 

Launch Window Calculator. This application will consist of a python module that will reside 

in the cloud using YARN and Spark to assist in performing simple mathematical calculations 

and queries to extract the required data for determining launch opportunities and the length of 

the daily launch windows for a launch season of one year. It will provide some computation to 

calculate solar array eclipse times and lighting at particular mission times. In the end it will be 
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an organized data set that will be placed in our database in order to visualize the launch 

opportunities. 

Visualization in Tableau. With the complex data set now organized in a more optimal way 

that accommodates high performance querying, we can now link the data set to the 

commercially available visualization tool called Tableau. This will not only save time in 

developing custom visualization tools in python but will alleviate the trajectory team from 

having to respond to simple plotting requests on their data sets. More time spent on trajectory 

analysis means more time spent mitigating issues of meeting mission criteria. We expect to use 

this tool as not only our main source of launch window visualization but also a means by which 

the exploration mission community can plot variables against each other on their own time. 

Machine Learning. Machine learning is a fresh concept at Johnson Space Center. Our hope 

for this paper is to not only position the engineering team to be able to better handle big data, 

but to also allow them to see what is in the realm of possibility using machine learning 

techniques and make the team and their suite of mathematical tools more efficient. Therefore, 

one component of the application will be pulling from the shared data set to perform machine 

learning tasks. 

2.5 Machine Learning Methods 

The data set consists of observed values for every COE element and elapsed times in every 

scan. We cannot assume linearity, so we will use regression algorithms that do not depend on 

linear structure, like K-Nearest Neighbors regression (KNN), Random Forest, Gradient 

Boosting, and Bayesian Ridge Regression (BRR). We will measure and compare accuracy 

between these models. 

KNN estimates the regression value as the average of the K closest neighbors in the training 

responses. We will adjust for the number of K, and measure the bias-variance tradeoff to get to 

a resultant model [9]. 

The random forest regressor builds a number of decision trees on “boostrapped” training 

samples and averages their results. That may overcome the complexity of decision trees. 

Extremely randomized trees is a tree-based ensemble method that randomizes both attribute 

and cut-point choice while splitting a tree node. In an extreme case, it builds randomized trees 

whose structures are independent from the learning sample [10]. 

Bayesian Ridge Regression (BRR), also known as Bayesian Linear Regression, assumes a 

normal distribution of the errors from a regression model, a prior distribution on the variables, 

and a posterior probability distribution from the model parameters [11]. 

Gradient boosting finds the function which best approximates the data, by taking numerous 

simple functions, and adding them together. While stochastic gradient descent (SGD) trains a 

complex model to find the best parameters, Gradient boosting trains the sum (ensemble) of 

simple models. 

In the case of Gradient Boosted Trees, it is a gradient boosting model where the function is 

a decision tree. It is an additive model where trees are grown sequentially using learned 

information from previous grown trees, allowing the optimization of a loss function [9, 12, 13]. 
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Extreme Gradient Boost (XGBoost) is an implementation of gradient boosted trees designed 

recently for speed and performance. XGBoost considers the distribution of features across all 

data points in a leaf and uses this information to reduce the search space of possible feature 

splits [14]. 

3 Data 

First, the initial conditions are entered manually into the DAMOCLES tool. When 

DAMOCLES runs, it opens the Copernicus tool and performs a one-year trajectory scan given 

the inputted parameter set. In the case of nominal missions, this will generate a few hundred 

gigabytes of data artifacts. Once the abort cases are run, the total amount of data generated will 

come close to 90 terabytes. To be able to employ our machine learning tools we require the use 

of a summary file. In the case of the nominal missions, the summary file is about 100 megabytes 

and is one of the artifacts generated when DAMOCLES is run. It is a post-processed summary 

and includes only the minutes per day that meet the baseline requirements. 

The dataset contains 18,980 rows and 480 columns. Each row represents an opportunity to 

launch at a certain date and time specified at column “Init Epoch (TDB)”. Launch epochs are 

the feasible moments to successfully launch a spacecraft and start the mission. The EM-1 

mission duration may be between 26 and 42 days in order to accommodate lighted landing 

requirements. Initial Epoch is measured in the astronomical time scale Barycentric Dynamical 

Time (or TDB, which is different by less than 0.002 seconds compared to the Terrestrial Time 

scale UTC). The launch epoch is then calculated from TDB to Eastern Standard Time for 

launching from Florida. 

3.1 Summary File Rows 

Each row or launch opportunity was calculated by NASA’s DAMOCLES tool and saved to the 

filename logged at column “Directory”.  DAMOCLES computes the orbital elements and 

analyzes the feasibility for each possible Init Epoch. The system addresses the required 

constraints of performance (thrust requirements given the fuel capabilities and the earth-moon 

geometry), and lighting conditions at the selected Moon location during the expected arrival 

time. There are 18,980 opportunities that meet the required criteria between the selected dates 

of this particular scan. They represent the nominal cases only (assumes nothing goes wrong). 

The first row in the dataset represents the first launch opportunity to start the mission on 

November 23, 2019 at 9:22am UTC, and the last one can start on December 14, 2020 at 3:17pm. 

Since the time resolution unit is one minute, there are 18,980 possible one-minute opportunities 

to launch, that spans 157 days within this date range; for instance, Nov 28, 2019 has 42 

opportunities within that day, but the next day Nov 29 2019 does not have any. The more launch 

opportunities in a day, the more attractive the day (e.g. Oct 17, 2020 has 311 opportunities 

compared to a single opportunity on Dec 26, 2019). Also, the more consecutive days with 

feasible launch opportunities, the more attractive the date range because it can better mitigate 

operational risks. See the complete number of opportunities by day in Fig. 6 (only days with at 

least one launch opportunity). 
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Fig. 6. Number of one-minute opportunities to launch. These make up the daily launch window. 

Fig. 6 shows the number of one-minute launch opportunities for EM-1 (the daily launch 

window). Each month has a short launch window of a few days that typically peaks near 200 

minutes. Unfortunately, Exploration Ground Systems requires a window of no more than 120 

minutes, so the visualization tools assist with choosing the best 120 minutes to pick from. 

3.2 Summary File Columns 

Columns represent all the attributes and possible characteristics of the projected mission, 

assuming the mission starts at the given value of launch epoch. Column Launch Epoch uniquely 

identifies each opportunity in a data row. 

From the 480 dataset columns, the explanatory variables are those 19 features that represent 

the mean elapsed times (MET) during certain points along the mission, for instance, ‘TLI Start 

MET’ is the number of days from the launch epoch until the Trans-Lunar Injection begins. See 

Table 3 for a complete description of explanatory variables used in the model. 

 

Table 3. List of explanatory variables. All events are measured in number of days since launch epoch. 

Name Description 

Init DRO MET (days) Initial Distant Retrograde Orbit 

CoreSep MET (days) Core separation burn 

PRM Start MET (days) Perigee Raise Maneuver start time 

PRM SteadyState MET 

(days) 

Perigee Raise Maneuver steady state 

PRM End MET (days) Perigee Raise Maneuver end time 

TLI Start MET (days) Trans Lunar Injection burn 

TLI SteadyState MET (days) Trans Lunar Injection steady state 

TLI End MET (days) Trans Lunar Injection end time 

ICPS-Orion SS MET (days) Interim Cryogenic Propulsion Stage Separation 

TIP MET (days) Target Interface Point 

USS MET (days) Upper Stage Separation 

OCO MET (days) OMS Check-Out burn 

OPF MET (days) Outbound Powered Fly-by 
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Outbound Waypoint MET 

(days) 

Outbound Waypoint time 

DRI MET (days) Distant Retrograde Insertion burn 

DRD MET (days) Distant Retrograde Departure burn 

RPF MET (days) Return Power Fly-by 

Return Waypoint MET 

(days) 

Return Waypoint time 

EI MET (days) Entry Interface time 

 

The target variables are the classical orbital elements (COEs) through the mission segments 

(stages). COEs determine the orbit and the spacecraft’s location in the orbit at any time. The set 

of COEs during the entire mission represents the key points that define the trajectory and allow 

Copernicus to fill in all the locations during the coasting phases. 

One of this paper’s purposes is to predict new trajectories based on previous calculated 

trajectories and save computing time using DAMOCLES/Copernicus. In the Machine Learning 

context, the goal is to regress COE variables from the explanatory MET variables at a time 

resolution shift of 30 seconds. 

 

This is the list of COEs used in the dataset: 

• SMA (semi-major axis, measured in Km) 

• Ecc (eccentricity, no units are used) 

• Incl (inclination measured in degrees) 

• Raan (right ascension of the ascending node, aka longitude of ascending node, 

measured in degrees) 

• AOP (argument of periapsis, measured in degrees) 

• TrAnom (true anomaly, measured in degrees) 

 

See a graphical representation of COEs at Fig. 7. 

 
Fig. 7. Classical Orbital Elements (COEs). (Source: https://www.slideserve.com/bran/space-

engineering-i-part-i-where-are-we) 
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This is the list of segments used in the dataset. It includes measurements from before and 

after the main events during the mission: 

• Pre-PRM 

• Post-PRM 

• Pre-TLI 

• Post-TLI 

• Pre-OCO 

• Post-OCO 

• Pre-OPF 

• Post-OPF 

• Pre-DRI 

• Post-DRI 

• Pre-DRD 

• Post-DRD 

• Pre-RPF 

• Post-RPF 

From the 480 dataset columns, target variables are the 84 features that combine the six COEs 

multiplied by the 14 segments. For instance, “Pre-PRM TrAnom (deg) [J2000_Earth]” 

represents the measurement for orbital element True Anomaly (TrAnom) in segment Pre-PRM; 

“Post-RPF SMA (km) [J2000_Moon]” is the orbital element SMA in kilometers at the Post-

RPF stage. 

The combined six orbital elements define the trajectory at every stage. The combined 14 

trajectories at each stage represent the complete mission trajectory for a specific initial epoch. 

In summary, we have two columns that identify the initial and launch epoch in the summary 

source file from DAMOCLES, 19 explanatory variables from Mission Elapsed Times (MET) 

columns, 84 target variables from measurements of orbital elements at mission stages, and the 

remaining columns are not used for the purposes of this paper. We then applied supervised 

regression analysis to all COE variables on an individual basis assuming independence among 

them. 

3.3 PyMAT Trajectory Table for Data Visualization 

Much like the summary file pairs down the full set of outputs into one file, the trajectory table 

further pairs down the summary file data into the data required to visualize the launch 

opportunities and the influence of the requirements and “desirements” on different launch days. 

This trajectory table is created with the PyMAT tool discussed later in Chapter 4. Data from 

this table is used to create an interactive calendar visualization that provides both total launch 

opportunities given a set of requirements as well as a quick visual for launch windows per month 

and the ability to quickly see if some of the “desirements” can also be achieved. 

4 Methods 

The proposed strategy enhances the EM-1 status quo by creating a tool set with new methods 

for data storage and manipulation, visualization, and machine learning. We will discuss each in 

this section. 
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4.1 Cloud Storage and Computing 

We used AWS as a platform to implement this solution. We used a cluster of two t2.2xlarge 

nodes with Linux/Ubuntu 18.04 with the following characteristics (Fig. 8): 

 

 

Fig. 8. Characteristics of AWS EC2 instance 

We use PuTTY 0.70 to establish the connection to the Cloud and run Jupyter Notebook, then 

Jupyter Notebook is emulated through a local browser as shown below (Fig. 9). 

 

 

Fig. 9. Running Jupyter Notebook in AWS from a local machine 
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4.2 Visualization 

Table 1 and 2 above list all the requirements and “desirements” for the EM-1 mission. Our 

visualization of launch opportunities solution needs to easily show in a calendar format all the 

days available to launch in a given year that meet these requirements. Additionally, we want to 

enhance the visualization by showing where amongst these launch opportunities we can find 

days that also meet at least our highest priority “desirements” such as having lighting during 

launch and the proper sun angle to achieve a backup navigation system checkout. We would 

also like to see the influence these “desirements” have on the overall number of launch 

opportunities per year. This kind of visualization can assist with not only narrowing the choices 

of when the best time to launch is, but can help with requirements development to quickly see 

the influence certain requirements or “desirements” are having on our overall ability to launch, 

thus helping NASA properly categorize and rank them. 

Conditional formatting is applied to the days with data pulled from the PyMAT-created 

“Trajectory Table”. PyMAT imports a full trajectory “Summary Report” and creates an 

abridged subset of this data that can be used to visualize and analyze available launch 

opportunities. 

A Tableau server is utilized to share a dashboard across the web with customers that do not 

have Tableau Desktop installed locally. Due to the interactive nature of the visualization, 

multiple conclusions can be drawn from a single visualization whenever the user would like to 

see it. As data matures, or requirements change, a new data set can be plugged into the PyMAT 

tool in order to generate a new trajectory table and hence, an updated launch opportunity 

visualization dashboard.  

4.3 Applying Machine Learning 

Now that we have the architecture in place to handle both the storage and the manipulation of 

large, complex data sets, we are free to explore ways to decrease the computational time 

required to find working trajectories. As discussed earlier, there are many factors required to 

compute a successful earth-moon trajectory. At the prescribed resolution of one minute, that is 

525,600 trajectory scans per case (one launch window per minute for 365 days). With 8 nominal 

cases that equates to 4.2M scans. However, there are additional 56 off-nominal cases as part of 

the Mission Design Matrix. Each of these scans is separated into segments which represent the 

start and end positions of each burn (Fig. 2). 

Each segment is calculated separately and then strung together in a final step to represent the 

entire earth-moon trajectory or off-nominal trajectory being run. Because this generates such a 

large amount of data in the mission planning stages, often only one scan is performed per day 

for the start of the launch window. Therefore, a “continuation method” is used in which the start 

of the next scan is initialized using the end of the previous scan. This initial guess is often not 

ideal and leads to increased computation time in trying to resolve the current trajectory being 

calculated. 

Using machine learning techniques, we are in essence increasing the scan resolution by 

providing viable trajectories that can be used to initialize future scans and decrease overall 

computational time. Additionally, if in the future, a quick set of trajectories are required at a 

greater resolution than what the engineering team has data for (30 second rather than one 

minute), these machine learning techniques can be employed to offer quick solutions. 
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Classic Orbital Elements (COEs) can be used to describe the size, shape, and orientation of 

an orbit and the location of a spacecraft in that orbit [6]. By training a model on the COEs 

perifocal distance, eccentricity, right ascension, inclination, argument of perigee, and true 

anomaly as well as mission-elapsed time we can generate valid trajectories in between those we 

have data for thus improving the resolution of the scan. We then validate these trajectories by 

comparing against a solved data set. 

4.4 Exploratory Data Analysis 

In section 3.2 we organized the dataset as 19 explanatory variables from Mission Elapsed Times 

(MET) columns, and 84 target variables from measurements of orbital elements at mission 

stages. We want to train a model from known scans to regress COE target variables at different 

time resolutions. 

We plotted the histogram of target variables to see how normal the data distribution was, and 

study the relationship between explanatory and target variables. 

Fig. 10 shows histograms for two sample target variables: Post-PRM SMA and Post-PRM 

Incl. 

 

Fig. 10. Histograms of orbital elements SMA (left) and Incl (right) at stage Post-PRM. 

Fig. 11 shows the relationship between the explanatory variable Init DRD MET and the target 

variable Pre-PRM SMA (left), and the relationship between other explanatory variable DRD 

MET to the same target variable Pfre-PRM SMA (right). 

 

 

Fig. 11. Relationship between explanatory variables Init DRD MET and DRD MET to target variable Pre-

PRM SMA. 
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Fig. 12 shows the relationship between explanatory variable Init DRD MET to other 

explanatory variable CoreSep MET (left), and the relationship between Init DRD MET to other 

explanatory variable Outbound Waypoint MET (right). 

 

Fig. 12. Relationship between the explanatory variables Init DRD MET to CoreSep MET and to Outbound 

Waypoint MET. 

From the preliminary observation, we can see several target variables highly skewed (e.g. 

Fig. 10 right), other variables seem not to be affected at certain stages (e.g. Fig. 11 right and 

Fig. 12 left), and also, we noticed correlation between some explanatory variables (e.g. Fig. 12 

right). 

 

The most significant findings were: 

- Feature Pre-PRM TrAnom has only two possible values (-180 and 180), and so it is a 

candidate to be analyzed as a classification problem rather than as a regression (see 

Fig. 13 left). Another observation is that there is no visual distinction between when 

this variable switches from one value to the other (see Fig. 13 right). 

 

 

Fig. 13. Histogram and data distribution of target feature Pre-PRM TrAnom. 

- Feature Post-DRD SMA has the longest skewness among all target variables. Its 

relative size of the left tail (skew = 94.69 in Fig. 14 left) led to the need of applying 

an inverse transformation to get a more manageable skew of 3.49 before the 

regression analysis (Fig. 14 right). 
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Fig. 14 Histogram of features Post-DRD SMA and Post-DRD Ecc. 

4.5 Detailed Machine Learning Process 

The first finding from the Exploratory Data Analysis revealed that feature “Pre-PRM TrAnom” 

(COE True Anomaly at stage Pre-PRM) is actually a binary variable, so we will use a 

classification analysis for handling it. The remaining 83 features will be managed as continuous 

variables with regression analysis. For the purpose of this paper, we will primarily focus on the 

regression analysis. 

We have been through an iterative process trying different approaches to determine which 

algorithm returns the best results measured with R-squared (R2) scores as a goodness of fit [15] 

of regression. We also saved mean absolute error (MAE) during the process. Then the best 

fitting algorithm was associated for that specific feature for a later use to predict new trajectory 

data. 

The regression algorithms used were: Bayesian Ridge, K-Nearest Neighbors, Extreme 

Gradient Boosting, Lasso, AdaBoost, Gradient Tree Boosting (or Gradient Boosted Trees), 

Extremely Randomized Trees, Random Forest, Stochastic Gradient Descent, Support Vector 

Machines, and Convolutional Neural Networks. 

In the particular case of classification analysis, the classification algorithms used were: 

Gaussian Naive Bayes, K-Nearest Neighbors, Extreme Gradient Boosting, Logistic Regression, 

Random Forest, Support Vector Machines, AdaBoost, Gradient Tree Boosting, Stochastic 

Gradient Descent, Multi-Layer Perceptron, Linear Support Vector, and Convolutional Neural 

Networks. The performance score was measured by accuracy, rather than R2. 

All of these algorithms were invoked through the scikit-learn machine learning library for 

Python, and in the case of neural networks, we used Keras deep learning library integrated to 

scikit-learn [16], to facilitate a single execution framework that browses through several 

configurable algorithms. 

All the explanatory variables are measured in the same scale (number of days); however, we 

used a standard scaler to normalize data in order to improve the performance during the fit 

execution of each algorithm [17]. 

This is the process to generate the model: 

1- Loop for each target variable in the list: 

a. If there is severe skewness, then: transform data using invert or log. 

b. If feature is Pre-PRM TrAnom, then transform data into a binary variable 

for classification analysis. 
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c. Separate train and test datasets (with 20% data for testing). 

d. Scale train and test datasets. 

e. Loop for each algorithm in the list: 

i. Use GridSearchCV with 5 folds [18] to fit training data according 

to current algorithm. 

ii. If R2 score is greater than current best score for this feature: 

1. Save results (algorithm, parameters, R2, MAE, response 

time, data transformation needed) as the best model. 

2. Make R2 as the current best score. 

f. Repeat for another algorithm until R2 is greater than the minimum for early 

stop (.975) or until list completion. 

2- Repeat for next variable until list completion. 

3- Append results to a logfile.  

 

This is the process to calculate new trajectories: 

1- Create a new trajectories dataset, copying column Launch Epoch, and explanatory 

MET variables from the initial dataset. 

2- Add 30 seconds to each column in the new dataset. 

3- Loop for each target variable in the. list: 

a. Load the best model associated for this specific variable from the results 

logfile. 

b. Transform data if needed (inverse/log or binary variable). 

c. Separate train and test datasets (with 20% data for testing). 

d. Scale train and the New Trajectories datasets. 

e. Use GridSearchCV with 5 folds to fit training data according to the best 

model algorithm. 

f. Predict target variable values using the fitted model on the new dataset. 

g. Transform back data if needed. 

h. Save target variable values into the new Trajectories dataset. 

4- Save Trajectories dataset to a CSV file. 

5- Save results to a logfile. 

Alternative process using PySpark. In parallel, we also did the same regression and 

classification analysis using PySpark in order to have an independent analysis, and compare the 

results with Python+scikit-learn. Also, PySpark enables the possibility of using machine 

learning in a native cloud-based platform, in case we need to scale to higher volumes of data.  

The regression algorithms used in PySpark were: Generalized Linear Regression, Linear 

Regression, Random Forest, Gradient-Boosted Tree Regression, and Decision Trees. The 

evaluation unit is also R Squared. The classification algorithms used in PySpark were: Decision 

Trees, Random Forest, and Gradient-Boosted Trees. The evaluation unit is also accuracy. 

5 Results 

This section discusses results in cloud computing, visualization and machine learning. 
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5.1 Results of Cloud Computing and Data Storage 

In order to verify the advantages of using AWS and PySpark a preliminary test was performed 

running regression models with PySpark in a local machine, and later the same models in AWS. 

We compared the timing of training the data for every method for each feature mentioned above. 

As mentioned above the regression algorithms used were: Linear Regression, Generalized 

Linear Regression, Random Forest Regressor, Gradient-Boosted Tree Regression and Decision 

Tree Regression. The table below shows only the first 20 variables with timing in seconds for 

the local Desktop and for the AWS cluster. It is clear that we have much better performance in 

AWS, with some cases ten times faster in AWS (Fig. 15). 

 

 

Fig. 15. Results comparing times of training data in a local computer vs AWS 

5.2 Results of Data Visualization 

First a prototype was created in MS Excel to show a proof of concept. In this prototype a 

representative calendar is created using formatted rows and columns to represent each day in a 

monthly calendar view. Data is pulled from the trajectory table and conditional formatting 

applied to show available launch opportunities in addition to highly ranked “desirements” that 

can be achieved on these available days. Short and long duration missions are represented by 

different shades of green. Launch lighting is represented by a yellow strip above each day, and 

the OpNav requirement is represented by a set of Harvey balls. Any changes to the overall 

requirements/“desirements” were handled via multiple tabs with their own calendar 

representation. The total days available for the year are calculated at the top of the spreadsheet, 

depending on the requirements selected for that particular analysis spreadsheet (tab in Excel 

Fig. 16). 

 

21

Garza et al.: Visualization and ML Techniques for NASA's EM-1

Published by SMU Scholar, 2019



 
 

Fig. 16. MS Excel Prototype of Launch Opportunities 

 

Similarly, we ported over this method to Tableau, however we were able to use a built-in 

calendar visualization rather than building each day by hand as we did in MS Excel. We created 

an interactive dashboard rather than using multiple tabs and were able to make it such that a 

user could toggle requirements on and off and see the effect on each month’s launch 

opportunities as well as the total opportunities for the year (Fig. 17).  

 

 

Fig. 17. Tableau Launch Opportunity Interactive Dashboard 
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5.3 Results of Machine Learning Analysis using Python+sklearn 

Accuracy. The exercise was successful in terms of fitting a model that produced a final average 

R2 around 0.98. Fig. 18 summarizes the R2 scores for all COE variables in all segments. 

 

Fig. 18. Summary of R2 by COE variable 

Feature Pre-PRM TrAnom got the worst R2 (0.637). This is the variable that had to be 

managed as a classification problem. When we initially utilized regression analysis, as we did 

with the rest of the target variables, R2 score for this feature was barely 0.03. 
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Feature Post-DRD SMA, the one with the highest skewness, also had a low R2 score of 0.77, 

but after its inverse transformation, it finally reached 0.99 score. The rest of the target features 

scored R2 above 0.95. 

Performance Time. In regards to response time, we discovered that using GridSearchCV with 

no tuned parameters turned out to be more time efficient than doing exhaustive iterations with 

several parameters for each variable. Fig. 19 summarizes the fit method response time in 

seconds. 

 

 

Fig. 19. Summary of fit response time by COE variable 
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Most of the variables were fit in the one to three second range. However, a few response 

times ranged from 40 to 120 seconds when we were still using GridSearchCV with different 

customized parameters. 

During the iterative process of model refinement, we noticed that skewness negatively affects 

both R2 efficiency and fitting response time. The strategies to deal with data skewness included: 

standardizing the data, trying different algorithms, trying different sets of parameters, and 

applying data transformations like the inverse or log [19, 20]. At the end of this process, all 

COE variables except Pre-PRM TrAnom fit acceptable R2 and response times. 

Selected Algorithms. The fastest algorithms were Bayesian Ridge (brr) and K-Nearest 

Neighbors (knn). They were intentionally moved up to the top of the list so they could be run 

before the other methods. In fact, we designed the process such that other algorithms are not 

run unless we were unable to achieve the minimum required R2 with knn or brr. Fig. 20 

summarizes the number of times that each algorithm was used in all 84 target variables. Table 

4 details the algorithms used by variable. 

 

Fig. 20. Number of COE target variables fitted by algorithm. 

 

Table 4. Detail of algorithms chosen by COE variable based off of R2 results. 

Segment SMA Ecc Incl RAAN AOP TrAnom 

Pre-PRM brr brr brr knn brr gbc 

Post-PRM brr brr brr knn brr brr 

Pre-TLI brr brr brr knn brr brr 

Post-TLI knn knn knn knn brr brr 

Pre-OCO knn knn knn knn brr brr 

Post-OCO knn knn knn knn brr knn 
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Pre-OPF knn knn knn xtr knn knn 

Post-OPF brr brr knn xtr knn knn 

Pre-DRI knn knn knn knn knn knn 

Post-DRI knn knn xtr xtr xtr knn 

Pre-DRD knn knn xtr xtr xtr xtr 

Post-DRD knn knn xtr xtr xtr xtr 

Pre-RPF xgb gbr xtr xtr xtr xtr 

Post-RPF xtr xtr xtr xtr xtr xtr 

 

K-Nearest Neighbors (knn), Extremely Randomized Trees (xtr), and Bayesian Ridge (brr) 

were the most widely used regressors. Extreme Gradient Boosting (xgb), Gradient Tree 

Boosting regressor (gbr) and classifier (gbc) were used each in just one variable, mainly because 

knn, xtr or brr could not reach the minimum R2 required for early stop. The rest of the 

algorithms like Random Forest (rf) or Convolutional Neural Networks (cnn) were not really 

used in the last runs, because the first algorithms had already been successful in fitting the data. 

Prediction. After we regressed all 84 target variables, we predicted new launch opportunities 

at the same initial epochs from the initial dataset plus a time shift of 30 seconds, thus increasing 

NASA’s one-minute resolution to 30 second resolution without having to run a full 

DAMOCLES/Copernicus scan. We also had to consider that the last launch opportunity in a 

day should not be included to predict, because in theory, NASA could not assure that one minute 

after the day’s last opportunity would still be a valid opportunity. Therefore, we removed 157 

opportunities (one opportunity per day) from the new Trajectories dataset to get a final number 

of 18,823 launch epochs. 

Since the shift time of half a minute is a very small difference compared to the number of 

days of the entire mission, and given that 83 out of 84 target variables got R2 score greater than 

0.95, it was expected that predicted orbital elements were going to be close to the initial values. 

As an example of the model accuracy in 83 out of 84 variables, Fig. 21 shows the actual 

values for orbital element SMA during all segments for launch epoch 11/23/2019 09:22:00 

compared to the value predicted at 30 seconds later. As expected, most of these values are 

overlapped. 
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Fig. 21. Actual vs predicted values for orbital element SMA during all segments for launch epoch 

11/23/2019 09:22:00 and 30 seconds later. 

Feature Pre-PRM TrAnom was treated as a as a binary variable using a classification 

analysis. Its accuracy was only 0.64, and so it is expected that 64% of all launch opportunities 

overlap, but the remaining 36% show diverging values. As an example of the latter scenario, 

Fig. 22 shows the actual versus predicted values of this feature at a particular launch epoch with 

diverging values. It is advisable the need for further analysis regarding the behavior of this 

orbital element at this particular segment. 

 

 

Fig. 22. Actual vs predicted values for orbital element true anomaly during all segments for launch 

epoch 11/23/2019 09:22:00 and 30 seconds later. See there is no overlap only at stage Pre-PRM 
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6 Ethics  

As with medicine, data science projects must also consider ethics to ensure that we as data 

scientists “do no harm”. While our NASA project revolves around NASA data for NASA 

purposes, there are still some innate ethical considerations to ensure that our machine learning 

algorithms are understood. As data scientists we must be transparent with our methods and 

explain them well in order for customers of our data to believe in them and ensure that our 

methods were sound and can be counted on for their intended purposes. In this article we 

decided to not simply look at highly utilized, or highly ranked machine learning regression 

methods. In an effort to be more comprehensive, we performed a grid search that looked across 

a wide variety of methods. Additionally, we did not simply pick the best method overall and 

apply this method to all variables. Instead, we chose the algorithm that gave us the best R2 

values for each variable. This way, no matter how the data changes in the future, whether it be 

small tweaks to input variables or an overall change to the mission itself, the logic put in place 

will always look for the best algorithm for the particular case in question. This approach 

eliminates any potential biases and ensures we accept the best case for the specific problem. 

For this paper, we used preliminary trajectory data cleared for our use which was cleaned of 

export-controlled and/or proprietary vendor data. However, when implementing these solutions 

with the full and final dataset, NASA will need to ensure the safety of the data so that it does 

not fall into the wrong hands. While the data is unclassified, care must be taken with respect to 

export control. As a result, we recommend that the final NASA trajectory data be placed in a 

FedRamp Moderate secure location in the AWS Govcloud where it can be accessed by internal 

NASA personnel only via standard NASA authorization and authentication protocols. This level 

of security protocol guards export-controlled data at the desired International Traffic in Arms 

Regulations (ITAR) level. 

7 Conclusions and Forward Work 

This paper gives NASA a new framework with which to handle their big data problem. We 

have provided them with the architecture for a data and machine learning pipeline in the cloud. 

We have provided several ways to increase compute times on regular DAMOCLES/Copernicus 

scans via high performance computing in the cloud as well as increasing scan resolution via 

machine learning. Additionally, we created a means to go from a very large data set to just the 

required data for visualizing launch opportunities. We utilized Tableau software to create an 

interactive calendar visualization that can be used in the decision-making process in choosing 

the ideal time/day to launch. 

Our machine learning approach using supervised regression techniques successfully 

predicted all the target variables. The mean R2 score was 0.98, and only one variable scored 

under 0.95. Machine learning can help to save computing time predicting trajectories at shorter 

resolution times than the given trajectory dataset without fully running a new scan. It can also 

serve as an initial guess generator that can be used to plug in a better starting point for a 

subsequent trajectory that requires less iteration than using the previous answer. Depending on 

the length of the scan, this can save hours and even days on trajectory scans spanning several 

months. 
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We regressed 84 target variables with different characteristics on their distribution, so we 

learned that when using Python + sklearn + GridSearchCV, it is better to start with default 

parameters rather than trying with an exhaustive combination of possible parameter values. 

For most of our target variables it was useful to identify that some algorithms (like knn) were 

faster than others without compromising efficiency; efficiency vs accuracy trades can be made 

as some “slower” algorithms (like extreme gradient boosting) can further improve the learning 

rate and get higher R2 scores than “faster” algorithms. It may be possible to go with a much 

faster algorithm if one can determine that the accuracy is good enough. 

For future work, we recommend looking further into the R2 score for variable Pre-PRM 

TrAnom. We obtained an R2 of 0.64 after its transformation to a binary variable (it was 0.03 

before that). This is very different than the other variables, therefore we recommend further data 

analysis with subject matter experts from NASA. Additionally, we believe that our machine 

learning techniques can be applied to a large trajectory data set to validate the data and identify 

potential outliers that are out of family from the norm. We also recommend automating the 

visualization process in such a way as to automatically generate the new Tableau visualization 

every time a new DAMOCLES/Copernicus scan is run. 
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Appendix: Results of Machine Learning Analysis using PySpark  

PySpark obtained similar results in the regression and classification analysis comparing the R-

squared (R2) scores to those using Python and the scikit-learn API. 

 

Fig. 23 shows a summary of the R2 scores using different algorithms in PySpark. 

 

 
 

Index Variable
R2-Generalized Linear 

Regression

R2-Linear 

Regression

R2-Random 

Forest

R2-Gradient-Boosted Tree 

Regression
R2-Decision Tree

0 Pre-PRM SMA (km) [J2000_Earth] 0.5081 0.9993 0.8812 0.9508 0.8483

1 Pre-PRM Ecc () [J2000_Earth] 0.0006 0.9998 0.9752 0.9955 0.9937

2 Pre-PRM Incl (deg) [J2000_Earth] 0.8270 0.9989 0.9780 0.9942 0.9919

3 Pre-PRM RAAN (deg) [J2000_Earth] 0.7138 0.7209 0.8849 0.9261 0.8535

4 Pre-PRM AOP (deg) [J2000_Earth] 0.9033 0.9990 0.8833 0.9488 0.8589

5 Pre-PRM TrAnom (deg) [J2000_Earth] 0.0223 0.0210 0.0596 0.0763 0.0506

6 Post-PRM SMA (km) [J2000_Earth] 0.8386 0.9997 0.9336 0.9653 0.9139

7 Post-PRM Ecc () [J2000_Earth] 0.0037 0.9999 0.9619 0.9741 0.9542

8 Post-PRM Incl (deg) [J2000_Earth] 0.8264 0.9989 0.9776 0.9941 0.9919

9 Post-PRM RAAN (deg) [J2000_Earth] 0.7138 0.7197 0.8849 0.9262 0.8535

10 Post-PRM AOP (deg) [J2000_Earth] 0.9035 0.9990 0.8887 0.9484 0.8589

11 Post-PRM TrAnom (deg) [J2000_Earth] 0.5055 1.0000 0.9896 0.9938 0.9898

12 Pre-TLI SMA (km) [J2000_Earth] 0.9879 0.9982 0.9911 0.9939 0.9885

13 Pre-TLI Ecc () [J2000_Earth] 0.0091 0.9986 0.9911 0.9935 0.9886

14 Pre-TLI Incl (deg) [J2000_Earth] 0.8224 0.9989 0.9777 0.9937 0.9917

15 Pre-TLI RAAN (deg) [J2000_Earth] 0.7138 0.7212 0.8849 0.9261 0.8535

16 Pre-TLI AOP (deg) [J2000_Earth] 0.9025 0.9990 0.8831 0.9476 0.8589

17 Pre-TLI TrAnom (deg) [J2000_Earth] 0.9998 0.9999 0.9981 0.9983 0.9978

18 Post-TLI SMA (km) [J2000_Earth] 0.9705 0.9689 0.9578 0.9773 0.9459

19 Post-TLI Ecc () [J2000_Earth] 0.0232 0.9642 0.9607 0.9700 0.9364

20 Post-TLI Incl (deg) [J2000_Earth] 0.7474 0.8342 0.9026 0.9338 0.8833
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Fig. 23. Scores using PySpark 

PySpark also struggled with feature Pre-PRM TrAnom. In the regression exercise, R2 was 

barely 0.07, but it increased to 0.36 after having managed the problem as a classification 

analysis. In general, the exercise with PySpark has helped to confirm the results and findings 

with Python scikit-learn with most R2 scores above 0.88. 
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