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Discrete-time notch filters can be divided into infinite impulse response (IIR) and finite 

impulse response (FIR) notch filters. Infinite impulse response notch filters are easy to design and 

implement but suffer from nonlinear phase characteristics and unacceptable startup transients. 

Finite impulse response filters on the other hand can be designed to have linear phase but require 

more coefficients to achieve narrow notch widths. Multiple frequency FIR notch filters that can 

effectively reject several selected spectral regions while providing high transmission at frequencies 

outside the rejected regions have applications in communication systems, radar systems and 

biomedical signal processing.  

A new multi-frequency notch filter is introduced that is based on quadratic programming. 

This notch filter has linear phase and has notch widths which can be made arbitrarily narrow. We 

compare the performance of our notch filter with three existing multi-frequency notch filters: the 

iteratively reweighted OMP scheme and the multiple exchange algorithm. 

  



 

VI 

 

TABLE OF CONTENTS 

 

LIST OF FIGURES ................................................................................................................. viii 

LIST OF TABLES ...................................................................................................................... x 

I. Introduction ............................................................................................................................. 1 

1.1 Background on Filters ....................................................................................................... 1 

1.2 Background on Notch Filters ............................................................................................ 2 

1.3 Background on Multi-Frequency Notch Filters ................................................................ 3 

II.  Research Status ..................................................................................................................... 4 

2.1 Single-Frequency Notch Filter .......................................................................................... 4 

2.2 Multi-Frequency Notch Filter ........................................................................................... 5 

III. Traditional Methods for Multi-Frequency FIR Notch Filter ................................................ 7 

3.1 FIR Notch Filters .............................................................................................................. 7 

3.2 Multiple Exchange Algorithm .......................................................................................... 8 

3.3 Optimal Equiripple comb FIR Notch Filter .................................................................... 15 

3.4 Iterative Reweighted OMP Method ................................................................................ 19 

IV. Quadratic Programming Method ........................................................................................ 24 

4.1 Definition ........................................................................................................................ 24 

V. Results and Comparison....................................................................................................... 29 

5.1 Results for Multiple Exchange Algorithm ...................................................................... 29 



 

VII 

 

5.2 Results for Iterative Reweighted OMP Method.............................................................. 31 

5.3 Results for Quadratic Program Method .......................................................................... 32 

5.4 Comparison between QP Method with Other Methods .................................................. 35 

VI Conclusion ........................................................................................................................... 56 

APPENDIX ............................................................................................................................... 59 

BIBLIOGRAPHY ..................................................................................................................... 61 

 



 

VIII 

 

LIST OF FIGURES 

 

Figure 1 First Type FIR Notch Filter .............................................................................................. 7 

Figure 2 Second Type FIR Notch Filter ......................................................................................... 8 

Figure 3 N=N'=32 zero padding (np)=0 ....................................................................................... 26 

Figure 4 N=32 N'=32+128*2=288 zero padding (np)=128 .......................................................... 27 

Figure 5 Comparison of Different Zero Padding .......................................................................... 28 

Figure 6 Result for Multiple Exchange Algorithm of 200Hz and 800Hz..................................... 29 

Figure 7 Frequency Response of ME Method .............................................................................. 30 

Figure 8 Result for Iterative Reweighted OMP Method ............................................................... 31 

Figure 9 Frequency Response of OMP ......................................................................................... 32 

Figure 10 Results for QP Method ................................................................................................. 33 

Figure 11 Frequency Response of QP .......................................................................................... 34 

Figure 12 Phase of QP Method ..................................................................................................... 35 

Figure 13 Comparison Between QP Method and ME Method ..................................................... 36 

Figure 14 Comparison between QP method and ME method (Zoom up) .................................... 37 

Figure 15 Magnitude and Phase of ME (200Hz and 800Hz)........................................................ 38 

Figure 16 Frequency Response of QP Method (200Hz and 800Hz) ............................................ 39 

Figure 17 Phase of QP Method ..................................................................................................... 40 

Figure 18 Comparison Between QP Method and OMP Method (1) ............................................ 41 

Figure 19 Comparison between OMP method and QP method (zoom up) (1) ............................ 42 



 

IX 

 

Figure 20 Magnitude and Phase of OMP (100Hz, 250Hz and 760Hz) ........................................ 43 

Figure 21 Frequency Response of QP Method (100Hz, 250Hz and 760Hz)................................ 44 

Figure 22 Phase of QP Method ..................................................................................................... 45 

Figure 23 Comparison Between QP Method and OMP Method (2) ............................................ 46 

Figure 24 Comparison between OMP method and QP method (zoom up) (2) ............................ 47 

Figure 25 Magnitude and Phase of OMP (200Hz and 800Hz) ..................................................... 48 

Figure 26 Frequency Response of QP Method (200Hz and 800Hz) ............................................ 49 

Figure 27 Phase of QP Method ..................................................................................................... 50 

Figure 28 Comparison Between QP Method and OMP Method (3) ............................................ 51 

Figure 29 Comparison between OMP method and QP method (zoom up) (3) ............................ 52 

Figure 30 Magnitude and Phase of OMP (100Hz, 250Hz, 420Hz, 660Hz and 830Hz) ............... 53 

Figure 31 Frequency Response of QP Method (100Hz, 250Hz, 420Hz, 660Hz and 830Hz) ...... 54 

Figure 32 Phase of QP Method ..................................................................................................... 55 

Figure 33 Energy with zero-padding and without zero-padding .................................................. 56 

 



 

X 

 

LIST OF TABLES 

 

Table 1 Relationship between h(n) and Parameters ........................................................................ 9 

Table 2 Recursive Algorithm for Evaluation of Coefficients h(m) of Impulse Response............ 18 

Table 3 The OMP Algorithm ........................................................................................................ 22 

 

 

 

 

 



 

1 

 

I. Introduction  

 

1.1 Background on Filters 

Filtering technology plays an important role in signal processing. The filter can be divided into 

four kinds from the perspective of frequency characteristics: low-pass, high-pass, band-pass and 

band-rejection. It can be divided into two kinds according to signal processing methods: analog 

filter and digital filter. The main functions of the filter include: 1) Limit the signal in a specific 

frequency range, such as low-pass filter and other three kinds of filters; 2) Divide the signal into 

two or more sub-band signals, such as filter bank, graphic equalizer , sub-band encoders and 

frequency multiplexers, etc.; 3) Modify the spectral information of the signal, such as the 

equalizer in the telephone channel and the equalizer in audio; 4) Model the input and output 

relations of the system, such as telecommunication channels, human audio channels, and music 

synthesizer and so on. The filter has a wide range of applications, specifically applied to channel 

equalization, noise reduction, radar system and voice signal processing, etc. For example, a 

band-pass filter in a radio receiver is used to extract related signals from its channel. In a digital 

filter system, the discrete signals are already sampled, thereby reducing or increasing the 

information of some parts of the signals. In the audio graphic equalizer, the input signal is 

filtered into a plurality of sub-band signals so that the audio can be changed by manually 

adjusting a set of control signals. In the Dolby system, pre-filtering and post-filtering are used to 

minimize the effects of noise [1] . In Hi-Fi audio, the compensation filter in the pre-amplifier is 

used to compensate for the non-ideal frequency response characteristics of the speaker. Filters 
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are also used for music, film, or broadcast rooms to create audiovisual effects [1] . As for the 

analog filter and digital filter, due to their respective characteristics, they are applied in different 

fields. Analog filters are cheap and have large dynamic range in both time and frequency 

domain. In contrast, digital filters have some advantages in attainable performance. From the 

impulse response point of view, digital filters can be divided into two types: finite impulse 

response (FIR) filters and infinite impulse response (IIR) filters. The IIR filter has a more mature 

design method but the designed filter order is lower, and it cannot achieve a strict linear phase. 

However, the phase of the FIR filter can get linear characteristics, which is very important in 

some applications with relatively demanding phase requirements, such as image processing [1] .  

1.2 Background on Notch Filters 

The notch filter is a band-stop filter whose stopband is very narrow, and ideally there is only one 

single frequency rejection. This kind of stop-band filter is mainly used to eliminate a certain 

frequency and should have relatively little effect on the amplitude of the remaining frequencies. 

Because of the special characteristics of the stop band, the notch filter has a very wide range of 

applications. Digital notch filters are used in communications, control, instrumentation, and 

biomedical engineering to eliminate-noise [2] [3] . Digital notch filters in medical equipment can 

eliminate 60Hz interference from the electrocardiogram (ECG) signal and 

electroencephalograph (EEG) signal. In the field of automatic control, digital notch filters are 

used in industrial robots to suppress the vibration generated by resonance phenomena due to 

high-speed operation of robots [3] . In laser system applications, a notch filter with a length of 

four wavelengths is designed to be placed in the transmitter to suppress undesired local 

oscillation signals; it can also be used in the coding field. For example, in PSK coding, the 

receiver can use a single-frequency notch filter to eliminate the carrier frequency [4] ; and in the 
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process of digital signal processing, it can be used to detect the attenuation part or frequency 

component of the signal, for example, the Dual Tone Multi-Frequency (DTMF) [5] . 

1.3 Background on Multi-Frequency Notch Filters 

The multi-frequency notch filter includes a plurality of notch frequencies, generally having a 

non-uniform interval between notch frequencies. When its notch frequencies are evenly spaced, 

it will be a comb filter [6] . A two-dimensional multi-frequency notch filter can filter out 

periodic textures of digital images [7] . The multi-frequency notch filter can also be applied in 

fields such as communications, radar, sonar, biological signal processing and machinery [8] . For 

example, high-precision wireless positioning by using spread spectrum communication signals, 

eliminating resonant frequencies in mechanical systems, predicting protein coding regions and 

predicting protein hotspots [9] . Considering that in actual situations, the order of the FIR filter is 

usually several hundred or more, the study of low-order and sparse filters has been paid more 

and more attention. A sparse FIR filter leads to hardware implementation requiring a smaller 

number of adders and multipliers thereby reducing its computational complexity, improving the 

accuracy of operation and reducing its energy consumption. The design of low-complexity, high-

precision, low-order linear phase FIR multi-frequency notch filters has important practical 

significance in the above-mentioned fields. 
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II.  Research Status 

 

2.1 Single-Frequency Notch Filter 

For one-dimensional linear phase FIR single-frequency notch filter algorithms, researchers have 

proposed many solutions. Following are some representative methods: the Maximally Flat (MF) 

Algorithm [11] , the Multiple Exchange (ME) [19] , the Optimal Equiripple (OE) [12] , the 

Precise Equiripple (PE) [13]  and the algorithm based on Iteratively Reweighted Orthogonal 

Matching Pursuit (IROMP) [8] . The notch frequency in the Maximally Flat (MF) algorithm and 

the Optimal Equiripple (OE) algorithm is determined by the Zolotarev polynomial, but since the 

calculation of the order in the Zolotarev polynomial involves a rounding operation, this will 

cause a shift in the notch frequency. However, the Precise Equiripple (PE) algorithm solves this 

problem, but it sacrifices the performance of the notch filter. For example, the width of the 

stopband is enhanced and the ripple in the passband is increased [13] . The linear phase FIR 

notch filters implemented by these methods are all sparse which means many coefficients are 

zero, and when the given design requirements (such as passband ripple, stopband bandwidth, 

etc.) are more demanding, the FIR notch filter order is usually up to several hundred. The 

algorithm based on Iteratively Reweighted Orthogonal Matching Pursuit (IROMP) has good 

performance compared with the other filter design algorithms mentioned above, and the number 

of non-zero taps of the implemented FIR single-frequency notch filter can be reduced by more 

than 10% when it satisfies the same requirements [8] . At the same time, the linear phase FIR 

notch filter implemented by this algorithm also overcomes the problem of shifting of the notch 

frequency.  
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2.2 Multi-Frequency Notch Filter 

Linear phase FIR multi-frequency notch filters, whose notch frequencies are evenly spaced are 

called comb filters. Comb filters can be designed using Chebyshev polynomials [14] , but these 

methods are less applicable and do not work when the interval between the notch frequencies is 

non-uniform [15] [16] [17] [18] . When the interval between the notch frequencies is non-

uniform, a number of approaches can be used. Among these are cascading multiple single notch 

FIR filters (CSSNF), the Multiple Exchange (ME) [19] , the Iterative reweighed l1 Design 

Schemes (IRL1) [20] , the Iterative Second-Order Cone Programming (ISOCP) [21]  and the 

algorithm based on Iteratively Reweighted Orthogonal Matching Pursuit (IROMP) [8] . The 

multi-frequency notch filter obtained by cascading single-frequency notch filters will increase 

the ripple of the filter passband, and at the same time will decrease its attenuation at the notch 

frequency and greatly reduces the overall performance of the multi-frequency notch filter. As for 

the Multiple Exchange (ME) algorithm, it requires a large filter order to ensure the convergence 

and stability of the algorithm when the interval between notch frequencies is small. At the same 

time, under the same design criteria, when the notch frequencies change, the Multiple Exchange 

(ME) algorithm needs to recalculate the entire filter once again. This is rather troublesome which 

means it is difficult to adapt the notch frequencies. The Iterative reweighed l1 Design Schemes 

(IRL1) which was proposed by Cristian Rusu is an algorithm that combines the minimum of the 

reweighted l1 and greedy iterations. The algorithm gives the filter more non-zero coefficients 

after minimizing the reweighed l1, and the next greedy iteration is used to eliminate several 

redundant coefficients. The Iterative Second-Order Cone Programming (ISOCP) proposed by 

Aimin Jiang finds a potential sparse model first, and then uses this sparse model to solve a 

convex optimization problem to get the final result [21] . However, neither of these two 
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algorithms can achieve frequency adjustability. As for the algorithm based on Iteratively 

Reweighted Orthogonal Matching Pursuit (IROMP), It is a better algorithm for implementing the 

multi-frequency notch filter.  
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III. Traditional Methods for Multi-Frequency FIR Notch Filter 

 

3.1 FIR Notch Filters 

The notch filter is a type of band-stop filter, ideally with only one or more rejection frequencies. 

Notch filters can generally be divided into two forms, the first of which is more common. And 

those two can be written as the same form: 𝐻(𝜔) = 𝑒−
𝑗𝑁

2
𝜔|𝐻0(𝜔)|. 

The amplitude response of the first type of notch filter is shown in Figure 1: 

 

Figure 1 First Type FIR Notch Filter 

It is characterized by a notch frequency 𝜔𝑑 and a stopband width 𝐵𝑊̅̅ ̅̅ ̅. The stopband width for an 

ideal notch filter should be zero, and the attenuation at the notch frequency location should be 

infinite, and the passband ripple should be zero. 
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The amplitude response of the second type of notch filter is shown in Figure 2: 

 

Figure 2 Second Type FIR Notch Filter 

The difference from the first type is that it has a 180° inversion at the notch frequency. For the 

|𝐻2(𝜔)|, it has the same amplitude response with the first type. 

3.2 Multiple Exchange Algorithm 

Compared to single exchange algorithms such as linear programming [23] , Multiple Exchange 

algorithms (ME) are faster. The Multiple Exchange algorithm needs to find a new set of 

alternation frequencies to replace the original set of alternation frequencies in each iteration. This 

type of multiple exchange algorithm can not only complete the design of a single-frequency 

notch filter, but also the design of a multi-frequency notch filter. The specific implementation of 

this algorithm will be described below. 
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Firstly, the multiple exchange method for a single-frequency notch filter is described. To 

facilitate the elaboration of the method, the mathematical expression of the FIR notch filter is 

first elaborated, and some symbols to be used in this method are firstly defined and described.  

The mathematical expression of the n-order FIR filter with causality is: 

𝐻(𝑧) = ∑ ℎ(𝑛)𝑧−𝑛

𝑁

𝑛=0

(3.1) 

And its amplitude response can be expressed as: 

𝐴(𝜔) = ∑ 𝑎𝑛𝑡𝑟𝑖𝑔(𝜔, 𝑛)

𝑀

𝑛=1

(3.2) 

The specific form of the function 𝑡𝑟𝑖𝑔(𝜔, 𝑛) is determined by the parity of the filter order N and 

the symmetry of the time domain impulse response. The relationship between the time domain 

impulse response ℎ(𝑛), the order N and the parameter M, the coefficients 𝑎𝑛 and the function 

𝑡𝑟𝑖𝑔(𝜔, 𝑛) is summarized in Table 1: 

ℎ(𝑛) 𝑁 Relationship 

Symmetric Even 𝑀 = 𝑁/2 

𝑎1 = ℎ(𝑁/2) 

𝑎𝑛 = 2ℎ(𝑁/2 + 1 − 𝑛), 𝑛 = 2,… ,𝑀 

𝑡𝑟𝑖𝑔(𝜔, 𝑛) = cos⁡((𝑛 − 1)𝜔) 

Symmetric Odd 𝑀 = (𝑁 + 1)/2 

𝑎𝑛 = 2ℎ((𝑁 + 1)/2 − 𝑛), 𝑛 = 1,… ,𝑀 

𝑡𝑟𝑖𝑔(𝜔, 𝑛) = cos⁡((𝑛 − 1/2)𝜔) 

Antisymmetric Even 𝑀 = 𝑁/2 

𝑎𝑛 = 2ℎ(𝑁/2 − 𝑛), 𝑛 = 1,… ,𝑀 

𝑡𝑟𝑖𝑔(𝜔, 𝑛) = sin⁡(𝑛𝜔) 

Antisymmetric Odd 𝑀 = (𝑁 + 1)/2 

𝑎𝑛 = 2ℎ((𝑁 + 1)/2 − 𝑛), 𝑛 = 1,… ,𝑀 

𝑡𝑟𝑖𝑔(𝜔, 𝑛) = sin⁡((𝑛 − 1/2)𝜔) 

Table 1 Relationship between h(n) and Parameters 
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Define the column vector: 

𝑎 = [𝑎1, 𝑎2, … , 𝑎𝑀]𝑇 (3.3) 

𝑐(𝜔) = [𝑡𝑟𝑖𝑔(𝜔, 1), 𝑡𝑟𝑖𝑔(𝜔, 2), … , 𝑡𝑟𝑖𝑔(𝜔,𝑀)]𝑇 (3.4) 

Then (3.2) can be simplified as: 

𝐴(𝜔) = 𝑎𝑇𝑐(𝜔) = 𝑐𝑇(𝜔)𝑎 (3.5) 

In this way, the filter design problem is mathematically transformed into finding a coefficient 

vector 𝑎 to satisfy the constraint: 

𝐷(𝜔) = {
0, 𝜔 = ±𝜔𝑁

1,⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3.6) 

where 𝜔𝑁 represents the notch frequency. 

From the amplitude response function 𝐴(𝜔) of the euquiripple FIR notch filter, the amplitude at 

the alternation frequencies 𝜔1𝑙 and 𝜔1𝑟⁡is 1 + 𝛿, and the amplitude at the alternation frequencies 

𝜔𝑖𝑙 and 𝜔𝑖𝑟⁡is 1 − (−1)𝑖𝛿. Assume that there are 𝑁𝑙 alternation in the left pass band [0, 𝜔𝑁 − 𝜀] 

and there are 𝑁𝑟 alternation in the right pass band [𝜔𝑁 + 𝜀, 𝜋], in which 𝜀 is a specified, smaller, 

positive number. Because 𝐴(𝜔𝑁) = 0 is imposed on the amplitude response, there is no iterative 

theorem that can specify the number of extrema to guarantee optimality. However, Multiple 

Exchange algorithms can design this type of filter by selecting alternation points. The specific 

choice is: in the left pass band, the alternation frequencies selection rule is: 

𝜔1𝑙 > 𝜔2𝑙 > ⋯ > 𝜔𝑁𝑙𝑙
(3.7) 

In this way, the original design problem becomes satisfied by finding the filter coefficients 

having the following conditions: 
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𝐴(𝜔𝑖𝑙) = 1 − (−1)𝑖𝛿, 𝑖 = 1,… ,𝑁𝑙 (3.8) 

In the right pass band, the alternation frequency selection rule is: 

𝜔1𝑟 < 𝜔2𝑟 < ⋯ < 𝜔𝑁𝑟𝑟
(3.9) 

Like the left pass band alternation selection method, the original design problem is satisfied after 

finding the filter coefficients under the following conditions: 

𝐴(𝜔𝑖𝑟) = 1 − (−1)𝑖𝛿, 𝑖 = 1,… ,𝑁𝑟 (3.10) 

From the above description, equation (3.2) is substituted into equations (3.8) and (3.10) to obtain 

the matrix: 

[
 
 
 
 
 
 
 
 
 
𝑡𝑟𝑖𝑔(𝜔𝑁𝑙𝑙, 1)… ⁡𝑡𝑟𝑖𝑔(𝜔𝑁𝑙𝑙, 𝑀)

⋮ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋯ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ⋮
𝑡𝑟𝑖𝑔(𝜔2𝑙, 1) … ⁡𝑡𝑟𝑖𝑔(𝜔2𝑙, 𝑀)

𝑡𝑟𝑖𝑔(𝜔1𝑙, 1) … ⁡𝑡𝑟𝑖𝑔(𝜔1𝑙, 𝑀)

𝑡𝑟𝑖𝑔(𝜔𝑁, 1) … ⁡𝑡𝑟𝑖𝑔(𝜔𝑁 ,𝑀)

𝑡𝑟𝑖𝑔(𝜔1𝑟 , 1) … ⁡𝑡𝑟𝑖𝑔(𝜔1𝑟 ,𝑀)

𝑡𝑟𝑖𝑔(𝜔2𝑟 , 1) … ⁡𝑡𝑟𝑖𝑔(𝜔2𝑟 ,𝑀)
⋮ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋯ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ⋮

𝑡𝑟𝑖𝑔(𝜔𝑁𝑟𝑟 , 1)… ⁡𝑡𝑟𝑖𝑔(𝜔𝑁𝑟𝑟 , 𝑀)]
 
 
 
 
 
 
 
 
 

[

𝑎1

𝑎2

⋮
𝑎𝑀

] =

[
 
 
 
 
 
 
 
 
1 − (−1)𝑁𝑙𝛿

⋮
1 − 𝛿
1 + 𝛿

0
1 + 𝛿
1 − 𝛿

⋮
1 − (−1)𝑁𝑟𝛿]

 
 
 
 
 
 
 
 

(3.11) 

Using Φ to represent the left matrix and 𝑏 to represent the right vector in (3.11), then the 

equation (3.11) can be simplified to: 

Φa = b (3.12) 

If 𝑁𝑙 + 𝑁𝑟 + 1 is not less than M, then we can see that the above equation is a set of positively 

definite equations, and the least squares solution of these equations is: 

𝑎 = (Φ𝑇Φ)−1Φ𝑇𝑏 (3.13) 
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Based on the above description, specific design steps for designing equiripple filter notch filters 

using the Multiple Exchange algorithms are: 

Step 1: Determine the order N and 𝜔𝑁 based on design criteria; 

Step 2: Set the initial value, and find the alternation frequencies Ω𝑖𝑙(𝑖 = 1,2, … ,𝑁𝑙) and Ω𝑖𝑟(𝑖 =

1,2, … ,𝑁𝑟); 

Step 3: Set 𝜔𝑖𝑙 = Ω𝑖𝑙(𝑖 = 1,2, … ,𝑁𝑙) and 𝜔𝑖𝑟 = Ω𝑖𝑟(𝑖 = 1,2, … , 𝑁𝑟); 

Step 4: Calculate the average peak error: 

𝛿 =
1

𝑁𝑙 + 𝑁𝑟
(∑|𝐴(𝜔𝑖𝑙) − 1| + ∑|𝐴(𝜔𝑖𝑟) − 1|

𝑁𝑟

𝑖=1

𝑁𝑙

𝑖=1

) (3.14) 

Step 5: Calculate the new filter coefficients vector 𝑎 by solution of (3.13); 

Step 6: Find the alternation frequencies Ω𝑖𝑙and Ω𝑖𝑟 in the passband and return to the third step to 

repeat the loop until the following conditions are satisfied: 

|Ω𝑖𝑙 − 𝜔𝑖𝑙| ≤ 𝜀1, 𝑖 = 1,… ,𝑁𝑙 (3.15) 

|Ω𝑖𝑟 − 𝜔𝑖𝑟| ≤ 𝜀1, 𝑖 = 1,… ,𝑁𝑟 (3.16) 

The above describes in detail the application of the Multiple Exchange algorithms for single-

frequency notch filters. The following describes its application to multi-frequency notch filters. 

Take two notch frequencies 𝜔1𝑁⁡, 𝜔2𝑁 as an example: 

The ideal frequency-domain amplitude of the double notch frequency filter is expressed as: 

𝐷(𝜔) = {
0, 𝜔 = ±𝜔1𝑁⁡𝑜𝑟⁡𝜔 = ±𝜔2𝑁⁡

1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3.17) 
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there are 𝑁𝑙 alternation in the left pass band [0, 𝜔1𝑁 − 𝜀],  there are 𝑁𝑚 alternation in the middle 

pass band [𝜔1𝑁 − 𝜀,𝜔2𝑁 + 𝜀] and there are 𝑁𝑟 alternation in the right pass band [𝜔2𝑁 + 𝜀, 𝜋], 

and the frequency specification rules for the three pass band alternation frequencies: 

𝜔1𝑙 > 𝜔2𝑙 > ⋯ > 𝜔𝑁𝑙𝑙
(3.18) 

𝜔1𝑚 > 𝜔2𝑚 > ⋯ > 𝜔𝑁𝑚𝑚 (3.19) 

𝜔1𝑟 < 𝜔2𝑟 < ⋯ < 𝜔𝑁𝑟𝑟
(3.20) 

At the same time, the following restrictions must be satisfied when looking for its coefficients: 

𝐴(𝜔𝑖𝑙) = 1 − (−1)𝑖𝛿, 𝑖 = 1,… ,𝑁𝑙 (3.21) 

𝐴(𝜔𝑖𝑚) = 1 − (−1)𝑖𝛿, 𝑖 = 1,… ,𝑁𝑚 (3.22) 

𝐴(𝜔𝑖𝑟) = 1 − (−1)𝑖𝛿, 𝑖 = 1,… ,𝑁𝑟 (3.23) 

Based on the above description, equation (3.11) can be expressed as a matrix: 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑡𝑟𝑖𝑔(𝜔𝑁𝑙𝑙, 1)… ⁡𝑡𝑟𝑖𝑔(𝜔𝑁𝑙𝑙, 𝑀)

⋮ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋯ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ⋮
𝑡𝑟𝑖𝑔(𝜔2𝑙, 1) … ⁡𝑡𝑟𝑖𝑔(𝜔2𝑙, 𝑀)

𝑡𝑟𝑖𝑔(𝜔1𝑙, 1) … ⁡𝑡𝑟𝑖𝑔(𝜔1𝑙, 𝑀)

𝑡𝑟𝑖𝑔(𝜔1𝑁, 1) … ⁡𝑡𝑟𝑖𝑔(𝜔1𝑁, 𝑀)

𝑡𝑟𝑖𝑔(𝜔𝑁𝑚𝑚, 1)… ⁡𝑡𝑟𝑖𝑔(𝜔𝑁𝑚𝑚, 𝑀)

⋮ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋯ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ⋮
𝑡𝑟𝑖𝑔(𝜔2𝑚, 1) … ⁡𝑡𝑟𝑖𝑔(𝜔2𝑚, 𝑀)

𝑡𝑟𝑖𝑔(𝜔1𝑚, 1) … ⁡𝑡𝑟𝑖𝑔(𝜔1𝑚, 𝑀)

𝑡𝑟𝑖𝑔(𝜔2𝑁, 1) … ⁡𝑡𝑟𝑖𝑔(𝜔2𝑁 ,𝑀)

𝑡𝑟𝑖𝑔(𝜔1𝑟 , 1) … ⁡𝑡𝑟𝑖𝑔(𝜔1𝑟 ,𝑀)

𝑡𝑟𝑖𝑔(𝜔2𝑟 , 1) … ⁡𝑡𝑟𝑖𝑔(𝜔2𝑟 ,𝑀)
⋮ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋯ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ⋮

𝑡𝑟𝑖𝑔(𝜔𝑁𝑟𝑟 , 1)… ⁡𝑡𝑟𝑖𝑔(𝜔𝑁𝑟𝑟 , 𝑀) ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[

𝑎1

𝑎2

⋮
𝑎𝑀

] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 − (−1)𝑁𝑙𝛿

⋮
1 − 𝛿
1 + 𝛿

0
1 + 𝛿

⋮
1 − 𝛿
1 + 𝛿

0
1 + 𝛿
1 − 𝛿

⋮
1 − (−1)𝑁𝑟𝛿]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3.24) 

And then (3.25) can be simplified as: 
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Ψ𝑎 = 𝑑 (3.25) 

If 𝑁𝑙 + 𝑁𝑚 + 𝑁𝑟 +2 is not less than M, then we know that (3.25) is a set of positively definite 

equations, and the least squares solution of these equations is: 

𝑎 = (Ψ𝑇Ψ)−1Ψ𝑇𝑑 (3.26) 

Like the previous section, the calculation steps for the multi-frequency notch filter coefficients 

are summarized as: 

Step 1: Determine the order N, 𝜔1𝑁 and 𝜔1𝑁⁡based on the design criteria; 

Step 2: Use the Lagrange multiplier method to guess the initial value of the filter coefficients and 

find the alternation frequencies Ω𝑖𝑙(𝑖 = 1,2, … ,𝑁𝑙), Ω𝑖𝑚(𝑖 = 1,2, … ,𝑁𝑚), Ω𝑖𝑟(𝑖 = 1,2, … ,𝑁𝑟); 

Step 3: Set 𝜔𝑖𝑙 = Ω𝑖𝑙(𝑖 = 1,2, … ,𝑁𝑙), 𝜔𝑖𝑚 = Ω𝑖𝑚(𝑖 = 1,2, … , 𝑁𝑚), 𝜔𝑖𝑟 = Ω𝑖𝑟(𝑖 = 1,2, … ,𝑁𝑟); 

Step 4: Calculate the average peak error: 

𝛿 =
1

𝑁𝑙 + 𝑁𝑚 + 𝑁𝑟
(∑|𝐴(𝜔𝑖𝑙) − 1| + ∑|𝐴(𝜔𝑖𝑚) − 1|

𝑁𝑚

𝑖=1

+ ∑|𝐴(𝜔𝑖𝑟) − 1|

𝑁𝑟

𝑖=1

𝑁𝑙

𝑖=1

) (3.27) 

Step 5: Calculate the new filter coefficients vector 𝑎 by using the solution (3.26); 

Step 6: Find the alternation frequencies Ω𝑖𝑙, Ω𝑖𝑚 and Ω𝑖𝑟 in the passband and return to the third 

step and repeat until the conditions of (3.28), (3.29), and (3.30) are satisfied: 

|Ω𝑖𝑙 − 𝜔𝑖𝑙| ≤ 𝜀1, 𝑖 = 1,… ,𝑁𝑙 (3.28) 

|Ω𝑖𝑚 − 𝜔𝑖𝑚| ≤ 𝜀1, 𝑖 = 1,… ,𝑁𝑚 (3.29) 

|Ω𝑖𝑟 − 𝜔𝑖𝑟| ≤ 𝜀1, 𝑖 = 1,… ,𝑁𝑟 (3.30) 
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3.3 Optimal Equiripple comb FIR Notch Filter 

The Multiple Exchange Algorithm introduced in Section 3.2 can only be used for single-

frequency or non-uniform multi-frequency notch filters. But for a uniform multi-frequency notch 

filter (comb filter), the following is based on Chebyshev polynomials ideal equiripple analysis to 

implement a linear phase comb filter [22] . 

The generating polynomial of the comb FIR filter can be expressed as: 

𝐹(𝜔) = 𝑇𝑛[𝜆𝑇𝑟(𝜔)] = ∑ 𝐵(𝑚)

𝑛𝑟

𝑚=0

𝜔𝑚 = ∑ 𝐴(𝑚)𝑇𝑚(𝜔)

𝑛𝑟

𝑚=0

(3.31) 

The function 𝑇𝑚(𝜔) is a Chebyshev type-I polynomial. The real parameter 𝜆 =
1

𝜅
> 1 affects the 

magnitude of the passband ripple, and the order 𝑟 of the internal Chebyshev polynomial 𝑇𝑟(𝜔) 

determines a total of r narrow bands. The specific positions of the narrow bands are consistent 

with the pole positions of the internal Chebyshev polynomial: 

𝜔𝑚𝑖 = 𝑐𝑜𝑠
𝑖𝜋

𝑟
, 𝑖 = 0,1, … , 𝑟 (3.32) 

In the frequency domain, these narrow bands are evenly distributed in [0, 𝜋], specifically: 

𝜔𝑚𝑖𝑇 =
𝑖𝜋

𝑟
, 𝑖 = 0,1, … , 𝑟 (3.33) 

The external Chebyshev polynomial's order 𝑛 determines the number of poles between the 

narrow bands is 𝑛 − 1. The generating polynomial of the equiripple comb filter 𝐹(𝜔) satisfies 

the differential equations: 

𝑈𝑟−1(𝜔)(𝜅2 − 𝑇𝑟
2(𝜔)) [(1 − 𝜔2)

𝑑2𝐹(𝜔)

𝑑𝜔2
− 𝜔

𝑑𝐹(𝜔)

𝑑𝜔
]

−𝑟(1 − 𝜅2)𝑇𝑟(𝜔)
𝑑𝐹(𝜔)

𝑑𝜔
+ 𝑛2𝑟2𝑈𝑟−1(𝜔)(1 − 𝑇𝑟

2(𝜔))𝐹(𝜔) = 0 (3.34)
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The zero-phase transmission equation of a comb FIR filter obtained from a standardized 

generator polynomial is: 

𝑄(𝜔) = 1 −
1 + 𝐹(𝜔)

𝐶
= 1 −

𝑇𝑛[𝜆𝑇𝑟(𝜔)]

𝐶
= ∑ 𝑏(𝑚)𝜔𝑚

𝑛𝑟

𝑚=0

= ∑ 𝑎(𝑚)𝑇𝑚(𝜔)

𝑛𝑟

𝑚=0

(3.35) 

Under the condition 𝑄(𝜔)|𝜔=1 = 0, the constant C is: 

𝐶 = 1 + cosh[𝑛𝑎𝑐𝑜𝑠ℎ(𝜆)] = 1 + 𝑇𝑛(𝜆) (3.36) 

The value of (4.36) is independent of the order⁡𝑟. The formula for evaluating the order of the 

external 𝑇𝑛(𝜔) is: 

𝑛 =
acosh(𝑘)

acosh(𝜆)
=

ln(𝑘 + √𝑘2 − 1)

ln(𝜆 + √𝜆2 − 1)
(3.37) 

where the parameters 𝜆 and 𝑘 are: 

𝜆 =
1

𝑐𝑜𝑠 (𝑟
∆𝜔𝑇
2 )

, 𝑘 =
1 + 100.05𝑎

1 − 100.05𝑎
(3.38) 

In an actual filter design, the real parameter n is rounded up to an even value. Such an approach 

is to ensure that the specific notch number and width in the design criteria are met. The impulse 

response ℎ(𝑚) contains 2𝑛𝑟 coefficients, of which 𝑛 + 1 are non-zero. 

Based on the above, an algebraic iterative algorithm for calculating the impulse response can be 

obtained. The detailed calculation of the impulse response is summarized in Table 2: 
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Given                                       𝑛⁡(even integer), 𝑟 (integer), 𝜆 > 1 (real) 

Initialization                            𝑘 =
1

𝜆
 

𝑎(𝑛) = 𝜆𝑛 

𝑎(𝑛 + 2) = 𝑎(𝑛 + 4) = 𝑎(𝑛 + 6) = 0 

Body (for 𝜇 = 1 − 𝑛/2)        𝑎(𝑛 − 2𝜇) = {𝑎(𝑛 − 2(𝜇 − 1)) × [(1 − 𝑘2)(𝑛 − (2𝜇 − 1))(𝑛 −

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2𝜇 − 2)) + 3(𝜇 − 1)(𝑛 − (𝜇 − 1))] − 𝑎(𝑛 − 2(𝜇 − 2)) ×

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[(1 − 𝑘2)(𝑛 − (2𝜇 − 4))(𝑛 − (2𝜇 − 6)) + 3(𝜇 − 2)(𝑛 −

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝜇 − 2))] + 𝑎(𝑛 − 2(𝜇 − 3))(𝜇 − 3)(𝑛 − (𝜇 − 3))}/𝜇(𝑛 − 𝜇) 

(end loop on 𝜇) 

𝑎(0) =
𝑎(0)

2
 

Coefficients 𝐴(𝑚) of the  

generating polynomial 𝐹(𝜔) 

Body (𝜇 = 0 − 𝑛/2) 

𝐴(𝑛𝑟 − 2𝜇𝑟) = 𝑎(𝑛 − 2𝜇) 

(end loop on 𝜇) 

Coefficients 𝑎(𝑚) of the zero 

phase transfer function 𝑄(𝜔) 

𝐶 = 1 + 𝑇𝑛(𝜆) 
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𝑎(0) = 1 −
1 + 𝐴(0)

𝐶
 

Body (for 𝜇 = 1,… , 𝑛𝑟) 

𝑎(𝜇) = −
𝐴(𝜇)

𝐶
 

(end loop on 𝜇) 

Coefficients of the  

impulse response ℎ(𝑚) 

ℎ(𝑛𝑟) = 𝑎(0) 

Body (for 𝜇 = 1,… , 𝑛𝑟) 

ℎ(𝑛𝑟 ± 𝜇) =
𝑎(𝜇)

2
 

(end loop on 𝜇) 

Table 2 Recursive Algorithm for Evaluation of Coefficients h(m) of Impulse Response 

The specific implementation steps of the Optimal Equiripple comb FIR filter are: 

Step 1: Determine the number of notches 𝑟 according to the design criteria, the maximum 

attenuation ∆𝜔𝑇 at the passband and the bandwidth ∆𝜔𝑇 at the notch frequencies; 

Step 2: Determine the internal order 𝑟 and the internal 𝑇𝑟(𝜔) from the first step; 

Step 3; Calculate additional parameters 𝜆 and 𝑘; 
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Step 4: Use the formula (3.37) to calculate the parameter n; 

Step 5: Round up the parameter n to get its next even value; 

Step 6: Use the algebraic recursive algorithm shown in Table 3 to calculate the 2𝑛𝑟 + 1 

parameters of the impulse response; 

Step 7: Calculate the size of the passband ripple: 

𝑎𝑎𝑐𝑡 = 20𝑙𝑜𝑔 (1 −
2

1+𝑇𝑛(𝜆)
) (3.39)

The Optimal Equiripple comb FIR filter Method provides a simple and robust implementation 

tool for the implementation of an ideal equiripple comb FIR notch filter. However, compared 

with the same design requirements, the proposed algorithm has a faster algorithm and a smaller 

passband ripple. 

3.4 Iterative Reweighted OMP Method 

This method is based on the Orthogonal Matching Pursuit(OMP) algorithm. 

Given the notch frequencies {𝑤𝑖̅̅ ̅}𝑖=1
𝐾 , the rejection bandwidths {𝐵𝑊𝑖

̅̅ ̅̅ ̅}𝑖=1
𝐾 , and the passband ripple 

𝛿, the process of the method begins with the estimation of the initial order 𝑁̂ of the filter: 

𝑁̂ = max
𝑖∈{1,…,𝐾}

𝑁𝑖 (3.40) 

From (3.40), the 𝑁𝑖 is computed as [24] : 

𝑁𝑖 = 𝑚𝑎𝑥{𝑁̂(𝜔𝑝1𝑖, Δ𝐹𝑖, δ𝑝, δ𝑠), 𝑁̂(𝜔𝑝2𝑖, Δ𝐹𝑖, δ𝑝, δ𝑠)} (3.41) 

where the parameters from (3.41) are expressed as: 

Δ𝐹𝑖 =
𝐵𝑊𝑖

2
(3.42) 
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𝜔𝑝1𝑖 =
𝜔̅𝑖 − Δ𝐹𝑖

2
(3.43) 

𝜔𝑝2𝑖 =
1 − 𝜔̅𝑖 − Δ𝐹𝑖

2
(3.44) 

δ𝑝 = δ𝑠 =
1 − 10

𝛿
20

1 + 10
𝛿
20

(3.45) 

Define the coefficients matrix: 

𝐴 =

[
 
 
 
 
 
1 cos(𝜔0)⁡⋯⁡cos(𝑚𝜔0)⁡⋯⁡cos(𝑀𝜔0)

1 cos(𝜔1)⁡⋯⁡cos(𝑚𝜔1)⁡⋯⁡cos(𝑀𝜔1)
⋮⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋮⁡⁡⁡⁡⁡⁡⋱⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋮⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋱⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋮⁡⁡⁡
1 cos(𝜔𝑙)⁡⋯⁡cos(𝑚𝜔𝑙)⁡⋯⁡cos(𝑀𝜔𝑙)
⋮⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋮⁡⁡⁡⁡⁡⁡⋱⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋮⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋱⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋮⁡⁡
1 cos(𝜔𝐿)⁡⋯⁡cos(𝑚𝜔𝐿)⁡⋯⁡cos(𝑀𝜔𝐿)]

 
 
 
 
 

(3.46) 

where  𝜔𝑙 =
𝜋𝑙

𝐿
, 0 ≤ 𝑙 ≤ 𝐿. 

Define the initial 1 × 𝐿 weight vector: 

𝑤(0) = (1,… ,1) (3.47) 

And the index set: 

Ω = {0,1, … ,𝑀} (3.48) 

And the amplitude response vector: 

𝑓 = [𝐻0(𝜔0),𝐻0(𝜔1), … , 𝐻0(𝜔𝑙),… , 𝐻0(𝜔𝐿)]
𝑇 (3.49) 

where the zero-phase 𝐻0(𝜔) is defined as: 

𝐻0(𝜔) = ℎ𝑀 + 2 ∑ ℎ𝑀−𝑚 cos(𝑚𝜔)

𝑀

𝑚=1

(3.50) 
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So, the impulse response vector is defined as: 

ℎ = [ℎ𝑀 , 2ℎ𝑀−1, … ,2ℎ𝑚, … ,2ℎ0]
𝑇 (3.51) 

And then the specific implementation steps of the Iterative Reweighted OMP Method are: 

Step 1: Normalize the column vectors {𝑎𝑚}𝑚=0
𝑀  of matrix A, and compute: 

𝐵(𝑘) = 𝐴𝐷(𝑘) = (𝑏0
(𝑘)

, … , 𝑏𝑀
(𝑘)

) (3.52) 

where  𝐷(𝑘) = 𝑑𝑖𝑎𝑔 ((
1

‖𝑎0‖
𝑙
𝐿
2
(𝑤(𝑘))

) ,… , (
1

‖𝑎𝑀‖
𝑙
𝐿
2
(𝑤(𝑘))

)), and k means it is at the kth iteration. 

Step 2: Use the OMP algorithm to solve the problem: 

min
ℎ

𝜀 

𝑠. 𝑡. ‖𝐵(𝑘)𝑦(𝑘) − 𝑓‖
𝑙
𝐿
2
(𝑤)

≤ 𝜀 (3.53) 

where 𝑦(𝑘) = (𝐷(𝑘))−1ℎ. And the OMP algorithm is shown in Table 3: 

 

 

 

Initialize the residual vector 𝑟0 = 𝑓 and choose the initial index set 𝑍0 being an empty set. At the  

𝑡th OMP iteration with 1 ≤ 𝑡 ≤ 𝑘, it proceeds as follows. 

1) Find the column vector 𝑏𝑚𝑡

(𝑘)
⁡(𝑚𝑡 ∈ Ω − 𝑍𝑡−1) from matrix 𝐵(𝑘) of (3.52), which maximizes 



 

22 

 

The inner product |〈𝑟𝑡−1, 𝑏𝑚𝑡

(𝑘)〉
𝑙
𝐿

2
(𝑤(𝑘))

|. 

2) Utilize the chosen 𝑚𝑡 to compare the set 𝑍𝑡 as: 

𝑍𝑡 = 𝑍𝑡−1⋃{𝑚𝑡} 

And the solution 𝑧𝑡
(𝑘)

: 

𝑧𝑡
(𝑘)

= 𝑎𝑟𝑔 min
𝑧

‖𝑓 − 𝜙𝑡
(𝑘)

𝑧‖
𝑙
𝐿
2
(𝑤(𝑘))

 

where 𝜙𝑡
(𝑘)

= (𝑏𝑚1

(𝑘)
, … , 𝑏𝑚𝑡

(𝑘)
). 

3) Compute the new residual vector 𝑟𝑡 as: 

𝑟𝑡 = 𝑓 − 𝜙𝑡
(𝑘)

𝑧𝑡
(𝑘)

 

4) If 𝑡 ≤ 𝑘 − 1, replace 𝑡 with 𝑡 + 1 and repeat 1) to 3). 

If 𝑡 = 𝑘, define the residual vector 𝑟(𝑘) and index set 𝑍(𝑘) for the 𝑘th iteration as: 

𝑟(𝑘) = 𝑟𝑡,⁡⁡⁡⁡⁡⁡𝑍
(𝑘) = 𝑍𝑡 

And proceed to 3) 

 

Table 3 The OMP Algorithm 

Step 3: Set 𝑐(𝜔) = [1, cos(𝜔),… , cos(𝑚𝜔),… , cos(𝑀𝜔)], and solve the linear programming 

problem: 

min
ℎ,𝜇

𝜇 
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𝑠. 𝑡. |𝑐(𝜔𝑙)ℎ − 1| ≤
1 − 10

𝛿
20

1 + 10
𝛿
20

+ 𝜇, 𝑙 ∈ {𝑙|𝜔𝑙 ∈ Ω1} 

𝑐(𝜔̅𝑖)ℎ = 0, 𝑖 = 1,… , 𝐾 

ℎ𝑀−𝑚 = 0,𝑚 ∉ 𝑍(𝑘) (3.54) 

If 𝜇 < 0, then the computed vector h is the linear-phase FIR multi-frequency notch filter that 

meets the design specification. 

Step 4: Compute the new weight vector 𝑤(𝑘+1) which is expressed as: 

𝑤𝑖
(𝑘+1)

=
1

(1 + (
𝑟𝑖

(𝑘)

𝜖 )

2

)

1
4

, 0 ≤ 𝑖 ≤ 𝐿 (3.55)

 

where 𝑟𝑖
(𝑘)

 is the 𝑖th entry of the residual vector 𝑟(𝑘) and 𝜖 = 𝑚𝑎𝑥|𝑦(𝑘)|/𝑑𝑝 with 𝑑𝑝 being a 

constant, and we set 𝑑𝑝 = 100 here.  

Replace 𝑤(𝑘) with 𝑤(𝑘+1), then repeat from step 1 to step 3. 
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IV. Quadratic Programming Method 

 

4.1 Definition 

We now describe the proposed QP-based notch filter. Suppose that we would like to approximate 

a noisy signal vector 𝑥 subject to a finite number of constraints on the discrete-time Fourier 

transform of 𝑥. This will lead to the following approximation problem: 

min(𝑥 − 𝑥̂)𝑇𝑄(𝑥 − 𝑥̂) 

𝑠. 𝑡. |𝑋̂(𝜔𝑘)| = 0, 𝑘 = 1,… ,𝑀 (4.1) 

where 𝑥 = [𝑥(0)…𝑥(𝑁 − 1)]𝑇 is the noisy signal vector, 𝑥̂ = [𝑥̂(0)…⁡𝑥̂(𝑁 − 1)]𝑇 is the 

estimate of 𝑥, 𝑄 is an 𝑁 × 𝑁-dimentional positive definite matrix, and 𝑋̂(𝜔) is the discrete-time 

Fourier transform of 𝑥̂. 

This is a quadradic program with linear equality constraints, which has a closed-form solution. 

As 𝐴𝑛𝑥 = 0, the constraints matrix is expressed as a 2𝑀 × 𝑁 matrix: 

𝐴𝑛 =

[
 
 
 
 
 

cos(𝑛𝜔1)⁡cos((𝑛 + 1)𝜔1)⁡cos((𝑛 + 2)𝜔1)⁡⋯ cos((𝑛 + 𝑁 − 1)𝜔1)

sin(𝑛𝜔1)⁡sin((𝑛 + 1)𝜔1)⁡sin((𝑛 + 2)𝜔1)⁡⋯⁡sin((𝑛 + 𝑁 − 1)𝜔1)

⋮⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋮⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋮ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋯ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ⋮⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
cos(𝑛𝜔𝑀)⁡cos((𝑛 + 1)𝜔𝑀)⁡cos((𝑛 + 2)𝜔𝑀)⁡⋯ cos((𝑛 + 𝑁 − 1)𝜔𝑀)

sin(𝑛𝜔𝑀)⁡sin((𝑛 + 1)𝜔𝑀)⁡sin((𝑛 + 2)𝜔𝑀)⁡⋯ sin((𝑛 + 𝑁 − 1)𝜔𝑀) ]
 
 
 
 
 

(4.2) 

with 𝑛 = 0,1,2, …. 

Here, we use the first order Karush-Kuhn-Tuncker conditions to solve the approximation 

problem in (4.1), these can be expressed as: 

[
⁡⁡⁡𝑄⁡⁡⁡⁡⁡⁡ − 𝐴𝑛

𝑇 ⁡⁡
𝐴𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0⁡⁡

] [
⁡⁡𝑥̂⁡⁡
⁡⁡𝜆⁡⁡

] = [
⁡⁡𝑥⁡⁡
⁡⁡0⁡⁡

] (4.3) 
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where 𝜆 is a vector containing the Lagrange multipliers for the quadratic program. 

So, we get: 

𝑥̂𝑛 = [𝑄−1 − 𝑄−1𝐴𝑛
𝑇(𝐴𝑛𝑄−1𝐴𝑛

𝑇)−1𝐴𝑛𝑄−1]𝑥𝑛 (4.4) 

The equation (4.4) shows that 𝑥̂ is the projection of 𝑥 onto the subspace spanned by the rows of 

𝐴𝑛. 

When 𝑀 = 1 and 𝑄 = 𝐼, (4.4) this will represent a notch filter which has zero gain at the 

frequency 𝜔1. And then the notch filter can be efficiently implemented by first computing 𝑦𝑛 =

𝐴𝑛𝑥𝑛, followed by 𝑥̂𝑛 = 𝐴𝑛
𝑇(𝐴𝑛𝐴𝑛

𝑇)−1𝑦𝑛. 

If the length of the input vector N is low, there will be errors in the vicinity of the notch 

frequency. This is the result of leakage due to truncating the basis vectors used in the projection 

matrix. To address this, we zero-pad 𝑥 as follows: 

𝑥 ← [⁡⁡𝑧𝑒𝑟𝑜𝑠(1, 𝑛𝑝)⁡⁡𝑥⁡⁡𝑧𝑒𝑟𝑜𝑠(1, 𝑛𝑝)⁡⁡] (4.5) 

The length of x is now 𝑁′ = 𝑁 + 2𝑛𝑝. 

Zero padding makes it possible to use arbitrarily long basis vectors in the constraint matrix 𝐴𝑛. 

This has the effect of reducing the notch bandwidth while reducing the error in the portion of the 

passband in the immediate area of the notch frequencies. This effect can be seen in Figure 3, 

where a length N=32 pseudorandom white noise sequence was subjected to a quadratic 

programming notch filter having three notch frequencies of 60Hz, 180Hz and 300Hz with no 

zero padding. A considerable difference between the input and output around the notch 

frequencies can be seen. In Figure 4, a much closer fit between the filtered and unfiltered signal 

is seen using zero padding 128. 
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Figure 3 N=N'=32 zero padding (np)=0 
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Figure 4 N=32 N'=32+128*2=288 zero padding (np)=128 

The comparison of different amounts of zero padding is shown in Figure 5. 

As we described above, the projection is defined as: 

𝑥̂𝑛 = [𝑄−1 − 𝑄−1𝐴𝑛
𝑇(𝐴𝑛𝑄−1𝐴𝑛

𝑇)−1𝐴𝑛𝑄−1]𝑥𝑛 = [𝐼 − 𝐴𝑛
𝑇(𝐴𝑛𝐴𝑛

𝑇)−1𝐴𝑛]𝑥𝑛 (4.6) 

where Q has been replaced by the identity matrix and 𝑥𝑛 = [𝑥(𝑛)⁡𝑥(𝑛 + 1)…𝑥(𝑛 + 𝑁 − 1)]𝑇 is 

the noisy signal vector. 
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Figure 5 Comparison of Different Zero Padding 
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V. Results and Comparison 

 

5.1 Results for Multiple Exchange Algorithm 

The Multiple Exchange algorithm can achieve a single-frequency notch filter with relatively 

small ripple, while for a multi-frequency notch filter, when the interval between notch 

frequencies is small, a larger filter order is required. To ensure the convergence of the algorithm, 

such as the dual-frequency notch filter, when the frequencies are 200𝐻𝑧 and 300𝐻𝑧, the order 

should be 200 to ensure the convergence of the algorithm to obtain a better solution. 

The result for Multiple Exchange Algorithm of two frequencies 200Hz and 800Hz is shown in 

Figure 6: 

 

Figure 6 Result for Multiple Exchange Algorithm of 200Hz and 800Hz 
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And the frequency response of ME is shown in Figure 7: 

 

Figure 7 Frequency Response of ME Method 

As we can see from Figure 7, at the notch frequencies, the ME method has negative gains which 

is a disadvantage of the ME algorithm. 
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5.2 Results for Iterative Reweighted OMP Method 

When we set the notch frequencies⁡100𝐻𝑧, 250𝐻𝑧 and 760𝐻𝑧, their associated rejection 

bandwidths 𝐵𝑊𝐼
̅̅ ̅̅ ̅̅ = 0.061𝜋 for 𝑖 = 1,2,3 and passband ripple 𝛿 = −0.95𝑑𝐵, the result for the 

Iterative Reweighted OMP Method is shown in Figure 8: 

 

Figure 8 Result for Iterative Reweighted OMP Method 

And the frequency response of OMP is shown in Figure 9: 
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Figure 9 Frequency Response of OMP 

As we can see from the result, the Iterative Reweighted OMP Method can achieve the non-

uniform multi-frequency notch filter. 

5.3 Results for Quadratic Program Method 

The result for Multiple Exchange Algorithm of two frequencies 200Hz and 800Hz is shown in 

Figure 10: 
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Figure 10 Results for QP Method 

And the frequency response of QP is shown in Figure 11: 
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Figure 11 Frequency Response of QP 

And the phase is shown in Figure 12: 
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Figure 12 Phase of QP Method 

5.4 Comparison between QP Method with Other Methods 

(1) QP method compared with the Multiple Exchange Algorithm 

When we set the notch frequencies as 200Hz and 800Hz, the comparison is shown in Figure 13: 
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Figure 13 Comparison Between QP Method and ME Method 

And when we zoom up, the part of notch is shown in Figure 14: 
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Figure 14 Comparison between QP method and ME method (Zoom up) 

Using the freqz function, the magnitude and phase of the ME are shown in Figure 15: 
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Figure 15 Magnitude and Phase of ME (200Hz and 800Hz) 

Also, we can get the frequency response of QP method which is shown in Figure 16: 
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Figure 16 Frequency Response of QP Method (200Hz and 800Hz) 

And the phase is shown in Figure 17: 
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Figure 17 Phase of QP Method 

As we can see from Figure 13, at the same situation, the QP Method has narrower stop band than 

the Multiple Exchange Algorithm. And from Figure 14, at the same situation, the ripple in the 

ME method is more than the ripple in the QP method. So, the QP method can do better for the 

ripple problem. And the phase of ME from Figure 15 seems not completely linear. 

(2) QP method compared with the Optimal Equiripple Comb Method 

The Optimal Equiripple Comb Method can only filter uniform notch frequencies, but the 

Quadratic Programming Method can efficiently filter non-uniform frequencies. In most actual 
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situations, there are non-uniform frequencies, so the Optimal Equiripple Comb Method will not 

be available in common situations. 

(3) QP method compared with the Iterative Reweighted OMP Method 

When we set the notch frequencies as 100Hz, 250Hz and 760Hz, the comparison between the QP 

Method and the Iterative Reweighted OMP Method is shown in Figure 18: 

 

Figure 18 Comparison Between QP Method and OMP Method (1) 
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And when we zoom up, the part of notch is shown in Figure 19: 

 

Figure 19 Comparison between OMP method and QP method (zoom up) (1) 

Using the freqz function, the magnitude and phase of the OMP are shown in Figure 20: 
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Figure 20 Magnitude and Phase of OMP (100Hz, 250Hz and 760Hz) 

 

Also, we can get the frequency response of QP method which is shown in Figure 21: 
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Figure 21 Frequency Response of QP Method (100Hz, 250Hz and 760Hz) 

And the phase is shown in Figure 22: 
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Figure 22 Phase of QP Method 

The phase of OMP from Figure 21 seems not completely linear. 

And then, we set the frequency are 200Hz and 800Hz, the result is shown in Figure 23: 
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Figure 23 Comparison Between QP Method and OMP Method (2) 

And when we zoom up, the part of notch is shown in Figure 24: 
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Figure 24 Comparison between OMP method and QP method (zoom up) (2) 

Using the freqz function, the magnitude and phase of the OMP are shown in Figure 25: 
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Figure 25 Magnitude and Phase of OMP (200Hz and 800Hz) 

Also, we can get the frequency response of QP method which is shown in Figure 26: 
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Figure 26 Frequency Response of QP Method (200Hz and 800Hz) 

And the phase is shown in Figure 27: 
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Figure 27 Phase of QP Method 

And then, we set 5 notch frequencies at 100Hz, 250Hz, 420Hz, 660Hz and 830Hz, and the result 

is shown in Figure 28: 
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Figure 28 Comparison Between QP Method and OMP Method (3) 

And when we zoom up, the part of notch is shown in Figure 29: 
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Figure 29 Comparison between OMP method and QP method (zoom up) (3) 

Using the freqz function, the magnitude and phase of the OMP are shown in Figure 30: 



 

53 

 

 

Figure 30 Magnitude and Phase of OMP (100Hz, 250Hz, 420Hz, 660Hz and 830Hz) 

Also, we can get the frequency response of QP method which is shown in Figure 31: 



 

54 

 

 
Figure 31 Frequency Response of QP Method (100Hz, 250Hz, 420Hz, 660Hz and 830Hz) 

And the phase is shown in Figure 32: 
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Figure 32 Phase of QP Method 

As we can see from Figure 18,19 and 20, the QP Method and the Iterative Reweighted OMP 

Method have the similar notch locations, but the QP Method still has a narrower notch. 

And as we can see from Figure 23, 24 and 25, when we try two notch frequencies, the QP 

method has less passband ripple and zero phase response, but as we can see from Figure 28, 29 

and 30 when we try 5 notch frequencies, the OMP method cannot completely filter some of the 5 

frequencies while the QP method does so with no passband ripple and very deep notches. 

All in all, the method that we proposed did better results than the traditional methods 
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VI Conclusion 

 

The QP method has better performance compared with the other methods that were tested both 

on the width of the stopband and the ripple of the passband. The following figure shows the 

energy of the signal both without zero-padding and with zero-padding: 

 

Figure 33 Energy with zero-padding and without zero-padding 

From Figure 33, we can see that the zero-padding has less effect on the energy of the signal. The 

expression here is based on the Parseval’s Theorem: 
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E =
1

2𝜋
∫ |𝑋(𝑒𝑗𝜔)|

2
𝑑𝜔

𝜋

−𝜋

(6.1) 

Then, we summarize an expression to represent the energy which is spread in the zero regions. 

First, set up a diagonal matrix as follows: 

B = diag([1…1⁡0…0⁡1…1]) (6.2) 

where the number of 1 in the first part and the last part is N𝑝 and the number of 0 in the middle 

part is N𝑑. 

Combine (6.2) with (4.4), the expression become: 

Y = B ∗ [I − A𝑇(AA𝑇)−1A] ∗ x (6.3) 

In (6.3), A𝑇⁡(AA𝑇)−1A is the projection matrix and we define P = A𝑇 ⁡(AA𝑇)−1A, the diagonal 

matrix B is used to wipe out the energy in the signal vector and keep the energy in the zero-

padding regions, then the energy in the zero-padding regions will be expressed as follows: 

𝐸 = 𝑌𝑇 ∗ 𝑌 (6.4) 

So, (6.4) can be expressed as: 

E = x𝑇 ∗ (𝐼 − 𝑃) ∗ 𝐵 ∗ 𝐵 ∗ (𝐼 − 𝑃) ∗ 𝑥 

= x𝑇 ∗ (𝐼 − 𝑃) ∗ 𝐵 ∗ (𝐼 − 𝑃) ∗ 𝑥 (6.5) 

In the future work, we will update the algorithm in order to save calculations so that we can 

assure the accuracy of the multi-frequency notch filter because the efficiency of the notch filters 

is an important issue. And also, we will use our design method into actual signals, such as EEG 
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signals and ECG signals, and see if it works well when operate actual signals. After that, we will 

update our method again due to the problems we face in the actual signals. 
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APPENDIX 

 

Works by Yueran Ma 

Main code of the OMP Algorithm 

while mu > 0 
    W = diag(w); 
    %step 1 
    for m = 1:M+1 
        %D(m) = 1/norm(A(:,m)); 
        D(m) = 1/sqrt(A(:,m)'*W*A(:,m)); 
        B(:,m) = A(:,m)*D(m); 
    end 
    %step 2 
    r = f; 
    Z = []; 
    for t = 1:k 
        [dmax ind] = max(abs(B'*W*r)); 
        if  t==1; 
            Z = [Z ind]; 
        elseif ~ismember(ind,Z) 
            Z = [Z ind]; 
        end 
        Phi(:,t) = B(:,ind); 
        zt = inv(Phi'*W*Phi)*Phi'*W*f; 
        r = f - Phi*zt; 
    end%t 
    yk = zt; 
    %step 3 
    %get indices where Ho = 1 
    ind_unity = find((omega < w1-BW/2 | omega > w1+BW/2) & ... 
        (omega < w2-BW/2 | omega > w2+BW/2) );  
    %create inequality constraint matrix 
    Aineq =  cos(omega(ind_unity)*[0:M]);  
    [ai_row ai_col] = size(Aineq); 
    %create column for mu 
    Aineq(:,ai_col+1) = -ones(ai_row,1); 
    Aineq1 = -Aineq; 
    Aineq1(:,ai_col+1) = -ones(ai_row,1); 
    Aineq = [Aineq;Aineq1]; 
    %create equality constraint matrix 
    Aeq = cos(omega_zero*[0:M]);  
    Aeq(:,ai_col+1) = zeros(2,1); 
    %setup constraint matrix that zeros out elements of h not in Z 
    %augment equality constraint matrix with it 
    C = eye(M+1); 
    C(:,M+2) = zeros(M+1,1); 
    Znot = setdiff(Z_all,Z); 
    Aeq = [Aeq; C(Znot,:)]; 
    %set equality bounds 
    b3 = zeros(length(Znot),1); 
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    beq = [0; 0; b3]; 
    %set inequality bounds 
    b1 = 1 + ones(ai_row,1)*(1-10^(delta/20))/(1+10^(delta/20)); 
    b2 = -1 + ones(ai_row,1)*(1-10^(delta/20))/(1+10^(delta/20)); 
    b = [b1;b2]; 
    c = [zeros(1,M+1) 1]'; 
    %call linear program 
    x = linprog(c,Aineq,b,Aeq,beq); 
    h = x(1:M+1); 
    mu = x(M+2); 
    %plot notch filter amplitude response 
    figure(1) 
    plot(A*h); 
    %semilogy(A*h) 
    pause(0.1) 
    disp([k x(M+2)]) 
    %step 4, recompute new weight vector 
    eps = max(abs(yk))/dp; 
    w = 1./(1 + (r'/eps).^2).^0.25; 
    k = k+1; 
end 
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