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Introduction

Chaix et al1 and Barnighausen et al2 provide thoughtful case studies in which the implications of 

survey non-participation are carefully considered and statistical models chosen to provide 

adjustment for likely bias.  But will papers such as these help to persuade epidemiologists to pay 

more than lip service to the issues of selection on a routine basis?  The impact of selection bias 

may often be quite weak and the adjustment methods may be technically difficult. However we 

argue that it is essential for researchers to formally think about the possible sources of bias in the 

data they plan to analyse and to assess sensitivity of their conclusions to these potential biases.  

The two papers illustrate the use of different variants of selection models, which is just one of a 

number of approaches open to epidemiologists for adjusting for possible bias.  But, practically 

speaking, does the adjustment method used matter?  Is some sort of adjustment better than none? 

Certainly, as non-participation increases, so do the risks that an analysis based only on complete 

cases will result in biased inference and invalid conclusions, and so some form of adjustment 

should be considered.  The choice of adjustment method depends on the assumptions that are 

considered plausible regarding the nature of the non-participation and the type of additional 

sources of data that are available.   However, any chosen model will generally be based on 

untestable assumptions, because by definition we do not observe the characteristics of primary 

interest of the non-participants. Thus any method that attempts to correct for non-participation 

bias is essentially a sensitivity analysis. It is perfectly possible that a different set of assumptions 

about the selection process will lead to different adjustments of the parameters of interest, and 

the implications of this should always be explored and reported.

Identifying potential sources of bias resulting from non-participation

In both papers1,2 the researchers thought first about the structural assumptions they had to make 

about the non-participation, and second about what data they could use to inform a participation 



model before developing a procedure to adjust for non-participation bias.  The structural 

assumptions refer to the mechanism that introduces bias, i.e. we must seek to answer the 

questions: Are the participants systematically different from the non-participants on the variables 

of substantive interest?  If so, how does this difference manifest itself?  We have found that 

graphical models, such as directed acyclic graphs (DAGs), are a useful tool for exploring these 

issues, and indeed Chaix et al use them to identify "collider bias". We discuss the use of such 

DAGs later below.

Types of additional data

Information about non-participation can be thought of as coming in two types which are 

exemplified in the two papers:1,2 internal and external.  Internal information comprises data 

which is available on all the individuals who are eligible to participate in a study, regardless of 

whether they provide any information relating to the substantive question.  Typically this 

situation occurs when the study is conducted within a cohort (e.g. a nested case-control study) or 

a census, or when individuals in previous sweeps of a longitudinal study drop out.  In this case 

we have some individual-level information about the non-participants which might be relevant to 

their non-participation.  In the HIV paper2, additional available data included numbers living in a 

household and interviewer identity, both of which were used to inform the selection model.

There are also situations, for example, cross-sectional health surveys, cohort studies or case-

control studies that are set outside of cohorts, where no individual level information on the non-

participants is available.  Fortunately, due to the large amount of data that are routinely collected 

in public health, it is often possible to find data that covers the same population as that of the 

study under investigation. This is external information, which comes from a different data source 

and does not include information on the individuals themselves, but may be of use for modelling 

non-participation.  In fact it is often worth thinking about this aspect during the study design, and 

to collect information with a particular auxiliary data source in mind, in such a way that linking 



the study to these data sources is easy in the analysis phase. This set-up is described in the paper 

on neighbourhood effects by Chaix et al1 where individuals are recruited without a definite 

sampling frame, and a census provides external information based on neighbourhood of 

residence of eligible participants. 

Graphical models can help identify mechanisms leading to bias 

DAGs are becoming increasingly popular in the epidemiologic literature.  They are very useful 

for visualizing complex relationships between variables and for understanding potential sources 

of bias. There now exists a number of papers that can be used as recipes to identify what 

variables are likely to cause bias in a data-set. 3,4  Recent work by Hernan et al4 describes very 

clearly how to determine whether a study is likely to be suffering from non-participation bias. 

When this is the case, the variable that indicates participation is a "collider". In both Chaix et al 

and Barnighausen et al, the DAG that describes the relationships between the variables of 

interest has participation as a collider, indicating that selection bias is a potential problem, as we 

illustrate below.

Figure 1: DAG representing the situation in Barnighausen et al. X are the observed characteristics of the 
respondents and U is the unobserved correlation. U can also be viewed as unobserved characteristics. S is the 
selection indicator and Y is the HIV status. Z are the selection variables, interviewer identify or identify of an 
interviewer of a member of the household.

Figures 1 and 2 represent the relationships between the variables involved in the problems in the 

papers by Barnighausen et al and Chaix et al respectively. Figures 1a, 1b and 2a, 2b mirror one 



another and show how participation bias manifests itelf in the same way in both papers.  In 

particular in both cases, X and U are the observed and unobserved variables respectively, S is the 

selection indicator and Y the outcome of interest (HIV or diabetes status).  In Barnighausen et al, 

under the Heckman model, U can be understood as the unknown correlation between the 

selection and observed variables, whereas in Chaix et al, U are the unobserved neighbourhood 

effects. 

Figures 1a and 2a show both observed and unobserved variables. Figures 1b and 2b however 

show only the observed variables and the implied dependence due to not conditioning on 

unobserved variables.  The latter DAGs demonstrate the potential for selection bias, as S is a 

collider between the outcome Y and the observed covariates X. 

Figures 1c and 2c differ because they represent the two approaches used to tackle participation 

bias. By introducing selection variables Z in Figure 1c such that the Heckman assumption of 

independence of Z and Y holds, Barnighausen et al are able to identify and estimate the 

unobserved correlation and adjust for selection bias.  Chaix et al choose a different approach to 

adjusting for the bias in Figure 2c by finding a proxy for the unobserved neigbourhood effects in 

the form of the random effects R.

Figure 2: DAG representing the situation in Chaix et al. X are the observed neigbourhood effects and U are  the 
unobserved neighbourhood effects. S is the selection indicator and Y is diabetes status. R are the random effects.



Selection of appropriate modelling method

Only when the reasons for, and implications of, the non-participation have been thought through 

thoroughly, is the analyst in a position to select an appropriate modelling method.  The choice 

depends on whether the resulting missingness can plausibly be assumed to be missing at random, 

MAR5 (i.e. the probability of being missing is not dependent on unobserved data, given the 

observed data).  For example, in Barnighausen et al, MAR means that the unobserved correlation 

is 0 and U disappears from the DAG in Figure 1a.  In this case there is often no need to model 

the participation process, and options include multiple imputation6, re-weighting procedures such 

as inverse probability weighting7 or post-stratification8 and bias modelling techniques9.  

Barnighausen et al considered that the missing HIV data from the non-responders was likely to 

be missing not at random, MNAR5 (i.e. the probability of being missing is dependent on 

unobserved data, given the observed data), so a method which allowed the joint modelling of the 

participation process and the substantive question was required. Chaix et al also favoured this 

joint model approach, as the neighbourhood random effects were thought to influence both their 

study participation model and their diabetes model.  As we have discussed, both use a selection 

model, but the form differs, illustrating how the modelling choice is problem specific and 

dependent on assumptions made and the type of additional data available.  A third option for 

modelling MNAR non-response is to explicitly model the link between Y and S in Figures 1b 

and 2b, by including Y as a predictor in the selection equation10.

Selection models can be implemented within traditional (Barnighausen et al) or Bayesian (Chaix 

et al) estimation frameworks. A Bayesian approach provides the option of incorporating 

information through expert priors, which can be formed through elicitation or literature search. 

For instance, in the HIV paper, data from the Malawi study on the probability of refusing an HIV 

test given HIV status could be incorporated into an informative prior on the covariance matrix of 

the Heckman model.



Sensitivity analysis

As we have stressed, model choice and hence results are dependent on the assumptions made. 

Unfortunately, it is not possible to test whether missing data is MAR or MNAR (despite the 

slightly misleading impression given by the tests carried out by Barnighausen et al, since 

identification of the correlation between HIV status and participation is completely dependent on 

the choice of Z variable (exclusion restriction) and the distributional assumptions of the 

substantive and selection models). Consequently, it is essential that the robustness of results is 

tested by fitting a range of models which incorporate varying assumptions.  This can be as simple 

as the initial analyses of the HIV data2, where estimates were calculated assuming either that the 

missing individuals were all HIV positive or all HIV negative, or can be sophisticated and, for 

example, involve varying the form of the different parts of a joint model.  We have found that a 

Bayesian approach is very conducive to these types of complex analysis, as the modular setup 

allows different assumptions about the non-participation model or the analysis model to be 

explored relatively easily.  Our experience suggests that varying the functional form of either the 

analysis or participation model can substantially alter results (A Mason, S Richardson, I Plewis 

and N Best, Strategy for modelling non-random missing data mechanisms in observational 

studies using Bayesian methods, working paper, 2010).  In Barnighausen et al, which uses the 

frequentist framework, it would be interesting to explore the implications of using different 

exclusion variables.

Conclusions 

With increasing rates of non-participation in surveys and studies, it becomes more important that 

epidemiologists recognise the inherent uncertainty and potential for bias that accompanies non-

response.  A mindset that bases conclusions on a single ‘best’ model needs to change to one that 

presents a range of models encompassing different plausible assumptions, or equivalently a ‘base 

model’ accompanied by a series of sensitivity analyses.  It may turn out that all the results are 

robust to different assumptions, but unfortunately there is no way of knowing this without 



carrying out the extended analysis.  The challenge for the researcher is to choose the most 

appropriate statistical tool/approach for their particular problem, given their subject knowledge, 

utilising as much available additional information as possible.  Epidemiologists are more likely 

to go down this route if more practical advice and real examples which show its value are 

available, and the two papers discussed here will contribute to this process. Equally important is 

access to, and understanding of, software that allows the plausibility of different assumptions 

about non-participation to be explored.

Chaix et al and Barnighausen et al each conclude that their method should be routinely used.  We 

contend that the specific method is not so important, although it should be appropriate, but that 

routine practice should follow the key principles of thinking about the selection process and 

assessing sensitivity to different assumptions. To quote the advice of Allen and Holland11 given 

to educational researchers over 20 years ago: “You must be prepared to think as hard about your 

non-respondents as you do about your substantive research and to incorporate this into a 

sensitivity analysis. Otherwise, you have not handled selection bias but have only ignored it.”
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