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Abstract

Highly accurate finite difference schemes are developed for
Laplace's equation with the Dirichlet boundary condition on general
bounded regions in Hn. A second order accurate scheme l1ls combined
with a deferred correction or Richardson extrapolaticn method to
increase the accuracy. The Dirichlet condition is approximated by
a method suggested by Helnz-0tto Kreiss. A convergence proof of
his, previcusly not published, is given which shows that, for the
interval size h, one of the methods has an accuracy of at least
G{h5'5} in Ly+ The linear systems of algebraic equations are
solved by a capacitance matrix method. The results of our numeri-
cal experiments show that highly accurate golutions are ohtained
with ornly a slight additional use of computer time when compared

to the results cbtained by second crder accuraie methods.

AMS (MOS) subject classifications. Primary 65B0S5, 55N15;

gecondary 65F05, H5N20.
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§1, Introduction *

It is the purpose of thie paper to develep some hlghly
accurate finite difference methods for the Dirichlet problem for a
general bounded region (7 in R?, The most accurate of these has
an L, error of order at most h5'5, see §4, OQur basic schemes use
the standard (2n+l)-point formula for the interior mesh points and
are therefore only second order accurate., The increased accuracy
is achieved by two steps of a deferred correction or Richardson
extrapolation procedure. We also discuss the computer implementa-
tion of these methods in some detajil.

The use of deferred correction and Richardson extrapolatlon
methods is Justified by finding asymptotic expansions of the error.
Wasow [2C] has shown that no useful expansions of this XKind exist ‘
1f the boundary condition is approximated to a low order of
accuracy. An obvious remedy for this problem, already mentioned by
Wasow, is to use higher order interpolation or extrapolation formu-
las at any irregular mesh point, i.e. a mesh point in the open set
() which feils to have all its next neighbors in the closure of .
Volkov [19] proposed the use of high order one-dimensional Lagrange
leynﬂmialﬁ for this purpose. Because of the change of sign of the
interpelation coefficients the matrix representing the difference
scheme will then, in general, not be of positive type. The ztan-
dard convergence proof based on a discrete maximum principle, see
Forsythe and Wasow [F)], will therefore generally not apply. FEut by
allowing the use of values of the mesh functions many mesh lengths

away from the boundary, Volkov succeeded in designing schemes with



diagonally dominant matrices. His achemes may howaver lead to an
unacceptably small mesh size even for very simple geometries.

Numerical experiments, see Pereyra [13] and the last
seetion of this paper, clearly demonstrate the need for higher
order accuracy &t the irregular mesh painté if improved zclutions
through Richardson extrapolation cor deferred correction methods
are required. In his 1966 paper, Pereyrs also reported on
successful numerical experiments with methods based on Lagrange
interpeleticon in one varliable and employing only mesh points close
o the houndary. At that time no convergence procf was known for
such methods.

L In June of 1968, Kreiss amncunced an interesting result on
the c¢onvergence of methods of this type. His result was never
published. His schemes are constructed as sums of difference
approximations of one-dimensional problems. At the interior mesh
points each of these problems is discreftized by a three-point
formula while at the irregular mesh peoints this basic formula is
combined with high corder Lagrange exirapolation. For a detajled
description see §2. Kreiss found a method of proof which provides
an alternative to the claesical technigue previously mentioned.
His method depends heavily on the specisl structure just described.

We learned about his results from several conversations and
his unpublished notes which were kindly made available to us. Our
interesi in these methods was recenily renewed when we realized
that the capacitance matrix, or imbedding, method developed by
Prozkurowski and widlund [ 18] could be adapted for the difference

gchemes congidered by Kreiss.




In this paper,we describe Kreiss' schemes, give detalled
proofs of convergence angd existence of error expansions and
discuss their implementation. We have exclusively used a deferred
correction method in our numerical experiments rather than Richardson
extrapolation. OQur reason is that the deferred correction method,
especially for problems in several dimensions, has often proved
less costly, see Pereyra [13] and also § 5 of this paper. One
advantage is that, in contrast to Richardson extrapolation,
deferred correction methods reguire only one mesh size. The
capacitance matrix method allows us to solve the same system of
linesar equations repeatedly at an expense which decreases con-
siderably once the first problem has been sclved.

Qur combination of a deferred correction and an imbedding
method is guite convenient from a programming peint of view. We
have slso developed & new, practical way of calculating the
required difference approximaticns to the terms of the expension
of the truncation error. This method resgolves a long-standing
problem in the thecoretical justlficaticon for the use of more than
one déeferred correctign step for boundary value problems of this
type. The imbedding of the region in a rectangle allowe us to use
certain programs previocusly developed to perform deferred correc-
tions for problems on rectangular regions.

In the last section,we report on numerical experiments
carried out on a CDC THOO computer at the Lewrence Berkeley
Iaboratory. They show that wvery high accuracy is cbtained for
problems with sufficiently smocth soclutions. For problems which

fail to have sufficlently many bounded derivatives the correctlions




do not spoil the accuracy of fﬁe solution. We believe that our
method can he developed further into highly efficient and reliable
numerical software. We note that fast Laplace solvers are used
increaszingly to enhance the convergence when z2olving more general
prcblems, see for example, Bartels and Daniel [1], Concus and Golub

[4,5], Jameson [9], O'Leary ([10], Martin [11,12] and Widlund [21].
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§2. Kreiss' Method for Poisson's Eguation

We will comsider a family of finite difference schemes for

the Dirichlet problem for Poisson's equation,

n
~AU = = E:; {Bfaxi)Eu = F(x) , X0,
l=

(2.1}
U[H]=g{x:', }EEBD:

where the region ¢ is an open, bounded subset of the n-dimensional,
real, Euclidean space R© with the boundary ). We will make no
detailed assumptions on the smoothness of 90y and the data f and g
but assume only that they are sufficienily smooth. As is well
Kriown, the problem (2.1) then has a unigue, sufficiently smooth
solution.

A unifarm nesh RE is intrcduced by

n

Ry = [xe B'| x; =nh, n; = 0,£1,£2,...%

i i

where h » O is the mesh size. The position of the origin of our
mesh is, of course, arbitrary. We could also have chosen different
uniform mesh sizes In the different coordinate directions without
affecting the theory or practice of the methods except in scme very
minor ways.

The set of mesh points of interest to us 1s

n
There are no eguations for points on 3. The difference equations

are constructed as a sum of approximations of one-dimensional prob-



lems corresponding to the operators —fa/axi}g, J=1l,:4450n+ They are
specified by defining a linear squation for each x ¢ {'}h. Let the
veetor e, be the unit vector in the direction of the positive i-th
coordinate axis. A mesh peoint x ¢ Oy, 1o called regular if ell its
clogest neighbors x32 hei, i =1,+seyn, belong to ('}h. For & regular
mesh point, we simply use the standard centered difference
approximation of each of the second derivatives. This results in

the equation

n
Enuh{x] - E (uh{x+ hei]+ uh[x- hei]} - th(x} .

This formula is combined with polynomial extrapelation of a
fixed degree k for the remaining, irregular, mesh points of Oh'
Let us thus suppose that x e (3, but that x+ he, ¢ 0, and that
X - hei,.n,:n:- (k—l]hai € nh' This last condition can always be

satisfied for a smocth a0 if h is chosen small enough, Dencte by

x; the intersection of the boundary o0 and the segment between x
and K‘I'hﬂi and by s:h the distance between x"i‘ and x+hei. Thus

h .
0 =85 < 1. A provisional value of u {x+hei} is now defined by the

Lagrange interpelation formula,

K
(2.2) §=_v -::Juh(x - (J-1)ne ) = u(x¥)=g(x}) .

The coefilcients a.j depend cnly on s and are given by the formula

K
ay = TT (s=2)/{3-2) «
£=0
£#J

The wvalue of uh at the point x+ hei is now eliminated by combining




{2.2) with the standard three peint formula for the point x. The
resulting matrix, which corresponds to the approximation of

-{Efaxi}e along a mesh line parallel to e, thus typically has the

i
form
(2.3)
(2+al /), (-Lrablal)salfals s oesap fal \
-1 2 -1 s
0 -1 2 ars
- e 2 -1 0
sna =1 2 -1
\ S S0 o« v B/ (= Lha /ey, (2401, )

Here u;,...,u; are the Leagrange interpolation coefficients related
to a second intersecticn between the boundary and the mesh 1line.

If the mesh line in guestion intersects o 1n several polints, the
matrix representing the difference approximation of -(B/Bxilg along
this line will be a direct sum of severzl matrices of the form (2.3).
The rma‘:.‘l;rj.mc‘JlfLi which corresponds to the entire approximation of
-{a/ax1)9 is the direct sum of the matrices introduced for the

individual mesh lines parallel to the vector = Finally, the

il
"matrix A, which represents the approximation of the entire problem
(2.1), is the sum of PEﬂiPi where Pﬁ is a suitable permutation
matrix.



We note that if some irregular mesh point x is very close to
Lthe boundary, i.e. some s is gquite close to one, the ratioc mlfuu
will become very large. This will give the matrix a very large
diagonal element and the coefficient multiplying g{x;) in the
right-=hand side will be of the same order of magnitude. In
practice we will therefore salways scale the rows of the matrix A,

making the diagonal elements equal to 2n.




3. Stability of the Finite Difference Methods

Az we saw in $2 the matrix A which corresponds to the full

difference approximation of problem (2.1) has the form

N
A = E PIA P

where the Pi are suitable permutation matrices and the .Fli arsa
divect sums of matrices of the form (2.3). The original problem
(2.1) has a bounded inverse in L,. The analogous result is that
the spectral norm of the inverse of A is bounded by const X h'E.
To establish this result we will study the symmetric part of A.
In this zection we will usez the Euclidean vector norm and the

spectral matrix norm exclusively.

Leyrma 1. Let the symmetric part of a matrix & gatiefy

(a+aT)2 > 51, 5 >0.

Then A is nonsingular and |A'l| = 1/8.
Proof: Let Ax = b, Then

T

sxTx < xT(a+AT)x/2 = (xTb+ bTx)/2 < [bl-]x] .

Thus [x| < |Ax|/6 which proves the lemma,

n
Lemma 2., Let A = E P'iTAiPi where the P, are permutation

matrices. If

(A; +8])/2 » b1
then
(A+4T)/2 > n6T .



The proof follows from an elementary variastional argument. The

proof of the next lemms iz equally easy.

Lerma 3. Let the matrix Ai be the dirsct sum of certain

matrices Bij' ir

(B, +B}4)/2 > 8L, for all j ,

then
(h, + A1)/2 > 6T .

We are now ready to apply these lemmas. 3Specifically we will
study matrices of the form {2.3). For technical reasons we will
assume that all these matrices have an order of at least 2k-1.

This conditicn can again be satisfied for any smooth a0 if the mesh
size h is chosen small enough. We will reduce the study of the
matrix (2.3) to a2 simpler case which corresponds to imposing a

Neumann condition at one end point.

Lemma 4. Denote by B the matrix defined by formuila (E.}].
Iet BE be a matrix of the form

1 -1 ™
=1 2 -1
BE = . - .
-1 2 -1
.
akfumr .+ -.-0'3;“0: {:‘l‘lﬂgfﬂn}: {E"‘ﬂlfﬂ

10




and let B, be a makrix of the same form generated by a;,...,aé.

i}
Suppose further that the orders of the matrices El, E‘E and B,

denoted by n. 0, and m respectively, satisfy the conditions,

ny =k, n2 =k, m = n1+ ng-l -
if
T
{B14—Eljf2 >0l
and
T
{324-Bg}f2 > 81
then

(B+B )/2 > 61 .

L

Proof: Denote by El the matrix obfained from Bl by reversing
the order of itz rows and columns. The proof follows from the

identity,
x(B+ BV )x/2 = WH(B + B w2 + vi(m, + B )v/2

T

where uT = {xl,...,xn } ang vo = {xn ,...,xm}. This identity can
1 1l

be verified straightforwardly. Hence, by our assunption,

T

xT(Bd-ET]xfE > B(uTu + v'v) .

To conclude the proof we only ncte that

uTu + vTU = xTx -

We will next use the LDL™ factorizetion of 8 = (B, +Bi)/2
to verify that 8 is posltive definite and alsco give a lower bound

for its eigenvalues. We will write S5 a2 & block matrix,




(3.1} g = ,

where s, = (0,...,0, uk/EaD,...,ujfEaD, -lﬁ-aE/EuD} and

529 = 2-+u1/dn. Its block factorizstion takes the form
T T
Lll o I O I‘ll £
5 = .
Ji! 1 Q 4 0 1
whers
/1
-1 1
Lll = a - ¥
N -1 1

is bidiagonal,

2

a1a] - (0 eens O /20 e+ g)/20s s

[uk-b...-ku3]f2ao, -l (o + veatag)/2a)

and
d=5..-287 = 2+4a./a -({a /26 )2+
02 1/ %o %/ <%g
Fl(o + enat oy }/2a )%+ (214 (0 + ans + @) /20 )7
k a3 o) S P o *
By using the fact that qgi—...+—uk = 1, we find that

(3.2)  d= 1o -(ad+ (o +a )%+ caut (o + eue +a,)?) el

Computer results show that the rational function d is strictly

1z



poeltive for {}:s f_l and all 1:14::5. For K = 7 and 8 it changes
silgn in the interval. These resulfts can of course‘alsc be verified
by a tedious paper and pencil c¢alculation. We note that d goes

to positive infinity when s approaches 1 while the components of

) and £ remain bounded., We are now ready to establish a lower

21
bound for the eilgenvalues of S.

Iemma R. et dmin denote the minimum of the function 4d(s)
defined by formula (3.2). Then there exists a strictly positive
constant C, independent of the mesh size h and the region (), such

that

whe re

_ = . , z
6 = Cd...h Jldiameter {N))° .
Procf: By using the notations previously introduced in this
se¢ction, we find

T T T T 2
Xx"Sx = X ILDL"x » min {dmln,l}|L x|< .

S8ince d = 1 for s = Q, szx > dminlL?xle' To cbtain a lower bound
for |LTxi we will compute an upper bound for |L:Ty|. Partitioning

the vector so that y = {31,y ), we find

i ff§T-yn£JLii,rn) -

Therefore, if we use the fact that £ has a2 uniformly bounded norm,

we find

=T ,2 =12, ™~ 2 2 =1,2 z
|27 < (L3 15Uy] *# 1y [ 121 +y; =< e(|LI7]® +1)Iy|< .

15



The norm of Li:ji equals the sguare root of the reciprocal of he
T .
smallest eigenvalus of LllLll' Now the maltrix

1 -1

T |1 2 -1
Lyily, =

. -1 =2

has an order m < diam {(3}/h. As is easily checked, the
smallest eigenvalue of Llngl equals 4 sinE{fr/E{Em+l}}currEspDnding
to an eigenvector with the components cos (w(j=1/2)/{em+1}),
Jd = 1ly4caym. This concludes the proof.

By combining cur five lemmas and the results from our compu-

tation of dmin’ we obtaln, what essentially 1= Kreiss' result,

Thecrem 1, For k < 6 there exist constants Ck, independent

of h, such that,

2

'l| diam 0)° xh™%

|1a77] = o, {

14




4. Convergence and Asymptotlc Expansions of the Error

In this section, we will prove the convergence of fthe schemes
introduced in §2 and simultaneously establish assymptotic expansions
for the error. We will concentrate on the case k = 6, which is
the most accurate of the schemes known to be stable. We will
assume throughout that the solution ulx) is sufficiently smooth.

We make the Ansate,

(4.1) dx) = utx) +n%e 1 x) w1 (Bl + Mix) .

The functions e(l}[x} and E(E}(x} will be chosen as solutions of
Poigsson's equation in a way which will mske the remainder rh{x]
a term of higher order.

Asymptotic expansions of this form are bagie for the justifi-
cation of Eichardszon extrapolation and deferrsd correction maethods,
They alsc 2asilly ensble us to give estimates for the rate st which
difference gquotients of the sclution of the discrete problem uh{x)
converge to the corresponding derivatives of the solution u(x).

Let us denote by hELh the difference operator which has the
matrix representation A, see §%2 and 3. The linear system of
equations therefore has the form
(4.2) n?r u = P .

& component of the right-hand side Fh, which corregponds to =a
regular mesh point, has the fomm hgf{x) whereas a component, corre-
sponding to an irregular mesh point, is a sum of th[x] and ferms

of the form g(x;}/aoisi). Here aoisi}, 0 <s; <1, is a Lagrange

15



polynomial cecefficient introduced in §2. To derive equations for
the error functions eil)(x] and eig}(x}, we substitute the expres-
sion (4.1) into the equation (4#.2) and expand the truncation error
in the custcmary way. We first ighnore the contributions from the
interpolation formulas used for the irrééular mesh points. By
setting the fourth and sixth order terms of the resulting express-

sions equal to zero, we obtain the Poisson eguations

nell)

It

(1/12) ﬁ (d/ax, }uu

and

el®) = 560y T (a/x)Bus (1/22) T (a/amy e

Because of the high order accuracy with which the boundary condi-
tion iz approximated, it iz apprepriate to equip these equations

with zero Dirichlet boundary conditions

fVixy 2o, e®@lx)=0, xexn.

The functions e(l)(x} and E(EJ{K] are, by & standard result on

elliptic equations, sufficiently smooth functions.
We now derive a difference equation for the remainder term

rh{x]. This eguation has the form
hgl:hrh - Gh L]

It is easy to show that a cemponent of Gh, corresponding to =z

regular mesh point, is of the form,

16




8 n 8 = 6_(1}
h" {{1/20160) E (a,faxi} u +{1/360) ; {a,faxi:- e

+ (1/12) 3 /oy *e@hrom?)
1-

A component of Gh, corr&sgonding to an irregular mesh point is the
sum of a term of this formland of oneé or more seventh order error
terms of the Lag;ange interpolation formulas (2.2). The latter
terms are multiplied by factors 1fu0{$1} which grow as
cnnst;’[l-si} when s; — 1. It can, however, be shown, by a
straightforward calculation, that this increasing factor lfuofsi}
is fully compensated by ; decreasing factor in the error bound for
lagrange interpolation, see ;sa&csnn and Keller [8 , p. 190].

B are thererore uniformly D(hT} for all

These compenents of G
sufficiently smooth solutions ulx).
We are now ready to use Theorem 1 to obtain a bound for

rh[x}. Tt is natural to work with the norm,

e, = (S — 2 P02y 2
xﬂﬁh

for which the estimate of Thecorem 1 still holds. We first estimate

h

HGhHE. The components of G are D(hﬁ} for the regular mesh points

and D{hT] for the irregular mesh points. Since there are only of

n=1)

the order h_{ trregular pnints,"&hﬂg = D{hT'5}. We use Theorem

1l to establish,

Theorem 2. Let uh(x} be the solution of the finite difference
scheme with k = 6 and let u{x) be the sufficiently smooth solution
of the differential egquation (2.l1). Then there exist two

17



sufficiently smooth functions efl}{x} and etgj{x] such that
uh{x] - u{x}-+hEe{1}{x}+ Hue(gl{x)+-rh{x] y X EO

where the I, norm of rh{x] is D(h5'5].
Similar results hoid for smaller values of k. We expect that
Theorem 2 iz not sharp. We conjecture that the remainder term

should be of the form
rh{x} - hse{B}{x}4-D{h?}

in the maximum norm. We are led to this conjecture by results,
previously established by Bramble and Hubbard [ 2], for the opera-
tors of strictly positive type which result when K = 1 and 2. If
the estimate of Theorem 2 can be sharpened in this way, we would be
Justified in applying Richardson extrapolation three times to

obtain a seventh order accurate method.

18




5. Methods of Increasing the Accuracy

REichardeon extrapolation and deferred correction methods are
avallable to improve the zeeond order accuracy of the basic solu-
tion uMx). We will again concentrate on the case k = 6. We will
'irst discuss the Richardson extrapolation method which iz simpler
both conceptually and in terms of its implementation.

The solution is first found on a basic mesh{ﬁh and then for

o
a sequence of refined meshes{jh ;s Where hi = hojri,

1l = Py Ty < o0e o It is=s veryiimpartant that the sequence {ri]
grows slowly for multidimensional problems since the number of
variables grows rapidly. The improved solution is obtained only on
the intersection of the meshes nhi, If we require the improved
solution at all poinfs of Gho and use two extrapolation steps, the
number of mesh pointe on the finest mesh will be at least about
nine (twenty seven) times larger in two (three) dimensions. Core
storage can therefore easily be exhausted and less advantage can
also be taken of the zavings which ¢ften can be realized when
direct methods are used to so¢lve linesr systems repeatedly,

If encugh terms of an asymptotic error expansion, in even
powers of h, exist, we obtain improved solutions ﬁg by the resur-

sion formula,

ny o ol 2 ~j-1 2
uy = (uf " [ri-i-,j'fri} wy 1)/ (L - (ri+jfri} }
h
with U° the restriction of u & to the intersection of the meshes

i
0y, = The error Eg-u will ke of the order h§J+2. A useful
i
a posteriori error bound,

o

. . ,
U -u o (W) U ))/0- (/200

19



can also be computed, for details see Bulirsch and Stoer [3]).

By using Theorem 2, we can easily show that two steps of
Richardscn extrapolation will give an accuracy of the order h5‘i‘
1f We use the scheme with k = f.

The deferred correcflion method requires only one mesh. The
method has been discussed in detalil in a number of papers, see for
example Pereyra [13.17]. Here, approximations of the leading teyms
of the local truncation error of the discrete operator hELh are
computed and a corrected solution is then found by solving an addi-
tional system of linear equations with the same matrix A as before.
Further corrections may be obtained in = =imilar way.

We will deseribe the variant of the method which we have used
in our experiments. In the first step we take inte account only
the first truncation error terms, resulting from the approximation
of (3/3x,)% i =1,...,n, by the three point approximations. We
know from §4 that these leading terms are

(5.1) hafljle}{a/axi]”u s L= lyesn,n) s

We attempt to approximate them to within G{hﬁ} by using centered
five point differences of the seéecond order accurate solution uh,
FPor a pericdic problem this procedure is very simple, but for a
region with a boundary special one-sided differentiation formulas
must be used for the mesh points which are within 2h of the bound-
ary along a mesh line. One-sided formulas can introduce additional
error terms for the corrected sclution through the special contri-
butlions to the truncation error at the peints where these formulas

are employed. An additional correction step may be jusiified by an

20




asympiotic error expansion of the corrected solution, but note that
an unfortunate choice of one-slded differentation formulas would
lead to difficulties very similar to those already discussed by
Wasow [20].

This problem can be avoided in a systematic way. Let x be
the irregular mesh point introduced in our discussion in §2. We
will use high order lLagrange extrapolation, semploying only values
of the mesh function ul® at x, x-hﬂi,.;., to obtain provisional
values of u at x+he; and x+Zhe;. The same centered five point
differentiation formula can then be used for all polnts in (o, see
further discussion in 86. The expansion of the truncation error
which 15 due to the use of the five peint approximation of the
fourth derivative {afaxi}” will have the same leading terms and
differ only in a higher order term. The order ¢f this higher ordexr
term will of course depend on the degree of the Lagrange extrapola-
tion polynomial. The Lagrange polynomial coefficients are the same
at every polnt since we use values at mesh points only. The
approximation of the expressions (5.1) are added to the original

h

data F° and the linear system of equations is solved a second time.

In a seccond correction step

(5.2} hq{lflE]{E}/Bxi}uu +h6{1/350](3f'axi]6u s 1= 1y40esn,

is approximated by a centered seven polnt formula with an error
which is G(ha} for a sufficiently smocoth function. We thus use
the once corrected solution and high order extrapolated values

thereof in & way very similar to the previcus step to obtain a new
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right=hand side and a second corrscted spoluftion, s=e further
discussion in §6.

Our error bounds for the deferred correction method are
rather weak, When we estimate the truncation error due to the dis-
cretization of the expression (5.1), we find that the three first
terms of the expanslon given in Thecrem 2 give & contribution of
the order hﬁ. Bince the operator h.‘qLh hag an inversze bounded by

const h™2

they contribute a term of the orxder hq to the error of
the corrected sclutjion. In contrast the undivided differences of
the remainder term of ! create difficulties, Since undivided
difference operators are bounded, independently of h, the contribu-

h to the truncation erroy and the error of the corrected

tions of 1
solution are bounded by h5'5 znd h5'5, respectively. In order to
prove & result as strong as that for the Richardsen extrapolation
method this loss of two powers of h must be eliminated. This would
be achieved if we were able to give ss sharp a bound for the norm
of the second order divided differences of the solution as for the
norm of the soluticon itself. The analogue of thls desired estimate
holds for second order elliptic equations on regions with suffi-
ciently emooth boundaries. We have not been able to obtain this
result in the discrete case. A4 modification of the argument of §3
leads to an improved bound for divided differences of the first‘

order. This proves that at most one power of h can be lost in sach

connection step. For numerical evidence see §7.
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§6. The Capacitance Matrix Method

All our experiments have heen carried out for regions in the
plane and we will therefore confine our discusslion to that case.

We have wsed a modification of the capacitance, or imbedding,
method which was developed by Proskurowski and Widlund [18] fo
solve our linear systems of equations. We refer to that paper for
a detajiled discussion of the method. Here we will confine our-
selves to a few brief remarks on the method concentraeting cn the
changes required by the deferred correction algorithm.

A main part of any capacitance matrlx program is a fast
Poisson solver on a region for which separation of the variables
can bte applied. Our subroutine, SOIVE, implements & Fourler-
Toeplitz method on an infinite parallel strip with periodic
boundary conditions in one direction, see Proskurowskl and Widlund
[18, Section 6] and Fischer, Golub, Held, leiva and Widlund {5 J.
Qur region (7 is imbedded in a rectangular subset of this strip. The
fagt solver reguires of the crder mn 1052n cperations for the exact
solution of the five point discrete Poisson equation. Here n, the
number of mesh points across the strip, is preferably a2 power of two
and m 1s the number of mesh peints used along the strip. We will
see below that it is convenlent to place the region () inside a
centered subset, of size {m-6}x (n-6), of the set of m Xn mesh
points which is used by SOIVE.

An extended system of linear equations with a matrix
A =Bruzt

is solved. The matrix B corresponds to the five point formula on the
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strip while E contains our matrix &, see §§2 anad 3, as a principal
minor. The matrices U and 2 are sparse and have p columns where p
jis the number of irregular mesh points. The matrix U 1s chosen so
that Uv, v any p-vector, iz an extension by zero of the corre-
sponding mesh funetion v defined only on the set of irregular mesh
points. The mairix ZT is thus a ccmpact representation of the
matrix E-E from which zero rows have been eliminated. A change of
the approximation of the boundary condition involves a change of
the matrix Z. The right-hand side Fh of cur original system of
equations is extended, in an arbitrary wa)y, to the complement of iy,
The matrix K iz constructed in such a way that the restriction of
the solution of the extended system to the set (), iz the solution
of our original system of equations.

There are two maln parts of our capacitance matrix program,
We execute the first one only once for a particular cholce of h
{a mesh size), k {a member of our family of difference schemes) and
a region 3. In this first part a px p nonsymmetric denee capaci-
tance matrix C is computed at an expense of one call of the sube
routine SOLVE and of the order p2 additional operations. A solu-
tion for & specific set of data, which is accomplished 1n the
second part, requires essentially only two calls of the subroutine
S0LVE and the solution of a capacitance matrix system of eguations
of the form Cu = E. In cur implementation the capacitance matrix
0§ 1s very well conditioned and this equation can therefore be
solved accurately by a conjugate gradient method at an expense
of the order pE gperations. We have however chosen to use

Gaussian elimination. The mairix € is factored only once, at an
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expense of the order p3 operations, and the factors are then stored
and used for any additional set of data. Any subsequent problem
therefore requires only of the order {mn 1ugEn-bp2} operations.

The methed is numerically wery stable and the linear asystem of
equations 1s sclved very accurately.

Two rectangular arrays cf the dimension m xn are used to
store the data and the sclution. The first array initially con-
tains the original data Fh, arbitrarily extended to the complement
of . The second order accurate solution uh 1s computed and
stored in the second array. This solution 1s then extended to
certaln exterior polnts by extrapelation in the xl—direction, see
5. A first contribution to the modified right-hand side of the
equation is then computed by using a five point numerical differen=-
tiation formula on all mesh lines parallel with the xl—axis. The
resulting mesh function is added to Fh, the content of the first
array. This process is now repeaisd in the other direction. We
thus extrapolate uh{x} in the xy,-direction to the appropriate ex-
terior mesh points and use a differentiation formula in the xe-direc-
tion %o cobtain the final contribution to the new right-hend side.
We note that we can simplify the programming by using the numerlcal
differentiation formula over the entire rectangular region since
the restriction of the scolution on the strip to the set () ie
independent of the values of the data cutside nh. The second part
of the capacitance matrix solver is now used, with the new right-
hand side, Lo produce & fourth crder accurate sclution. It is
stored in the second array which also serves as work space during

this part of the calculaticn. The final corrected sclution is
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computed similarly. The original data F® is read into the first
array and approximations to the expressions in formula (5.2) are
added. In this step seven point differentiation formulas are used.
We note that since we placed ('}h inside a rectangle, leaving three
gxtra mesh lines on all sides, we can carry out all the necessary
extrapolations while using only the storage locations provided for
in the second mXn array. This admittedly Introduces an addlitional
constraint on the choice of mesh size for certain nonconvex reglons
but this aspect of the impiementation of our method can of course
easlly be changed. The extrapolation and numerical differentiation
steps are very straightforward and require very little computer

time, see §7.
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§7. Numerical Experiments

A FORTEAN program incorporating the ideas of this paper was
prepared and run in single precision {bgtween 14 and 15 decimal
digits) on a CDC THOQ computer at the Lawrence Berkeley Laboratory
uging z RUN 76 compiler, We report on experiments using second
and sixth order Lagrange infterpolation formulas, X = 2 and 6, for
the irregular mesh points, see §2. In all our experiments the
reglon was a circele of radius one ¢entered at the origin and the
mesh size was h = 1/235. There were 1653 mesh points of which 128
were irregular and the region was imbedded in a 64 x84 mesh.

By e and €, WE denote the maximum and LQ norme of the

v ol
Srror, Lle€.,

By = DAX [W(x) -u(x)] »

Xeh,
o = 0/ 3 PG - w22

and

where N is the number of points in O

In Table 1, we report on the solution of
-Au{x) = € sin (x1+-x2]

with boundary values and exact solution equal to u{x) =sin {xl+ xEJ.
This 1s a problem with a very smcoth sclution and served basically
az & tept that the program and zlgorithm really worked. We note
that we obtain close to full word ACCUXACY »

The next problem, see Table 2, was

~Auf{x} = B3 sin {Exl - TxE}

27



with the boundary values and exact solution egual Lo

u(x} = sin {2x; - 7x,). This problem is more difficult than the
first since the soclution 1s more oscillatory. We tried sixth and
gecond order interpolation at the irregular mesh point. According
to results of Bramble and Hubbard [2 ] there is an expansion of the

form

ax) = u(x)+ nle ) (x) + o(r?)

when second order interpolation, k = 2, is used. We note that the
first correction step gives a smaller improvement in the case k = 2
than when k = & and that the second correction step gives no
improvement for k = 2. This experiment thus c¢onfirms the observa-
tione of Wasow [20], Pereyra [13] and others on the importance of
the existence of asymptotic error expansions. We also ncote that
the twe second order methods, obtained befeore the ceorrection steps,
perform equally well,

A final series of experiments were carried out to study the
effects of lack of smocthness of the solutions. The problems had
the form

-2(4-1) (x + x,) 7%

» if xtx, » 0
QO ; obtherwise

_E;th the boundary values and exact soluiion egqual to

£
{:-r.l+:{E} , if {11+x2130

ufx) =
4] s otherwise .

We tried ¢ = 2, 4 and 6. The soclution then has a jump discontinuity
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In derivatives of order 2. The results are given in Table 3, The
performance of the method with kK = 2, ¢ = 6, is consistent with
our previous observations., For k = & and with ¢ = 2, 4 it appears
as if a f-th order accurate method iz obtained for these solutions
which have a jump in the g-th derivatives. Care must of course be
exercised when trying to draw such conelusions from our very limi-
ted experimental evidence. We feel however that our results are
encouraging. We note that when the sclutions fail to be smooth
enough the corrections do not destroy the accuracy obtained in the
previous steps.

The total CPU-time for a problem with k = & was 10.20
seconds. The first part of the cepacitance matrix program, see §6,
computed fthe second order accurate solution uh{x} in B.77 seconds.
The Cirst correction reguired an additional 0.66 secends and the
second correction tock an additional 0.85 seconds. In the correc-
tion steps the extrepolation to exterior mesh points and the
differentiation steps required less than 10% of the time. The
execution time could be reduced by optimizing our program and by

changing to a faster compiler.

Correction 0 1 2
Em; k=6 1.9 XIO‘_E laﬂXlﬁ_g 5&6 XIO‘]’E
g 5 k = 6 | 1.ox106> | 5.4 x 1019 3.4 x10712

Table 1

- and maximum-ncrm errors for a problem with the
solution u{x) = sin [xl+-xg}. Sixth order inter-
pclation used at the boundary points.
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Correction 0 1 e o

e, k=2 | 8.8%x2077 | 1.3 %1073 | 1.4 x107?

g5 » K =2 1 AT x1072 | 3.3 x107* | 3.4 x107

e s k=6 [ 9.2x107 | 5.3 x10°° | 1.3 x1077

Ea » K = 6 { k.8 x107° | 2.8 x1070 3.4 x10‘6
Table 2

LE' and maximum=norm errors for & problem with the

solution w(x}

= s5in {Exl

- TXE)-

order interpolation are used.

Second and sixth

Correction " 1 2
o £=2 k=06]9.9 x102 | 9.9x107 | 9.9 x10™>
s f=4 v =6 | 12x107 | 4.8 x10-0 | 4.8 x107°
€p? £ = 6, k. =6 | 7.4 x 10~ 9.4 x1077 | 7.7 x10™9
s £ =6 k=2 | 6.7x107 | 1.5x10™ | 1.5 x107
Table 3

Maximum-norm error for & problem with the solution

u(x) = (xl4-x2}£, if (x1+-x2} > 0 u{x} = 0 other-
wise., Sixth znd second order interpolation are used.
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