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Abstract. In this paper we introduce the technical components, the biology and 

data science involved in the use of microarray technology in biological and 

clinical research.  We discuss how laborious experimental protocols involved in 

obtaining this data used in laboratories could benefit from using simulations of 

the data.  We discuss the approach used in the simulation engine from [7].  We 

use this simulation engine to generate a prediction tool in Power BI, a Microsoft, 

business intelligence tool for analytics and data visualization [22].  This tool 

could be used in any laboratory using microarrays to improve experimental 

design by comparing how predicted signal intensity compares to observed signal 

intensity.  Signal intensity in microarrays is a proxy for level of gene expression 

in cells.  We suggest further development avenues for the prediction tool.  

1   Introduction 

We apply the Probe Logarithmic Intensity ERror (PLIER) algorithm [5] to a series 

of simulations using the Simulation Engine described by Hardin A. [4] to generate a 

data set that predicts how strength of a signal which is a proxy for gene activity would 

vary with changing levels of stimuli or treatments applied to the samples.  Researchers 

studying fundamental biology or performing clinical investigations are interested in 

understanding how gene activity responds to stimuli and influence each other.  The 

data generated in this report would allow investigators using microarrays to gain 

insights that could be used to refine laboratory experiments they conduct, to reduce the 

number of trials and in general increase statistical power of the experiments by 

comparing predicted to observed signal intensities that serve as surrogates for gene 

activity.  In this introduction we provide an overview of biology, technology and data 

analysis involved in the use of microarrays. 

1

Mavankal et al.: Predictions Generated from a Simulation Engine for Gene Expression Micro-arrays for use in Research Laboratories

Published by SMU Scholar, 2018



1.1  Detecting Gene Expression using Microarrays  

    

Gene Expression Microarrays were first used in the mid-1990s as a tool to study the 

simultaneous expression of thousands of genes under an unlimited number of 

treatments, time courses and applications.  Gene expression occurs when transcription 

is initiated through cellular signaling pathways (Fig 1) which result in the DNA 

template (genome) getting copied into multiple copies of mRNA [1].  The level of 

mRNA production varies under different stimuli.  These mRNA copies exit the 

nucleus where they are produced and are bound by the ribosomal apparatus in the 

cytoplasm which in turn uses the mRNA as a template to translate the genetic code 

(nucleotides) to proteins (amino acids).  Gene expression is the expression of the 

genetic code as protein molecules that perform functions in a cell.  

   

Fig. 1.  Gene Expression occurs when stimuli from the environment are conveyed through 

signaling pathways to the interior of the nucleus where the genome resides.  The figure 

illustrates how the complementary sequences of the DNA in the nucleus are melted or opened by 
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transcription factors which then results in the single copy of the protein encoding DNA region of 

the genome to be copied into several copies of messenger RNA (mRNA) that exit the nucleus.  

These mRNA are engaged by the ribosomal apparatus in the cytoplasm which utilize the mRNA 

as template to “translate” the genetic code into proteins.  Thus, the level of protein production 

which is a proxy for gene expression can be measured by measuring the level of mRNA in the 

sample applied to a microarray plate. 

 

  Microarrays are designed to measure the level of gene expression and it uses the 

property of nucleotides to pair and thus bind to its complementary sequence (Fig 2).  

Nucleotide sequences have directionality and complementarity (lines in figure, 

connecting the sequences represent the pairing interaction of A to T or A to U or G to 

C).  Although one might expect a perfectly matched sequence of probe DNA and 

target mRNA to bind and that of a probe DNA with a mismatch introduced in it, to not 

bind, experimental data shows otherwise.  So, the expectation of using the 

mismatched probe signal as a background correction for the matched probe deposited 

in a different array location did not work as expected.  Some mismatched probes 

produce a signal that is much better than other probe sequences with a perfect match.  

This has an implication in the way the microarray data is treated.  Whereas older 

investigations used the mismatched and perfect match probes as proxy for signal and 

background, based on the empirical realization that it is not so, the work in this report 

treats the mismatched and matched probes as equivalent to each other and not as signal 

and background.    

mRNA isolated or extracted from a biological sample is labelled or chemically 

bound to a fluorescent dye molecule.  The mRNA of a specific region of hemoglobin 

protein is shown in Fig. 2.  The unshaded sequence with uracil molecules in red 

represents the sequence of the mRNA.  mRNA can bind to a stretch of DNA that is 

chemically synthesized and bound at a high concentration within a small area of a plate.  

The sequence of such a “probe” is shown in orange highlight in the figure.  The probe 

sequence is in fact complementary to the gene sequence shown in blue shades in Fig. 

2.   

Just about 2% of the human genome codes for proteins.  In the figure, the green 

shaded sequence is the code for the protein, hemoglobin which binds oxygen in 

circulating red blood cells in our body.  The mRNA can be isolated from cells 

(hemopoietic red blood cells and not the mature red blood cells that lose the nucleus, in 

this instance) and a very small quantity of mRNA (nanograms) suffices for detection.  

The mRNA is chemically bound to fluorescent chemical.  This modified mRNA can 

fluoresce and produce a light signal that can be detected and quantified.  The mRNA 

(target) containing sample is injected into the chamber of the microarray plate that has 

more than a million probes placed in an array.  This is incubated at a fixed temperature 

for a length of time and then washed (Fig. 4, probe array hybridization step).  A fixed 

amount of each probe sequence is on the plate which is also referred to as a platform 

with identifiers such as GPL570.  Platforms are designed such that all probes are 

sequences obtained from one organism.  Thus, there is a human genome platform 

which is different from a platform that uses the yeast genome.   

The PLIER algorithm relates the fraction of RNA in the target that was applied to 

the microarray plate with the fraction that gets bound to the probe positions on the 

microarray due to the affinity of the molecules which stems from the complementarity 

of nucleotides.  The fluorescent-labelled mRNA that is bound to the proble would 
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produce a light intensity signal that is proportional to the amount of RNA that was 

present in the sample which was applied.  This relationship between the DNA of the 

genome (blue shaded), the complementary sequence in the mRNA copy ( not shaded) 

is illustrated in Fig. 2, using the gene sequence for Hemoglobin as an example.   

Coding regions in a gene are often not contiguous.  They get copied and spliced 

(joined) together in the cell.  This can produce different versions of the same gene 

differing in length depending on the segments that are missing.  These are called splice 

variants.  In the past all probe sequences that were applied on the plates were chosen 

from the 3-prime end of the gene, so it would detect all splice variants.  Current 

designs pick sequences across the coding segments and are referred to as exon arrays.  

Just like Moore’s law, better technology in improving and increasing the amount of 

probe into smaller areas producing better signal quality [6] [8][9].   

 

 
Fig. 2.  The amino acid sequence of Hemoglobin protein is shown in green in alignment with 

the coding for it on the gene for it which is highlighted in blue.  When the information is 

copied, it is copied into a slightly different molecule, the messenger RNA that has a 

complementary sequence shown without shading, with the Uracil equivalent of Thymine 

nucleotide molecule shown in red highlight.  The probe sequence that would be designed to 

detect the mRNA is shown in the orange highlight.  The complementarity of the nucleotide 

sequence over a stretch of the length of the molecule results in mRNA binding a probe that is 

chemically synthesized and immobilized on a small well-defined area of a micro array plate. 

 

The probe sequences in commercially available micro-arrays are of two types, 

oligonucleotide arrays and cDNA arrays.  Oligonucleotides could be short, 25-mer 

arrays (Affymetrix) or long 60-mer (Agilent) arrays.  cDNA are much longer 

sequences.  Short oligonucleotides have been shown to have the advantage of being 

capable of high density spotting which could improve signal but may lose the 

specificity of the signal.  The Agilent platform using longer oligonucleotides would 

have more specificity but lesser density in spotting.  Low levels of differential 

expression of several thousands of genes, which may be sufficient to modulate 

biological activity, poses a challenge in detecting them in studies using microarray 

technology.  However, the accumulated microarray that result from the use of the 

same platform by different investigators across the globe, provides the opportunity to 

mine information that may have been missed in earlier analysis. 

1.2  Challenges in Verifying Gene Expression using Microarrays 

Using the complementarity of the sequence to detect and quantify mRNA is in fact 

a well-established technique much before microarray technology emerged.  Assays 
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such as Reverse-Transcriptase Polymer Chain Reaction (RT-PCR) [11][12] are well 

established accurate procedures.  The difference between such highly accurate RT-

PCR assay and the microarray data is the difference between getting a snapshot of the 

amount of one gene versus getting a simultaneous snapshot of all genes.  Such data 

also shifts the paradigm of the analysis from a reductionist approach to a non-

reductionist approach, especially when the number of replicates available for such high 

dimensional data is very small [23]  

However, if these methods were to be applied to determine the dose-response of 

every probe on a microarray, we are speaking of assaying over a million probes.  Other 

challenges are discussed in [4]. 

  Another way to verify levels of expression is to empirically examine (as opposed 

to theoretical examination) by using data sets derived from real data, that are referred 

to as plasmode data sets [13][14]. Though invaluable, “spike-in arrays”, a form of 

plasmode data also provide a way to verify expression levels [15].  Such studies are 

rare, though.  MicroArray Quality Control (MAQC) project launched by US Food and 

Drug Administration found data across experiments and platforms can be reliable and 

consistent. 

The nature of biochemical phenomenon presents a challenge in that “while early 

microarray experiments focused on samples with large differences in a few genes, more 

recent findings stress that it is not large changes in a few genes, but rather small changes 

in many genes that will be important for understanding both complex diseases and the 

subtleties of biological processes”[16].  In addition to this is the problem of high 

dimensionality and low sample size of the microarray (holds true in general for all 

“omics”) datasets.  An introduction to statistical testing procedures as it relates to 

analysis of microarray data of tumor tissues is discussed in a book on Statistical 

Analysis principles [17].  

1.3  Statistical Simulations offer an alternative 

  Statistical simulation could be used as an alternative to perform experiments to verify 

differential expression of genes.  The pros and cons of using simulations is discussed 

in the technical report [4].  A general review  

  The report [4] discusses how the model in the dissertation [7] addresses the issues 

that relate to the flexibility of using simulation models to incorporate bias that could 

result from attempts to favor desired conclusions.  This is done by using a combination 

of bootstrapping from real data and shaping the simulation to reflect the limits of 

detection at the tails of the distribution.       

  The simulation model presented is a location scale model [7]. 
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Fig. 3.  Comparison of the original Affymetrix experiments and the simulated arrays for two 

genes from [7].  The figures show the six arrays on the original data compared to the 6 arrays 

on the simulated data. In this figure there are 11 probes per gene. For each array the PM and 

MM intensities have been plotted. The PM intensities are the values shown by the blue dots. 

The MM intensities are to the right of the PM intensities and are shown in red dots.  A line 

connects the two intensities to show the relationship between the PM and MM intensities for 

each probe pair. The line is black for the original arrays and red for the simulated arrays 

 

  Figure 3 from [7] shows the simulation generates intensities that are like the 

intensities reported in experiments.  The simulation engine is simulating the noise as 

well as the signal. Simulations reported in the literature often simulate expression 

levels. 

  While this study was performed on a platform that used DNA from Human genome, 

the approach would be expected to be more general and applicable to other platforms 

using DNA of other species.  

1.4  Workflow in the laboratory that precedes Microarray data collection  

   Laboratories doing clinical or fundamental research involve much bench work as is 

shown in Fig. 4.  A typical analysis workflow is described in [2].  The detection 

limits have fallen so low as to enable detection of mRNA from very small sized samples 

and even up to single cell.  The limits are lowered by including an amplification step 

where a reverse transcriptase enzyme is used to make several copies of the isolated 

mRNA.  This would result in complementary DNA (fig 2), which require a microarray 
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purposed for that by having array locations with sequences that can bind the cDNA 

instead of mRNA.  The binding of a fluorescent label to the mRNA and the incubation 

conditions (probe array hybridization in Fig. 3A.) are factors that could result in 

lowered or improved binding and thus indirectly determine the detection of differences 

between control and sample or differential gene expression.   

 

 
Fig. 4.  Laboratory workflow that precedes data collection from [19].  The nucleic acid 

sample is the total RNA isolation procedure from a sample whose mRNA is labelled with a 

fluorescent dye.  The dye-labelled mRNA is injected into the microarray cassette that in the 

case of the platform used in this study was a human genome platform (GPL570) with over 1.3 

million probes (20-mer sequences from over 54,000 mapped genes.  Mappings of probes to 

genes undergoes revisions and only about 600,000 of the probe positions had mappings to a 

gene.  The mappings that have one to many were excluded by the manufacturer, but the probe 

sequences are made available and researchers could identify and work with them, if needed.  

The hybridization step on the top right panel is done at a fixed temperature and duration to 

allow the binding of the target mRNA to the probe on the plate.  This is followed by a wash to 

remove all unbound target mRNA before the microarray plate is scanned for fluorescence 

intensity.  The fluorescence intensity also referred to as the Probe intensity is a proxy for the 

level of gene expression or the level of mRNA template that would result in protein expression 

/ gene expression. 

2.0 Methods 

   We used the code in [7] to create gene level summaries of the predictions.  The 

platform “GPL570” was selected in the GEO database [3] as it is the Affymetrix 

platform’s newer version.  This platform had 572 experiment sets (GSE), of which 49 
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were randomly selected.  The 1442 CEL files corresponding to these experiments 

were used to generate simulations.  

   A series of simulations were created by maintaining the fold-changes for all probes 

to values ranging from -20 to +20, after each individual run.  17 such sets were then 

combined into one file with each row being merged with the gene related data 

corresponding to each probe position.  

2.1 Pseudo code to obtain data for simulations 

1. In GEO database, query and locate all records of experiments (all GSE) of 

a platform (GPL570). 

a. Create a sampling frame 

b. assign unique random numbers 

c. sort by assigned random numbers 

d. select first 50 experiments 

2. Manually or through code, download the data. 

a. Package GEOquery, functions getGEO, getGEOSuppFiles 

b. Alternately, download CEL files from GEO to local drive 

3. Create a folder that will be input to the simulation 

a. CEL files in folder 

2.2 Pseudo code to generate simulation 

1. Retrieve all CEL files in folder 

2. For each probe position, compute normalized values as the standardized 

intensity measurements calculated by  

a. subtracting the mean of the probe position from all CEL files  

b. then dividing by the standard deviation of the probe position from 

all CEL files 

c. GPL570 has 1354896 probe positions per CEL file 

3. Generate standardized files for each CEL file in a separate directory from 

previous step 

4. Specify the parameters for the simulation run 

a. We treated all CEL files as equivalent, so the factor was assigned 

without regard to the CEL file’s meta data identifying it as control 

or treatment. 

b. We specified that 20 simulations be produced in each run 

c. We specified the factor to use in the PLIER function in a file for 

each run as applicable to all probes that are mapped to genes.  

5.  Run simulation 

a. We encountered an error with one experimental set that was 

dropped. 

b. Simulation run produces a file with output of 20 simulations of the 

array which is the equivalent of 20 CEL files or 1354896 probe 

intensities.  
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2.3 Pseudo code to convert simulation output to gene level summary 

1. Match each probe position to the probe pair and each probe pair to gene 

a. Package Bioconductor, library hgu133plus2probe, provides probe 

sets to probe position mappings 

b. Package GEOquery, function getGEO to get Simple Omnibus 

Format in Text (SOFT) file of platform meta-data 

2. Calculate the mean and standard deviation and coefficient of variation as a 

percentage for each probe position from the output of each of 20 simulations 

for each of 16 different factors applied.  Drop rows where the coefficient 

of variation exceeds 10%. 

a. Packages dplyr, tidyr, tidyverse  

b. Functions groupby, summarise, apply, filter  

3. For each mapped gene, calculate the summarized mean and standard 

deviation using the probe position to gene mapping from the output of 

previous step.  Same packages as used in previous step. 

4. Generate a csv file that lists the 54K genes in the mapping by the 

characteristics of the gene (from platform meta data) and each of the 

summarized values for each of the applied factors. 

  

2.4 R packages and tools used in this report 

The soft (Simple Omnibus Format in Text) file of the platform GPL570 was 

downloaded using the function “getGEO” from the “GEOquery” package.  The 

information from this file was written into a local file for reuse.  The database of the 

same platform, “hgu133plus2probe” installed through the “biocLite” package was used 

to map the probeset to gene.  This library maps only about 0.6 million of the 1.3 

million probe positions in the CEL files.  The other probe positions are perhaps not 

used by the manufacturer as each probe might be mapping to more than one gene.  The 

sequences of all probes though are available.  The probe locations are referred to as 

Probe interrogation positions.   

Simulations were generated and saved into a file.  The code used for the simulation 

was provided by Andrew Hardin.  Parameters generated by this code is written into 

files which require further specification of other parameters before further use.  The 

file “experiment_factor_affy.xlsx” specifies the factors to apply to the PLIER function.  

These functions are not applied on the probes that have the prefix “AFFY”.  The same 

factor was applied to all the probe sets and the simulation results were labelled to reflect 

the factor applied.  Jupyter notebook was used to generate the simulated values that 

were written into files, as the code was provided in that format. 

The plyr/dplyr/tidyr/tidyverse packages was used to merge the probe level 

simulation outputs to gene level summary statistics.  Probe position refers to the 

individual probes and Probe name refers to the probe set.  Each probe set corresponds 

to a gene in the platform.  The output from all simulations using different fold 

increases were merged to one file with data at the summarized gene level for different 
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fold concentrations.  This file was used in Power BI to generate visualizations that 

pertain to the filters that were applied to select the genes of interest. 

Genes are annotated by the same set of key figures as are used in the GEO database 

and each of these key figures are represented in the output file.  In Power BI these 

were relabeled to make them more user friendly.    

2.5   Bioconductor packages and S4 classes 

   

 
Figure 5. S4 class, ExpressionSet in Biobase package.  The S4 class of R provides a 

container for high-throughput assay data and data on genes (“phenoData” in figure).  

It is a matrix data structure where the rows represent the probes in a probe set that 

maps to a gene, which are also referred to as features.  Slot is a S4 term for 

“properties”.  The properties of the gene are different features describing the gene 

such as the function and location within the cell.  Such data continues to get updated 

and thus by separating them, allows users to use previously reported experimental 

data with current knowledge of the gene.          

  

S4 classes are more rigorously defined than S3 classes that are more commonly used 

in R.  Information is organized into slots (properties).  The class and slot data type 

must match.  By enforcing type and validity, inheritance and encapsulation is enabled 
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which in turn allows complex projects using multiple contributors to work effectively 

as is the case with microarray experiments where data submission to the database must 

be MIAME compliant.                       

 

3   Results 

   The GEO database [3] maintained by National Institutes of Health, National Center 

for Biotechnology Information (NIH NCBI GEO) as of May 2018 has over 1.3 million 

samples (GSM), in 4348 dataset records (GDS) in over 97,000 experiment series (GSE) 

with 448653 CEL files on human genome.  The site also provides an integrated access 

to genes of genomes.  Genes can be queried using meta data on genes that are 

organized under several categories.  The csv file we produced mirrors those fields, 

which were sourced from the manufacturer provided platform package in R as shown 

in the pseudo code in the section on Methods.  A live demo of the dashboard [10] is 

available.  A researcher using the csv file can download a free version of the tool, 

Power BI from MicrosoftTM to generate this dashboard.  Microsoft provides training 

online on using features such as drill down available in the tool. 

3.1   Predictions from Simulations surfaced in a Power BI dashboard 

 

   The csv file output generated in this report is specific to the Affymetrix platform, 

GPL570, a human genome platform.  See Appendix section A1 for details on this file.  

The features in the output include fields that are meta data on the genes in the platform 

and the predicted mean, standard deviation and coefficient of variation for each of 18 

factors (see Fig. 6) used to predict the signal intensities.  

   

   A six-minute video explaining the use of the dashboard created in Power BI is 

available [10] (see footnote 1).  Figs. 6 and 7 show the dashboard created in Power BI 

that is discussed in the video.1 

                                                           
1 Link to Demo of BI Tool 
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Figure 6.  Simulated output is used to create a Dashboard in Power BITM see 

Appendix A2 for instructions to set it up. 

 

 
 Figure 7.  Simulated output is used to create a Dashboard in Power BITM see 

Appendix A2 for instructions to set it up and video link on how to use it. 
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3.2   Use of the dashboard to explore candidate genes that might be differentially 

expressed 

   The dashboard can be created by a user as well, using the free version of Power BI 

available from Microsoft (see Appendix section A2 for link to download).  The 

dashboard provides a user the ability to select genes based on criteria that range from 

a specific gene’s ID to exploring possible candidate gene/s located using terms 

searched in the data about the gene.   

   For instance, the field (Appendix A2) “Gene.Ontology.Cellular.Component” in 

the file is data about the location of the protein within the cell.  If the term “Golgi” 

(for Golgi bodies, the organelle that sorts and processes proteins) is searched in this 

field, it selects 3283 genes from 52033 genes in the file.  If the investigator is 

exploring the possible candidate genes involved in metabolism within this subset, the 

term “metabol” entered in the field “Gene.Ontology.Biological.Process” would return 

1270 hits.  Furthermore, if the molecular function of candidate regulated genes of 

interest is a transferase, a third filter for “transferase” applied in the field 

“Gene.Ontology.Molecular.Function” would then yield 458 hits.  As ontology 

relates to the basis on which inference is drawn, the investigator could restrict 

examination of genes known to have this function that is based only on direct assay.  

By adding an additional search term “inferred from direct assay” to the ontology of 

the molecular function, the number of hits gets reduced to 232 genes.   

   In this manner a researcher could narrow the listing of candidate genes to consider 

from 52033 rows to 232 rows, 

 

 
Fig.  8.  The user can view the field “Gene Title” in the dashboard and select a gene, 

highlighted in green in the figure.  On doing so, the dashboard would refresh to display 

the probe sets that map to this gene.  The terms probe and probe sets are sometimes 

used interchangeably.  The mapping also changes with new information, sometimes.  
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Probe position uniquely identifies the probe on the array and it refers to one specific 

sequence from the coding region of the human genome.  There are two panels of data 

that are visible in the display.  The panel on the top are the mean intensities from the 

simulation while the set at the bottom are the standard deviations.  Sample raw data 

numbers that correspond to these can be seen in Appendix A2.    

 

Figure 8 shows a visualization of one selected gene.  The gene selected in Fig. 8 

has 4 different probe sets mapping to it.   

3.3  The value proposition of the dashboard – mine the detailed Signal Intensities 

at a probe position level 

The dashboard shows how any selected gene/s would have their probe-set level 

summarized mean signal intensity change with increasing or decreasing fold 

concentration from the basal level of gene expression.  The basal level is the intensity 

where the PLIER function factor 0 was applied to the data drawn from the sampled set 

of CEL files.  

The file generated in this report does not retain the probe level data.  It is possible 

to select a few (four) ranked set for each gene and retain the probe level prediction to 

compare it against the observed signal at a probe position level.  Power Bi’s drill down 

feature would enable such exploration of data. 

A researcher comparing the predictions to observed signal intensities might consider 

parameters to change in the microarray sample preparation protocol, such as the 

temperature at which hybridization is carried out by considering the characteristic of 

the dose response and extent of variability in the predictions in the tool.   

In its current form this file does not include experimental data.  It is possible to 

include such data though it would require coding effort.  Power BI features could 

circumvent the need for coding and enable the user to compare experimental data with 

the predictions.  The field that could be used for this purpose, namely, the probe 

position in the array is available in the file. 

By replacing the platform specific data used in the simulation, this method could be 

extended to other platforms.   

4   Conclusion 

   The Power BI visualization can be setup by any researcher who gets the csv file 

output.  The predictions can be refined, and additional drilldown features could be 

added as discussed in section 4.3 below.  Such use of the tool holds the potential to 

realize efficiencies in conducting fewer better experiments in the clinical and 

fundamental research labs which could increase the adoption of the technology, 

considering the vast amount of data available in public databases.    
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4.1   Microarray technology and “Omics” 

   Microarray technology is essentially a query on biomolecules using a set of 

sequences expected to have target molecules in the sample, as discussed in section 1.3.  

The underlying principle of a simultaneous capture and definition of several 

biomolecules now extends to different technologies some of which have been around 

for a while.   

   For instance, mass spectrometry, a well-established technique is applied to identify 

cancer biomarkers from tissues[20].  Proteases are enzymes that act as scissors that 

cut specific motifs.  Proteins undergo modifications after they are translated (Fig. 1).  

When such modifications change the function of the protein, a disease state that might 

result from differently modified proteins is not the result of a differently encoded gene 

(mutation) or a differently expressed level of expression.   

  The report [20] describes a technique that uses mass spectrometry (tandem MS/MS) 

to identify proteins from a patient with a congenital form of cataract that is the result of 

a different pattern of protein modification.  So, the protein sequence per se is not any 

different between a normal and affected individual, but the congenital form of the 

disease results in the protein being modified in a different manner.  This is one 

example of proteomics.  In general, when analytical techniques are applied to 

biomolecules in a similar manner to look for patterns in other biomolecules, the term 

“omics” is used.  

4.2   Microarray technology and “RNA seq” 

  RNA transcripts can be identified by a high throughput sequencing methodology that 

has been touted as a replacement for microarrays by some [21] while others have point 

to a role for both technologies [9]. 

   Recent trend has seen a decrease in submissions of micro array data in GEO 

database.  This does not necessarily imply that the use of micro arrays has decreased 

due to it being superseded by RNA seq or Nextgen sequencing [18].  There are users 

in industry who do not submit the data to public databases but use the array.  As 

database submission standards have not kept pace with the technology changes, it has 

also resulted in fewer submissions[18].   

 

4.3 Further work.   

A back test of the prediction to the observed signals could be done by identifying 

the controls and treatment files of an experiment set from the meta data files.  This 

would provide a reference measure to optimize the parameters used in this work.  The 

parameters that could be varied to get a better fit of the predicted set of metrics would 

be:  

1. The sample size:  this report used 1442 CEL files to bootstrap the simulation.  

Perhaps doubling this size might improve the prediction. 
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2. This report selected probes with a percent coefficient of variation below 10 to 

improve the summarized statistics of a probe set.  Perhaps a better measure 

might be to use the top 3, 5 or 9 ranked by percent coefficient of variation. 

3. This work used 20 simulations to summarize the simulated means and standard 

deviation.  Perhaps an increased number of simulations might yield a better fit. 

4. This report used the mean statistic for the summarized values by gene.  Perhaps 

the third quartile might be a better statistic considering the noise in the data. 

5. The predictions generated in this work shows a peak that is consistent across the 

genes.  It might be instructive to verify if it is reproducible. 
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Appendix: 

A1.  Link to a blog on R and methods that was useful for work done in this report 

  

  http://biolearnr.blogspot.co.uk/  (accessed on 11 May 2018)  
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A2.  File output of predictions from the simulations, generated in this project 
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A3.  Setup Dashboard in Power BI for GPL570 platform 

1.  Link to download desktop version of Power BI (free). (accessed on 10 
May 2018). 

2. Home/Get Data/ csv select file. 
3. Load Data 
4. Depending on the kind of data exploration, select the visualization, fields 

and filters displayed on the right-hand side pane of the tool. 
5. Email Go Mavankal to get the csv output file to load. 
 
The steps in A2 pertain to the Windows version of the tool, however, a free 

version is also available for Mac users. 
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