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Division of Applied Mathematics, Brown University
Leland Jameson
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ABSTRACT

For flows that contain significant structure, high order schemes offer large
advantages over low order schemes. Fundamentally, the reason comes from
the truncation crror of the differencing operators. If one examines carefully
the expression for the truncation crror, one will see that for a fixed com-
putational cost that the error can be made much smaller by increasing the
numerical order than by increasing the number of grid points. One can read-
ily derive the following expression which holds for systems dominated by
hyperbolic effects and advanced explicitly in time,

L+ (p+1)/p

flops = const x p* % TR (1)

where flops denotes floating point opcrations, p denotes numerical order, d
denotes spatial dimension, where E denotes the truncation error of the dif-
ference operator, and where & denotes the Fourier wavenumber. For flows
that contain structure, such as turbulent flows or any calculation where, say,
vortices are present, there will be significant energy in the high values of %.
Thus, one can sce that the rate of growth of the flops is very different for
different values of p. Further, the constant in front of the expression is also
very different. With a low order scheme, one quickly reaches the limit of
the computer, With the high order scheme, one can obtain far more modes
before the limit of the computer is reached. Here we examine the application
of spectral methods and the Weighted Essentially Non-Oscillatory (WENQO)
scheme to the Richtmyer-Meshkov Instability. We show the intricate struc-
ture that these high order schemes can calculate and we show that the two
methods, though very different, converge to the same numerical solution in-
dicating that the numerical solution is very likely physically correct.




High Order Numerical Methods for the Investigation of the Two
Dimensional Richtmyer-Meshkov Instability

The primary goal of this study is to ecxamine several numerical methodologics with high
order of accuracy for the investigation of two dimensional and eventually three dimensional
Richtmyer-Meshkov instability. A detailed description of the evolution of a shock acceler-
ated gascous interface with diflerent densities under perturbation can be found in paper by
Zaytscv et al [1] and references therein. The numerical schemes developed here will served as
a basis for the validation of the results obtained from both experiments and other numerical
methods. In this preliminary stage, we employ two numerical schemes, namely, high order
Pseudospectral methods (Speciral) and Weighted Essentially Non-Oscillatory finite differ-
ence scheme (WENO). Detailed discussion of the above mentioned numerical methods can
be found in the vast existing literatures.

Governing Equations :
The governing equations are the two-dimensional Euler equations in Cartesian coordi-
nates describing the conservation of mass, momentum and energy as

Q,+F,+G,=0. (1)

The vector functions F and G arc the inviscid fluxes.
The state vector Q is

Q = {p, pu, pu, E)T )

where p is the fluid density, u = (u,v)" is the fluid velocity and F is the total energy.
In terms of these variables and the pressure P = (v — 1)(E — p{u® + v?)), the inviscid
fluxes F and G are given by

’
F = (pu,puu+ P puv,(E + Plu)",

G = (pv,puv, pov + P, (E + Pyv)".

Initial Conditions :

The physical domain is a rectangular domain with 0 < z < Ly and 0 <y < A, where Ly is
the user specified domain length in z and X is the wave length of a single mode perturbation
along the interface separating two different gases in the ¥ direction. In this study, the gases
are Xenon (Xe) and Argon (Ar).

The specific heat ratio v is assumed to be the same for both gases, v = g

The initial conditions (see figure 1) is an incident shock of Mach number M = 4.46
located at z, = 0.05cm that travels downstream toward the interface. Given the shock
Mach number M, temperature T in the pre-shock region, and the density of the Xenon gas
Pxe, the initial condition of the flow satisfies the Hugoniot-Rankine Condition for normal
steady shock, i.e.,




T =T

P2 = Pxe
Py = Rpyl
Co = v/ pa
Uy, = MGy
Vo = 0
(2)
2y M? - —1
po— p2 (v—1)
Y+ 1
_ (v +1)M?
T = Pi/(Bp)
G = vh/nm
U, = UQPQ/P]
V1 = O

The subscripts 1 and 2 denote the pre-shock and post-shock condition, respectively. To
specify condition for the moving shock, the shock speed s = MC, is subtracted from the
pre- and post- shock velocity Uy and Uy, respectively. Using the cgm units, the constant R =
Ro/Mx., where Ry = 8.31441 x 107 22 is the universal gas constant, My, = 131,29 —%—

K g—mole
and My, = 39.948 7 aye the molecular weight of Xenon and Argon, respectively.

In the pre-shocfé ;r(lz(gon, the temperature 7' = 296.0 K and the density of Argon and
Xenon gases are p4, = 0.89 x 107% —£5 and px, = 2.9 x 107% _£; respectively. The pressure
is assumed to be half of the normal atmospheric pressure.

Once the pre- and post- shock states of Xenon gas are specified, the region of Argon gas
will be superimposed onto the pre-shock region replacing the Xenon gas. The interface be-
tween the two gases is further perturbed to form a sinusoidal wave with some finite thickness,

that is, assuming that the interface is initially located at z;, for 0 <y < A

Q:Ql z < x,
Q=Q: + (Qar— Q)S z >3, (3)

where Q is the conservative variable, QQ; and Q, are the post- and pre- shock conditions
in the conservative form and Q. is the conservative variable of the Argon based on the
density of the Argon ps, and the same velocity and pressure of the pre-shock condition of
the Xenon, namely Uy, V5 and P, respectively. The mask function S = S(z,y) is defined as

S = I d<0
S= exp(—ald®) 0<d<1 (4)
S = 0 d>1

2




-
where
(2 + acos(2my/A) +6) —x
, = 5 (5)
and § > 0 and B > 0 arc the interface thickness and its order respectively, @ = — Ine with

¢ being the machine zcro, a = 1.0 em and A = 3.6 em are the amplitude and wave length of
the perturbation.
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Figure 1: Initial Condition of the Richtmyer-Meshkov instability problem.

Solution Procedure :

1. Periodical Domain is specified in the y direction and symmetry property of the problem
is exploited to reduce the amount of computational operations by half.

2. A combined Chebyshev and Fourier collocation methods is used to discretize the Eu-
ler equations in space yiclding a Spectral scheme. A WENQ-LF-5 fifth order finite
difference scheme is also employed for the solution of the problem.

3. The software library PseudoPack, written by Bruno Costa and Wai Sun Don, is utilized
for the Spectral scheme.

4. The third order TVD Runge Kutta method by Shu and Osher is used to advance the
solution in time.

5. For the Spectral scheme, a 10°th and 9°th order exponential filter is used for the differen-
tiation and solution smoothing respectively, at cach Runge Kutta step unless otherwise

specified.

6. The domain length L, is specified sufficiently large to retain the transmitted shock
within the physical domain.




7. B = 8is uscd for the definition of the interface thickness order. The interface thickness
¢ is specified by user depending on how diffuse the interface is and the resolution power

of the numerical scheme.
A

Results :

A scries of numerical simulations are carried out to investigate the convergence propertics
of both the Spectral scheme and the WENQ scheme. Simulations, using various interface
thicknesses and resolutions, are computed and terminated at some representative time after
the shock had transmitted sufficiently far away from the interface and before exiting the
physical domain. [t allows the development of vortical rollups of the gaseous interface.
Vorticities are gencrated by the cross product of the pressure gradient of the shock and the
density gradient of the gases. The final time is set to £ = 50 x 107%s for L, = 50 em and
t =143 x 107%s for L, = 150 cm.

As evidenced from the results of the Spectral and the WENO calculations shown below,
the following major features of the Richtmyer-Meshkov instability can be observed (see figure
2) at time £ = 50 x 10 %s, namely,

e Wave generated by the shock refraction behind the gas interface in Box 1.

o The penetration of the heavy (Xe} to light (Ar) fluid causes the deformation of the
interface into a large mushroom shape structures in Box 2 and the opposite in Box 5.
They are refercd as Spike and Bubble respectively, in the literatures. They move in the
opposite direction relative to each other and form a ever larger turbulence mixming
ZONe,

e Pressure wave along the transmitied shock in Box 3.

e A small jet and its vortical structure located in Box 4. The contact discontinuity
develops into a more complicated vortical rollups in a finer and long term simulation
(see figure 17) possibly caused by the Kelvin-Helmholtz instability.

e Vortical rollups of the gascous interface inside Box 6.

The global large and median features (Box 1, 2, 3, 4 and 5) are-well captured accurately
by both numerical schemes for a given resolution. It is unclear, however, if the smaller
rollups along the gases interface (Box 6) presented in the high resolution/high order cases
are physical due to the non-dissipative nature of the Euler equations or numerical due to the
oscillatory nature of the numerical schemes or both. More researches arc needed to answer
this question fully.

For long time integration, the smoothest of the gaseous interface at the earlier develop-
ment yields a slightly smoother and rounder interface shape at the later time as seen in the
WENO caleulation. The overall global structures, however, seem to agree very well among
the calculations performed here. {sce figures (17-18)}.

Convergence Study : 6 = 0.6 cm
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Figure 2: The numbered regions enclose the most prominent flow features of the Richmyter-
Meshkov instability at time ¢ = 50 x 107 %s.

We shall first examine the convergence property of both the Spectral scheme and the
WENO-LF-5 finite difference scheme. For this, we used a thicker interface with § = 0.6 ¢m to
establish the convergence of the numerical schemes of the large and medium scale structures
(box 1, 2, 3, 4 and 5 in figure 2). This avoids the possible contamination of numerical
artifacts due to high pradients gencrated along the shock-interface interaction and bypass
the issue of under-resolved fine scale physical structures.

Figures (3 - 6) show the density p, velocity U and V and total energy E of the solution
of the Spectral and WENQ-LI-5 scheme at time ¢ = 50 x 1078 s at various resolutions.
It can observed that the large and medium scale structures such as the transmitted shock,
the location of the triple point, the shocked-interface velocity, pressure waves and vorticity
generation, are basically in excellent agreement with each other.

Convergence Study : § =0.2 am

The density p, velocity U and V and total energy E of the solution of the Spectral
scheme (figures (7 - 10)) and WENO-LF-5 scheme (figures (12 - 15)) at time £ =50 x 107% s
at various resolutions. The interface thickness is significantly reduced from é = 0.6 ecm to
¢ = 0.2 em. An cighth order exponential filter is used for the Spectral scheme with resolution
of 384 x 192,

Similar to the previous case of 6 = 0.6 ¢m, it can be observed that the large and median
scale structures such as transmitted shock, shocked-interface velocity and shock triple point
are basically in excellent agreement with each others. Some discrepancies of the fine scale
structures along the gasecous interface, as can be expected for numerical simulation of the
Euler equations which is sensitive to perturbation in nature, are observed.

Snapshot of the evolution of density and velocity flow flelds at several immediate times
arc illustrated in figure (11), for the Spectral scheme and in figure (11) for the WENO
scheme. The contour levels arc the same and constant for both schemes in all plots.

The Mach number M, the Atwood number At and the interface curvature play an im-
portant role on the growth of perturbed amplitude on the interface. In the particular set
of parameters studied here with high Mach number M = 4.46 and median Atwood number
At = 5.4, a formation of triple-shock configuration along the interface indicates that shock-
interface interaction is in the “hard” regime. A "hard” regime, as quoted from Zaytsev etc.




is ”the propagation of secondary shocks across the flow that is accompanied by the formation
of breaks and triple configurations on the refracted and reflected shocks”. The triple-shock

formation can be observed easily in the carly time <= 30 x 107%s.
A

Large Domain/Long time Study :

To observe the long term evolution of the interface, the domain in z is increased from
L, =5¢em to L, = 15 ¢m and the final time is increased from £ = 50 x 107%s to ¢ =
143 x 107Ys, see figures {17-18). Other than the slightly smoother solutions computed by the
WENO scheme and fine scale structures along the gascous interface, the large and medium
scale structures of the flow ficlds arc well captured by both numerical schemes.

The amplitude of the perturbed interface a is first decreased by the compression of the
shock wave. The interface is then accelerated by the shock and grows from 2 em to = 2.6 em
at time 143 x 107%s. It scems to match the experimental data given in figure 1.9 in the
paper by Zaytsev et al. for the case of initial amplitude ag = 1 em and the distance passed
by shock after interaction with the interface Xy, & 13 cm.

Research :

In the next phase of the rescarch, we will study the single or combined effects of the Mach
number M, the amplitude a and wavelength A of the interface, different gas composition
p, longer time behavior of the inierface evolution and validation of the results with the
available experimental data. We might also consider replacing the Euler equations with
the multi-species Navier-Stokes equations thal corresponds better with the nature of the
Richtmyer-Meshkov instability in experiments.
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Figure 3: Convergence Study 6 = 0.6 em :
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Density contour plot of the Richtmyer-Meshkov

instability as computed by the Spectral scheme and the WENQ-LF-5 scheme. Domain length
in z is Ly = 5 cm. The interface thickness é = 0.6 cm. The final time is ¢ = 50 x 107%s.
The resolution of the Spectral schemes arc 256x128 (‘Top Left), 512x256 (Top Right) and
1024x512 (Bottom Left) and the WENO scheme is 1024x512 (Bottom Right).
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Figure 4: Convergence Study ¢ = 0.6 ¢m : U-Velocity contour plot of the Richtmyer-Meshkov
instability as computed by the Spectral scheme and the WENO-LF-5 scheme. Domain length
inzis L, = 5 em. The interface thickness 6§ == 0.6 em. The final time is ¢ = 50 x 107%s.
The resolution of the Spectral schemes are 256x128 (Top Left), 512x256 (Top Right) and
1024x512 (Bottom Left) and the WENO scheme is 1024x512 (Bottom Right).
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Figure 6: Convergence Study 6 = 0.6 ¢m : Total Energy contour plot of the Richtmyer-
Meshkov instability as computed by the Spectral scheme and the WENO-LF-5 scheme.
Domain length in z is L, = 5 e¢m. The interface thickness 6 = 0.6 em. The final time is
§ = 50 % 107%s, The resolution of the Spectral schemes are 256x128 (Top Left), 512x256 (Top
Right) and 1024x512 (Bottom Left) and the WENO scheme is 1024x512 (Bottom Right).
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Figure 7: Convergence Study 6 = 0.2 ¢m : Density contour plot of the Richtmyer-Meshkov
instability as computed by the Spectral scheme. Domain length in ¢ is L, = 5 ¢m. The
interface thickness 8 = 0.2 ¢m. The final time is ¢ = 50x107%s, The resolution of the Spectral
schemes are 384x192 (Top Left), 512x256 (‘Top Right) and 1024x256 (Bottom Left).
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Figure 8 Convergence Study 6 = 0.2 ¢m : U-Velocity contour plot of the Richtmyer-
Meshkov instability as computed by the Spectral scheme. Domain length in x is Ly = 5 em.
The interface thickness 6 = 0.2 em. The final time is £ = 50 x 107%. The resolution of the
Spectral schemes are 384x192 (Top Left), 512x256 (Top Right) and 1024x256 (Bottom Left).
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Figure 9: Convergence Study 6 = 0.2 em : V-Velocity contour plot of the Richtmyer-
Meshkov instability as computed by the Spectral scheme. Domain length in @ is Ly = § cm.
The interface thickness 6 = 0.2 em. The final time is £ = 50 x 1075s. The resolution of the
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Figure 10: Convergence Study ¢ = 0.2 ¢m : Total Energy contour plot of the Richtmyer-
Meshkov instability as computed by the Spectral scheme. Domain length in z is L, = 5 em.
The interface thickness § = 0.2 em. The final time is ¢ = 50 X 107%s. The resolution of the
Spectral schemes are 384x192 (Top Left), 512x256 (Top Right) and 1024x256 (Bottom Left).
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Figure 11: Convergence Study § = 0.2 em : Density (Left) and Velocity (Right) contour
plot of the Richtmyer-Meshkov instability as computed by the Spectral scheme at time
t = 12.5 x 107%s,25.0 x 10%s,31.3 x 10755,37.5 x 10755,43.8 x 107%s and 50.0 x 107%s.
Domain length in z is L, = 5 ¢m. The interface thickness é = 0.2 em. The resolution of the
Spectral scheme is 1024x256.
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Figure 12: Convergence Study 8§ = 0.2 em : Density contour plot of the Richtmyer-Meshkov
instability as computed by the WENQ-LF-5scheme. The final time is ¢ = 50 x 107%s. The
resolution of the WENQ-LF-5 schemes are 256x128 (Top Left), 512x256 (Top Right) and
1024x512 (Bottom Left).
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Figure 13: Convergence Study 6 = 0.2 ¢m : U-Velocity contour plot of the Richtmyer-
Meshkov instability as computed by the WENO-LF-5scheme. Domain length in z is L, =
5 ¢m. The interface thickness § = 0.2 em. The final time is ¢ = 50 x 107%. The resolution
of the WENO-LF-5 schemes are 256x128 (Top Left), 512x256 (Top Right) and 1024x512
(Bottom Left).
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Figure 14: Convergence Study & = 0.2 cm :
Meshkov instability as computed by the WENO-LF-5scheme. Domain length in z is L, =
5 em. The interface thickness ¢ = 0.2 em. The final time is ¢ = 50 x 107%s. The resolution
of the WENO-LF-5 schemes are 256x128 (Top Left), 512x256 (Top Right) and 1024x512

(Bottom Left).
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Figure 15: Convergence Study 6 = 0.2 emn : Total Energy contour plot of the Richtmyer-
Meshkov instability as computed by the WENQ-LF-bscheme. Domain length in z is L, =
5 em. The interface thickness 6§ = 0.2 om. The final time is £ = 50 x 107%s. The resolution
of the WENO-LF-5 schemes are 266x128 (Top Left), 512x256 (Top Right) and 1024x512
{Bottom Left).
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Figure 16: Convergence Study & == 0.2 cm : Density (Left) and Velocity (Right) contour
plot of the Richtmyer-Meshkov instability as computed by the WENQ-LF-5 scheme at time
¢t = 13.0 x 107%s,24.7 x 10 %s,31.5 x 10765,37.1 x 107%5,43.2 x 107%s and 50.0 x 10-%s.
Domain length in 2 is L, = 5 e¢m. The interface thickness § = 0.2 em. The resolution of the
WENO-LF-5 scheme is 1024x512.
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Figure 17: Large Domain Study : Density (Top Left), U-Velocity (Top Right), V-Velocity
(Bottom Left) and Total Energy (Bottom Right) contour plot of the Richtmyer-Meshkov
instability as computed by the Spectral scheme. Domain length in z is L, = 15 em. The
interface thickness § = 0.2 ¢m. The final time is £ = 143 x 107%s. The resolution of the
spectral schemes is 1536x512.
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