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ABSTRACT
For flows that contain significant structure, high order schemes offer large

advantages over low order schemes. Fundamentally, the reason comes from
the truncatiou error of the differencing operators. If one examines carefully
the expression for the t,’uncation error, one will see that for a fixed com-
putational cost that the error can be made much smaller by increasing the
numerical order thm~ by increasing the number of grid points. One can read-
ily derive the following expression which holds for systems dominated by
hyperbolic effects and advanced explicitly in time,

k{~*+ ~ )~v+ ~ )/v
flops = const * p~ * E(d+W~ (1)

where flops denotes floating point operations, p denotes numerical order, d
denotes spatial dimension, where E denotes the truncation error of the dif-
ference operator, and where k denotes the Fonrier wavenumber. For flows
that contain structure, such as turbulent flows or any calculation where, say,
vortices are present, there will be significant energy in the high values of k.
Thus, one can see that the rate of growth of the flops is very different for
different values of p. Further, the constaut in front of the expression is also
very different. With a low order scheme, one quickly reaches the limit of
the computer. With the high order scheme, one can obtain far more modes
before the limit of the computer is reached. Here we examine the application
of spectral methods and the Weighted Essentially Non-Oscillatory (WENO)
scheme to the Richtmyer-Meshkov Instability. We show thei intricate struc-
ture that these high order schemes can calculate and we show that the two
methods, though very different, converge to the same numerical solution in-
dicating that the numerical solution is very likely physically correct.



High Order Numerical Methods for the Investigation of the Two
Dimensional Richtmyer-Meshkov Instability

The primary goal of this study is to examine several numerical methodologies with high
order of accuracy for the investigation of two dimensional and eventually three dimensional
Richtmycr-Mcshkov instability. A detailed description of the evolution of a shock acceler-
ated gaseous interface with diflhrent densities under perturbation can be found in paper by
Zaytscv ct al [1] and references therein. The numerical schemes developed here will served as
a basis for the validation of the results obtained from both experiments and other numerical
methods. In this preliminary stage, we employ two numerical schemes, namely, high order
Pseudospectral methods (Spectral) and Weighted Essentially Non-Oscillatory finite differ-
ence scheme (WENO). Detailed discussion of the above mentioned numerical methods can
be found in the vast existing literatures.

Governing Equations :
The governing equations are the two-dimensional Euler equations in Cartesian coordi-

nates describing the conservation of mass, momentum and energy as

Qt + Fx + G~ = 0. (1)

The vector functions F and G are the inviscid fluxes.
The state vector Q is

Q = (p, pu, pv, E)~ ,

where p is the fluid density, u = (u, v)~" is the fluid velocity and E is the total energy.
In terms of these variables and the pressure P = (~/- 1)(E p(~ + ve)), theinvi scid

fluxes F and G arc given by

~ = (~, ~,~ + P, puv, (~ + P)uy,
G = (~, ~, ~w + P, (~ 

Initial Conditions :
The physical domain is a rectangular domain with 0 < x < L~ and 0 _< y _< ,~, where Lx is

the user specified domain length in x and A is the wave length of a single mode perturbation
along the interface separating two different gases in the y direction. In this study, the gases
are Xenon (Xe) and Argon (At).

The specific heat ratio 7 is assumed to be the same for both gases, 7 = ~.
The initial conditions (see figure 1) is an incident shock of Math number M = 4.46

located at x, = 0.05cm that travels downstream toward the interface. Given the shock
Maeh number M, temperature T in the pre-shock region, and the density of the Xenon gas
Px~, the initial condition of the flow satisfies the Hugoniot-Rankine Condition for normal
steady shock, i.e.,



P2 -- R p2 T,~

u,~ - M c~
v,~ = o

3’+1

(3‘ + 1)M2
Pl

-- P~(3’ 1)M2 + 2

U~ = ~p~/p~
V1 = 0

(2)

The subscripts 1 and 2 denote the pre-shock and post-shock condition, respectively. To
specify condition for the moving shock, the shock speed s = MC~ is subtracted from the
pre- and post- shock velocity U1 and U~, respectively. Using the cgm units, the constant R =
Ro/Mx~, where 1{0 = 8.31441 x 107 ¢’~ is the nniversal gas constant, Mx~ = 131.29 gK g-mole
and MA,, = 39.948 g are the molecnlar weight of Xenon and Argon, respectively.g mole

In the pre-shock regiou, the temperature T = 296.0 K and the density of Argon and
Xenon gases are Pa~ = 0.89 x 10 a¢~,,~g and px~ = 2.9 x 10-a ~ respectively. The pressure
is assumed to be half of the normal atmospheric pressure.

Once the pre- and post- shock states of Xenon gas are specified, the region of Argon gas
will be superimposed onto the pre-shock region replacing the Xenon gas. The internee be-
tween the two gases is fl, rther perturbed to form a sinusoidal wave with some finite thickness,
that is, assuming that the interface is initially located at xi, for 0 _< y _< A

Q=Q~ x _<x~

q = Q2 -i (qAr-q2)~ z >Zs (3)

where Q is the conservative variable, Q~ and Q~ are the post- and pre- shock conditions
in the conservative form and QA~ is the conservative variable of the Argon based on the
density of the Argon PA,. and the same velocity and pressure of the pre-shock condition of
the Xenon, namely U~_, V~ and P.~ respectively. The mask function S = S(x,y) is defined as

S= 1 d_<O
S = exp(-ctldl~) 0 < d < 1

S= 0 d_>l

(4)
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where

+ a + 5) - 

and 6 > 0 and fl > 0 arc l.hc interface thickness and its order respectively, a -- - In c with
e being the machi~e zero, a = 1.0 cm and A = 3.6 cm a~re the amplitude and wave length of
the perturbation.

~ Computatlonal Domain

Figure l : Initial Condition of the Richtmyer-Meshkov instability problem.

Solution Procedure :

1. Periodical Domain is specified in the y direction and symmetry property of the problem
is exploited to reduce the amount of computational operations by half.

2. A combined Chebyshcv and Fonrier collocation methods is used to discretize the Eu-
ler equations in space yielding a Spectral scheme. A WENO-LF-5 fifth order finite
difference scbcme is also employed for the solution of the problem.

3. The software library PseudoPack, written by Bruno Costa and Wai Sun Don, is utilized
for the Specttal scheme.

4. The third order TVD Runge Kutta method by Shu and Osher is used to advance the
sohttion in time.

5. For the SpcctI’al scheme, a 10’th and 9’th order exponential filter is used for the differen-
tiation and sob~tion smoothing respectively, at each Runge Kutta step unless otherwise
specified.

6. The domai,~ le~gth L~: is Sl)ccificd sufficiently large to retain the transmitted shock
within the physical domain.



7. fl = 8 is used for the dcfi~ition of ~,he iut.erface thickness order. The interface thickness
~ is specified by user depending on how diffuse the interface is and the resolution power
of the numerical scheme.

Results :
A series of numerical simulations arc carried out to investigate the convergence properties

of both the Spectral schetnc and the WENO scheme. Simulations, using various interface
thicknesses and resolutions, are computed and terminated at some representative time after
the shock had transmitted sufficiently far a~vay from the interface and before exiting the
physical domain. It allows the development of vortical rollups of the gaseous interface.
Vortieitics are generated by the cross product of the pressure gradient of the shock and the
density gradient of the gases. The final time is set to t = 50 x 10-6s for L~ = 50 crn and
t = 143 x 10-6s for L~ = 150 cm.

As evidenced from the resnlts of the Spectra[ and the WENO calculations shown below,
the following major features of the Richtmyer-Mcshkov instability can be observed (see figure
2) at time t = 50 × 10 %, uamely,

¯ Wave generated by the shock refraction behind the gas interface in Box 1.

¯ The penetration of the heavy (Xe) to light (Ar) fluid causes the deformation of 
interface into a large mushroom shape structures in Box 2 and the opposite in Box 5.
They are refered as Spike and Bubble respectively, in the literatures. They move in the
opposite direction relative to each other and form a ever larger turbulence mixming
zone.

¯ Pressure wave along the transmitted shock in Box 3.

¯ A small jet and its vortical structure located in Box 4. The contact discontinuity
develops into a more complicated vortical rollups in a finer and long term simulation
(see figure 17) possibly caused by the Kelvin-Helmholtz instability.

¯ Vortical rollnps of the gaseous interface inside Box 6.

The global large and ~ncdian features (Box 1, 2, 3, 4 and 5) are..well captured accurately
by both numerical schemes for a given resolution. It is unclear, however, if the smaller
rollups along the gases interface (Box 6) presented in the high resolution/high order cases
are physical due to the non-dissipative nature of the Euler equations or numerical due to the
oscillatory nature of the numerical schemes or both. More researches are needed to answer
this question fully.

For long time integration, the smoothest of the gaseous interface at the earlier develop-
ment yields a slightly smoother and ronnder interface shape at the later time as seen in the
WENO calculation. The overall global structures, however, seem to agree very well among
the calculations performed here. (see figures (17-18)).

Convergence Study : 5 = 0.6 cm
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Figure 2: The numbered regions enclose the most prominent flow features of the Richmyter-
Meshkov instability at time t = 50 × 10-%.

We shall first examine the convergence property of both the Spectral scheme and the
WENO-LF-5 finite difference scheme. For this, we used a thicker interface with 5 = 0.6 era to
establish the convergence of the mlmerical schemes of the large and medium scale structures
(box 1, 2, 3, 4 and 5 in tigure 2). ~!’his avoids the possible contamination of numerical
artifacts due to high gradients geuerated along the shock-interface interaction and bypass
the issue of under-resolved fine scale physical structures.

Figures (3 - 6) show the density p, velocity U and V and total energy E of the solution
of the Spectral and WENO-LF-5 scheme at time t = 50 x 10 6 s at various resolutions.
It can observed that the large and medium scale structures such as the transmitted shock,
the location of the triple point, the shocked-interface velocity, pressure waves and vorticity
generation, are basically in excellent agreement with each other.

Convergence Study : c~ = 0.2 c’n~
The density p, velocity U and V and total energy E of the solution of the Spectral

scheme (figures (7 - 10)) and WENO-LF-5 scheme (figures (12 - 15)) at time t = -8 s
at various resolutions. The interface thickness is significantly reduced from ~ = 0.6 era to
~ = 0.2 cm. An eighth order exponential filter is used for the Spectral scheme with resolution
of 384 × 192.

Similar to the previous ease of a = 0.6 cm, it can be observed that the large and median
scale structures such as transmitted shock, shocked-interface veloei{y and shock triple point
are basically in excellent agreement with each others. Some discrepancies of the fine scale
structures along the gaseous interface, as can be expected for numerical simulation of the
Euler equations which is sensitive to perturbation in nature, are observed.

Snapshot of the evolution of density and velocity flow fields at several immediate times
are illustrated in figure (11), for the Spectral scheme and in figure (11) for the WE~NO
scheme. The contour levels are the same and constant for both schemes in all plots.

The Mach number M, the Atwood number At and the interface curvature play an im-
portant role on the growth of perturbed amplitude on the interface. In the particular set
of parameters studied here wi~,h high Mach number M = 4.46 and median Atwood number
At ,-~ 5.4, a formation of triple-shock coufignration along the interface indicates that shock-
interface interaction is in the "hard" regime. A "hard" regime, as quoted from Zaytsev etc.



is "the propagation of secondary shocks across the flow that is accompa,~ied by tim formation
of breaks and triple configurations on the refracted and reflected shocks". The triple-shock
formation can be observed easily in the early time <..~ 30 × 10-%.

Large Domain/Long time Study :
To observe the long term evolution of the interface, the domain in x is increased from

L~ = 5 cm to L~ - 15 cm and the final time is increased from t = 50 × 10-% to t =
143 x 10-6s, scc figures (17-18). Other than the slightly smoother solutions computed by the
WENO scheme and fine scale structures along the gaseous interface, the large and medium
scale structures of the flow fields arc well captured by both numerical schemes.

The amplitude of the perturbed interface a is first decreased by the compression of the
shock wave. The interface is then accelerated by the shock and grows from 2 cm to ~ 2.6 cm
at time 143 × 10-%. It seems to match the experimental data given in figure 1.9 in the
paper by Zaytsev et al. for the case of initial amplitude a0 = 1 cm and the distance passed
by shock after interactiou with the interface X~¢,~ .-~ 13 cm.

Research :
In the next phase of the research, wc will study the single or combined effects of the Mach

nu~nber M, the ampfitude a and wavelength A of the interface, different gas composition
p, longer time behavior of the interface evolution and validation of the results with the
~vailable experimental data. Wc might also consider replacing the Euler equations with
the multi-species Navier-Stokes equations that corresponds better with the nature of the
R.ichtmyer-Meshkov instability in experiments.
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Figure 3: Convergence Study 5 = 0.6 cm : Density contour plot of the Richtmyer-Meshkov
instability as computed by the Spectral scheme and the WENO-LF-5 scheme. Domain length
in x is L~ = 5 cm. The interface thickness 5 = 0.6 cm. The final time is t = 50 x 10-%.
The resolution of the Spectral schemes are 256x128 (Top Left), 512x256 (Top Right) 
1024x512 (Bottom Left) and the WENO schcrne is 1024x512 (Bottom Right).
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Figure 4: Convergence Study 5 = 0.6 cTn : U-Velocity contour plot of the P~ichtmyer-Meshkov
instability as computed by the Spectral scheme and the WENO-LF-5 scheme. Domain length
in x is L= = 5 cm. The interface thickness 5 = 0.6 ewe. The final time is t = 50 × 10-6s.
The resolution of the Spectral schemes are 256×128 (Top Left), 512x256 (Top Right) 
1024x512 (Bottom Left) a~d the WENO scheme is 1024x512 (Bottom l~ight).
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Figure 5: Convergcucc Study ~ = 0.6 cm : V-Velocity contour plot of the P~ichtmyer-Meshkov
instability as computed by the Spectral scheme a~d the WENO-LF-5 scheme. Domain length
in x is L~ -- 5 cm. The interface thickness 5 = 0.6 cm. The final time is t -- 50 × 10-%.
The resolution of the Spectral schemes arc 256x128 (Toll Left), 512x256 (Top Right) 
1024x512 (Bottom Left) aud the WENO scheme is 1024x512 (Bottom Right).
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Figure 6: Convergence Stndy ~ = 0.6 c~n : Total Energy contour plot of the Richtmyer-
Meshkov instability as computed by the Spectral scheme and the WENO-LF-5 scheme.
Domain length in x is L~ - 5 cm. The interface thickness ~ = 0.6 crn. The final time is
t = 50 × 10-%. The resolution of the Spectral schemes are 256x128 (Top Left), 512x256 (Top
Right) and 1024x512 (Bottom Left) and the WENO scheme is 1024x512 (Bottom Right).
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Figure 7: Convergence Study 5 = 0.2 cm : Density contour plot of the l~ichtmyer-Meshkov
instability as computed by the Spectral scheme. Domain length in x is Lx = 5 cm. The
interface thickness 5 = 0.2 cm. The final time is t = 50× 10-6s. The resolution of the Spectral
schemes are 384x192 (Top Left), 512x256 (Top Right) and 1024x256 (Bottom Left).
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Figure 8: Convergence Study ~ - 0.2 cm : U-Velocity contour plot of the Richtmyer-
Meshkov instability as computed by the Spectral scheme. Domain length in x is L~ = 5 era.
The interface thickness ~ = 0.2 crrc. The final time is t = 50 x 10-6s. The resolution of the
Spectral schemes are 384x192 (Top Left), 512x256 (Top Right) and 1024x256 (Bottom Left).
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Figure 9: Convergence Study 5 = 0.2 cm : V-Velocity contour plot of the Richtmyer-
Meshkov instability as computed by the Spectral scheme. Domain length in x is L= = 5 cm.
The interface thickness 6 = 0,2 c~n. The fi~al time is t = 50 × 10-%. The resolution of the
Spectral schemes arc 384x192 (Sbp Left), 512x256 (Top Pdght) and 1024x256 (Bottom Left).
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Figure 10: Convergence Study 6 = 0.2 cm : Total Energy contour plot of the Richtmyer-
Meshkov instability as computcd by the Spectral scheme. Domain length in x is L~ = 5 cm.
The interface thickness 6 = 0.2 cm. The final time is t = 50 × 10-6s. The resolution of the
Spectral schemes arc 384x192 (q_bp Left), 512x256 (Top Right) and 1024x256 (Bottom Lefi,).
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Figure 11: Convergence Study 5 = 0.2 cm : Density (Left) and Velocity (Right) contour
plot of the Riehtmyer-Meshkov iustability as computed by the Spectral scheme at time
t = 12.5 x 10-%, 25.0 × 10 6s,31.3 x 10-6s,37.5 x 10-6s,43.8 x 10-6s and 50.0 x 10-~s.
Domain length in x is L~ = 5 cm. The interface thickness 5 = 0.2 cm. The resolution of the
Spectral scheme is 1024x256.
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Figure 12: Convergence Study 5 = 0.2 c~n : De~sity contour plot of the l~.ichtmyer-Meshkov
instability as compntcd by the WENO-LF-5scheme. The final time is t = 50 × 10-%. The
resolution of the WENO-LF-5 schemes are 256x128 (Top Left), 512x256 (Top Right) 
1024x512 (Bottom /,eft).
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Figure 13: Convergence Study ~ = 0.2 czr~ : U-Velocity contour plot of the l~ichtmyer-
Mcshkov instability as computed by the WENO-LF-Sscheme. Domain lengtt~ in x is L: =
5 cm. The interface thiclCness 5 = 0.2 cm. The final time is t = 50 × 10-%. The resolution
of the WENO-LF-5 schemes arc 256x128 (Top Left), 512x256 (Top P~ight) and 1024x512
(Bottom Left).
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Figure 14: Convergence Study ~ = 0.2 cm : V-Velocity contour plot of the Richtmyer-
Meshkov instability as computed by the WENO-LF-5scheme. Domain length in x is Lx =
5 cm. The interface thickness 5 - 0.2 cm. The final time is t = 50 x 10-%. The resolution
of the WENO-LF-5 schemes are 256x128 (Top Left), 512x256 (Top Right) and 1024x512
(Bottom Left).
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Figure 15: Convergence Study 5 = 0.2 cm : Total Energy contour plot of the Richtmyer-
Meshkov instability as computed by the WENO-LF-5scheme. Domain length in x is L~ =
5 cm. The interface thickness (~ = 0.2 cn~. The final time is t = 50 × 10-%. The resolution
of the WENO-LF-5 schemes arc 256x128 (Top Left), 512x256 (Top I~ight) and 1024x512
(Bottom Left).
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Figure 16: Converge~lcc Study 5 = 0.2 c~r~ : Density (Left) and Velocity (Right) contour
plot of the Richtmyer-Meshkov instability as computed by the WENO-LF-5 scheme at time
t = 13.0 x 10-6s,24.7 × 10 %,31.5 × 10-%,37.1 × 10-6s,43.2 × 10-% and 50.0 × 10-68.
Domain length in x is L~ = 5 c~. The interface thickness 5 = 0.2 ea~. The resolution of the
WENO-LF-5 sche~ne is 1024x512.
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Figure 17: Large Domain Study : Density (Top Left), U-Velocity (Top Pdght), V-Velocity
(Bottom Left) a~ld Total Energy (Bottom Right) contonr plot of the P~ichtmyer-Meshkov
instability as computed by the Spcci, ral scheme. Domain length in x is L~ = 15 cm. The
interface thickness 5 = 0.2 c~. The final time is t = 143 × 10-6s. The resolution of the
spectral schemes is 1536x512.
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