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Abstract 

The focus of this thesis is the synthesis of novel heterocyclic pentacene analogs and the 

investigation of their self-organization for the development of new materials for organic electronics.  

The thesis consists of two interrelated projects: the first being development of an improved 

synthesis of a series of liquid crystalline dicyanotetraoxapentacenes (DCTOPs) while the second 

entails the exploratory synthesis of several novel dicyanoheteropentacene analogues and a 

preliminary investigation of their photophysical properties and solid-state structures.  Both of these 

projects centre around the use of nucleophilic aromatic substitution reactions on 

tetrafluoroterephthalonitrile. 

Soluble, tetrakis(bis(alkoxy)phenyl)-substituted DCTOPs were originally synthesised via a 

short synthesis complicated by a tedious purification required in the last step. Despite this, 

derivatives bearing long alkyl chains were prepared which displayed liquid crystalline properties in 

addition to aggregation-induced emission. Building upon this success, but with the goal of achieving 

DCTOPs in an efficient synthetic manner for this thesis, changes were made which eliminated the 

troublesome fourfold Suzuki coupling by changing the order of reactions, which in turn required a 

protection-deprotection sequence. Purification in the new synthesis was greatly simplified and the 

target tetraaryl-DCTOPs were accessed in good overall yields and purities. The synthesis and solid 

state structures of these DCTOPs are discussed in Chapter 2.  

Building on the methods developed in Chapter 2, several novel pentacene analogues 

containing combinations of nitrogen, oxygen, and sulfur atoms installed within the pentacene core 

were also synthesised. These compounds were prepared in good yields, and preliminary 

photophysical studies show that all the compounds displayed luminescence in solution and the solid 
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state. It was also shown that replacement of O with N leads to a red shift in absorption and emission 

spectra. The X-ray crystal structures show that several of these compounds exhibit π−stacking in 

the solid state, which is an important design element for applications in organic electronics. The 

synthesis, photophysical properties, and solid-state organization of these novel 6,13-

dicyanoheteropentacene analogues are discussed in Chapter 3. 
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1. Chapter I - Introduction 

1.1 Polycyclic Aromatic Hydrocarbons (PAHs) and Acenes 

 

Polycyclic aromatic hydrocarbons (PAHs) are well-known materials with interesting 

electronic and photophysical properties. They contain two (or more) fused benzene rings in 

various configurations without substituents nor the presence of heteroatoms within the 

skeleton (Figure 1-1).1 

 

 

Figure 1-1: Representative PAHs. 

 

The interesting properties of PAHs, such as organic semiconductor characteristics or 

fluorescence, are caused by the interaction of electrons or photons with the molecular 

orbitals of the molecules. As is well-known, the gap between the highest occupied molecular 

orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) can be lowered with 

increasing conjugation.2 For example, the HOMO-LUMO gap energy decreases along the 

series benzene > naphthalene > anthracene > tetracene > pentacene, translating into the 

practical consideration of stability and reactivity in that pentacene is rather easily oxidised 



2 

 

by molecular oxygen and degraded by visible light whereas benzene is not. Another obvious 

difference is that of colouration – benzene is without colour while the more conjugated 

pentacene is purple-black. As the HOMO-LUMO gap is decreased with increasing conjugation, 

a redshift in the UV-vis absorption maxima is also observed.  

One theory of this behaviour is described by Clar’s rule, formulated in 1972, which 

attempts to rationalise the relative stabilities (and other properties) of PAHs by how many 

aromatic sextets are present in the molecule.3 This is shown more clearly when observing 

the structural formulas for the anthracene (1.1), phenanthrene (1.2), and triphenylene (1.3) 

series. (Figure 1-2). Anthracene contains one sextet (shown as delocalised benzene rings), 

phenanthrene two, and triphenylene contains three sextets making it the most stable of the 

series.  

 

 

Figure 1-2: Structures of anthracene (1.1), phenanthrene (1.2), and triphenylene (1.3) 

with aromatic sextets drawn as delocalised rings. 

 

Clar’s rule also has ramifications for acenes; in fact, anthracene (1.1, Figure 1-2) is the 

second member in the family of acenes (naphthalene being the smallest). A bona fide acene 

is composed of “linearly fused benzene rings”4, and as such consist of a core of carbon atoms, 
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although other substituents may be appended. The structures of the first five acenes in the 

series (naphthalene 1.4 to hexacene 1.7) are shown in Figure 1-3. 

 

 

Figure 1-3: (a) Kekulé structures of the first five members of the acene series, and 

(b) Clar formulae for the same. 

 

Shown in Figure 1-3(b) are the Clar formula for the same set of acenes; as the length 

of conjugation increases, the number of aromatic sextets does not. In other words, as the 

energy difference between the HOMO and LUMO becomes smaller, the aromatic stabilisation 

of the acene does not significantly increase, as no new sextets are added. This helps explain 

in a qualitative manner why naphthalene is colourless and stable, while pentacene is purple-

black and degrades photochemically as well as via intermolecular cycloadditions.5 

Thus, we are introduced to the balancing act between the requisite electronic 

properties, obtained usually by extended conjugation or introducing substituents, and the 

stability of these molecules. The stability of acenes can be improved in several ways:6 firstly, 
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kinetic stability can be imparted by the introduction of bulky substituents such as John 

Anthony’s use of the triisopropylsilylethynyl (TIPS-ethynyl) group to make an air and light 

stable pentacene (vide infra).7  

A second method of altering the stability of acenes is through the incorporation of 

heteroatoms. These derivatives are no longer acenes, as they no longer contain only carbon 

atoms within the core, however, they can be considered acene analogues. Apart from an 

imine-type nitrogen, other heteroatoms such as sulfur, oxygen, and sp3-hybridised nitrogen 

may induce a change in the electronics of the acene which is dependent on the substitution 

pattern. Dithiapentacene derivative 1.8 (Figure 1-4) was synthesised by Chi et al. and adopts 

a quinoidal structure; nonetheless, the compound is highly stable and was investigated as a 

promising organic semiconductor.8 

 

 

Figure 1-4: Quinoidal dithiapentacene analogue 1.8 investigated 

by Chi et al.8 as an organic semiconductor. 

 

In motifs such as in 1.8, the quinoidal core is cross-conjugated with the terminal 

phenyl rings of the acene analogue. This leads to two separate aromatic sextets contributing 
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to the stability of the compound. A similar motif is observed for the triphenodioxazine 

(TPDO) dyes which also incorporate imine-type nitrogens in para-positions around the 

central ring (Figure 1-5). 

 

 

Figure 1-5: Typical triphenodioxazine (TPDO) dye, R is often a halide (Cl, Br). 

 

These dyes exhibit excellent colourfastness (i.e. photostability) but suffer from 

extremely poor solubility.9  

A different substitution pattern less well known in the literature than the TPDOs, yet 

structurally similar, is shown in Figure 1-6. Due to the substituents on nitrogen, compounds 

of this type cannot form the quinoidal congener, and are therefore stable reduced forms of 

TPDOs (e.g. dihydrotriphenodioxazine 1.10), as indicated by the presence of three aromatic 

sextets. 

 

 

Figure 1-6: Core of a generic dihydrotriphenodioxazine. 
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Much work has been accomplished in improving the synthesis and properties of 

acenes and acene analogues in the literature, although there remain systems still to be fully 

explored.10,11  

 

1.2 A Brief Introduction to Organic Electronics 

Utilization of organic components, such as liquid crystals or organic light-emitting 

diodes (OLEDS, vide infra), in many ways led to the ability to produce small, high-resolution 

electronic displays, rather than the previously used cathode-ray tube or plasma 

technologies. The use of organic molecules provides benefits such as tunability via 

manipulation of functional groups, controlled alteration of the solid-state structure, and 

solution processability.12,13 

Taking into account the current progress within the field, manufacturing devices with 

foldable displays is imminently possible using organic materials.14 In a rather recent 

development, the use of OLED technology has placed curved, high resolution displays on the 

consumer market.15 

Further developments in this broad field, however, rests upon the “molecular toolkit” 

available to the materials chemist. Ever more interesting devices with increasingly useful 

applications will be fabricated using molecules which have not yet been discovered, and for 

which properties  have not been determined. The synthesis and characterisation of novel 

compounds possessing interesting characteristics is therefore a worthwhile pursuit. 
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1.3 Molecular Design and Solid-State Importance in Organic Electronics 

Organic electronics (OE) fall into several broad categories, including solar 

cells/energy storage, organic field-effect transistors (OFETs), organic light-emitting diodes 

(OLEDs), and others. Additionally, it should be borne in mind that OE as a field is very broad, 

and the molecular design of the material will necessarily depend on the desired property and 

end application. For example, the desired characteristics of a compound intended for a dye-

sensitised solar cell (DSSC) are quite different from those of a liquid crystal intended for 

display applications. Nonetheless there are some basic considerations common to all, such 

as the requirement for control of the HOMO-LUMO gap energy, which leads to the general 

observation that most organic electronics contain conjugated aromatic units (benzene, 

pyridine, PAHs, etc). 

Indeed, several “gold standards” of OE materials are compounds like rubrene (1.11, 

Figure 1-7) or pentacene (1.6, Figure 1-9).16 Rubrene contains a tetracene core, shown in 

red, as well as four appended phenyl rings for a total of eight aromatic ring units (although 

it should be noted that the four phenyl substituents are not in the plane of the tetracene core, 

and therefore not fully conjugated therewith). Rubrene displays high hole mobilities (how 

fast an electron moves through a semiconducting material when exposed to an electric field) 

of up to 20 cm2V-1s-1 in OFET devices and good stability when compared to many other 

tetracenes.17 
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Figure 1-7: Rubrene (1.11), a well-known organic semiconductor. 

Both rubrene and pentacene contain an “acene” unit which is a common motif in the 

design of organic electronics. As discussed previously, the HOMO-LUMO gap in an acene is 

low, brought about by a lowering of the LUMO and raising of the HOMO energy level (Figure 

1-8, used with permission)18; this can allow the transport of charge, and the material may 

act as a semiconductor.19  
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Figure 1-8: Relative HOMO-LUMO energies (eV) of benzene,  

anthracene, pentacene, and respective TIPS(ethynyl)-analogues; 

figure used with permission.18 

 

Despite the inherent ability to transport charge due to a HOMO-LUMO gap of 

appropriate energy, pentacene itself requires specific processing conditions to form a 

material with large charge transport properties, such as a microcrystalline thin film.20 

Moreover, the way the individual molecules interact within the crystal lattice can have a 

large impact on the electronic capabilities of the bulk material. To transport charge as an 

organic semiconductor, efficient overlap of the MOs of neighbouring molecules is required. 

Since pentacene crystallises in various polymorphs (different crystal structures for the same 

chemical structure) there can be variability in the charge mobility measurements made on 
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different samples.5 Understanding and being able to describe the different arrangements of 

molecules becomes necessary. 

Supramolecularly, aromatic surfaces (such as acenes) tend to interact with one 

another in several different ways, such as π-π stacking, where molecules align face-to-face 

with a major interaction between the respective aromatic π-electron clouds. Alternatively, 

an edge-to-face or C−H···π-interaction can predominate, forming a pattern called 

“herringbone”. This dichotomy is illustrated nicely in the differences between the solid-state 

structures of pentacene (1.6) and 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-

pentacene, 1.12) shown in Figure 1-9. While pentacene packs in a herringbone fashion in the 

solid state, TIPS-pentacene adopts a face-to-face interaction of the pentacene cores, which 

are also closer to one another (3.47 Å vs. 6.27 Å for pentacene).21 This solid-state 

arrangement of the molecules in TIPS-pentacene leads to an overall improvement in 

properties (solubility, stability, solid-state packing) over the parent compound.   
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Figure 1-9: (a) Pentacene (1.6) and its herringbone crystal packing structure, 

 and (b) TIPS-pentacene (1.12) and its crystal packing structure 

 (H-atoms omitted for clarity in b). 

 

Not only do the TIPS-ethynyl groups allow for improved physical characteristics, but 

chemical stability is also conferred. Whereas pentacene suffers from photodegradation and 

oxygen sensitivity, 1.12 is stable (and more soluble) in solution.22 

Control of solid state packing can also be achieved in heteroaromatic systems. 

Desiraju et al. recognized that herringbone packing decreased with a corresponding increase 

in π−π overlap in systems such as 1.13 (Figure 1-10) where heteroatoms and substituents 

reduce the number of H atoms available for C−H···π-interactions.23 1.13 packs in a 

herringbone manner, while compounds 1.14 and 1.15 pack in a π−π stacking rich packing 

motif termed β-packing.  
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Figure 1-10: Tetrachloroanthracene 1.13 adopts a herringbone packing motif, while  

dibenzodioxin 1.14 and phenazine 1.15 adopt β-packing motifs. 

 

In addition to conjugation (appropriate HOMO-LUMO levels) and supramolecular 

organization, targets should be soluble enough to allow for characterisation (structural, 

photophysical, electrochemical, etc.) Since many flat, aromatic compounds tend to form 

insoluble aggregates, solubilising alkyl groups are often appended to aid in processability. 

An example is in the case of the soluble quinacridone derivative 1.17 (Figure 1-11) which 

was synthesised by Mullen et al.24,25 to investigate the H-bonded self-association in solution. 

This cannot be done using the parent quinacridone (1.16) since it is extremely insoluble (due 

to intermolecular H-bonding), and the normal method of solubilising quinacridones involves 

substitution of the N atoms.26 Thus, placement of dodecyloxy (and other) solubilising alkyl 

chains at the periphery of the compound allowed sufficient solubility to study the 

compound’s behaviour. 
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Figure 1-11: Quinacridone (1.16) and Mullen’s soluble quinacridone 1.17. 

 

Thus, one can see that controlling supramolecular organization can be very important 

not only for practical processability of OE but also the end property of the material; 

understanding and finding methods of controlling this behaviour is integral to progress 

within the field.  

 

1.4 A Brief Introduction to Liquid Crystals 

A liquid crystalline (LC) material is unique in that it contains features of both the solid 

crystalline and isotropic liquid phases. More specifically, a liquid crystal exhibits, to some 

degree, both the order of the solid state and the disorder of the liquid state. A simpler way of 

thinking about this phenomenon would be that the material is not so ordered as to prohibit 

flowing like a liquid, but does order the individual molecules in some specific, reproducible 

manner.  

The first LC phase was discovered in 1888 by examining the melting and freezing 

behaviour of cholesteryl benzoate (1.18).27 This compound first melts into a cloudy liquid at 

145°C and, at 178.5°C, becomes a clear liquid. Over this temperature range, a LC material will 
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exhibit a phase of matter which is distinct from a solid, liquid, or gas, and is termed the LC 

mesophase.28  

 

 

Figure 1-12: Cholesteryl benzoate (1.18), the first liquid crystalline compound 

 discovered in 1888. 

  

LC phases can be grouped together based on the way the molecules are ordered. 

Cholesteryl benzoate, for example, exhibits a nematic phase, meaning that the molecules 

orient themselves in a threadlike fashion (more accurately 1.18 exhibits a chiral nematic 

phase due to the asymmetry of the molecule.)29 Liquid crystals possessing nematic phases 

have been used in liquid crystal displays (LCDs).30 Other liquid crystals exhibit smectic 

phases wherein the molecules are ordered in such a way that the layers can slide over one 

another in a ‘soapy’ manner (smecticus is Latin for soap.)31 There are fewer applications of 

smectic LC phases. However, progress has been made in smectic LCDs.32 

Of particular importance to the discussion at hand are columnar mesophases in which 

the molecules are arranged in columns; compounds exhibiting such a phase are of interest 

due to the possible charge-transport arising from the columnar arrangement of molecules in 

the bulk structure leading to semiconductor properties.12 
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LC compounds are often divided into categories based upon structural and 

mesophase properties. Discotic and calamitic are two broad categories of compounds which 

display liquid crystalline properties, and these can be differentiated by their structural 

features (Figure 1-13). N-(4-Methoxybenzylidene)-4-butylaniline (MBBA, 1.19) is a 

prototypical example of the calamitic class, distinguished as such by its rod-like structure. 

Also of note in MBBA is the presence of a butyl chain; many liquid crystals contain the motif 

of an aromatic/conjugated group with flexible side chains. The combination of planar sp2-

hybridised ‘cores’ attached to flexible chains such as alkyl or alkoxy groups often provides 

the correct amounts of order and disorder to form a mesophase. 

 

 

Figure 1-13: MBBA- (1.19) and triphenylene-based (1.20) liquid crystals. 

 

 In contrast to MBBA, structure 1.20 is based upon the triphenylene core and forms 

the quintessential structural motif of the discotic liquid crystal class, containing, as the name 

implies, a disc-like aromatic core. While calamitic liquid crystals often form smectic and 

nematic mesophases, discotic liquid crystals most often form columnar mesophases. These 

discotic columnar mesophases are desirable due to the increased intermolecular orbital 
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overlap between molecules within the columns which has the ability to increase charge 

carrier mobility, fluorescence intensity, and exciton diffusion length (the distance traveled 

by an electron or hole, which determines useful thickness of semiconductor layers.)12,33  

 

1.5  Aggregation-Induced Emission (AIE) 

Light can interact with matter in a variety of ways. The colours we see are due to light 

interacting with matter in such a way that some wavelengths are absorbed, and the colour 

observed results from the reflection of the remaining (visible) wavelengths. This  absorption 

and reflection of light energy is well understood. 

Fluorescence (emission) is another generally well understood mode through which 

light and matter interact. In this instance, light is absorbed by the substance which then 

promotes an electron from a lower-lying molecular orbital (MO) to one of higher energy. As 

the electron relaxes to its original lower-lying MO the light which was absorbed is emitted 

as light of a different wavelength.   

Fluorescence is a sensitive process, and there are many factors which can increase or 

decrease fluorescence activity such as crystal packing,34 metal ion coordination,35,36 

nitroarenes,37 temperature,38,39 and aggregation.40,41 

Aggregation-induced emission (AIE) is a phenomenon reported relatively recently in 

2001 by the Tang group in which a pentaphenylsilole compound (1.21, Figure 1-14) 

exhibited no fluorescence in solution but in the solid state exhibited bright fluorescence.42 

The derivative was found to have the same fluorescence spectrum as a solution in ethanol-

water or as a solid thin film, but not as a solution in ethanol, where the fluorescence 
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behaviour was severely attenuated. These observations show that emission is significantly 

increased as a result of aggregation, whether in solution or the solid state. 

 

 

Figure 1-14: 1-Methyl-1,2,3,4,5-pentaphenylsilole (1.21),  

the first demonstrated AIE luminogen. 

 

In the specific case of 1.21, the AIE effect was ascribed to the inability of the phenyl 

rings to assume an entirely coplanar conformation in the solution state which would 

decrease the resonance in the structure, in turn decreasing the fluorescence of the molecule. 

In the solid and aggregate states, it is theorised that the molecule can assume a more 

coplanar conformation allowing for increased conjugation between the central silole and 

appended phenyl rings, increasing the intensity of the fluorescence and causing a red-shift 

in intensity. Of critical importance, however, is the fact that steric hindrance precludes the 

possibility of complete co-planarity and as such also precludes the process of quenching via 

excimer (excited-dimer) formation (concentration quenching). 

A more general theory of AIE is that found for compounds like tetraphenylethylene 

(1.22, Figure 1-15).43  
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Figure 1-15: AIE luminogen tetraphenylethylene (1.22) with one 

 of four rotatable bonds indicated. 

 

In compounds such as 1.22, aggregation is theorised to inhibit rotation about the 

ethylene-phenyl bonds, thus limiting non-radiative decay (i.e. relaxation wherein no light is 

emitted). This restricted intramolecular rotation (RIR) process is thought to be responsible 

for much of AIE’s effects in compounds where conformational mobility can be limited by 

aggregation. 

A large number of compounds that display the AIE effect are currently in the literature 

and more continue to be reported due to the interesting applications made possible by such 

solid state fluorescence and electronic properties.44–47  
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1.6 Dicyanotetraoxapentacenes as Novel LC Mesogens and AIE Luminogens 

In the quest for materials with the optimum properties for organic electronics 

applications, new structural motifs must necessarily be investigated. By way of rational 

modification of existing structures, new structures can be investigated which may have 

interesting or ideal properties for various applications. There are several structures which 

have been investigated with respect to LC and fluorescence properties, such as the 

pentacenequinone system shown in Figure 1-16 synthesised in the Maly lab.  48 

 

 

Figure 1-16: Example of a pentacenequinone-based liquid crystalline compound synthesised 

previously in the Maly lab (R = C10H21).48 

 

When the R groups in structure 1.23 are n-decyl alkane chains the compound exhibits 

a columnar hexagonal LC phase from 109-145°C. Of interest within the field of liquid 

crystalline materials is the relationship between structural features and physical properties 

such as mesophase range and fluorescence capabilities.  

Similar in structure to the pentacenequinone system, compounds 1.24 (R = C6H13 or 

C10H21) were previously synthesised in the Maly lab and exhibited AIE as well as a LC 

mesophase.49 The synthesis, however, required a tedious and difficult separation via 
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chromatography to acquire the final product and for that reason was not ideal. As the solid-

state interactions for these compounds are of interest and have not previously been 

explored, a route which provides material in adequate quantities to grow X-ray quality single 

crystals is also desirable. 

 

 

Figure 1-17: Representative substituted dicyanotetraoxapentacene with the  

central tetraoxaterephthalonitrile moiety highlighted in red. 

 

1.7 Thesis Objectives 

The primary goal of this thesis is the development of a practical synthetic route to a 

series of bis(alkoxy)phenyl-substituted dicyanotetraoxapentacenes as novel liquid 

crystalline pentacene analogues; this is covered in depth in the following chapter. 

A second goal of this project is the expansion of this methodology to access structures 

wherein heteroatoms other than oxygen (i.e. nitrogen, sulfur) are installed within the 

pentacene core (Figure 1-18); Chapter Three covers these endeavours in detail.  
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Figure 1-18: Several target dicyanoheteropentacene analogues. 

 

Not only are the above dicyanopentacene analogues (e.g. 1.25) unknown in the 

literature, but the unsubstituted heteroaromatic cores have been likewise unexplored. 

The reactivity of tetrafluoroterephthalonitrile with respect to 1,2-bifunctional 

aromatic nucleophiles is a major theme in this work (especially Chapter Three). While a 

limited number of heterocycles have been derived from TFTP, unreported systems (and 

some previously reported) based on this structural motif may possess surprising reactivity 

and photophysical properties to be explored. This work adds several new members to the 

family of TFTP-derived dicyanopentacene analogues, in addition to investigating their 

photophysical properties and solid-state organisation.   
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2. Chapter II - An Improved Synthesis of Soluble, Liquid Crystalline             

Dicyanotetraoxapentacenes 

 

2.1 Previous Synthesis and Investigation of Physical Properties of DCTOPs 

Previous work within the Maly group by former Honours student Ms. Brooke 

Raycraft49 showed that it was possible to synthesise the target dicyanotetraoxapentacenes 

(DCTOPs) 2.1a,b via a fourfold Suzuki coupling between tetrabromide 2.3 and boronate 

ester derivative 2.2a or 2.2b, shown in the retrosynthetic scheme below (Scheme 2-1). 

 

 

Scheme 2-1: Retrosynthetic analysis for the original synthesis  

of LC DCTOPs 2.1a,b (Raycraft, 2014). 

 

Compound 2.3 can retrosynthetically be derived from the nucleophilic aromatic 

substitution reaction between dibromocatechol and tetrafluoroterephthalonitrile  (TFTP 
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2.4), which is synthesised from the tetrachloro compound50 or purchased. Finally, 

compound 2.5 can be accessed by electrophilic bromination of catechol.51 

Scheme 2-2 shows the resulting forward synthesis pursued by Raycraft and the yields 

obtained. Bromination of catechol followed by a nucleophilic aromatic substitution (SNAr) 

reaction with TFTP (2.4) proceeds in good yields and facile preparation. Unfortunately, the 

following fourfold Suzuki coupling with the respective pinacol boronate ester proceeded in 

poor yield, and perhaps more importantly, resulted in a mixture of variously substituted 

products, which made separation and purification difficult. Additionally, long reaction times 

(2 to 6 days) were required in order to push the reaction fully to the end product. 
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Scheme 2-2: Forward Synthesis for the original synthetic  

route to LC DCTOPs (Raycraft, 2014). 

 

It was found during this 2014 work that the target dicyanotetraoxapentacenes 2.1a,b 

exhibit a columnar hexagonal liquid crystalline mesophase upon heating up to the clearing 

point at 162 °C. Preliminary investigation into the fluorescence properties of 2.1a,b 

indicated the compounds exhibit aggregation-induced emission; in addition to intensely 

bright solid-state fluorescence both compounds experience an intensification and redshift 
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in the emission maximum upon addition of water to THF solutions of 2.1a or 2.1b. A 

representative photo of this effect is shown in Figure 2-1 as well as the fluorescent solid. 

 

 

Figure 2-1: Images of compound 2.1a in 100% THF (blue) and 50% THF/water  

(green) and (b) as a thin film under long wave UV irradiation (365 nm).49 

 

Due to the promising nature of these initial investigations it was clear that optimising 

the synthetic route to derivatives of 2.1 was both necessary and worthwhile.  

 

2.2 Initial Fourfold Suzuki Optimisation Attempt 

Due to the very low solubility of tetrabromide 2.3, in addition to the well-known 

positive effects of microwave heating on Suzuki couplings, microwave chemistry was 

explored as an alternative to conventional heating. The methoxy-substituted derivative 

(using the commercially available 3,4-dimethoxyphenyl boronic acid 2.2c, Scheme 2-3) was 

used to screen microwave heating conditions (Table 2-1).  
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Scheme 2-3: Attempted microwave Suzuki coupling of tetrabromide 2.3a  

with boronic acid 2.2c. 

 

Table 2-1: Attempted microwave reaction conditions to form DCTOP derivative 2.1c. 

Entry Pd Source Ligand Base Additive Solvent Temp. 

(°C) 

Time 

(min) 

Yield (%) 

1 Pd(PPh3)4 - K2CO3 - 

EtOH-

PhMe-

H2O 

155 60 35 

2 Pd/C - K2CO3 - 
EtOH-

H2O 
95 10 mixture 

3 Pd(OAc)2 - K2CO3 TBAB H2O 100 30 mixture 

4 Pd(PPh3)4 - CsF - DME 100 20 
0 

(homocoupling) 

5 Pd(OAc)2 dfppe KOH - 
1,4-

dioxane 
120 20 

0 

(homocoupling) 

6 Pd(OAc)2 SPhos BaCO3 - 
n-BuOH-

PhMe-

H2O 
120 20 mixture 
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7 Pd(OAc)2 dfppe K2CO3 TBAB 
EtOH-

PhMe-

H2O 
150 5 mixture 

8 Pd(PhCN)2Cl2 Phen Cs2CO3 
Dibenzo-24-

crown-8 

EtOH-

PhMe-

H2O 
140 60 mixture 

9 Pd(PPh3)4 - NaOH - 
PhMe-

H2O-

EtOH 
150 30 

0 (nitrile 

hydrolysis) 

 

In keeping with the results of the reaction of the longer alkyl derivatives, under 

conventional heating conditions the product was obtained in a low 35% yield via microwave 

heating (Table 2-1, Entry 1). Attempts were then made to improve this yield by again 

changing the palladium catalyst source, solvent, time, etc. However, like previously, the main 

product (TLC, 1H NMR) appeared to be homocoupled boronate likely formed due to 

unreactivity or insolubility of the aryl bromide; in other cases where an inseparable mixture 

was obtained, the products (all yellow) likely consisted of variously arylated products. In the 

case of Entry 9, it is hypothesised that nitrile hydrolysis may have occurred, since an 

insoluble and unidentifiable product was obtained from a reaction mixture which smelled 

strongly of ammonia. 

Despite the poor results, Suzuki coupling to form the hexyloxyphenyl- and 

decyloxyphenyl-substituted dicyanotetraoxapentacenes were conducted in a microwave 

reactor under the otherwise original conditions. Unfortunately, yields were still less than 
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impressive (14% and 30% respectively) and purification was possible but was of 

comparable tediousness to the reaction via conventional heating.  

Considering these results, as well as rather extensive screening of reaction conditions 

such as palladium(0) sources, base, solvent, time, and temperature, it appears that this 

coupling is not amenable to microwave heating enhancements. 

 

2.3 Revised Retrosynthetic Analysis 

With respect to the initial synthetic route, one outstanding feature is the expediency 

of the preparation in that very few steps (three linear) are required to arrive at the target 

compound. Thus, despite the low yield and difficult separation of the final Suzuki coupling 

reaction, any improved synthetic route would necessarily compete with an extremely short 

synthesis of a large polycyclic substituted heteropentacene. 

As shown in the retrosynthesis below, the target compound could be envisaged as 

coming from the SNAr reaction between terphenyl diol 2.9 and TFTP (2.4), and the terphenyl 

moiety being derived from the Suzuki coupling between the protected dibromocatechol and 

the appropriate phenylboronate species (Scheme 2-4). Essentially this amounts to a reversal 

in the order of reaction of the SNAr and Suzuki reactions.  
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Scheme 2-4: Revised retrosynthesis of dicyanotetraoxapentacene 2.1 (PG = protective group). 

 

2.4 Revised Synthesis of DCTOPs 2.1  

As can be seen in Scheme 2-4, a protected dibromocatechol (2.10) is required for the 

Suzuki coupling to prepare diol 2.9. Because Suzuki couplings are carried out in basic media, 

and  catechols are relatively acidic under such conditions (pKa ≈ 10), coupling reactions of 

this type are rarely carried out on phenols and catechols. Phenoxide is much more electron 

donating than phenol, and this increased electron density para to the aryl bromides can 

strongly deactivate the coupling partner.52 In fact, due to difficulties with the original 

synthesis, Raycraft attempted the direct Suzuki coupling between dibromocatechol 2.5 and 

boronate 2.2a and showed that this route did not furnish the desired terphenyl diol in 

appreciable quantities. Indeed, the diol (R = C10H21) was obtained as a brown solid from the 

attempted coupling (Raycraft, Honours Thesis, 2014) albeit in a 4% yield from 

dibromocatechol.  
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Necessarily, a protection, Suzuki coupling, and deprotection sequence was developed. 

As with any protective group (PG) chemistry it is essential that both the protection and 

deprotection steps proceed in high yield and ease of purification to maintain practical 

synthetic efficiency. 

The first protecting group briefly investigated was the acetonide with attempted 

installation via p-TsOH-catalysed condensation of dibromocatechol with acetone, which 

furnished the starting material as beautiful crystals. Acetylation of the phenolic OH groups 

was then explored as an easily installed PG, and diacetylated dibromocatechol 2.11 was 

obtained in a low (46%) yield (Scheme 2-5). The easily attached acetyl moieties were just as 

easily hydrolysed under the basic aqueous Suzuki reaction conditions providing a mixture 

of products, mainly deacetylated dibromocatechol 2.5. 

 

 

Scheme 2-5: Protection of dibromocatechol as the bis(acetate) (2.11). 

 

Thus, the methoxymethyl (MOM) protective group was then chosen as a base-stable 

alternative. Wishing to avoid the highly toxic and carcinogenic chloromethyl methyl ether 

(MOMCl) the more common protection route of deprotonation of the alcohol with NaH 

followed by treatment of the resulting anion with MOMCl was discarded in favour of a more 

obscure method of MOM introduction; this method involves use of phosphorous pentoxide 
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P2O5 in a dimethoxymethane/chloroform solution (Scheme 2-6).53,54 The reaction 

gratifyingly proceeded in an excellent 95% yield to give the bis(MOM)-protected catechol 

2.12. 

 

 

Scheme 2-6: Protection of dibromocatechol 2.5 as the methoxymethyl ether (OMOM). 

 

This product was unexpectedly unstable, converting over several weeks at room 

temperature from a white, crystalline solid to a black, sticky substance. The author is 

unaware of similar behaviour by other MOM-protected alcohols or catechols. Laschat et al.54 

describe the preparation of 4-bromo-1,2-bis(methoxymethoxy)benzene and do not mention 

any instability in that very similar compound. Nonetheless, if kept at −20 °C, 2.12 remains as 

white crystals for several months (>8) without noticeable decomposition.  

With protected catechol in hand, subsequent Suzuki coupling with commercially 

available 3,4-dimethoxyphenylboronic acid required attempting the reaction under several 

conditions in order to acquire the desired product in satisfactory yield. (N.B. This methoxy 

derivative would not yield a liquid crystalline product, rather it serves as a model compound 

using a commercial boronic acid.) Initial attempts involved using, again, a procedure 

published by the Laschat group to make similar terphenyl compounds from aryl 1,2-

dibromides.54 Unfortunately, these reaction conditions (Pd(PPh3)4, K2CO3, NaF, DME-H2O, 
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reflux) yielded a small amount of material with a low overall mass balance. Using slightly 

different conditions (Pd(PPh3)4, Na2CO3, DME-H2O, reflux) gave the product (2.13) in 70% 

yield (Scheme 2-7). An additional benefit is that no column was necessary to isolate the pure 

product provided the organic extracts were filtered through a short pad of Celite® before 

concentration (to remove palladium residue) or, alternatively, decolourised with activated 

charcoal during recrystallisation from hot methanol.    

 

 

Scheme 2-7: Synthesis of terphenyl diol 2.9c via a two-fold Suzuki coupling,  

deprotection sequence. 

 

Deprotection of the bis(methoxymethoxy)terphenyl compound 2.13 was initially 

effected using 38% aqueous hydrobromic acid in acetonitrile. However, this method was 

deemed unsatisfactory due to the disappointing deprotection yield (~70-80%) as well as 



33 

 

product impurity likely caused by instability of the catechol derivative towards such highly 

acidic conditions and possible demethylation of the aryl methyl ethers. A more favourable 

deprotection strategy was then employed utilising a catalytic amount of CBr4 (10 mol% per 

methoxymethyl ether) in 2-propanol, presumably forming small amounts of anhydrous HBr 

which catalyse the deprotection in quantitative yield and excellent purity (Scheme 2-7).55    

Finally, reaction of tetra(methoxy)terphenyl diol 2.14 with TFTP (Scheme 2-8), 

initially carried out using potassium carbonate in DMF gave the tetraphenyl-

dicyanotetraoxapentacene 2.1c in 82% yield. 

 

 

 

Scheme 2-8: SNAr reaction of diol 2.14 with TFTP to afford DCTOP 1c. 

 

Methoxy-substituted dicyanotetraoxapentacene 2.1c was obtained as a bright yellow 

solid exhibiting brilliant fluorescence under UV irradiation (365 nm), much like the C6- and 

C10-substituted congeners obtained previously within the group by Raycraft. Indeed, 

solutions of 2.1c, especially in more polar solvents, fluoresce even in sunlight and the solid 

is green fluorescent under a UV lamp.  
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As mentioned previously, however, the normal motif in liquid crystal design is that of 

long, flexible side chains of which the methyl ethers in 2.1c certainly are not. Therefore, the 

octamethoxy-substituted derivative would not be expected to exhibit a LC mesophase and, 

indeed, the melting point was too high to be determined (>260°C).  

Crystals of 2.1c were grown from chloroform-isopropanol utilizing the slow vapor 

diffusion method and were of quality suitable for X-ray diffraction. The obtained crystal 

structure indicates several important structural features (Figure 2-2). 

 

 

Figure 2-2: Crystal structure of 2.1c showing (a) the top-down view of the core and 

(b) the side-on view of the planar DCTOP molecule. 
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The compound crystallised in a triclinic space group (P-1) with two 

crystallographically non-identical molecules per unit cell. The dicyanotetraoxapentacene 

core was shown to be highly planar, possessing a root mean squared deviation (RMSD) from 

planarity of 0.014-0.037 Å (Figure 2-2b). This is similar to what is known from reported 

structures of other tetraoxapentacenes.56,57 Bond lengths in the core range from 1.360(8)-

1.410(8) Å and suggest significant electron delocalization (Appendix A.) Moreover, the C–O–

C bond angles are an average 115.1 °, closer to that expected for a sp2-hybridised carbon than 

sp3-hybridised oxygen. The phenyl substituents are twisted out of the plane of the core 

(Figure 2-2a), with dihedral angles between phenyl ring and that of the core ranging from 

38.23(14) to 57.02(17) °.  

Because the peripheral phenyl rings are not co-planar with the tetraoxapentacene 

cores, molecules of 2.1a do not engage in effective -stacking interactions in the crystal 

structure.  Rather, the two molecules in the asymmetric units have cores that are offset by 

13.48(10) Å, with a centroid-to-centroid distance of 6.4509(4) Å (Figure 2-3). 
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Figure 2-3: Crystal packing in DCTOP 2.1c. 

 

Unfortunately, there are no published dicyanotetraoxapentacene crystal structures 

with which to compare, other than a dimerized derivative exhibiting bent DCTOP cores.58 

This is unsurprising considering the parent compound’s marked insolubility in nearly every 

organic solvent and tendency to “powder out” of solution rather than crystallise. 

Additionally, many of the DCTOP derivatives in the literature consist of polymers, which 

rarely crystallise. We therefore sought to obtain single crystals of the parent, unsubstituted 

DCTOP in order to provide a basis for comparison with 2.1c.  
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A range of crystallisation methods and solvents were attempted, and small, thin 

crystals were successfully grown from mesitylene via slow evaporation (1-2 months) and 

subjected to X-ray analysis.  

DCTOP crystallised in an orthorhombic space group (Pbca) with three symmetry-

related molecules per unit cell. Unsurprisingly, this compound exhibits bond lengths and 

angles in agreement with that of the tetra-aryl derivative; a similarly low RMSD from 

planarity of 0.039 Å was also observed.  

The packing of this compound has not been described previously in the literature and 

was of primary interest in obtaining crystallographic data. Unlike pentacene, which packs in 

a herringbone pattern (Chapter 1) and therefore exhibits few effective π-π interactions, 

DCTOP does show limited co-facial overlap (Figure 2-4).  

 

 

Figure 2-4: Crystal packing of parent, unsubstituted DCTOP. 
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Each molecule has two molecules above and below the plane of the aromatic system 

(Figure 2-5). The molecules which are packed parallel but rotated ≈90 ° in plane (parallel-

perpendicular) are at a distance of 3.28 Å (plane to plane centroid) with a plane-normal-to-

plane-normal angle of 6.5 °. The molecules which pack in a parallel fashion have plane-to-

plane centroid distances of 3.29 Å while the angle between the plane normals was found to 

be 0 ° (indicating a high degree of co-planarity). In each case the interaction geometries are 

well within those required for face-to-face π-π stacking interactions between the aromatic 

rings, and no C−H···π-interactions were observed.59,60 

 

 

Figure 2-5: Crystal structure of parent DCTOP, showing  

parallel and parallel-perpendicular π−π stacking. 
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 Comparing the parent and tetraarylated derivative 2.1c structures leads to the 

observation that parallel-perpendicular packing of the cores is eliminated in preference to a 

lengthened π−π stacking distance (6.45 Å vs. 3.29 Å) in the substituted derivative.  

 

2.5 Synthesis of C6 and C10-Substituted DCTOP Derivatives 

With the new synthetic route tested, the corresponding boronic acids 2.2a,b were 

synthesised from the corresponding aryl bromides 2.8a,b61,62 via a slightly modified 

published procedure,63 substituting triisopropyl borate for trimethyl borate (Scheme 2-9), 

in moderate to good yields (60-80%). It is worth noting that during the lithium-halogen 

exchange reaction precipitation of the aryllithium and/or the starting material is possible, 

preventing further stirring. This is an issue for both the hexyloxy- and decyloxy-substituted 

compounds but is of more importance for the C10 derivative. Control of the cooling 

temperature during this reaction is imperative, as precipitation during the exchange is 

deleterious for the yield.  

 

 

Scheme 2-9: Synthesis of boronic acids 2.2a,b via literature procedures.63 
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Reacting 3 equivalents of the appropriate boronic acid with previously prepared 2.12 

led to the desired terphenyl derivatives in good yields (70-79%, Scheme 2-10).  

 

 

Scheme 2-10: Synthesis of substituted DCTOPs 2.1a,b via new route. 

 

Deprotection proceeded in good yield (83-89%) to give the requisite terphenyl diol. 

Finally, reaction with TFTP gave the final C6- and C10-DCTOPs in excellent yields (96-100%) 

and, perhaps more importantly, in good purity with ease of purification. This new, more 

convenient route to substituted DCTOPs, while slightly longer (two extra steps) is therefore 

more satisfactory. 
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2.6 Preparation of Less Symmetric Soluble Dicyanotetraoxapentacenes 

Less symmetric DCTOPs can now be synthesised via this modified synthetic route; 

previously, it would not have been possible to synthesise dissymmetric derivatives, since no 

control could be exerted on the fourfold Suzuki coupling.  

Thus, reaction of terphenyl diol 2.14, previously synthesised via Suzuki coupling, was 

then reacted with TFTP to form difluoride 2.18 in 89% yield (Scheme 2-11).  

 

 

Scheme 2-11: SNAr between terphenyl diol 19 and TFTP to afford difluoride 2.18. 

 

With difluoride 2.18 in hand, substitution to form dissymmetric DCTOP 2.19 

proceeded in 79% yield (Scheme 2-12). Somewhat surprisingly, this compound displayed 

excellent solubility in organic solvents (e.g. chloroform, THF); it had been expected that this 

derivative may prove rather insoluble due to the large, unsubstituted, planar aromatic 

surface.  
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Scheme 2-12: Synthesis of first asymmetrically substituted dicyanotetraoxapentacene 2.19. 

 

UV-visible measurements for 2.19 showed a λmax at 427 nm in THF (10−5 M), nearly 

identical to that of the parent unsubstituted DCTOP (430 nm, CHCl3); fluorescence 

spectroscopy (Figure 2-6, 10-6 M in THF) showed a λem at 497 nm (excitation at 420 nm), also 

comparable to C6-DCTOP 2.1b (λem ≈ 500 nm, 10-6 M in THF, excitation at 325 nm).  

 

 

Figure 2-6: Excitation-emission spectra for dissymmetric DCTOP 2.24 

(excitation at 420 nm, 10-6 M, CHCl3). 
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Although not explored, it may be of interest to investigate the fluorescence activity of 

this derivative relative to that of the tetra-aryl derivatives (2.1a-c) to see if the lack of 

substituents at one end of the molecule has any bearing on the AIE behaviour.  

 

2.7 Summary and Future Work 

 A new route to tetraphenyl-substituted dicyanotetraoxapentacenes 2.1a,b has been 

developed, and methoxy-substituted DCTOP 2.1c was synthesised for the first time. This 

methodology affords the desired products in good overall yields (52-65% from catechol) and 

with ease of purification, especially in the pentacene-forming step: each of the final 

pentacene derivatives (2.1a-c) can be obtained from the final reaction without the need for 

column chromatography.  

 Crystal structures were obtained for the parent DCTOP and methoxy-substituted 

derivative 2.1c. Both compounds displayed highly planar cores while differing highly in their 

packing arrangements. 

 Using the synthetic methodology, dissymmetric DCTOPs such as 2.19 have been 

synthesised. Future work in this area could involve the synthesis of dissymmetric LC 

derivatives of 2.19. 
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3. Chapter III – Other Dicyanoheteropentacene Analogues 

3.1 Introduction 

Introduction of heteroatoms into the framework of pentacenes can dramatically 

modulate their properties, and this is a fruitful area of interest.13,64–67 Several well-known 

examples include the work of Prof. Uwe Bunz (U. Heidelberg) who has published extensively 

on the chemistry of N-heteroacenes; the structures of several of these compounds are shown 

in Figure 3-1.64,68–70  

 

 

Figure 3-1: A selection of Bunz’ N-heteroacenes64 

 

Bunz found that the identity and location of the nitrogen atom within the aromatic 

core can affect the properties of the final material.64 A comparison of the difference in 

electron mobilities found for 3.1 and 3.2 (3.3 vs. 4 × 10-4 cm2/Vs, respectively) led to 

examination of the solid state structures where it was found that 3.2 crystallised in a 

herringbone fashion thus leading to attenuated mobility; 3.1 packed in a manner analogous 
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to TIPS-pentacene with efficient face-to-face π−π stacking of the cores, leading to an 

improved charge mobility. The crystal packing of other N-heteroacenes have also been 

compared to their acene analogues as well as the dihydro derivatives.71 

Dihydroheteroacene derivatives such as 3.3 (Figure 3-1) possess formally sp3 

hybridized heteroatoms and as such cannot truly be considered acenes but rather, as acene 

analogues. In the case of the dihydrophenazine moiety of 3.3 and similar compounds, 

conversion to the acene is achievable by treatment with an oxidising agent such as MnO2. 

Examples of acenes incorporating both oxygen and nitrogen in the core are also 

known in the literature (Figure 3-2). Due to the limitations on the number of bonds oxygen 

can make, these compounds often adopt a quinoidal core structure, as in TIPS-

triphenodioxazine 3.4. Two additional properties of note include a 2D-brick layer packing 

structure, akin to TIPS-pentacene, as well as improved n-type performance in organic field-

effect transistor (OFET) devices.72 Compound 3.5, also shown in Figure 3-2, was prepared 

by Zhu et al. in 2008 and exhibited n-type characteristics in OFET devices.73 
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Figure 3-2: Typical structures of triphenodioxazines which have been  

used as OFET components. 

 

In addition to organic electronics applications, triphenodioxazines have also been 

used as dyes; although the orange parent compound has no use as a colorant due to 

insolubility, Pigment Violet 23  (3.6, Figure 3-3) was discovered in 1952 and has been used 

in colouring inks and plastics.74 A more modern application of the dye properties of these 

compounds is in the field of dye-sensitized solar cells (DSSCs), where triphenodioxazines 

such as 3.7 (Figure 3-3) have been used as the active dye component.9 Importantly, 3.7 was 

designed to be soluble such that solution processing of any end material would be viable, as 

well as dissymmetric, to provide a push-pull effect and tune the optical properties. The push-

pull effect was obtained by the positioning of electron-withdrawing and electron-donating 

groups on opposing sides of the core. 
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Figure 3-3: Examples of triphenodioxazine-based dyes. 

 

In addition to compounds incorporating nitrogen and oxygen, of particular current 

interest in organic electronics are aromatic sulfur-containing moieties (e.g. thiophene, 

phenothiazine).75–77 This interest in sulfur containing compounds can be traced partially to 

the redox chemistry of sulfur containing compounds, which can open them up to various 

applications. Compound 3.8b (Figure 3-4, X = S) was shown to form stable radical cation 

salts electrochemically, as well as charge-transfer complexes with TCNQ, and was tested as 

a hole-injection material for organic light-emitting diode (OLED) applications.78  

 

 

Figure 3-4: Heteroacene analogues incorporating O,N (8a) or S,N (8b). 
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It can be seen, then, from the previous examples that incorporation of heteroatoms in 

acenes and acene analogues can alter the solid-state characteristics such as crystal packing 

and charge transport capabilities. Pursuing novel heteroaromatic compounds allows for an 

investigation of their properties. 

 

3.2 Synthetic Approach 

Surprisingly, there are no pentacene analogues in the literature derived from 

tetrafluoroterephthalonitrile and nucleophiles other than 1,2-dihydroxyarenes, which leads 

to previously-discussed DCTOP compounds (Chapter 2). As shown below (Scheme 3-1) there 

are several derivatives imaginable from varying the heteroatoms of the 

nucleophilic/electrophilic partner. 

 

 

Scheme 3-1: Possible synthetic route to TFTP-derived 

 dicyanoheteropentacene analogues. 
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Analogues in which one or more oxygen atoms of the parent DCTOP compound are 

replaced with other heteroatoms such as nitrogen or sulfur could lead to compounds with 

drastically different properties. Although there are literature reports for the preparation of 

the dibenzodioxin (3.16),79,80 dihydrophenazine (3.17),79 thianthrene (3.18),79 and 

dioxatetracene (3.19)79 (Figure 3-5) there are virtually no reports of the pentacenes which 

could be formed from these difluoroanthracene analogues other than the tetraoxa congener.  

 

 

Figure 3-5: Previously reported reaction products of TFTP 

 and 1,2-bifunctional nucleophiles. 

 

3.3 Attempted Reactions between 2-Aminophenol and TFTP 

As a starting point, the reaction between tetrafluoroterephthalonitrile (TFTP, 2.4) 

and commercially available 2-aminophenol (2-AP, 3.20) was investigated under basic and 

neutral conditions (Scheme 3-2). 
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Scheme 3-2: Attempted synthesis of diazadioxapentacene analogue 3.21,  

and actual products, phenoxazines 3.22 and 3.23. 

 

In the first set of conditions attempted, TFTP was combined with 2-AP (3.20) in DMF 

with potassium carbonate as the base and heated to 65 °C under N2. Under these conditions 

the mixture turned dark purple in colour and a brick-red microcrystalline solid was obtained 

upon workup (pouring into H2O) in 50% yield based on TFTP, however, 1H NMR indicated a 

mixture of products, inseparable by TLC. To learn the identity of the constituents, single 
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crystals were grown from a DMF solution of the mixture, and the compound was identified 

as phenoxazine 3.22 via X-ray crystallography (Figure 3-6). 

 

 

Figure 3-6: Crystal structure of substituted phenoxazine 3.22. 

 

Repeating the reaction in the absence of base stirring at room temperature in DMSO, 

a vividly bright orange precipitate formed (quantitative yield) and was likewise 

characterised. Markedly different in colour (orange) and practically insoluble in most 

organic solvents at room temperature at concentrations greater than 10-3 M, this derivative 

was shown to be the mono-cyclised product 3.23 by single crystal X-ray diffraction (Figure 

3-7). 
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Figure 3-7: Crystal structure of phenoxazine 3.23; DMSO (solvent) is also shown; 

dashed red line represents hydrogen bonding. 

 

The crystal structure of 3.23 shows near complete planarity of the phenoxazine ring, 

possessing a root mean square deviation of 0.013 Å from planarity.  Interestingly, but 

perhaps not surprisingly, the molecules adopt an alternating arrangement within slipped 

stacks, with a plane to plane centroid distance of 3.34 Å and a plane to plane shift of 1.32 Å 

between successive molecules (Figure 3-8).  
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(a) 

 

(b) 

Figure 3-8: Crystal packing of phenoxazine 3.23 from (a) side view and (b) top-down view. 

 

This alternating arrangement could be due to dipole cancellation and/or π−π 

interactions of the more electron-deficient (dicyanodifluoro) aromatic ring with the more 

electron rich terminal benzene ring. The N-H bond does not appear to hydrogen bond 
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strongly to another phenoxazine but does form H-bonds to the co-crystallised solvent 

(DMSO). A similar motif is observed in phenoxazines, although in some cases this appears to 

be due to sterics of the N-substituent or H-bonding interactions.81,82 

As mentioned previously, 3.22 forms a dark purple anion in the presence of a base 

such as hydroxide or carbonate. The same is true for the orange compound 3.23. Addition of 

acid (HCl) to the purple anion reforms the original orange material with concomitant 

precipitation. As shown below (Figure 3-9) deprotonation of the phenoxazine N-H leads to a 

resonance-stabilised anion, the resulting charge of which can be delocalized onto the para 

fluoro-substituted carbon (contributor 3.24), thus stabilised via the inductive effect, and 

further delocalized into the nitrile ortho to the phenoxazine N-H (contributor 3.25). Both 

effects in tandem could lead to the increased acidity of the N-H bond.  

  

 

Figure 3-9: Deprotonation and resultant resonance contributors of phenoxazine 23. 

 

It then follows from this discussion that the reaction may stall after three 

substitutions (one cyclisation) due to the high negative charge density on the carbon of the 
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last remaining C-F bond. This is unsurprising when one considers the trend that nucleophilic 

aromatic substitution reactions on electron-rich aromatic rings proceeds extremely slowly 

or not at all. The fluorine atom meta to the phenoxazine nitrogen is evidently not as 

deactivated, as the charge has no way to delocalize to that carbon atom, and substitution 

proceeds at that position to give 3.22 (and other unidentified products).  

Although it was unexpected to proceed for reasons stated above, several attempts 

were made to force the cyclisation of the mixture containing trisubstituted 3.22 to the 

desired product. Conditions attempted included using KOtBu or NaH in excess as the base, 

however this was unsuccessful, providing an insoluble and unidentifiable brown amorphous 

material.  The reaction was again attempted in DMF in the absence of base, using heat alone 

to force the cyclization, however starting material was recovered. Attempting to heat 2-AP 

and TFTP (0.5 eq) led to only difluorophenoxazine 3.23 as the product. 

Although this was disappointing, the surprising nature of the unexpected 

phenoxazine 3.23, and its relative ease of preparation, made up for the misfortune. While 

the crystalline solid displayed a bright orange colour (Figure 3-10) the deprotonated 

material possessed deep violet coloration. We chose to briefly explore both the acidity of the 

compound as well as its spectral properties.  
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Figure 3-10: Phenoxazine 3.22 as an orange crystalline solid (left) and 

 in the purple deprotonated form in iso-propanol/DBU (right). 

 

It was found through some experimentation that several organic bases such as DBU 

were able to deprotonate phenoxazine 3.23 and generate the purple anion. Also of note was 

that a 1.0 M solution of TBAF in THF was also capable of producing the same purple colour 

of the anion when dripped into a saturated THF solution of the compound. This can possibly 

be explained by the high basicity of fluoride in anhydrous solution; Christe showed that 

anhydrous fluoride could abstract a proton from acetonitrile, as well as participate in SN2 

reactions with dichloromethane and chloroform.83 This behaviour is, in retrospect, 

unsurprising, however it did lead to an interesting observation with a related compound 

(vide infra). 

UV-visible spectra for both phenoxazine 3.23 and the anion thereof were obtained in 

THF (Figure 3-11). The deprotonated form was obtained by adding an excess of DBU, which 

has a negligible absorption spectrum. 
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Figure 3-11: UV-visible spectra of phenoxazine 3.23 in THF (1.0 x 10-4M, solid line)  

and 3.23 with excess DBU in THF (1.0 x 10-4 M, dotted line). 

 

The growth of a broad, red-shifted peak is apparent, as well as several peaks which 

are blue-shifted relative to the N-H phenoxazine. This red-shift could be indicative of an 

increase in conjugation, which fits with the proposed resonance contributors. 

It is known from the literature that phenoxazines can be difficult to alkylate, although 

procedures are known involving strong bases (KOH, KOtBu) in polar aprotic solvents (DMF, 

DMSO).84–86 Interestingly, Gilman noted that “Phenoxazine, similar to carbazole, is not acidic 

enough to condense with ethyl iodide in a refluxing acetone solution of potassium hydroxide, 
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as do nitrocarbazoles.”87 In the case of 3.23, it does not appear that lack of an acidic N-H 

bond is the issue, as weak bases such as piperidine (pKa = 11.22, 0.1 M MeOH/CCl4)88 are 

capable of, presumably, deprotonating and forming the putative purple-coloured anion.  

Methylation of 3.23 was attempted utilizing either dimethyl sulphate or methyl 

iodide as the methylating agent, under either neutral or basic conditions (Me2SO4-DMSO-H2O 

or MeI-KOH-DMSO) and using a stronger base than hydroxide (KOtBu). In each instance no 

evidence of alkylation was observed (absence of methyl signal via 1H NMR).  

Attempted acetylation using acetyl chloride in toluene/triethylamine likewise failed, 

in all instances with unreacted starting material being recovered. This pattern of non-

nucleophilicity led us to the realization that the troublesomely acidic N-H bond formed 

during the reaction would need to be avoided entirely. 

 

3.4 Synthesis and Properties of p-Dicyanodiazadioxapentacenes (p-

DADOPs) 

Turning our attention back to the failed attempted synthesis of heteropentacene 

derivatives, since the SNAr reaction itself did not seem to be the problem, rather the 

deactivating effect of the amide anion, use of a 2-aminophenol derivative bearing an 

appropriate N-substituent appeared viable. An alkyl group would allow the nitrogen to 

retain nucleophilicity as opposed to an amide or carbamate nitrogen, where nucleophilicity 

is attenuated. Due to synthetic feasibility 2-(ethylamino)phenol was chosen as the reactive 
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partner. 2-Aminophenol was first acetylated using acetic anhydride in ethyl acetate and the 

resulting amide (3.26) reduced using lithium aluminum hydride (LAH) in THF to furnish 2-

(N-ethylamino)phenol (3.27) in a two-step sequence (Scheme 3-3). 

 

 

Scheme 3-3: Synthesis of 2-(ethylamino)phenol (3.27). 

 

Rather than protect the acidic phenol, an excess of LAH was used (2.0 eq) to 

deprotonate the alcohol fully. Care should be taken when adding the reagent, since the 

deprotonation proceeds rapidly, whereas the reduction does not.  

Compound 3.27, although forming white needles from chloroform, was found to be 

unstable, decomposing in light at room temperature. NMR samples in CDCl3 were initially 

colorless but would discolor within minutes in sunlight and turn dark green within an hour. 

The compound appears stable for several months if stored as a pure, crystalline solid at −20 

°C, in the dark. No new signals appear in the 1H or 13C NMR, however significant line 

broadening is apparent in both spectra.  
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Reacting two equivalents of 2-(ethylamino)phenol with TFTP led to the fully cyclised 

diazadioxadicyanopentacene (DADOP) 3.28 (Scheme 3-4) in 100% yield. It was found 

through some experimentation that a higher temperature relative to the DCTOP derivative 

(100 °C vs. 65 °C respectively) was optimal. This is rationalised by the amine being a neutral 

nucleophile under the reaction conditions, while the alcohols of catechol were deprotonated 

and therefore more nucleophilic.  

 

 

Scheme 3-4: Synthesis of para-diazadioxapentacene (p-DADOP) derivative 3.28. 

 

 This compound, as opposed to the parent dicyanotetraoxapentacene (DCTOP) and 

phenoxazine derivative 3.23, displays enhanced solubility in chloroform. In addition to the 

marked increase in solubility, compound 3.28, shown in Figure 3-12 as a deep red, 

crystalline solid, shows bright orange fluorescence in both the solid and solution states. In 

contrast, phenoxazine 3.23 exhibits only weak fluorescence in solution (DMF) and no 

activity as a crystalline solid. Although the compound formed beautiful crystals from 

chloroform-methanol, they were incredibly tiny (so much so that they possess a “sparkle”, 
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see Figure 3-12). Growing X-ray quality single crystals from a variety of solvents and solvent 

mixtures has not yielded results to date, with any crystalline material forming as 

microcrystals. 

 

 

Figure 3-12: Diethyl-p-DADOP 3.28 as a bright red, microcrystalline solid. 

 

Sublimation of this compound was therefore attempted to obtain a diffraction quality 

single crystal. The technique was successful inasmuch as sublimation occurred at 185 °C / 

0.5 mmHg, but the formed crystals were of lower quality. When attempting to acquire a 

melting point by using the polarised optical microscope the compound was sufficiently 

volatile at 300 °C to sublime and condense on the cover of the heating stage, indicating some 

measure of thermal stability, however, no melting was observed. 

Since the structural features (e.g. planarity) of, and interactions between, the cores 

were of main interest, synthesis and crystallisation of a differently soluble derivative was 
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attempted. To this end, the N-decyl-substituted analogue was chosen as a “model” with 

hopefully more attainable crystallization conditions.  

Slightly different conditions were employed to install the decyl group since the 

anhydride of decanoic acid is prohibitively expensive (and not at all atom economical!). Thus, 

alkanoylation of 2-aminophenol proceeded with decanoyl chloride in THF-pyridine giving 

the amide (3.29) in 80% yield after recrystallisation from methanol-water (Scheme 3-5, 

modified from a literature procedure for the analogous hexadecylamidophenol.)89 Reduction 

with LAH in THF proceeded in 80% yield to give the decylaminophenol (3.30). This 

compound, like 2-(ethylamino)phenol (3.27) previously prepared, was an unstable 

compound which decomposed over several weeks at −20 °C and suffered line broadening in 

the NMR spectra. This was then reacted with 0.5 equivalents of TFTP under the standard 

conditions to furnish the C10-DADOP analogue 3.31 in 84% yield. 
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Scheme 3-5: Synthesis of N,N’-didecyl-p-DADOP 3.31. 

 

Crystals of 3.31 shown in Figure 3-13 were grown from slow diffusion of acetonitrile 

into a saturated chlorobenzene solution and were of suitable size and quality for X-ray 

diffraction. 
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Figure 3-13: Red crystals of C10-p-DADOP 31 viewed under 

an optical microscope. 

 

Compound 3.31 crystallised in a triclinic space group (P-1) with one molecule per 

unit cell (the asymmetric unit contained one-half of the full molecule). The 

diazadioxapentacene core exhibited a root mean squared deviation from planarity of 0.099 

Å, indicating a surprising degree of planarity considering the four formally sp3 hybridised 

heteroatoms in the core (Figure 3-14). 
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Figure 3-14: Top-down view of DADOP core in 3.31 (left), and  

side view (right). 

 

The C‒O‒C bond angle around each oxygen is 117.8 °, slightly larger than in the 

DCTOP series (average 115 °), while the C‒N‒C bond angle is 118.1 °; both angles are larger 

than expected for sp3 hybridised oxygen or nitrogen, however, they fit within angles 

normally seen for phenoxazines (N-ethylphenoxazine ∠C−O−C = 117.4 °, ∠C−N−C = 118.9 °). 

The bond lengths in the core vary from 1.3708(19) to 1.413(2) Å, indicating electron 

delocalisation.  

The crystal packing of 3.31 indicates an interesting arrangement of the molecules 

within the crystalline state (Figure 3-15). The cores of the DADOP molecules pack in a half-

staircase arrangement, where the ends of the core alternate over an alkyl chain or another 

DADOP core. A π−π stacking interaction occurs between the terminal pentacene benzene 

ring and the central dicyanobenzene ring of another molecule. Additionally, the alkyl chains 

are remarkably ordered as well, interdigitating between the aromatic cores.  
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(a)  

 

(b)  

Figure 3-15: Crystal packing of p-DADOP 3.31 looking along the (a) [100] direction or (b) [101] 

direction. 
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It should also be noted that this crystal data also gives definitive proof of the 

substitution pattern of TFTP when reacting with a nucleophile such as 2-

(ethylamino)phenol; it had been presumed that the substitution would proceed in a para-

fashion with respect to like atoms, due to the obtained crystal structure of trisubstituted 

phenoxazine 3.22, however, that product was obtained as a mixture. DADOP 3.31 shows that 

even with a bulkier ethyl substituent (cf. NH2) the substitution proceeds in good yield in a 

para-substitution pattern. 

 

3.5 Synthesis and Properties of N-ethyl-dicyanodifluorophenoxazine 3.32 

In addition to forming the full pentacene analogue, it was also of interest to expand 

our chemical library. As previously mentioned, some tricyclic products of TFTP-substitution 

are known in the literature79, however, they have been poorly characterised and have not 

been used for preparing pentacene derivatives. Moreover, there are no phenoxazine 

derivatives in the literature derived from TFTP. 

In this vein, reacting 2-(ethylamino)phenol (3.27) with TFTP in the absence of base 

with DMSO as the solvent gave N-ethylphenoxazine difluoride 3.32 in 80% yield (Scheme 3-

6). 
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Scheme 3-6: Synthesis of N-ethylphenoxazine 3.32. 

Much like the H-substituted phenoxazine 3.23, derivative 3.32 also displayed a very 

similar orange colour. However, the solubility of the compound in everyday organic solvents 

(e.g. chloroform, ethyl acetate) had greatly improved, such that NMR data was collected in 

CDCl3.  

In contrast to the N-H derivative, the N-ethyl phenoxazine (3.32) exhibits no colour 

change upon exposure to bases nor fluoride ion. The absence of colour change upon 

treatment with base is expected, since compound 3.32 no longer has the acidic N-H group. 

Surprisingly, however, an effect was noticed with respect to the fluorescence behaviour of 

3.32 in the presence of anhydrous, ethereal fluoride, and no such effect was seen with Cl- or 

Br- anions. Figure 3-16 shows the fluorescence spectra of 3.32 (1.0 x 10-4- M in THF, 

excitation at 450 nm) with no fluoride present (low intensity) and upon titration of 5 μL of 

TBAF (0.025 M in THF, 0.5 eq F−) up to 3.5 equivalents of fluoride (high intensity).  



69 

 

 

Figure 3-16: Fluorescence titration of phenoxazine 3.32 (1.0x10-4 M)  

with TBAF (5 μL portions, 0.025 M, 0.5 eq).  

This behaviour is not unknown in the literature, although there are several different 

mechanisms by which fluoride can interact with π-systems. Firstly, if fluoride is acting as a 

nucleophile, the increase in intensity could be attributed to the formation of a Meisenheimer 

complex, which is the 1:1 adduct of a nucleophile with an electron-deficient aromatic system. 

Fluoride was shown to bind to electron-deficient hexafluorobenzene (in the gas phase) in a 

Meinsenheimer-type complex.90 Increases in fluorescence intensity have been noted for the 

formation of Meisenheimer complexes.91 Were this the case, however, it would be expected 

that more than one molar equivalent of fluoride would cause a saturation effect, which is 

obviously not observed, although this does not, necessarily, rule out the possibility.   
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A second explanation involves an anion-π interaction, whereby the electron-rich 

fluoride anion can donate electron density into the electron-deficient aromatic ring. Guha, et 

al. reported the synthesis of a linked naphthalene diimide (NDI) dimer which led to a fluoride 

to NDI electron transfer event, along with changes to the UV-vis and fluorescence spectra.92 

In the case of anion-π interactions, which are generally weak, the lack of ceiling effect up to 

3.5 equivalents is unsurprising, as these interactions are often observed in the literature with 

0-50 equivalents of anion being used.93  

 Not enough information is known at present about the system to make a 

determination of how the fluorescence intensity is increasing. Studies towards this end are 

ongoing. 

Phenoxazine 3.32 formed orange needles from acetonitrile, from which a crystal of 

suitable quality was subjected to X-ray diffraction. The compound crystallised in a 

monoclinic space group (P21/n) with four molecules per unit cell; the N-ethyl group 

crystallised in two conformations, both of which are modeled (Figure 3-17). 
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Figure 3-17: Crystal structure of N-ethylphenoxazine 3.32. 

 

A root mean squared deviation from planarity of 0.099 Å (cf. RMSD = 0.013 Å for 3.32) 

was observed, which is consistent with other N-substituted phenoxazines.81,82 Furthermore, 

C−N−C and C−O−C bond angles in the core were found to be 119.2 and 117.7 ° respectively, 

consistent with the N-H analogue, as well as C10-p-DADOP 3.31. 

The packing motif of 3.32 was also consistent with that of the N-H analogue: 

alternation within stacks occurred such that electron-deficient and electron-rich rings 

overlapped in a parallel co-facial arrangement. However, unlike the crystal structure of 3.23, 

no solvent molecules were included in the lattice and the larger RMSD from planarity also 

had an interesting ramification for the solid-state packing (Figure 3-18a) where the stacks 

of molecules alternated in bending direction up the individual columns.  Due to steric effects, 

the molecules also alternate such that ethyl groups are not directly above one another within 
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stacks (Figure 3-18b) This behaviour is akin to that of phenoxazine 3-23, wherein the 

hydrogen-bonded DMSO fulfills the bulky group role. 

 

 

(a) 

 

 

(b) 

Figure 3-18: Crystal packing in N-ethylphenoxazine 3.32, showing the 

 (a) alternation in bending within columns, and (b) alternation 

 along the long and short axes of 3.32. 
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The cores overlap in a π-π stacking arrangement, with a plane to plane centroid 

distance of 3.61-3.67 Å and a plane to plane shift of 1.38-1.57 Å between consecutive rings. 

The plane normal to plane normal angle was 1.36(5) °, indicating a highly parallel contact 

between the rings.   

The crystal structure of 3.32 was also compared to the parent N-ethylphenoxazine, 

the crystal structure of which has been published in the literature.82 This compound, in 

contrast to the dicyanodifluoro analogue, exhibits no π-π interactions, and packs in an almost 

pure herringbone motif (Figure 3-19). Although the plane to plane centroid distance is 

similar (3.61 Å) to dicyanodifluorophenoxazine 3.32 (3.34 Å), the planes are offset by almost 

double that in 3.32 (plane to plane shift = 3.45 vs. 1.32 Å in 3.32) such that the actual degree 

of overlap is low.  
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Figure 3-19: Crystal structure of otherwise unsubstituted N-ethylphenoxazine from the 

literature. 

 

It is perhaps unsurprising that a compound with less C−H bonds shows fewer C−H···π 

interactions. However, the complete lack of any such interactions for compound 3.32 is 

interesting and could be indicative of high orbital overlap.  

This new difluorophenoxazine could be used as a useful building block to more 

complex structures incorporating the phenoxazine core. 

 

3.6 Attempted Synthesis of Parent N-H p-DADOP 3.21 

 Although the synthesis of both N-ethyl and N-decyl p-DADOP proceeded well, we 

were still interested in obtaining the parent, unsubstituted compound 3.21 (Figure 3-20). 
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This compound is interesting for several reasons; firstly, its packing in the solid state would 

be of interest as compared with the N-alkyl substituted derivatives. Synthesis of this 

compound would allow a comparison with quinacridones (Chapter 1), which have been 

studied in the solid state.25,26 Secondly, it should be possible to oxidise the dihydro analog 

3.21 to the quinoidal triphenodioxazine 3.33. 

 

 

Figure 3-20: Conversion between dihydrotriphenodioxazines (3.21)  

and triphenodioxazines (3.33). 

 

There have been only three reports of dicyanotriphenodioxazines such as 3.33 in the 

literature, none in English, and all from the 1970s.94 Considering the interesting chemistry 

of the alkylated reduced analogue (i.e. 3.28), access to 3.33 would be exciting (although the 

product would be expected to be quite insoluble).  

Removing the N-alkyl groups was briefly considered but discarded; one published 

literature procedure from 1979 for the demethylation of phenoxazines employs very harsh 
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conditions (pyridinium bromide at 200 °C) and only seems to work for certain phenoxazines, 

leading to black tarry products in others.95  

 Use of N-(2-hydroxyphenyl)acetamide 3.26, precursor to the DADOP derivatives, was 

also considered. This was not attempted, since amides are much less nucleophilic than their 

amine counterparts and would thus constitute a much larger change to the reaction 

conditions (i.e. chance of failure). Moreover, cleavage of acetamides is usually carried out 

under basic conditions and could lead to undesired degradation. 

We envisioned a protection-deprotection sequence wherein the target compound 

could be easily formed during the SNAr reaction and deprotected under mild conditions. For 

this purpose, the benzyl protecting group was chosen, which is cleaved under mild reducing 

conditions preventing oxidation of the target dihydro compound 3.21 (retrosynthetic 

analysis shown in Scheme 3-7).  

 

Scheme 3-7: Retrosynthetic analysis for N-H p-DADOP 3.21. 
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Fortunately 2-(benzylamino)phenol 3.35 is a known compound, and was synthesised 

in a two step sequence (Scheme 3-8).96 First, freshly distilled benzaldehyde 3.36 was 

condensed with 2-aminophenol in THF with MgSO4 driving the reaction forward by 

adsorbing water as it forms. The crude imine 3.37 (quantitative yield) was then reduced 

with sodium borohydride in methanol at 0 °C to give the product (3.35) as an unstable green 

oil which solidified upon storage at −20 °C.  

 

 

Scheme 3-8: Synthesis of 2-(N-benzylamino)phenol 3.35.96 

 

Reaction of 3.35 with 0.5 equivalents of TFTP did not, however, provide the desired 

product (Scheme 3-9). Rather, several products were formed during the reaction (TLC) and 

upon workup and purification via column chromatography (SiO2) a brick-red product was 

obtained as an inseparable mixture. 

 



78 

 

OH

NH

3.35

Bn

F

F

F

F

CN

CN

N

O

O

N

Bn

BnCN

CN

2.4 3.34

K2CO3, DMF

70 oC
x

 

Scheme 3-9: Failed attempted reaction of 2-(N-benzylamino)phenol 3.35  

with TFTP to form N-Bn-p-DADOP 3.34. 

 

 1H NMR of the mixture in CDCl3 shows that, although the aromatic region is quite 

complicated (Figure 3-21), there are three clear benzyl methylene singlets at 5.17, 5.01, and 

4.88 ppm in relative intensities of 1:2:1. If this were the desired product 3.34, it would be 

expected to see only one signal due to symmetry.  

 

Figure 3-21: 1H NMR of reaction mixture from attempt to form N,N’-dibenzyl-p-DADOP 3.34 
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When the reaction was carried out with 1:1 stoichiometry it was possible to form the 

N-benzyl phenoxazine 3.38 (Scheme 3-10), which required tedious chromatography for 

isolation.  

 

 

Scheme 3-10: Synthesis of N-benzylphenoxazine 3.38. 

 

The structure of this compound was confirmed conclusively via X-ray 

crystallography; single crystals were obtained via evaporation of an ethyl acetate/hexane 

solution. Compound 3.38 crystallised in a monoclinic space group (P21/c) with four 

molecules per unit cell. The core is much more bent relative to N-H analogue 3.23 (Figure 3-

22a) displaying a RMSD from planarity of 0.161 Å (cf. 0.013 Å for 3.23). 
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(a) 

 

 

(b) 

Figure 3-22: (a) Crystal structure of 3.38 showing bending within the  

phenoxazine core, and (b) looking down on the plane of the aromatic system. 

 

The packing of the molecules in the crystalline state followed that of the N-H 

derivative, with each molecule alternating within π-stacks (Figure 3-23). The terminal 

phenoxazine rings are separated from those above and below by a plane-to-plane centroid 

distance of 3.591(2)-3.696(2) Å, and a plane normal-to-plane normal angle of 4.69(8) °, 

indicating some degree of π−π stacking. 
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Figure 3-23: Crystal structure of 38 showing alternation within π-stacks. 

 

Due to the poor reactivity (and stability) of the 2-(benzylamino)phenol precursor 

towards TFTP, access to the parent N-H DADOP 3.21 seems not viable by way of this 

synthetic route. Thus, attention was then diverted to exploring the other possible congeners 

in the series. 

 

3.7 Other Possible O,N Isomers and Acronyms 

At this point it is worth discussing the possible nitrogen-oxygen isomers which could 

be the target of future studies (Figure 3-24). 
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Figure 3-24: Possible dicyanoheteropentacene congeners. 

 

The all-oxygen dicyanotetraoxapentacene (DCTOP) 3.39 should be familiar from 

Chapter 2 and derives from the reaction of catechol with TFTP. The analogous all-nitrogen 

dicyanotetraazapentacene (DCTAP) 3.40 could be considered a derivative of o-

phenylenediamine via this methodology, as well as containing a dihydrophenazine core in 

the product.  

The next two congeners are the 3:1 isomers, dicyanoazatrioxapentacene (ATOP) 

3.41 and dicyanotriazaoxapentacene (TAOP) 3.42. These compounds are retrosynthetically 
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different from DCTOP and DCTAP in that they could be obtained via preparation of the 

respective o-difluoride 3.16 or 3.49 from a symmetric nucleophile followed by reaction with 

the second, non-symmetric nucleophilic subunit (Scheme 3-11). 

 

 

Scheme 3-11: Possible synthetic pathways to ATOP (3.41) and TAOP (3.42) derivatives. 

 

Of the final three isomers, we shall concern ourselves mainly with dicyano-para-

diazadioxapentacene (para-DADOP) 3.43 and dicyano-ortho-diazadioxapentacene (ortho-

DADOP) 3.44. In these cases, the ortho, meta, and para descriptors are taken to refer to the 

relative positions of like atoms (N and O). Due to the reactivity of the compounds, dicyano-

meta-diazadioxapentacene (ortho-DADOP) 3.45 is not obviously accessible via the currently 

utilised SNAr methodology as the substitution pattern is presumed to occur in the para 

fashion.  



84 

 

Using the proposed names, N,N’-diethyl-para-DADOP (3.28) was the first of the 

dicyanoazaoxapentacenes synthesised in this manner.  

 

3.8 Synthesis of Dicyanoazatrioxapentacenes (ATOPs) 

The unsubstituted azatrioxapentacene core (3.50, Figure 3-25) barely appears in the 

literature save in several Chinese language patents, where there are no experimental 

details.97 As such, this motif is a virtually unexplored system. Additionally, aromatic 

molecules of lower molecular symmetry, such as 3.50, can show improved photostability 

and fast intersystem crossing relative to more symmetric analogues.98 

 

 

Figure 3-25: Unsubstituted ATOP core (3.50), virtually unexplored in the literature. 

 

Since difluoride 3.16 is a known compound,80 the route to N-ethyl-ATOP 3.51 became 

quite convenient (Scheme 3-12). Indeed, reaction of 2-(ethylamino)phenol with 3.16 

furnished the monoazatrioxa derivative, ATOP 3.51, in 66% yield as a vibrant orange solid. 

This compound, like the DCTOPs and DADOPs, again displayed bright fluorescence in the 
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solution and solid states, as well as enhanced solubility over its tetraoxa congener (DCTOP 

3.39).  

 

 

Scheme 3-12: Synthesis of N-ethyl-ATOP 3.31. 

 

Similar to N,N’-diethyl-DADOP 3.28, this compound also formed miniscule crystals 

when recrystallised from toluene-methanol. Attempts to grow X-ray quality single crystals 

are ongoing. 

It may be remembered from Chapter 2 that difluorides such as 2.18 (Scheme 3-13), 

generated from reaction between TFTP and a terphenyl catechol, are intermediates in the 

synthesis of the tetraphenyl-DCTOPs.  Taking the tetramethoxy difluoride 2.18 and reacting 

it with 2-(ethylamino)phenol in DMF at 100 °C the presence of K2CO3 gave this 

unsymmetrical  diarylated derivative 3.53 in 87% yield (Scheme 3-13). 
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Scheme 3-13: Synthesis of syn-diarylated ATOP 3.53. 

 

The properties of 3.53 are very similar to that of the parent ATOP with respect to UV-

visible maximum absorption and emission in fluorescence spectroscopy, indicating little 

change introduced by the appended aryl groups (λem = 556 nm, 10-6 M, CHCl3, excitation at 

475 nm). 

UV-vis measurements of the three compounds in chloroform (Figure 3-26) indicates 

a red shift of the λmax upon introduction of nitrogen atoms. The parent DCTOP (3.39) exhibits 

maximum absorption at 430 nm, the N-ethyl-azatrioxa (ATOP, 3.41) derivative at 467 nm, 

and N,N’-diethyl-DADOP 3.28 at 495 nm, indicating a shift of +37 nm upon addition of one 

nitrogen atom, and +65 nm upon addition of two nitrogen atoms (in the para positions). 

Additionally, the absorption broadens slightly along the same trend. 
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Figure 3-26: Normalized UV-visible absorption spectrum of  

DCTOP (3.39), ATOP (3.41), and p-DADOP (3.28) in CHCl3. 

 

The DADOP derivatives (3.28 and 3.31) demonstrated an apparent solvatochromism, 

as solutions in various solvents would appear slightly different colours (shades of red-

orange). Initial investigation into this behaviour (UV-visible spectroscopy) indicated that 

solvatochromism, while present, had a small (≈3-15 nm) effect on the λmax (Figure 3-27).  

 

0

0.2

0.4

0.6

0.8

1

1.2

350 375 400 425 450 475 500 525 550 575 600

N
or

m
al

iz
ed

 A
bs

or
ba

nc
e

Wavelength (nm)
DCTOP ATOP DADOP



88 

 

 

Figure 3-27: UV-visible spectra of 3.31 in several solvents (2x10-5 M). 

 

However, far more apparent was the pronounced hyperchromic shift (increase in 

molar absorptivity) when benzonitrile was used as the solvent. Other solvents used were 

non-aromatic THF and chloroform, aromatic benzene, and electron-rich aromatic anisole. In 

each of the other cases a similar absorbance was observed, with the molar absorptivity 

constant (ε) ranging from 7500 L·mol-1·cm-1 in anisole to 10350 L·mol-1·cm-1 in chloroform. 

In benzonitrile, ε experiences a modest, but perceptible, boost to 22 300 L·mol-1·cm-1.  

More experimentation is required before the cause of this behaviour can be attributed 

fully, but a preliminary theory could be simple aggregation in benzonitrile solution.  
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Fluorescence spectra of the two new pentacene derivatives were also compared to 

that of the parent DCTOP (Figure 3-28). 

 

 

Figure 3-28: Fluorescence spectra of DCTOP 3.39, ATOP 3.41,  

and DADOP 3.28 (CHCl3, 10-6 M, excitation at λmax). 

  

 All three compounds are fluorescent in solution, and the emission maxima are red-

shifted with increasing nitrogen content. This is in agreement with the UV-visible 

absorption spectra, wherein λmax also experiences a red-shift with increasing N-atoms in 

the core.  
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3.9  Attempted Synthesis of Analogues Derived from o-Phenylenediamine 

3.9.1 Introduction 

There are many examples of N-heteroacenes within the literature incorporating 

pyrazine or dihydropyrazine rings. Most of these compounds are produced via condensation 

type reactions between an aryl 1,2-diamine and a 1,2-dione such as in Bunz’ syntheses of 

azaacenes (Scheme 3-14), wherein the two reagents are reacted in a melt.70 

 

 

Scheme 3-14: Bunz' synthesis of N-heteroacene 3.56. 

 

While condensation methods are the most common method, nucleophilic aromatic 

substitution has also been used to synthesise phenazines and other N-heteroacene 

analogues, such as Bunz’ synthesis of the N-heteroacene derivative 3.59 (Scheme 3-15) via 

nucleophilic displacement of fluoride followed by oxidation with MnO2.68  
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Scheme 3-15: Bunz’ synthesis of N-heteroacene 3.59 via SNAr with hexafluorobenzene.68 

 

Additionally, one group has published the synthesis of compound 3.17 derived from 

TFTP and o-phenylenediamine (Scheme 3-16), however no characterization for the 

derivative was given. In this instance the authors claim to use ultrasound sonication in room 

temperature DMF with base (K2CO3 or Et3N) to effect the reaction.79 There have been no 

reports of alkylated aryl-1,2-diamines reacting with TFTP. 

 

 

Scheme 3-16: Wang's synthesis of TFTP-derived dihydrophenazine 3.17 via SNAr reaction.79 
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Therefore, there is both precedent for the type of chemistry we are interested in 

carrying out as well as interest in N-heteroacene derivatives.  

 

3.9.2 Attempted Synthesis of TFTP-Derived N-Heteroacenes 

As in the investigation of the o-DADOP derivatives, TFTP was reacted with two 

equivalents of o-phenylenediamine under standard conditions (K2CO3, DMF, 65 °C). 

However, in this case an unidentifiable mixture of dark black products resulted.  

Repeating the reaction in the absence of base provided a dark brown product which 

formed brilliant red solutions in organic solvents such as DMF. 1H NMR of the product in 

DMSO-d6 indicated a symmetrical molecule containing an aromatic multiplet (characteristic 

of the monocyclised products) at 6.60-6.52 ppm, as well as a singlet at 8.54 ppm in a relative 

integration of 2:1 respectively. 19F NMR indicates the presence of a single peak located at -

150.92 ppm which does not correspond to the shift of TFTP in DMSO (-131.07 ppm). 13C NMR 

was highly indicative of dihydrophenazine 3.17 (Scheme 3-16) being the product due to the 

characteristic splitting patterns observed for the dicyanodifluorophenyl ring. High-

resolution mass spectrometry data, however, was not conclusive for structure 3.17 

returning with an m/z of 279.0680 amu rather than the expected 268.0561 amu. Single 

crystals could be grown (acetonitrile) but were of too poor quality to diffract. Due to the lack 

of characterization in the previous report of this compound,79 we cannot be certain of its 

identity, although NMR data points to 3.17. 
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Despite the evident challenges working with o-phenylenediamine as a nucleophile 

itself, we decided to apply the strategy of using an alkylated amine as nucleophile in hopes 

this would provide a desired pentacene analogue.  

The requisite 1,2-diamine could be obtained via acetylation of o-phenylenediamine in 

ethyl acetate with acetic anhydride (Scheme 3-17) followed by reduction of bis(acetamide) 

3.61 to give the known 1,2-diamine 3.62 as a green crystalline solid, as per literature 

procedure.99 

 

 

Scheme 3-17: Synthesis of o-phenylenediamine-derived nucleophile 3.62.99 

 

Interestingly, it was found that this crude green solid had a 1H NMR spectrum, which, 

while otherwise satisfactory, suffered an integration slightly too high for the methylene 

protons relative the methyl protons (5:6, respectively). Column chromatography on alumina, 

as per literature procedure, yielded a green product of no increased purity by 1H NMR. 

Additionally, the product spot would turn red during the time it would take to run TLC 

analysis (SiO2 or Al2O3), and the compound decomposed to a dark red substance over 5-7 

days at −20 °C.   
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Kugelrohr vacuum distillation of the green solid was thus attempted and yielded a 

clear, colorless oil (110-120 °C/0.5 mmHg) which formed white crystals upon cooling at 

atmospheric pressure. These crystals were more stable, yet still gave rise to unsatisfactory 

amounts of decomposition after several days, and methylene to methyl integration (6:6) had 

not improved. It should be noted that 13C NMR, as well as 1H NMR shifts and J-couplings, 

agree otherwise perfectly with the literature characterisation. 

Now with the nucleophile (3.62) in hand, we first reacted it with 0.5 equivalents of 

TFTP in DMF using K2CO3 as the base at 100 °C (Scheme 3-18). Unfortunately, this protocol, 

which worked well for alkylated N-nucleophiles derived from 2-aminophenol to give p-

DADOPs, gave rise to a dark, intractable mixture of fluorescent products. Column 

chromatography was not viable, as the material exhibited limited solubility, and TLC 

indicated a bulk of material that would not move from the baseline regardless of the solvent. 

Attempts to crystallise the material were met with failure, as was trituration. 

 

 

Scheme 3-18: Attempted synthesis of DCTAP 3.63. 
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Considering the failure of the previous reaction, it was desirable to limit the number 

of possible products and maximise the likelihood of isolating one of them; we choose to react 

bis(amine) 3.62 with dibenzodioxin difluoride 3.16 (Scheme 3-19). This electrophile can 

react twice, compared to four times for TFTP, and therefore fewer by-products are to be 

expected.  

 

 

Scheme 3-19: Attempted synthesis of o-DADOP 3.64. 

 

Surprisingly, the reaction went nearly as poorly as for the tetraaza congener, although 

in this case a solid product could be isolated. The solid displays vexing (in)solubilities, 

however, it was soluble enough in acetone-d6 for a 1H NMR, which indicated the presence of 

aromatic peaks, and the absence of aliphatic ones. Whatever the identity of the product, it 

appears there were no alkyl chains present. Attempts to find appropriate column 

chromatography or recrystallisation conditions have likewise failed. 

It should be mentioned that in both preceding reactions, some of the produced 

material exhibited bright blue-green fluorescence, possibly indicating that at least some of 

the target pentacene (or another interesting compound) was formed.  
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Since any products formed in the preceding reaction were difficult to isolate and 

characterise, we again resorted to use of a long-chain homolog of our nucleophilic amine. 

Thus N,N’-didecyl-1,2-benzenediamine 3.66 was synthesised via acylation with decanoyl 

chloride followed by reduction of bis(amide) 3.65 to give alkylated diamine 3.66 in 88% 

yield over two steps (Scheme 3-20). 

 

 

Scheme 3-20: Synthesis of N,N’-didecyl-o-phenylenediamine 3.66. 

 

This material, while dark purple in colour, did not appear to degrade as quickly at −20 

°C, as the appearance and NMR spectra of the compound did not change. Nonetheless, 

decomposition behaviour on SiO2 was similar to the N-ethyl derivative when conducting TLC 

analysis.  

Reaction of bis(decylamine) 3.66 with 0.5 equivalents of TFTP (K2CO3/DMF/100 °C) 

again led to an intractable oil, as in the case of the bis(ethylamine). Dibenzodioxin difluoride 

3.16 was then chosen as the next reactive partner and reaction with one equivalent of 3.66 

yielded a dark oil from which again no pure product could be isolated (Scheme 3-21).  
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Scheme 3-21: Attempted synthesis of C10-ortho-DADOP 3.67. 

 

Reacting 3.66 with 1 equivalent of difluoride 2.18 in DMF at 100 °C in the presence 

of potassium carbonate likewise yielded an oil of poor purity and unknown composition 

(Scheme 22). Trituration of the oil with toluene produced a yellow precipitate, insoluble in 

chloroform, unlike yellow 2.18. Despite the lack of solubility in chloroform, no other 

aromatic peaks nor alkyl protons were present other than those matching for difluoride 

2.18. 

 

 

Scheme 3-22: Attempted synthesis of diarylated o-DADOP derivative 68. 
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Thus far none of the o-phenylenediamine-derived nucleophiles had worked to form 

any identifiable products; in fact, the most promising reaction had been that of o-

phenylenediamine and TFTP, in DMF in the absence of base, giving previously reported N,N-

dihydrophenazine 3.17, without the use of ultrasound.79 Since that compound decomposed 

in the presence of bases (e.g. K2CO3), it was thought that accessing the N,N-diethyl analogue 

(3.69) could prove useful as a building block towards other derivatives.  

 

 

Scheme 3-23: Synthesis of N,N-diethyl-dihydrophenazine 3.69. 

 

Therefore, two equivalents of 3.62 were reacted with TFTP in DMF at 100 °C (Scheme 

3-23). Somewhat surprisingly, upon addition of water to the cooled reaction mixture, a 

reddish product precipitated. 1H NMR of the compound indicated two aromatic multiplets 

(6.77 and 6.65 ppm) in relative integrations of 2:2, as well as two alkyl proton signals at 3.13 

ppm (q) and 1.32 ppm (t) in relative integrations of 4:6 respectively, which fit the expected 

1H spectrum of compound 3.69. The presence of one type of fluorine was evidenced by the 

singlet at −128.14 ppm in the 19F NMR spectrum and confirmed by the 13C−19F J-coupling 
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observed in the 13C NMR spectrum (note that in this case no J-coupling constants could be 

extracted due to overlap and poor resolution of the less intense quaternary peaks). 

While not a targeted pentacene derivative, N,N’-dialkylated dihydrophenazine 3.69 

could be used in future work as a building block (much the same as dibenzodioxin 3.16) to 

access o-diaza heteropentacene analogue frameworks. 

   

3.9.3 Discussion 

 The synthesis of several pentacene analogues was attempted via reactions between 

nucleophiles derived from o-phenylenediamine and TFTP as the electrophile. Synthesis of 

the nucleophiles was accomplished by modified literature procedures.99 The stability of the 

1,2-bis(ethylamino)benzene compound (3.62) was found to be less than ideal, decomposing 

over several days at −20 °C.  

Attempts to form pentacene analogues with TFTP or derivatives (3.16 or 2.18) and 

nucleophiles 3.62 and 3.66 formed intractable mixtures of products, the one exception to 

that being the synthesis of N,N-diethyl-dihydrophenazine 3.69. As previously stated, this 

compound could serve as a building block for some of the desired derivatives, such as o-

DADOP 3-64 (Scheme 3-24). 
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Scheme 3-24: Future proposed synthesis of diethyl-o-DADOP 3.64. 

 

Future work in this area should focus upon the use of accessible building blocks such 

as 3.69 to synthesise the unknown derivatives. Comparison of the properties of these 

derivatives, once synthesised, will be instructive in gaining an understanding of the 

properties of these new heterocyclic compounds. 

 

3.10 Attempted Use of 2-(Ethylamino)thiophenol as Nucleophile 

3.10.1 Introduction 

Aromatic sulfur-containing heterocycles, such as oligothiophene,100 

phenothiazine,101–103 and thienoacenes (thiophene-acenes)104 have been investigated as 

materials for organic electronics. The presence of sulfur within a compound can have a 

dramatic effect on the properties and potential applications of the material,105 and methods 

have been developed specifically to incorporate sulfur into aromatic systems as fused 

thiophene units.106 The ability to oxidise the sulfur to a sulfoxide or sulfone can lead to 

significant structural and electronic alterations.107 
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Acene analogues which incorporate a six-membered sulfur-containing ring (as in 

phenothiazine) have been known in the literature for many years. For example, compound 

3.70 was initially published in 1957 by Farrington et al. via a (now-common) sulfur insertion 

reaction utilising elemental sulfur (Figure 3-29);108 an extension of that methodology 

allowed access to heteroheptacene analogue 3.71 by Andreani et al. in 1991.109 

 

 

Figure 3-29: Examples of S,N-heteroacene analogues from the literature.108,109 

 

 Derivatives of a different substitution pattern, such as 3.72 (Figure 3-30), were 

synthesised by Müllen et al. in 1994.110 3.72 exists with one phenothiazine subunit in a 

planar conformation, never before observed crystallographically (phenothiazine itself exists 

with both terminal rings bent towards one another).  

 

 

Figure 3-30: Müllen's S,N-heteroacene 3.72.110 
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There are few reactions of sulfur nucleophiles reacting with TFTP in the literature. 

Wang et al. report the synthesis of compound 3.18 (Scheme 3-25), but fail to report any 

characterisation data for the compound.79 There are no reactions in the literature giving the 

analogous TFTP-derived phenothiazine or phenoxathiine, nor any pentacene analogues. 

 

 

Scheme 3-25: Wang's preparation of dibenzodithiin 3.18. 

 

 Voskuhl et al. report the synthesis of a tetrathioether obtained via reaction of 

thiophenols (3.74) with tetrachloroterephthalonitrile 3.75 (Scheme 3-26).111 These 

derivatives displayed intense fluorescence in solution and solid states due to aggregation-

induced emission behaviour. 
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Scheme 3-26: Voskuhl's reaction of TCTP with aryl thiols to form aryl thioether luminogens. 

 

 Based on the literature precedent for reactions of aryl thiols and amines with TFTP 

or TCTP, it was expected that formation of sulfur-nitrogen dicyanopentacene analogues 

should be eminently accessible. 

 

3.10.2  Synthesis of p-Diazadithiapentacene (DADTP) 

 Direct analogues to N,N-diethyl-DADOP (3.28) could be accessed through reaction of 

TFTP with 2-(ethylamino)thiophenol (3.77, Scheme 3-27) to furnish p-

diazadithiapentacenes (p-DADTPs, 3.78). 
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Scheme 3-27: Route to diazadithiapentacene (DADTP, 3.78).  

 

While 2-(ethylamino)thiophenol 3.77 is a known compound, it is not commercially 

available. Furthermore, there are few published syntheses of the compound, and fewer in 

English. Nonetheless, a procedure was found wherein the authors produced the desired 

thiophenol from diborane reduction of 2-methylbenzothiazole (3.78) followed by 

protonolysis (Scheme 3-28).112 

 

 

Scheme 3-28: Literature synthesis of 2-(N-ethylamino)thiophenol (3.77) 

via diborane reduction of 2-methylbenzothiazole (3.78).112 

 

 Unfortunately, the original authors did not give experimental details nor 

characterisation; nonetheless, the procedure was attempted first with borane-
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tetrahydrofuran complex, but reaction did not occur (TLC). Since the procedure required 

diborane, a difficult to handle gas, a different route to access the desired nucleophile was 

sought.  

 An analogous route to the N-methyl derivative was published by Hünig (of Hünig’s 

base fame) in 1972, and involves the use of lithium aluminum hydride to reduce 

benzothiazole.113 Thus, adapting the aforementioned procedure, reduction of 2-

methylbenzothiazole (3.78) proceeded with LAH in THF to yield 2-(ethylamino)thiophenol 

(3.77) in 65% yield as a clear liquid after distillation (Scheme 3-29). This compound 

discoloured to yellow upon standing in air, presumably via oxidation to the disulfide. 

 

 

Scheme 3-29: Successful synthesis of 2-(N-ethylamino)thiophenol (3.77) via 

 a modified literature procedure.113 

 

 Initially aminothiophenol 3.77 was reacted with 0.5 equivalents of TFTP in DMF 

(Scheme 3-30); this reaction yielded an orange-red solid which was brightly fluorescent, 

composed of at least two components (TLC). Column chromatography (30% 

CH2Cl2/hexanes) yielded mixtures of two products, one mixture appearing less pure by 1H 
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NMR spectroscopy than the other.  The contents of the purer fractions of slightly lower Rf 

(≈0.4, 50% CH2Cl2/hexanes) could be suitably recrystallised from THF to give a pure product, 

albeit in an exceedingly low isolated yield (8%). 1H and 13C NMR data, as well as lack of a 19F 

NMR signal appear to indicate the desired diazadithiapentacene (DADTP) analogue 3.80.  

 

 

Scheme 3-30: Synthesis of diazadithiapentacene 3.80. 

 

It should be noted that the low yield is partially due to the large amount of material 

which could not yet be purified and was thus left as a mixture. Further experimentation and 

yield optimisation could indeed lead to a more efficient synthesis. Nonetheless, the final 

pentacene was obtained in two steps from 2-methylbenzothiazole. The identity of the second 

component has not been determined, although there are several possibilities, such as 

regioisomer formation (e.g. 3.81) or sulfur oxidation (e.g. 3.82) (Figure 3-31). 
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Figure 3-31: Possible by-products of reaction in Scheme 3-30. 

 

Compound 3.80 is bright orange in colour and fluoresces brightly in the solid and 

solution states, like all other dicyanopentacene derivatives produced thus far. UV-visible 

spectroscopy (Figure 3-32) indicates a λmax of 497 nm (10-5 M, CHCl3) which is within error 

of the λmax for p-DADOP 3.28 (495 nm, 10-5 M, CHCl3). Interestingly, while dilute (10-5 M) 

solutions of 3.80 and 3.28 are of similar colour, the crystalline solids are very different 

(orange vs. red). 
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Figure 3-32: UV-Visible spectrum of compound 3.80 (10-5 M, CHCl3); λmax = 497 nm. 

 

 

Figure 3-33: Excitation-emission spectra of compound 3.80 

 (10-5 M, CHCl3, excitation at 495 nm). 
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 Fluorescence measurements in CHCl3 (10-5 M) indicated a λem of 610 nm (excitation 

at 495 nm, Figure 3-33. Like the absorption spectra, p-DADTP 3.80 exhibits similar 

fluorescence behaviour as p-DADOP 3.28 (λem = 612 nm, 10-6 M, CHCl3). 

Crystallisation experiments to grow X-ray quality single crystals are currently 

underway. Sublimation of the compound will also be attempted. 

 

3.10.3 Synthesis of Nitrogen-Oxygen-Sulfur Analogues – 

Azadioxathiapentacene (ADOTP) 

Considering the low yield for the initial synthesis of p-DADTP 3.80 and the possibility 

for yield loss due to regioisomer formation, synthesis of the nitrogen-oxygen-sulfur 

containing derivative 3.84 was proposed (Scheme 3-31). This route has the advantage of not 

requiring a regioselective second addition of a nucleophile and is doubly advantageous since 

we have previously synthesised and utilised difluoride 3.16 in the synthesis of the ATOP 

derivatives.  

 

 

Scheme 3-31: Synthesis of azathiadioxapentacene (ADOTP, 3.84). 
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Reaction of nucleophile 3.77 with difluoride 3.16 (K2CO3, DMF, 100 °C) resulted in a 

dark red mixture, which upon work-up (pouring into water), formed a bright orange 

precipitate. Recrystallisation from ethyl acetate provided long, orange needles in 46% yield. 

1H and 13C NMR data accords with the identity of the compound as being desired product 

3.84, and no other major component could be isolated from the filtrate. A melting point taken 

of the recrystallised material showed a narrow range of 243-244 °C. 

This compound is also brightly orange fluorescent in the solid and solution states 

(Figure 3-34). UV-visible measurements (10-5 M, CHCl3) indicate a λmax of 467 nm which is 

virtually identical to ATOP 3.51 (λmax = 467 nm, 10-5 M, CHCl3).  

 

 

Figure 3-34: UV-visible spectrum of compound 3.84 (10-5 M, CHCl3); λmax = 467 nm. 
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Emission spectra of 3.84 indicated a λem at 576 nm (10-5 M, CHCl3, excitation at 467 

nm). This is redshifted with respect to ATOP 3.51 (λem = 557 nm, 10-6 M, CHCl3, excitation at 

468 nm) by approximately 19 nm.  

 

 

Figure 3-35: Excitation emission spectra of compound 3.84  

(10-5 M, CHCl3, excitation at 467 nm). 
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3.10.4 Conclusions and Future Work – Sulfur Derivatives 

2-(Ethylamino)thiophenol 3.77 was synthesised via lithium aluminum hydride 

reduction of 2-methylbenzothiazole and was applied to the formation of several 

heteropentacene derivatives. Diazadithiapentacene 3.80 was synthesised in a low 5.2% 

overall yield, while azadioxathiapentacene 3.84 was synthesised in a higher 30% overall 

yield from 2-methylbenzothiazole. The low yield in the former case stems in part from 

difficulty in separating out the pure compound from a mixture of by-products. 

Future work in this area will focus on: (1) improvements to the synthesis of the 

DADTP 3-80 to increase the yield and ease of purification; (2) synthesis of phenothiazine 

3.85, to be used as a further building block; and (3) the triazathiapentacene 3.86, a 

potentially interesting derivative (Figure 3-36). 

 

 

Figure 3-36: Future N,S heterocycle targets. 
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4. 4. Chapter IV- Conclusions and Future Work 

This thesis focused on the synthesis of novel heterocyclic pentacene analogues via 

nucleophilic substitution reactions with tetrafluoroterephthalonitrile (TFTP).  

Improvements  were made to the original synthesis49 of substituted 

tetraoxadicyanopentacene (DCTOP) derivatives. The major shortcoming of the original 

synthesis, a low-yielding fourfold Suzuki coupling involving a tedious purification, was 

overcome by switching the SNAr reaction and Suzuki in the reaction sequence. Via this new 

synthetic route, substituted DCTOPs were prepared in good yields and with facile 

purification.  

The alkoxy-substituted tetraphenyl substituted DCTOPs were identical to the 

material previously prepared via the original synthetic route. Columnar LC mesophases 

were observed for both compounds, as had been observed by Raycraft.  

The corresponding methoxy-substituted derivative, which had not been previously 

synthesized, was crystallised and the solid-state structure investigated by single crystal X-

ray diffraction, indicating a planar core with coplanar molecules separated by a distance 

greater than that allowed for efficient π−π interactions. The (highly insoluble) unsubstituted 

parent DCTOP was also crystallised, and the crystal structure indicates several different π−π 

interactions. 

This new synthetic route to substituted DCTOPs also provided the opportunity to 

synthesize a dissymmetric DCTOP, which was not found to differ from the unsubstituted 

parent DCTOP in photophysical measurements, however, this compound proved to be much 

more soluble than DCTOP. 
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Based on the synthesis of DCTOP derivatives, methodology for the synthesis of other 

novel 6,13-dicyanoheteropentacene analogues from TFTP via nucleophilic aromatic 

substitution chemistry was developed. Several synthetic roadblocks were encountered, and 

some were successfully navigated while others remain a challenge.  

The para-diazadioxapentacenes (p-DADOPs) were synthesized in good yields and 

displayed solution and solid-state luminescence. The structure (and substitution pattern) of 

N,N’-didecyl-p-DADOP was confirmed by single crystal XRD, which also indicated a planar 

DADOP core as well as close π−π contacts between the cores. 

N-Ethyl-azatrioxapentacene (ATOP) was synthesized in good yield, however, this 

compound did not form crystals suitable for XRD analysis. UV-visible and emission spectra 

indicate a red-shift relative to DCTOP, and a blue-shift relative to p-DADOP. As expected from 

the behaviour of syn-diarylated DCTOP, the analogous ATOP derivative displayed 

photophysical properties like those of the parent ATOP compound, indicating a very small 

effect from the appended phenyl rings. 

The sequential substitution of N for O atoms within the core led to a redshift in the 

absorbance and emission maxima. Analogues containing an S for O substitution displayed 

photophysical properties similar to that of the O,N congeners. Future work in this area will 

focus on obtaining crystal structure data for all of these derivatives.  

Derivatives which were not accessible under the conditions attempted included the 

tetraazapentacene (DCTAP) and o-diazadioxapentacene (o-DADOP); future work will 

attempt to access these derivatives via alternate synthetic routes. 
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In conclusion, significant synthetic and purification challenges were overcome to 

yield a series of novel 6,13-dicyanoheteropentacene analogues in good yields via 

nucleophilic aromatic substitution on tetrafluoroterephthalonitrile. Based on the interesting 

photophysical properties and solid-state organisation, these materials show promise for 

applications in organic electronics. Furthermore, we have demonstrated that the synthetic 

approach can be used to access a variety of heterocyclic pentacene analogues that are not 

readily accessible using other methods. 
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5. Chapter V - Experimental 

5.1 General 

5.1.1 NMR Spectroscopy  

1H and 13C spectra were recorded on a Varian 300 MHz Unity Inova NMR 

Spectrometer or an Agilent Technologies 400 MHz Spectrometer, as indicated, using 

deuterated solvents purchased from CIL Int. Chemical or Millipore-Sigma; shifts are reported 

(δ-scale) using the residual solvent peak as reference. In the case of 19F NMR no reference 

was used. For some compounds, such as 2,3-difluoro-10H-phenoxazine-1,4-dicarbonitrile 

(3.23), 5,10-diethyl-2,3-difluoro-5,10-dihydrophenazine-1,4-dicarbonitrile (3.69) and 2-

(N-decylamino)phenol (3.30) not all C atoms appeared in the 13C NMR spectra and/or C−F 

J-couplings could not be determined due to low signal-to-noise for the quaternary carbons, 

and, in the case of the fluorinated derivatives, the intensities are additionally lowered by C−F 

coupling itself; in these cases the peaks are listed singly.  

 

5.1.2 High-Resolution Mass Spectrometry  

High resolution mass spectra were recorded at the Centre Régional de Spectrométrie 

de Masse à l’Université de Montréal using an Agilent LC-MSD TOF spectrometer in the 

ionisation mode indicated.  
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5.1.3 Ultraviolet-visible (UV-Vis) and Fluorescence Spectroscopy 

UV-Vis spectra were obtained on a Varian Carey 50 Bio UV-visible 

spectrophotometer. Fluorescence measurements were obtained on an Agilent Technologies 

Carey Eclipse fluorescence spectrophotometer. For both techniques, quartz cuvettes (ℓ = 1.0 

cm) were used.  

 

5.1.4 X-ray Diffraction 

Crystals of 2.1c, 3.22, 3.23, 3.31, 3.32, 3.38, and 3.39, were selected and collected 

on a Bruker APEX-II CCD diffractometer with MoKα radiation, or on a Nonius CCD 

diffractometer with CuKα radiation. Using Olex2,114 the structures were solved with the 

ShelXT115 structure solution program using intrinsic phasing and refined with the ShelXL116 

refinement package using least squares minimisation. For all structures, hydrogen atoms 

bonded to oxygen or nitrogen atoms were introduced in difference map positions and 

refined isotropically with distance restraints and default standard uncertainties (ShelXL: 

SADI and DFIX), while all other hydrogen atoms were introduced in calculated positions and 

refined on a riding model. All other atoms were refined anisotropically. Any exceptions 

and/or additions to this method of refinement are noted on the first page of the X-ray 

crystallographic reports, which are included in Appendix A. Full data collection conditions, 

and tables of displacement and geometric parameters, can also be found in these reports.  
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5.1.5 Infrared Spectroscopy 

Infrared spectra were obtained, neat, on a Bruker Alpha Platinum attenuated total 

reflectance infrared (ATR-IR) spectrophotometer with a diamond crystal. Peaks are reported 

in wavenumbers (cm−1; br = broad, w =weak, vw = very weak, s =strong). 

 

5.1.6 Chemicals and Solvents 

All reagents and starting materials were purchased from Millipore-Sigma and used as 

received with the noted exceptions of 2-aminophenol which was recrystallised from EtOH 

under N2, and catechol, which was recrystallised from toluene. n-BuLi (THF solution) was 

titrated against N-benzylbenzamide in THF at −40 °C prior to use.117 Anhydrous and oxygen-

free solvents were dispensed from a custom-built solvent purification system which used 

purification columns packed with activated alumina and supported copper catalyst 

(Glasscontour, Irvine, CA) and maintained under argon. Melting points were determined on 

a Mel-Temp® Electrothermal melting point apparatus and are uncorrected. The following 

compounds were prepared according to literature procedures: dibromocatechol (2.5),51 3,4-

bis(decyloxy)phenylboronic acid (2.2a) and 3,4-bis(hexyloxy)phenylboronic acid (2.2b),63 

tetrafluoroterephthalonitrile (2.4),50 3,4-bis(decyloxy)benzene (2.7a) and 3,4-

bis(hexyloxy)benzene (2.7b),61 4-bromo-1,2-bis(decyloxy)benzene (2.8a) and 4-bromo-

1,2-bis(hexyloxy)benzene (2.8b),62 2-(N-acetamido)phenol (3.26),118 N,N'-(1,2-

phenylene)diacetamide (3.61),99 N1,N2-diethyl-1,2-benzenediamine (3.62).99 
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5.2 Synthesis 

 

2,3,5,6-Tetrafluoroterephthalonitrile (2.4): To a 250 mL three-neck round bottomed 

flask, under N2 and equipped with a condenser, was added tetrachloroterephthalonitrile 

(20.0 g, 75.2 mmol, 1.0 eq), potassium fluoride (21.9 g, 376 mmol, 5.0 eq), TBAB (0.60 g, 1.9 

mmol, 2 mol%), and DMF (125 mL). The reaction mixture was stirred and heated to 110-120 

°C. After 24 h the mixture was cooled to room temperature, H2O (1000 mL) was added, and 

the solid collected via suction filtration, washing with H2O. The crude material thus obtained 

was recrystallized from acetone, yielding TFTP (2.4) as a straw yellow crystalline solid (12.5 

g, 83%). mp = 194-195 °C; 19F NMR (375.9 MHz, CDCl3) δ: -133.38. Analytical data agrees 

with literature values published by Dolbier, et al.50 

 

 

2,3,9,10-Tetrabromo-5,7,12,14-tetraoxa-6,13-dicyanopentacene (2.3): To a two-neck 

round bottomed flask, under nitrogen gas, were added anhydrous DMF (120 mL), 4,5- 

dibromocatechol (4.49 g, 40.8 mmol), tetrafluoroterephthalonitrile (3.71 g, 18.5 mmol), and 

potassium carbonate (16.9 g, 122.4 mmol). The mixture was stirred at 65 °C for 24 hours. 

After cooling to room temperature, the yellow precipitate was collected by vacuum filtration. 

The solid was then stirred in water (200 mL) for 30 minutes followed by acetone (200 mL) 

for an additional 30 minutes to remove any remaining starting materials. The product was 

then collected by suction filtration to yield compound 2.3 as a luminous yellow solid (6.02 g, 

84%). 1H and 13C NMR spectra could not be recorded due to low solubility. mp > 260 °C; 

HRMS (ASAP) Calc. for C20H4N2O4Br4 M+: 651.6905 Found: 651.6914. 
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1,2-dibromo-4,5-bis(methoxymethoxy)benzene (2.12): To a 500 mL single-neck round 

bottomed flask was added dibromocatechol (5.00 g, 18.7 mmol, 1 eq), dimethoxymethane 

(165 mL, 1.87 mol, 100 eq), and chloroform (200 mL). To this stirred solution was added 

phosphorous pentoxide (30.0 g, 2.11 mol, 11.3 eq), in portions, over 3-5 min, with mild heat 

evolution observed. The flask was equipped with a drying tube and the mixture was stirred 

18 h. After this time the solution was decanted, and the residue washed with chloroform. The 

organic solution was washed with saturated NaHCO3 (2 x 25 mL) followed by 1 M HCl (1 x 

25 mL), dried over MgSO4, and the solvent removed in vacuo to give a colorless oil which 

solidified upon standing to give a greasy, white solid (6.14 g, 92%). mp = 59-60 °C; 1H NMR 

(400 MHz, CDCl3) δ: 7.40 (s, 2H), 5.19 (s, 4H), 3.50 (s, 6H); 13C NMR (100 MHz, CDCl3) δ: 

147.22, 121.26, 116.78, 95.75, 56.56; HRMS (ESI+) Calc. for C10H12O4Br2NH4 [M+NH4]+: 

371.9441 Found: 371.9434.  

 

 

3,3'',4,4''-tetramethoxy-4',5'-bis(methoxymethoxy)-1,1':2',1''-terphenyl (2.13): To a 

250 mL 3-neck round bottom flask was added 2.12 (2.40 g, 6.74 mmol, 1 eq), 

dimethoxyphenylboronic acid (3.68 g, 20.2 mmol, 3 eq), Na2CO3 (17.90 g, 169 mmol, 25 eq), 

dimethoxyethane (70 mL), and H2O (90 mL). This was thoroughly sparged with N2 before 

Pd(PPh3)4 (80 mg, 0.034 mmol, 1 mol%) was added and the reaction mixture further 

degassed for 5 min. This was heated to reflux for 24 h after which time the reaction was 

cooled, concentrated in vacuo, and the residue extracted with EtOAc, the combined organic 

layers were dried over MgSO4, and evaporated via rotary evaporation to give an oily residue. 
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Addition of MeOH to this residue precipitated the product which was then collected via 

suction filtration to give the title compound as a powdery white solid (2.22 g, 70%). mp = 

109-110 °C; 1H NMR (400 MHz, CDCl3) δ: 7.23 (s, 2H), 6.77 (d, J = 1 Hz, 4H), 6.57-6.56 (m, 

2H), 5.29 (s, 4H), 3.85 (s, 6H), 3.58 (s, 6H), 3.55 (s, 6H); 13C NMR (100 MHz, CDCl3) δ: 148.37, 

147.85, 146.52, 134.77, 134.13, 121.98, 119.03, 113.82, 111.01, 95.85, 56.45, 56.04, 55.83; 

HRMS (ESI+) Calc. for C26H30O8NH4 [M+NH4]+.: 488.2276 Found: 488.2279. 

 

 

3,3'',4,4''-tetrakis(hexyloxy)-4',5'-bis(methoxymethoxy)-1,1':2',1''-terphenyl (2.16b): 

To a 100 mL 2-neck round-bottom flask, equipped with a condenser under N2, was added 

2.12 (737 mg, 2.07 mmol, 1 eq), 3,4-bis(hexyloxy)phenylboronic acid (2.00 g, 6.21 mol, 3 

eq), sodium carbonate (5.44 g, 52.0 mmol, 25 eq) and previously degassed dimethoxyethane 

(20 mL) and H2O (20 mL). This was further sparged with N2 for 10 min before Pd(PPh3)4 (48 

mg, 0.041 mmol, 2 mol%) was added and the reaction mixture heated to reflux. After 16 h 

the reaction mixture was cooled, brine (30 ml) was added and the aqueous layer extracted 

with diethyl ether (3 x 25 mL), washed with H2O (1 x 20 mL), dried over MgSO4, and 

concentrated via rotary evaporation to afford a brown oil. This oil was subjected to column 

chromatography (SiO2, 10% EtOAc/Hexanes) to afford the product as a light yellow oil 

(1.160 g, 75%). Rf : 0.5 (50% EtOAc/Hexanes); 1H NMR (300 MHz, CDCl3) δ: 7.20 (s, 2H), 6.77-

6.70 (m, 4H), 6.55 (d, J = 2 Hz), 5.28 (s, 4H), 3.94 (t, J = 7 Hz, 4H), 3.66 (t, J = 7 Hz, 4H), 3.55 

(s, 6H), 1.83-1.74 (m, 4H), 1.68-1.61 (m, 4H), 1.48-1.26 (m, 24H), 0.92-0.83 (m, 12H);  13C 

NMR (75 MHz, CDCl3) δ :148.44, 147.89, 146.32, 134.84, 134.18, 122.02, 118.95, 116.21, 

113.45, 95.78, 69.38, 69.19, 56.42, 31.78, 31.70, 29.44, 29.19, 25.86, 25.81, 22.78, 14.17; 

HRMS (ESI+) Calc. for C46H70O8 [M+NH4]+: 768.5409 Found: 768.5428. 
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3,3'',4,4''-tetrakis(decyloxy)-4',5'-bis(methoxymethoxy)-1,1':2',1''-terphenyl (2.16a): 

To a 100 mL 2-neck round-bottom flask, equipped with a condenser under N2, was added 

2.12 (546 mg, 1.53 mmol, 1 eq), 3,4-bis(decyloxy)phenylboronic acid (2.00 g, 4.60 mmol, 3 

eq), sodium carbonate (4.02 g, 38.4 mmol, 25 eq) and previously degassed dimethoxyethane 

(20 mL) and H2O (20 mL). This was further sparged with N2 for 10 min before Pd(PPh3)4 (40 

mg, 0.0306 mmol, 2 mol%) was added and the reaction mixture heated to reflux. After 18 h 

the reaction mixture was cooled, brine (30 ml) was added and the aqueous layer extracted 

with diethyl ether (3 x 30 mL), washed with H2O (1 x 20 mL), dried over MgSO4, and 

concentrated via rotary evaporation to afford a brownish oil. Methanol (~10 mL) was then 

added and the mixture cooled to effect precipitation of the product which was then collected 

via suction filtration to afford the title compound as an off-white crystalline solid (1.186 g, 

79%). mp = 40-42 °C; 1H NMR (400 MHz, CDCl3) δ: 7.20 (s, 2H), 6.76-6.70 (m, 4H), 6.55 (d, J 

= 2 Hz, 2H), 5.28 (s, 4H) 3.95-3.92 (t, J = 7 Hz, 4H), 3.67-3.64 (t, J = 7 Hz, 4H), 3.54 (s, 6H), 

1.82-1.75 (m, 4H), 1.67-1.60 (m, 4H), 1.48-1.40 (m, 4H), 1.36-1.27 (m, 52 H), 0.90-0.85 (m, 

12 H); 13C NMR (75 MHz, CDCl3) δ: 148.45, 147.91, 146.33, 134.85, 134.19, 122.03, 118.94, 

116.25, 113.48, 95.79, 69.42, 69.22, 56.44, 32.10, 29.88, 29.81, 29.80, 29.77, 29.65, 29.60, 

29.56, 29.52, 29.26, 26.22, 22.86, 14.28; HRMS (ESI+) Calc. for C62H102O8NH4 [M+NH4]+: 

992.7913 Found: 992.7947. 
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3,3'',4,4''-tetramethoxy-[1,1':2',1''-terphenyl]-4',5'-diol (2.14): To a 100 mL round 

bottom flask was added 2.13 (911 mg, 1.94 mmol, 1 eq), isopropanol (40 mL), and carbon 

tetrabromide (128 mg, 0.387 mmol, 0.2 eq). The flask was equipped with a condenser and 

heating mantle, and the reaction mixture was refluxed for 1 h then stirred at rt for a further 

10 h. H2O (25 mL) was then added and the volume reduced via rotary evaporation. The 

aqueous residue was extracted with EtOAc (3 x 30 mL) and the combined organic layers 

washed with brine (10 mL), dried over MgSO4, and concentrated in vacuo to give the product 

as a white, powdery solid (830 mg, 99%). mp = 190-192 °C; 1H NMR (400 MHz, CDCl3) δ: 6.91 

(s, 2H), 6.75-6.67 (m, 4H), 6.56 (d, J = 2 Hz, 2H), 5.63 (s, 2H), 3.84 (s, 6H), 3.58 (s, 6H); 13C 

NMR (100 MHz, CDCl3) δ: 148.24, 147.58, 142.88, 134.23, 133.28, 122.02, 117.36, 113.79, 

111.04, 56.04, 55.82; HRMS (ESI+) Calc. for C22H22O6NH4 [M+NH4]: 400.1755 Found: 

400.1741. 

 

 

3,3'',4,4''-tetrakis(hexyloxy)-[1,1':2',1''-terphenyl]-4',5'-diol (2.17b): To a 50 mL round 

bottom flask was added 2.16b (384 mg, 0.511 mmol, 1 eq), isopropanol (30 mL), and carbon 

tetrabromide (34 mg, 0.102 mmol, 0.2 eq). The flask was equipped with a condenser and 

heating mantle, and the reaction mixture was refluxed for 24 h. The mixture was then diluted 
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with brine and extracted CHCl3 (4 x 15 mL) and the combined organic layers washed with 

H2O (10 mL), dried over MgSO4, filtered, and concentrated in vacuo to give a light brown oil. 

The crude product was purified by flash column chromatography (SiO2, 1% MeOH/CH2Cl2) 

to yield the diol as a brown oil (294 mg, 83%). Rf (CH2Cl2) = 0.25; 1H NMR (300 MHz, CDCl3) 

δ: 6.80 (s, 2H), 6.72 (d, J = 8 Hz, 2H), 6.61 (dd, J = 8, 2 Hz, 2H), 6.53 (d, J = 2 Hz, 2H), 5.57 (s, 

2H), 3.95-3.91 (t, J = 7 Hz, 4H), 3.68-3.64 (t, J = 7 Hz, 4H), 1.83-1.74 (m, 4H), 1.68-1.60 (m, 

4H), 1.50-1.28 (m, 24H), 0.92-0.87 (m, 12H); 13C NMR (75 MHz, CDCl3) δ: 148.30, 147.49, 

142.73, 134.43, 133.26, 122.11, 117.29, 116.01, 113.52, 69.55, 69.20, 31.78, 31.70, 29.42, 

29.17, 25.85, 22.77, 14.18; HRMS (ESI+) Calc. for C42H62O6NH4 [M+NH4]+: 680.4885 Found: 

680.4880. 

 

 

3,3'',4,4''-tetrakis(decyloxy)-[1,1':2',1''-terphenyl]-4',5'-diol (2.17a):  To a 50 mL round 

bottom flask was added 2.16a (300 mg, 0.308 mmol, 1 eq), isopropanol (20 mL), and carbon 

tetrabromide (11 mg, 0.031 mmol, 0.1 eq). The flask was equipped with a condenser and 

heating mantle, and the reaction mixture was refluxed for 2 h then stirred at rt for a further 

10 h. H2O (20 mL) was then added and the volume reduced via rotary evaporation. The 

aqueous residue was extracted with CHCl3 (2 x 10 mL) and the combined organic layers 

washed with H2O (10 mL), dried over Na2SO4, and concentrated in vacuo to give a light brown 

oil. Methanol was added, and the mixture cooled to effect crystallisation of the product, 

collected as a white, powdery solid (244 mg, 89%). mp = 56-58 °C; 1H NMR (400 MHz, CDCl3) 

δ: 6.82 (s, 2H), 6.71 (d, J = 8 Hz, 2H), 6.62 (dd, J = 8, 2 Hz, 2H), 6.53 (d, J = 2 Hz, 2H), 5.49 (s, 

2H), 3.92 (t, J = 7 Hz, 4H), 3.66 (t, J = 7 Hz, 4H), 1.83-1.74 (m, 4H), 1.68-1.58 (m, 4H), 1.47-

1.27 (m, 56H), 0.88 (m, 12H); 13C NMR (100 MHz, CDCl3) δ: 148.34, 147.54, 142.71, 134.43, 
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133.30, 122.11, 117.30, 116.09, 113.58, 69.58, 69.24, 32.10, 29.87, 29.81, 29.65, 29.57, 29.25, 

26.21, 22.86, 14.28; HRMS (ESI+) Calc for C58H94O6NH4 [M+NH4]+: 904.7389 Found: 

904.7391. 

 

 

 

2,3,9,10-tetrakis(3,4-dimethoxyphenyl)benzo[5,6][1,4]dioxino[2,3-b]dibenzo-

[b,e][1,4]dioxine-6,13-dicarbonitrile (2.1c): To a 10 mL 2-neck round bottom flask was 

added terphenyl diol 2.14 (636 mg, 1.66 mmol, 2.0 eq), tetrafluoroterephthalonitrile (166 

mg, 0.832 mmol, 1.0 eq), and K2CO3 (2.29 g, 16.6 mmol, 10 eq). The flask was placed under 

an atmosphere of N2 and dry DMF (10 mL) was added forming a yellow suspension which 

was then heated to 65 °C. After 14 h the reaction was cooled and diluted with 10 volumes of 

H2O and the aqueous mixture extracted with CHCl3 (4 x 20 mL), washed with 5% aqueous 

LiCl (2 x 15 mL), dried over Na2SO4, and the solvent removed in vacuo. The yellow residue 

was recrystallized from 1:1 iPrOH/CHCl3 to give the product as a bright yellow solid (603 

mg, 82%). mp = >260 °C; 1H NMR (400 MHz, CDCl3) δ: 7.10 (s, 4H), 6.78-6.70 (m, 8H), 6.56 

(s, 4H), 3.86 (s, 12H), 3.63 (s, 12H); 13C NMR (100 MHz, CDCl3) δ: 148.61, 148.42, 139.44, 

138.53, 138.14, 132.30, 121.93, 118.60, 113.19, 111.06, 109.44, 94.75, 56.04, 55.90; HRMS 

(ESI+) Calc. for C52H40N2O12NH4 [M+NH4]+: 902.2920 Found: 902.2922.  
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2,3,9,10-tetrakis(3,4-bis(hexyloxy)phenyl)benzo[5,6][1,4]dioxino[2,3-

b]dibenzo[b,e][1,4]-dioxine-6,13-dicarbonitrile (2.1b): To a 5 ml 2-neck round bottom 

flask was added terphenyl diol 6b (230 mg, 0.331 mmol, 2 eq), tetrafluoroterephthalonitrile 

(33 mg, 0.165 mmol, 1 eq), K2CO3 (182 mg, 1.32 mmol, 8 eq), and DMF (5 mL). This was 

heated to 65 °C under N2 for 3 h after which time H2O (40 mL) was added and the mixture 

extracted with CHCl3 (4 x 15 mL), washed with 1 M HCl (1 x 10 mL), aqueous 5% LiCl (1 x 10 

mL), dried over Na2SO4, and concentrated in vacuo. The residue was triturated with cold 

MeOH and the product collected via suction filtration as a yellow, powdery solid (230 mg, 

96%). 1H NMR (300 MHz, CDCl3) δ: 7.07 (s, 4H), 6.76-6.64 (m, 8H), 6.56 (d, J = 2 Hz, 4H), 3.95 

(t, J = 7 Hz, 8H), 3.71 (t, J = 7 Hz, 8H), 1.84-1.75 (m, 8H), 1.70-1.63 (m, 8H), 1.49-1.32 (m, 

48H), 0.93-0.88 (m, 24H); 13C NMR (75 MHz, CDCl3) δ: 148.66, 148.47, 139.43, 138.40, 

138.21, 132.36, 121.96, 118.57, 115.53, 113.33, 109.51, 94.69, 69.30, 69.27, 31.78, 31.70, 

29.41, 29.22, 25.86, 25.82, 22.79, 22.77, 14.18;  HRMS (ESI+) Calc. for C92H120N2O12NH4 

[M+NH4]+: 1462.9180 Found: 1462.9192. 
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2,3,9,10-tetrakis(3,4-bis(decyloxy)phenyl)benzo[5,6][1,4]dioxino[2,3-

b]dibenzo[b,e][1,4]-dioxine-6,13-dicarbonitrile (2.1a): To a 5 ml 2-neck round bottom 

flask was added terphenyl diol 6c (130 mg, 0.147 mmol, 2 eq), tetrafluoroterephthalonitrile 

(15 mg, 0.073 mmol, 1 eq), K2CO3 (81 mg, 0.588 mmol, 8 eq), and DMF (5 mL). This was 

heated to 65 °C under N2 for 3 h after which time H2O (10 mL) was added to effect 

precipitation of a yellow solid. The suspension was cooled and filtered, and the solids washed 

first with H2O then methanol to afford the title compound as a bright yellow, powdery solid 

(137 mg, 100%). 1H NMR (300 MHz, CDCl3) δ:  7.07 (s, 4H), 6.76-6.64 (m, 8H), 6.56 (s, 4H), 

3.94 (t, J = 7 Hz, 8H), 3.70 (t, J = 7 Hz, 8H), 1.82-1.77 (m, 8H), 1.69-1.64 (m, 8H), 1.40-1.28 (br 

m, 112H), 0.88 (m, 24H); 13C NMR (75 MHz, CDCl3) δ: 148.66, 148.48, 139.44, 138.41, 138.22, 

132.37, 121.95, 118.56, 115.58, 113.37, 109.51, 94.69, 69.31, 32.10, 29.87, 29.81, 29.79, 

29.76, 29.64, 29.59, 29.57, 29.52, 29.47, 29.29, 26.21, 22.86, 14.28; HRMS (TOF-ASAP+) Calc. 

for C142H184N2O12 [M+]: 1893.3849 Found: 1893.3793. 

 

 

7,8-bis(3,4-dimethoxyphenyl)-2,3-difluorodibenzo[b,e][1,4]dioxine-1,4-

dicarbonitrile (2.18): To a 2-neck 25 mL round-bottomed flask, equipped with a condenser 

under N2 was added terphenyl catechol 2.14 (283 mg, 0.740 mmol, 1.0 eq), THF (10 mL), 
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K2CO3 (306 mg, 2.22 mmol, 3.0 eq), and finally tetrafluoroterephthalonitrile (148 mg, 0.740 

mmol, 1.0 eq). The mixture was heated to reflux; after 6 h the mixture was cooled, H2O (25 

mL) was added, and the mixture extracted with CHCl3 (3 x 15 mL). The organic extract was 

dried over Na2SO4, filtered, and concentrated via rotary evaporation to give the product as a 

bright yellow solid (355 mg, 89%). mp = 218-219 °C; 1H NMR (400 MHz, CDCl3) δ: 7.13 (s, 

2H), 6.78-6.69 (m, 4H), 6.54 (s, 2H), 3.86 (s, 6H), 3.63 (s, 6H); 13C NMR (100 MHz, CDCl3) δ: 

148.47, 148.36, 145.71 (dd, J = 262, 16 Hz), 141.04 (t, J = 4 Hz), 138.56, 137.75, 131.80, 

121.72, 118.48, 112.89, 110.87, 107.66, 96.74 (dd, J = 12, 7 Hz), 55.86, 55.72; 19F NMR (375 

MHz, CDCl3) δ: -134.55 (s); HRMS (ESI+) Calc. for C30H20F2N2O6 [M+NH4]+: 560.1628 Found: 

560.1616. 

 

 

2,3-bis(3,4-dimethoxyphenyl)benzo[5,6][1,4]dioxino[2,3-]dibenzo[b,e][1,4]dioxine-

6,13-dicarbonitrile (2.19): To a 25 mL round-bottomed flask was added terphenyl 

difluorodibenzodioxin 2.18 (0.283 g, 0.522 mmol, 1.0 eq), DMF (5 mL), and K2CO3 (0.290 g, 

2.09 mmol, 4.0 eq). The flask was placed under N2 and catechol (0.058 g, 0.52 mmol, 1.0 eq) 

was added in one portion and the reaction mixture heated to 100 °C for 16 h. After this time 

the mixture was allowed to cool to rt and subsequently poured into H2O (40 mL). The 

product was then collected via suction filtration, washing with water, then cold MeOH to give 

a yellow powdery solid (0.252 g, 79%). mp = >260 °C; 1H NMR (400 MHz, CDCl3) δ: 7.09 (s, 

2H), 7.07-7.01 (m, 4H), 6.78-6.71 (m, 4H), 6.56 (s, 2H), 3.86 (s, 6H), 3.63 (s, 6H); 13C NMR 

(100 MHz, CDCl3) δ: 148.44, 148.24, 139.76, 139.39, 139.22, 138.41, 137.96, 132.17, 125.90, 

121.78, 118.45, 117.01, 112.99, 110.88, 109.29, 94.53, 55.88, 55.74; HRMS (ESI+) Calc for 

C36H24N2O8 [M+Na]+: 635.1425 Found: 635.1420. 
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2-(2-aminophenoxy)-3-fluoro-10H-phenoxazine-1,4-dicarbonitrile (3.22): To a 50 mL 

round-bottomed flask, under N2, was added tetrafluoroterephthalonitrile (600 mg, 3.00 

mmol, 1.0 eq), 2-aminophenol (654 mg, 6.00 mmol, 2.0 eq), dry DMF (20 mL), and finally 

K2CO3 (3.32 g, 24.0 mmol, 8.0 eq). The mixture was heated to 65 °C and quickly became a 

deep purple colour; this was left to stir 20 h. The reaction mixture was cooled to rt, then H2O 

was then added effecting precipitation of a reddish-brown solid, collected via suction 

filtration, and triturated with acetonitrile yielding a mixture of products (400 mg) from 

which a single crystal (DMF) subjected to X-ray diffraction identified that component as the 

title compound. IR(ATR) νmax = 3445, 3360, 3279, 2250, 2236, 1626, 1570, 1499, 1466, 1383, 

1287, 1196, 1173, 1033, 996, 749, 731 cm-1; HRMS (ESI+) Calc. for C20H11FN4O2 [M+H]+: 

359.0939 Found: 359.0949.  

 

2,3-difluoro-10H-phenoxazine-1,4-dicarbonitrile (3.23): To a 250 mL round-bottomed 

flask was added 2-aminophenol (1.429 g, 13.1 mmol, 1.0 eq), tetrafluoroterephthalonitrile 

(2.62 g, 13.1 mmol, 1.0 eq), and DMSO (65 mL). This was equipped with a drying tube (CaSO4) 

and stirred at rt for 18 h, by which time a bright orange solid had precipitated. H2O (200 mL) 

was added to effect full precipitation and the product was collected via suction filtration 

(3.500 g, 100%).   This powdery solid could be recrystallised from hot DMF to afford long 

orange needles. MP > 260 °C. 1H NMR (400 MHz, DMSO-d6) δ: 9.58 (s, 1H), 6.90 (s, 2H), 6.81 

(s, 2H); 13C NMR (100 MHz, acetone-d6) δ: 147.54, 147.35, 144.66, 144.61, 144.56, 144.22, 

144.07, 144.04, 143.88, 142.27 140.78, 140.59, 135.46, 135.42, 135.38, 128.74, 126.74, 
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124.72, 116.66, 116.27, 110.52, 110.48, 109.52, 109.47, 95.73, 95.48, 89.83, 89.85; 19F NMR 

(282 MHz, acetone-d6) δ: −142.3 (d, J = 20 Hz), −148.16 (d, J = 20 Hz);  IR (ATR) νmax: 3157 

(w), 3113 (w), 3063 (w), 2951, 2898, 2239, 2230, 1470, 1288, 1023, 993, 759 cm-1; HRMS 

(APCI+) Calc. for C14H5N3OF2 [M]+: 269.0401 Found: 269.0391.  

 

 

N-(2-hydroxyphenyl)acetamide (3.26): To a 500 mL round bottomed flask was added 2-

aminophenol (5.00 g, 45.8 mmol, 1.0 eq), EtOAc (100 mL), followed by acetic anhydride (4.70 

mL, 50.4 mmol, 1.1 eq). This was stirred at room temperature for 4 h, diethyl ether (100 mL) 

was added and the mixture cooled to ~5 °C. The precipitate was collected as a grey powder 

via suction filtration, washing with diethyl ether. The crude product was recrystallized from 

aqueous ethanol as off-white plates (6.11 g, 89%). mp = 208-209 °C (lit. mp = 209 °C); 1H 

NMR (400 MHz, DMSO-d6) δ: 9.72 (s, 1H), 9.29 (s, 1H), 7.66 (d, J = 8 Hz, 1H), 6.93 (t, J = 8 Hz, 

1H), 6.84 (d, J = 8 Hz, 1H), 6.75 (t, J = 8 Hz, 1H), 2.10 (s, 3H); 13C NMR (100 MHz, MeOD) δ: 

172.21, 149.73, 127.08, 126.81, 123.96, 120.60, 117.28, 23.43. Analytical data agrees with 

literature values published by Sivaguru, et al.118 

 

 

2-(N-ethylamino)phenol (3.27): To a dry, 250 mL three-neck round bottomed flask, 

equipped with a dried stir bar, condenser, and N2 inlet, was added N-(2-

hydroxyphenyl)acetamide 3.26 (1.50 g, 9.92 mmol, 1.0 eq) and THF (75 mL). This was then 

cooled to 0 °C, and lithium aluminum hydride (1.0 M in THF, 19.8 mL, 2.0 eq) was added 

dropwise, pausing as appropriate for hydrogen evolution. The ice bath was then replaced 
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with an oil bath and the reaction mixture heated to reflux. After 12 h, the reaction was cooled 

to 0 °C and sodium sulfate decahydrate (Na2SO4·10H2O) was added in small portions, over 

approximately 25 min, until hydrogen evolution subsided. Aqueous ammonium chloride was 

then added until neutral, and the emulsion thus obtained filtered through a pad of Celite®, 

washing the filter cake with diethyl ether. The volatiles were then removed in vacuo, the 

residue partitioned between ether and H2O, and the aqueous layer extracted with ether (3 x 

20 mL). The pooled organic extracts were washed with saturated aqueous NaHCO3 (20 mL), 

brine (20 mL), dried over MgSO4, filtered, and concentrated in vacuo. The residue was 

recrystallized from chloroform to give the product as white needles (1.10 g, 81%), stored at 

−20 °C to slow decomposition. 1H NMR (400 MHz, CDCl3) δ: 6.87-6.83 (m, 1H), 6.70-6.60 (m, 

3H), 4.12 (br s, 2H), 3.16-3.14 (m, 2H), 1.27 (t, J = 7 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 

143.77, 137.12, 121.63, 117.83, 114.30, 112.72, 38.96, 14.87. Analytical data agrees with 

literature values published by Neogi, et al.119 

 

7,14-diethyl-7,14-dihydrobenzo[5,6][1,4]oxazino[2,3-

b]phenoxazine-6,13-dicarbonitrile (3.28): To a 25 mL round bottomed flask, under N2, 

was added 2-(N-ethylamino)phenol 3.27 (120 mg, 0.875 mmol, 2.0 eq), 

tetrafluoroterephthalonitrile (88 mg, 0.437, 1.0 eq), DMF (5 mL), and finally K2CO3 (726 mg, 

5.25 mmol, 6.0 eq).  This was stirred and heated to 100 °C for 24 h, after which time the 

mixture was cooled to rt and poured into H2O (75 mL). After cooling overnight, the 

precipitate was collected as a red solid which was recrystallized from chloroform-methanol 

(172 mg, 100%). mp > 260 °C; Rf (50% EtOAc/Hexanes) = 0.33; 1H NMR (400 MHz, CDCl3) δ: 

7.03-6.84 (m, 8H), 3.94 (t, J = 7 Hz, 4H), 1.28 (t, J = 7 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ: 

147.87, 147.44, 132.57, 131.46, 125.26, 124.36, 118.85, 116.39, 112.85, 94.89, 48.56, 13.06; 

HRMS (ESI+) Calc. for C24H18N4O2 [M+H]+: 395.1503 Found: 395.1505. 
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N-(2-hydroxyphenyl)decanamide (3.29):To a 250 mL round bottomed flask was added 2-

aminophenol (2.500 g, 22.9 mmol, 1.0 eq), THF (100 mL), pyridine (4.1 mL, 50.4 mmol). This 

was stirred until dissolution, and decanoyl chloride (4.8 mL, 22.9 mmol, 1.0 eq) was added 

dropwise causing a precipitate which dissolved by the end of addition. This was left to stir 

under N2 overnight (18 h). Volatiles were removed in vacuo, and the residue was partitioned 

between chloroform and water. The aqueous layer was extracted with chloroform (2 x 25 

mL) and the pooled organic solvents washed with 1 M HCl (25 mL), H2O (25 mL), dried over 

MgSO4, filtered, and concentrated in vacuo. The crude solid thus obtained was recrystallized 

from aqueous methanol to yield N-(2-hydroxyphenyl)decanamide as a white fluffy solid 

(4.39 g, 73%). mp = 67-68 °C (lit. 71 °C)120; 1H NMR (400 MHz, CDCl3) δ: 8.96 (s, 1H), 7.92 (s, 

1H), 7.14-7.06 (m, 2H), 6.97 (d, J = 8 Hz, 1H), 6.84 (t, J = 8 Hz, 1H), 2.42 (t, J = 8 Hz, 2H), 1.75-

1.68 (m, 2H), 1.35-1.24 (m, 14H), 0.87 (t, J = 7 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 173.72, 

148.63, 127.05, 125.62, 122.05, 120.38, 119.70, 37.01, 31.82, 29.38, 29.28, 29.22, 29.12, 

25.76, 22.63, 14.08. 

 

 

2-(N-decylamino)phenol (3.30): To a 250 mL two-neck round-bottomed flask, equipped 

with a reflux condenser under N2 and equipped with an addition funnel, was added lithium 

aluminum hydride (0.915 g, 24.1 mmol, 2.0 eq) and THF (60 mL), and this was cooled to 0 

°C. A solution of N-(2-hydroxyphenyl)decanamide 3.29 (3.171 g, 12.0 mmol, 1.0 eq) in THF 

(35 mL) was then placed in the addition funnel and added dropwise to the cold reaction flask 

over 15 minutes.  The ice bath was then removed, and the mixture gradually brought to reflux 

for 12 h, after which time the mixture was cooled to 0 °C and quenched via cautious addition 
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of Na2SO4•10H2O in small portions. The mixture was then brought to neutral pH with 

saturated NH4Cl (pH paper), filtered through Celite®, and concentrated in vacuo. The residue 

was dissolved in EtOAc (50 mL), washed with saturated NaHCO3 (20 mL), H2O (20 mL), and 

brine (40 ml). The organic layer was dried over Na2SO4, filtered, and concentrated in vacuo 

to give the aminophenol as a purple solid, which was used for the following reactions without 

further purification (2.40 g, 80%). 1H NMR (400 MHz, CDCl3) δ: 6.90-6.84 (m, 1H), 6.72-6.62 

(m, 3H), 4.46 (br s, 2H), 3.13-3.10 (m, 2H), 1.68-1.61 (m, 2H), 1.45-1.29 (m, 14H), 0.90 (t, J = 

7 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 143.73, 137.28, 121.58, 117.67, 114.36, 112.59, 

44.53, 31.90, 29.60, 29.58, 29.47, 29.32, 27.20, 22.68, 14.11.  

 

 

7,14-didecyl-7,14-dihydrobenzo[5,6][1,4]oxazino[2,3-b]phenoxazine-6,13-

dicarbonitrile (3.31): To a 50 mL round-bottomed flask was added 

tetrafluoroterephthalonitrile (225 mg, 1.12 mmol, 1.0 eq), K2CO3 (1.24 g, 8.96 mmol, 8.0 eq), 

and DMF (20 mL). This was placed under N2 and 2-(N-decylamino)phenol 3.30 (560 mg, 2.25 

mmol, 2.0 eq) was added in portions. The mixture was heated to 100 °C. After 24 h, the 

mixture was cooled, poured into H2O (125 mL), and the red solid collected via suction 

filtration, washing with H2O. This was then recrystallised from toluene-methanol to yield the 

product as a red, microcrystalline solid (583 mg, 84%). mp = 145-146 °C; 1H NMR (400 MHz, 

CDCl3) δ: 7.03-6.99 (m, 2H), 6.94-6.89 (m, 4H), 6.83 (d, J = 8 Hz, 2H), 3.88 (t, J = 8 Hz, 4H), 

1.70-1.62 (m, 4H), 1.33-1.21 (m, 28), 0.86 (t, J = 7 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ: 

147.79, 147.40, 133.16, 131.83, 125.21, 124.14, 118.64, 116.44, 112.92, 94.73, 53.16, 31.86, 

29.47, 29.45, 29.26, 29.19, 27.43, 26.29, 22.66, 14.11. 
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10-ethyl-2,3-difluoro-10H-phenoxazine-1,4-dicarbonitrile (3.32): To a 25 mL pear-

shaped flask was added tetrafluoroterephthalonitrile (559 mg, 2.79 mmol, 1.0 eq), followed 

by DMSO. This was warmed to dissolution (50 °C) and 2-(ethylamino)phenol 3.27 (383 mg, 

2.79 mmol, 1.0 eq) was added in portions. This was stirred at room temperature for 24 h, 

after which time H2O (60 mL) was added and the solid collected via suction filtration, 

washing with water. The powder thus obtained was recrystallised from acetonitrile to 

furnish the product as long, orange needles (665 mg, 80%). mp = 223-225 °C; 1H NMR (400 

MHz, CDCl3) δ: 7.05 (t, J = 8 Hz, 1H), 6.96 (t, J = 8 Hz, 1H), 6.91-6.89 (m, 1H), 6.85-6.83 (m, 

1H), 4.04 (q, J = 7 Hz, 2H), 1.38 (t, J = 7 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 147.88 (t, J = 

3.3 Hz), 146.44 (dd, J = 255, 14 Hz), 145.51, 143.03 (dd, J = 256, 15 Hz), 135.80 (dd, J = 3, 1 

Hz), 131.09, 126.11, 125.08, 117.07, 116.65, 111.20 (d, J = 4 Hz), 108.7 (d, J = 4 Hz), 95.76 

(dd, J = 17, 3.0 Hz), 93.57 (d, J = 17 Hz), 46.60, 13.77; 19F NMR (376 MHz, CDCl3) δ: -135.43 

(d, J = 21 Hz), -140.55 (d, J = 21 Hz); HRMS (ESI+) Calc. for C16H9F2N3O [M+H]+: 298.0786 

Found: 298.0791. 

 

 

2-(benzylamino)phenol (3.35): To a 250 mL round-bottomed flask was added 2-

aminophenol (5.00 g, 45.8 mmol, 1.0 eq), dry THF (50 mL), and MgSO4 (16 g). This was placed 

under N2, and freshly distilled benzaldehyde (4.6 mL) was added via syringe. After 12 h, the 

mixture was filtered and concentrated in vacuo to give the crude imine (10.7 g) as a yellow-

brown solid. The crude imine (45.8 mmol, 1.0 eq) was then placed in a 250 mL round-



135 

 

bottomed flask with MeOH (200 mL) and this was cooled to 0 °C (ice bath). NaBH4 (2.08 g, 

55.0 mmol, 1.2 eq) was added in small portions over 10 min. After the addition was complete 

the reaction mixture was concentrated in vacuo and the residue partitioned between EtOAc 

and H2O, washing the organic layer with H2O, then brine. The organic layer was dried over 

MgSO4, filtered, and concentrated to give an unstable green oil which decomposed over 

several weeks. 1H NMR (400 MHz, CDCl3) δ: 7.45-7.30 (m, 5H), 6.86 (t, J = 7 Hz, 1H), 6.78-

6.63 (m, 3H), 4.39 (s, 2H). 1H NMR data agrees with that reported by Ohsawa, et al.121 

 

 

10-benzyl-2,3-difluoro-10H-phenoxazine-1,4-dicarbonitrile (3.38): To a 50 mL round-

bottomed flask was added 2-(N-benzylamino)phenol 3.35 (750 mg, 3.76 mmol, 1.0 eq), TFTP 

(753 mg, 3.76 mmol, 1.0 eq), K2CO3 (2.08 g, 15.0 mmol, 4.0 eq) and DMF (20 mL). This was 

placed under N2 and heated to 70 °C for 24 h. The reaction mixture was cooled to room 

temperature, poured into H2O and the precipitate collected via suction filtration, washing 

with H2O. The crude solid was subjected to column chromatography (SiO2, 30% 

EtOAc/hexanes) to afford the product as a yellow solid (300 mg, 22%). 1H NMR (400 MHz, 

Acetone-d6) δ: 7.37-7.26 (m, 5H), 7.00-6.92 (m 4H), 5.30 (s, 2H); 13C NMR (100 MHz, Acetone-

d6) δ: 147.92 (t, J = 3 Hz), 146.35 (dd, J = 251, 14 Hz), 145.41, 143.20 (dd, J = 251, 15 Hz), 

136.4-136.5 (m), 136.03, 131.64, 128.71, 127.78, 127.05, 125,76, 124.84, 118.10, 115.82, 

110.81 (d, J = 4 Hz), 108.53 (d, J = 4 Hz), 55.45; 19F NMR (376 MHz, Acetone-d6) δ: -139.14 (d, 

J = 20 Hz), -143.91 (d, J = 21 Hz).  
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2,3-difluorodibenzo[b,e][1,4]dioxine-1,4-dicarbonitrile (3.16): To a 250 mL single neck 

round-bottomed flask was added catechol (2.00 g, 18.2 mmol, 1 eq), 

tetrafluoroterephthalonitrile (3.64 g, 18.2 mmol, 1 eq), and potassium carbonate (7.53 g, 

54.5 mmol, 3 eq) followed by dry THF (150 mL). The flask was equipped with a condenser 

under N2 and the mixture was heated to reflux with stirring for 2 h, then stirred at rt for 8 h. 

After this time H2O (150 mL) was added to effect crystallization of the product and the 

mixture was cooled to ~5 °C. The yellow suspension was suction filtered, washed three times 

with H2O and dried to give the product as a yellow powdery solid which was recrystallised 

from DME to give the product as very light-yellow plates (3.62 g, 74%). mp = 209-210 °C; 1H 

NMR (400 MHz, CDCl3) δ: 7.09-7.02 (m, 4H); 13C NMR (75 MHz, CDCl3) δ: 145.73 (dd, J = 261, 

16 Hz), 141.46 (t, J = 4 Hz), 139.34, 126.49, 117.13, 107.7 (d, J = 2 Hz), 96.71 (dd, J = 11, 8 

Hz); 19F NMR (376 MHz, CDCl3) δ: -134.75. Analytical data agrees with literature values 

published by Banerjee, et al.80 

 

 

14-ethyl-14H-benzo[5,6][1,4]dioxino[2,3-b]phenoxazine-6,13-dicarbonitrile (3.51): 

To a 50 mL round-bottomed flask was added difluoride 3.16 (905 mg, 3.35 mmol, 1.0 eq) 

and DMF (15 mL) under N2. K2CO3 (1.85 g, 13.4 mmol, 4.0 eq) was then added, followed by 

2-(ethylamino)phenol 3.27 (459 mg, 3.35 mmol, 1.0 eq). This was heated to 100 °C for 24 h, 

after which time the orange mixture was cooled, poured into H2O, and then filtered. The 

collected precipitate was recrystallised from toluene-methanol to yield the title compound 

as an orange crystalline solid (851 mg, 70%). mp = 241 °C (dec.); Rf = 0.38 (50% 
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CHCl3/hexanes); 1H NMR (400 MHz, CDCl3) δ: 7.04-6.84 (m, 8H), 3.96 (q, J = 7 Hz, 2H), 1.29 

(t, J = 7 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 146.97, 146.74, 140.15, 140.03, 139.68, 137.14, 

133.62, 132.05, 125.80, 125.49, 125.46, 124.55, 118.43, 116.96, 116.91, 116.83, 116.37, 

112.18, 109.94, 48.21, 13.19; HRMS (ESI+) Calc. for C22H13N3O3 [M+H]: 368.1030 Found: 

368.1037. 

 

 

9,10-bis(3,4-dimethoxyphenyl)-14-ethyl-14H-benzo[5,6][1,4]dioxino[2,3-

b]phenoxazine-6,13-dicarbonitrile (5.53): To a 25 mL round bottomed flask, under N2, 

was added difluoride 2.18 (409 mg, 0.753 mmol, 1.0 eq), followed by DMF (5 mL) and K2CO3 

(416 mg, 3.01 mmol, 4.0 eq). To this was added 2-(ethylamino)phenol 3.27 (103 mg, 0.753, 

1.0 eq) and the mixture was heated to 100 °C for 16 h. The mixture was then cooled to room 

temperature and H2O was added, the product being collected via suction filtration as an 

orange powdery solid (420 mg, 87%). mp = 116 °C (dec.); 1H NMR (400 MHz, CDCl3) δ: 7.09-

6.87 (m, 6H), 6.77-6.69 (m, 4H), 6.56 (s, 2H), 4.00 (q, J = 7 Hz, 2H), 3.86 (s, 6H), 3.63 (s, 6H), 

1.33 (t, J = 7 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 148.38, 148.12, 147.03, 146.70, 139.58, 

138.83, 138.73, 137.56, 137.54, 136.98, 133.76, 132.32, 132.30, 132.02, 125.52, 124.58, 

121.76, 118.41, 118.34, 118.31, 116.39, 113.00, 112.26, 110.82, 109.99, 94.14, 94.17, 55.84, 

55.70, 48.10, 13.27; HRMS (ESI+) Calc. for C38H29N3O7 [M+H]+: 640.2078 Found: 640.2080. 
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N,N'-(1,2-phenylene)diacetamide (3.61): To a 100 mL round-bottomed flask was added 

freshly recrystallised o-phenylenediamine (2.500 g, 23.1 mmol, 1.0 eq) followed by EtOAc 

(50 mL) and this was stirred to dissolution. Acetic anhydride (4.8 mL, 50.8 mmol, 2.2 eq) was 

added all at once, causing concomitant warming of the reaction mixture (40-45 °C). This was 

allowed to stir at room temperature for 4 h, after which time diethyl ether was added to 

effect precipitation, and the product collected via suction filtration, washing with ether. The 

solids were recrystallised from aqueous ethanol to give the product as a white, crystalline 

solid (4.22 g, 95%). mp = 187-189 °C; 1H NMR (400 MHz, DMSO-d6) δ: 9.31 (s, 2H), 7.54 (s, 

2H), 7.11 (s, 2H), 2.07 (s, 6H); 13C NMR (100 MHz, MeOD) δ: 170.79, 130.60, 125.55, 125.14, 

22.01. Analytical data agrees with literature values published by Alder, et al.99 

 

 

 

N1,N2-diethyl-1,2-benzenediamine (3.62): To a dry 250 mL round bottomed flask, 

equipped with a condenser, was added N,N'-(1,2-phenylene)diacetamide 3.61 (2.50 g, 13.0 

mmol, 1.0 eq) and dry THF (40 mL), and this was cooled to 0 °C. LiAlH4 (32.5 mL, 1.0 M in 

THF, 2.5 eq) was added dropwise to the cooled solution under N2. After addition was 

complete, the light-yellow solution was heated to reflux for 16 h. The mixture was then 

cooled, and excess hydride was quenched by cautious addition of Na2SO4·10H2O in small 

portions until hydrogen evolution ceased. The mixture was filtered through a pad of Celite®, 

washing with EtOAc. The organic layer was washed with H2O, then saturated NaHCO3, and 

finally with brine. Concentration of this extract gave a green oil which was then purified via 
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bulb-to-bulb vacuum distillation (110-120 °C / 0.5 mmHg) to give the product as an unstable 

white, crystalline solid upon cooling (1.77 g, 83%) which could be stored at −20 °C for 1-2 

weeks. 1H NMR (400 MHz, CDCl3) δ: 6.81-6.79 (m, 2H), 6.70-6.68 (m, 2H), 3.15 (q, J = 7 Hz, 

6H), 1.32 (t, J = 7 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ: 137.34, 118.99, 111.36, 38.83, 15.07. 

Analytical data agrees with literature values published by Alder, et al.99 

 

 

5,10-diethyl-2,3-difluoro-5,10-dihydrophenazine-1,4-dicarbonitrile (3.69): To a 5 mL 

micro-vial was added tetrafluoroterephthalonitrile (122 mg, 0.609 mmol, 1.0 eq), DMF (3 

mL), followed by N,N’-diethyl-1,2-benzenediamine 3.62 (200 mg, 1.22 mmol, 2.0 eq), 

immediately forming a red solution upon addition of the amine. This was heated to 100 °C 

for 14 h, cooled, and the reaction mixture poured into H2O (40 mL), filtering to give the 

product as a red powdery solid. 1H NMR (400 MHz, CDCl3) δ: 6.78-6.76 (m, 2H), 6.66-6.64 

(m, 2H), 3.14 (q, J = 7 Hz, 4H), 1.32 (t, J = 7 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ: 148.51, 

148.46, 148.42, 148.40, 148.36, 148.32, 148.29, 148.26, 145.84, 145.79, 145.74, 145.64, 

145.59, 137.19, 118.96, 111.20, 105.92, 38.79, 15.02; 19F NMR (282 MHz, CDCl3): −128.14. 

 

 

2,3-difluoro-5,10-dihydrophenazine-1,4-dicarbonitrile (3.17): To a 100 mL round-

bottomed flask was added tetrafluoroterephthalonitrile (1.049 g, 5.24 mmol, 1.0 eq), DMF 

(15 mL), and o-phenylenediamine (0.567 g, 5.24 mmol, 1.0 eq). The now-red mixture was 

placed under N2 and heated to 100 °C for 24 h, after which time it was cooled, poured into 
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H2O (100 mL) and the solids collected via suction filtration. The material thus obtained was 

recrystallised from DMSO/acetonitrile to give the product as dark brown crystalline solid 

(922 mg, 66%). 1H NMR (400 MHz, DMSO-d6) δ: 8.85 (s, 2H), 6.60-6.52 (m, 4H); 13C NMR 

(100 MHz, DMSO-d6) δ: 139.70 (dd, J = 243, 16 Hz), 138.34 (t, J = 3 Hz), 129.89, 123.70, 

114.73, 111.84 (t, J = 3 Hz), 83.68 (dd, J = 12, 9 Hz); 19F NMR (376 MHz, DMSO-d6) δ: -150.92. 

Analytical data for this compound has not been previously reported.79 

 

 

N,N'-(1,2-phenylene)bis(decanamide) (3.65): To a 250 mL round-bottomed flask was 

added o-phenylenediamine (4.00 g, 37.0 mmol, 1.0 eq), CH2Cl2 (150 mL) and pyridine (6.6 

mL, 81.4 mmol, 2.2 eq). This was stirred and decanoyl chloride (15.3 mL, 74.0 mmol, 2.0 eq) 

in CH2Cl2 was added slowly via addition funnel. After addition was complete, the flask was 

equipped with a drying tube and stirred 14 h. The reaction mixture was then washed with 1 

M HCl (2 x 20 mL), H2O, dried over Na2SO4 and evaporated to give the product as a white 

solid.  1H NMR (300 MHz, CDCl3) δ: 8.31 (s, 2H), 7.38-7.33 (m, 2H), 7.20-7.17 (m, 2H), 2.34 (t, 

J = 8 Hz, 4H), 1.75-1.66 (m, 4H), 1.41-1.30 (m, 24H), 0.95-0.90 (m, 6H); 13C NMR (75 MHz, 

CDCl3) δ: 172.91, 130.67, 126.09, 125.59, 37.22, 31.92, 29.55, 29.46, 29.37, 29.35, 25.77, 

22.71, 14.15; HRMS (ESI+) Calc. for C26H44N2O2 [M+H]+: 417.3476 Found: 417.3478. 

 

 

2-(N-ethylamino)thiophenol (3.77): To a dry 250 mL three-neck round-bottomed flask 

equipped with a reflux condenser was added solid lithium aluminum hydride (1.90 g, 50.0 
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mmol, 0.75 eq), dry THF (75 mL), and this was cooled to 0 °C (ice bath) under N2. To this 

stirred suspension was added a solution of 2-methylbenzothiazole 3.78 (10.0 g, 67.0 mmol, 

1.0 eq) in dry THF (10 mL), dropwise. After addition was complete, the ice bath was replaced 

with an oil bath and the mixture heated to reflux for 2.5 h. The yellow mixture was cooled to 

0 °C and decomposed (carefully) with wet THF (15 mL THF, 5 mL H2O). The pH was then 

brought to ≈2-3 (pH paper) with concentrated HCl (8 mL) and the mixture filtered and 

concentrated in vacuo. The bright yellow oil obtained was subjected to vacuum distillation 

(60-90 °C/0.5 mmHg), and a second vacuum distillation through a 10 cm Vigreux column 

(94-95 °C/0.5 mmHg). The clear, colorless liquid (6.67 g, 65%) thus obtained contained a 

small amount (approx. 5-7%) of 2-methylbenzothiazole (as evidenced in the 1H NMR and 13C 

NMR spectra) and required distillation prior to each use due to air oxidation and 

discoloration (bright yellow) forming a yellow precipitate. 1H NMR (400 MHz, CDCl3): 7.38-

7.37 (m, 1H), 7.20-7.18 (m, 1H), 6.62-6.59 (m, 2H), 3.20 (q, J = 7 Hz, 2H), 1.31 (t, J = 7 Hz, 3H). 

A literature procedure for the N-methyl derivative was followed, published by Hunig, et al.113  

 

 

7,14-diethyl-7,14-dihydrobenzo[5,6][1,4]thiazino[2,3-b]phenothiazine-6,13-

dicarbonitrile (3.80): To a 25 mL two-neck round-bottomed flask, under N2, was added 

TFTP (400 mg, 2.0 mmol, 1.0 eq), K2CO3 (1.66 g, 12.0 mmol, 6.0 eq) and dry DMF (10 mL). A 

solution of 2-(N-ethylamino)thiophenol 3.77 (645 mg, 4.2 mmol, 2.1 eq) in DMF (1 mL) was 

then added dropwise. After addition was complete, the orange mixture was heated to 100 

°C, turning dark red in colour. After 1.5 h at temperature, a red-orange, fluorescent (365 nm) 

solid began to precipitate, and the mixture was left for 4 h at 100 °C. The mixture was cooled, 

diluted with H2O (100 mL), and the precipitate collected via suction filtration, washing with 

H2O, then cold methanol. The solids were subjected to column chromatography (SiO2, 30% 
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CH2Cl2/hexanes) from which fractions 13-19 were concentrated in vacuo to yield an orange 

solid; recrystallisation of this material from THF provided the desired product as a bright 

orange solid (70 mg, 8%). mp > 260 °C; Rf = 0.40 (50% CH2Cl2/hexanes); 1H NMR (400 MHz, 

C6D6) δ: 6.83-6.80 (m, 4H), 6.63 (t, J = 7 Hz, 2H), 6.51 (d, J = 8 Hz, 2H), 3.75 (q, J = 7 Hz, 4H), 

0.88 (t, J = 7 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ: 144.19, 143.65, 136.71, 128.40, 127.46, 

126.18, 124.75, 120.88, 114.50, 105.97, 49.34, 14.43; HRMS (ESI+) Calc. for C24H18N4S2 

[M+H]+: 427.1046 Found: 427.1047. 

 

 

12-ethyl-12H-benzo[5,6][1,4]dioxino[2,3-b]phenothiazine-6,13-dicarbonitrile 

(3.84): To a 25 mL round-bottomed flask was added dibenzodioxin difluoride 3.16 (401 mg, 

1.49 mmol, 1.0 eq), K2CO3 (830 mg, 5.86 mmol, 4.0 eq), and dry DMF (8 mL). This was placed 

under N2, and a solution of 2-(ethylamino)thiophenol (229 mg, 1.49 mmol, 1.0 eq) in THF (2 

mL) was added dropwise. After stirring 5 min at rt, a non-fluorescent yellow solid 

precipitated, and the reaction mixture was heated to 100 °C with redissolution. After 24 h, 

the mixture was cooled to room temperature, poured into H2O (75 mL), and the precipitate 

collected via suction filtration, washing with H2O. The crude solid thus obtained could be 

recrystallised from ethyl acetate to yield the product as orange needles (263 mg, 46%). mp 

= 243-244 °C; 1H NMR (400 MHz, C6D6) δ: 6.83-6.78 (m, 2H), 6.64 (t, J = 8 Hz, 1H), 6.53-6.43 

(m, 5H), 3.80 (q, J = 7 Hz, 2H), 0.92 (t, J = 7 Hz, 3H); 13C NMR (100 MHz, C6D6) δ: 143.34, 

143.25, 140.11, 139.86, 139.40, 129.44, 128.01, 127.25, 126.24, 125.24, 125.16, 124.96, 

124.57, 120.43, 116.51, 116.47, 112.03, 111.08, 102.92, 97.20, 48.47, 13.94; HRMS (ESI+) 

Calc. for C22H13N3O2S [M+H]+: 384.0801 Found: 384.0788. 
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Introduction 

 

Data for this structure was collected by Dr. Paul Boyle at Department of Chemistry X-Ray 

Facility, Western University. 

 

All H-atoms were introduced in calculated positions and refined on a riding model. Non-

hydrogen atoms were refined anisotropically with a global rigid bond (SHELX RIGU) 

restraint.  

 

Crystals diffracted weakly, with four sources for this problem: 

1) Crystals were thin needles. 

2) The molecular structure contains only light atoms. 

3) The selected crystal was a two component twin, with the second domain related to 

the first by a rotation of 180 degrees around [0 0 1] (in reciprocal space.) 

4) Significant disorder was present outside the main fragment, which could not be 

modeled. It was therefore treated using the SQUEEZE routine in PLATON (note that 

this was properly implemented, using SHELX2014, and by first refining with the hklf5 

file, with an included BASF instruction, and a LIST 8 instruction.) 

 

While this resulted in a high wR2 for all reflections, the model does not exhibit any notable 

deficiencies. 
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Experimental 

A single crystal of C52H40N2O12 was selected and collected on a Bruker APEX-II 
CCD diffractometer. The crystal was kept at 110(2) K during data collection. Using Olex2 [1], 
the structure was solved with the ShelXT [2] structure solution program using Direct 
Methods and refined with the ShelXL [3] refinement package using Least Squares 
minimisation. 

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. 

Appl. Cryst. 42, 339-341. 

2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8. 

3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8. 

Crystal structure determination  

Crystal Data for C52H40N2O12 (M =884.86 g/mol): triclinic, space group P-1 (no. 2), a = 
12.9017(7) Å, b = 15.3041(9) Å, c = 16.4600(10) Å, α = 109.606(5)°, β = 105.890(5)°, γ = 
106.544(5)°, V = 2678.1(3) Å3, Z = 2, T = 110(2) K, μ(CuKα) = 0.649 mm-1, Dcalc = 1.097 
g/cm3, 16216 reflections measured (6.742° ≤ 2 ≤ 127.382°), 16216 unique (9682 with I > 
2σ(I)), Rsigma = 0.0626) which were used in all calculations. The final R1 was 0.0945 (I > 
2σ(I)) and wR2 was 0.2957 (all data). 
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Table 1 Crystal data and structure refinement  

Identification code LKH-2-6 (Western: n17105) 

Empirical formula C52H40N2O12 

Formula weight 884.86 

Temperature/K 110(2) 

Crystal system triclinic 

Space group P-1 

a/Å 12.9017(7) 

b/Å 15.3041(9) 

c/Å 16.4600(10) 

α/° 109.606(5) 

β/° 105.890(5) 

γ/° 106.544(5) 

Volume/Å3 2678.1(3) 

Z 2 

ρcalcg/cm3 1.097 

μ/mm-1 0.649 

F(000) 924.0 

Crystal size/mm3 0.474 × 0.077 × 0.062 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 6.742 to 127.382 
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Index ranges -14 ≤ h ≤ 14, -17 ≤ k ≤ 17, -19 ≤ l ≤ 19 

Reflections collected 16216 

Independent reflections 16216 [9682 with I > 2σ(I), Rsigma = 0.0626] 

Data/restraints/parameters 16216/504/604 

Goodness-of-fit on F2 1.035 

Final R indexes [I>=2σ (I)] R1 = 0.0945, wR2 = 0.2477 

Final R indexes [all data] R1 = 0.1526, wR2 = 0.2957 

Largest diff. peak/hole / e Å-3 0.41/-0.31 
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Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103). Ueq is defined as 1/3 of of the trace of the orthogonalised 

UIJ tensor. 

Atom x y z U(eq) 

O1 5587(4) 45(3) 3514(2) 40.1(9) 

O2 2651(3) -1057(3) 4587(2) 36.0(9) 

O3 10198(5) 3109(3) 1744(3) 57.0(12) 

O4 9421(5) 1477(4) 196(3) 70.7(15) 

O5 12811(4) 2254(4) 3584(3) 54.7(12) 

O6 13943(4) 3976(3) 5081(3) 46.9(10) 

N1 2589(5) -1352(4) 2373(4) 52.2(14) 

C1 4151(5) -484(4) 4081(4) 32.7(12) 

C2 5320(5) 46(4) 4276(4) 34.3(12) 

C3 6771(5) 581(4) 3739(4) 34.6(12) 

C4 7082(5) 627(4) 3015(4) 38.3(13) 

C5 8251(5) 1169(4) 3188(4) 36.9(13) 

C6 9129(5) 1679(4) 4120(4) 33.7(12) 

C7 8777(5) 1621(4) 4843(4) 34.6(12) 

C8 7626(5) 1079(4) 4655(4) 33.8(12) 

C9 3819(5) -529(4) 4813(4) 33.8(12) 

C10 8521(5) 1233(5) 2375(4) 41.4(13) 
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C11 9196(5) 2170(5) 2438(4) 42.3(13) 

C12 9508(6) 2232(5) 1713(4) 45.1(14) 

C13 9067(7) 1334(5) 876(5) 52.4(16) 

C14 8400(7) 420(5) 781(5) 63.1(19) 

C15 8105(6) 355(5) 1539(4) 51.4(16) 

C16 10409(5) 2284(4) 4398(4) 35.2(12) 

C17 10999(5) 1944(4) 3841(4) 37.6(13) 

C18 12154(6) 2518(5) 4082(4) 43.4(14) 

C19 12801(5) 3464(4) 4911(4) 39.3(13) 

C20 12230(5) 3780(4) 5473(4) 39.0(13) 

C21 11048(5) 3197(4) 5210(4) 36.3(12) 

C22 3269(5) -977(4) 3126(4) 39.5(13) 

C23 10712(9) 4016(5) 2614(6) 74(2) 

C24 8934(9) 598(6) -699(5) 81(3) 

C25 12193(8) 1287(7) 2756(6) 81(3) 

C26 14654(6) 4871(5) 5969(5) 51.6(16) 

O7 2076(3) 1413(3) 6560(3) 39.0(9) 

O8 1998(3) 678(3) 4691(3) 37.6(9) 

O9 8068(5) 3956(4) 10187(3) 69.5(14) 

O10 9208(5) 5768(4) 10368(3) 71.6(15) 

O11 9336(4) 3694(3) 6650(3) 43.8(10) 
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O12 8935(3) 3952(3) 5145(3) 40.6(9) 

N2 119(5) 1049(4) 7595(4) 55.2(14) 

C27 32(5) 354(4) 5900(4) 33.7(12) 

C28 1059(5) 719(4) 5766(4) 34.4(12) 

C29 3074(5) 1777(4) 6382(4) 34.7(12) 

C30 4102(5) 2500(4) 7136(4) 41.7(13) 

C31 5132(5) 2914(4) 7007(4) 37.9(13) 

C32 5096(5) 2583(4) 6089(4) 36.1(12) 

C33 4015(5) 1835(4) 5340(4) 34.7(12) 

C34 3029(5) 1438(4) 5477(4) 33.5(12) 

C35 1035(5) 371(4) 4866(4) 33.2(12) 

C36 70(5) 736(4) 6842(4) 41.3(14) 

C37 6219(6) 3701(4) 7880(4) 42.6(14) 

C38 6614(6) 3443(5) 8619(4) 48.1(15) 

C39 7612(6) 4149(6) 9438(5) 55.7(16) 

C40 8216(6) 5115(5) 9526(4) 54.4(16) 

C41 7836(6) 5365(5) 8822(4) 49.1(15) 

C42 6808(6) 4645(5) 7985(4) 48.1(15) 

C43 6103(5) 2951(4) 5840(4) 35.7(12) 

C44 7261(5) 3157(4) 6408(4) 35.9(12) 

C45 8175(5) 3488(4) 6156(4) 36.3(12) 
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C46 7966(5) 3618(4) 5326(4) 34.1(12) 

C47 6823(5) 3406(4) 4770(4) 38.4(13) 

C48 5914(5) 3090(4) 5031(4) 37.0(12) 

C49 7506(8) 2952(7) 10068(6) 82(3) 

C50 9860(7) 6739(6) 10445(5) 75(2) 

C51 9589(6) 3578(7) 7509(5) 62(2) 

C52 8707(6) 3973(5) 4253(4) 42.5(14) 
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Table 3 Anisotropic Displacement Parameters (Å2×103). The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. 

Atom U11 U22 U33 U23 U13 U12 

O1 37(2) 46(2) 22.6(19) 11.0(17) 11.7(17) 3.8(19) 

O2 33(2) 40(2) 27.2(19) 13.4(16) 14.0(17) 6.1(18) 

O3 71(3) 45(2) 41(2) 16(2) 28(2) 5(2) 

O4 101(4) 56(3) 37(3) 13(2) 38(3) 8(3) 

O5 47(3) 69(3) 38(2) 12(2) 24(2) 21(2) 

O6 33(2) 48(2) 51(3) 20(2) 18.5(19) 7(2) 

N1 44(3) 58(3) 30(3) 13(2) 11(2) 2(3) 

C1 36(3) 29(3) 23(2) 10(2) 11(2) 6(2) 

C2 40(3) 30(3) 25(3) 8(2) 14(2) 8(3) 

C3 36(3) 33(3) 28(3) 11(2) 14(2) 6(3) 

C4 43(3) 42(3) 24(3) 13(2) 17(2) 8(3) 

C5 41(3) 39(3) 29(3) 14(2) 17(2) 13(3) 

C6 40(3) 35(3) 28(3) 15(2) 17(2) 14(3) 

C7 37(3) 30(3) 33(3) 14(2) 13(2) 10(3) 

C8 41(3) 32(3) 29(3) 14(2) 19(2) 10(3) 

C9 34(3) 33(3) 30(3) 12(2) 16(2) 7(3) 

C10 35(3) 53(3) 31(3) 18(3) 15(3) 11(3) 

C11 40(3) 49(3) 36(3) 19(3) 19(3) 13(3) 
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C12 51(4) 42(3) 40(3) 20(3) 25(3) 10(3) 

C13 66(5) 46(3) 40(3) 20(3) 27(3) 10(3) 

C14 82(5) 48(4) 33(3) 4(3) 23(3) 12(4) 

C15 52(4) 48(3) 37(3) 12(3) 23(3) 1(3) 

C16 37(3) 39(3) 31(3) 20(2) 17(2) 10(3) 

C17 36(3) 41(3) 30(3) 14(2) 15(2) 10(3) 

C18 47(4) 54(3) 41(3) 25(3) 26(3) 24(3) 

C19 31(3) 44(3) 43(3) 22(3) 15(3) 12(3) 

C20 30(3) 37(3) 40(3) 12(3) 12(2) 9(3) 

C21 38(3) 41(3) 32(3) 16(2) 18(2) 16(3) 

C22 38(3) 44(3) 31(3) 16(2) 17(2) 8(3) 

C23 108(7) 45(4) 55(4) 13(3) 51(5) 8(4) 

C24 117(8) 61(5) 46(4) 9(4) 44(5) 22(5) 

C25 64(5) 93(6) 49(4) -4(4) 35(4) 15(5) 

C26 38(4) 50(4) 47(4) 13(3) 10(3) 10(3) 

O7 30(2) 40(2) 26.4(19) 7.2(16) 9.8(16) -1.7(18) 

O8 31(2) 34.5(19) 28.7(19) 4.8(16) 13.0(16) -0.4(17) 

O9 63(3) 82(3) 42(3) 35(3) 10(2) 6(3) 

O10 55(3) 80(3) 30(2) 16(2) 2(2) -13(3) 

O11 30(2) 56(2) 33(2) 15.5(19) 10.0(17) 10(2) 

O12 32(2) 46(2) 42(2) 19.9(19) 19.8(18) 9.7(19) 
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N2 52(3) 55(3) 34(3) 7(2) 21(3) 2(3) 

C27 34(3) 25(3) 25(3) 3(2) 9(2) 3(2) 

C28 32(3) 30(3) 27(3) 8(2) 9(2) 3(2) 

C29 31(3) 31(3) 35(3) 11(2) 15(2) 7(2) 

C30 39(3) 42(3) 27(3) 5(2) 11(2) 9(3) 

C31 33(3) 35(3) 29(3) 6(2) 9(2) 5(3) 

C32 37(3) 31(3) 34(3) 10(2) 15(2) 10(3) 

C33 33(3) 28(3) 29(3) 6(2) 12(2) 5(2) 

C34 32(3) 28(3) 29(3) 8(2) 11(2) 5(2) 

C35 35(3) 27(3) 30(3) 10(2) 15(2) 7(3) 

C36 30(3) 39(3) 36(3) 9(3) 13(3) -1(3) 

C37 39(3) 39(3) 35(3) 6(2) 16(3) 9(3) 

C38 43(4) 50(3) 36(3) 15(3) 16(3) 5(3) 

C39 46(4) 67(4) 36(3) 20(3) 12(3) 7(3) 

C40 48(4) 58(4) 30(3) 12(3) 11(3) 0(3) 

C41 47(4) 43(3) 35(3) 9(3) 15(3) 1(3) 

C42 40(4) 51(3) 37(3) 12(3) 13(3) 10(3) 

C43 34(3) 30(3) 35(3) 9(2) 16(2) 7(3) 

C44 32(3) 37(3) 31(3) 13(2) 13(2) 9(3) 

C45 29(3) 33(3) 36(3) 10(2) 11(2) 7(3) 

C46 31(3) 29(3) 35(3) 9(2) 16(2) 6(2) 
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C47 39(3) 38(3) 36(3) 17(3) 17(3) 12(3) 

C48 25(3) 40(3) 32(3) 12(2) 7(2) 5(3) 

C49 79(6) 90(6) 60(5) 50(5) 12(4) 12(5) 

C50 56(5) 68(4) 36(4) 9(3) 1(3) -26(4) 

C51 34(4) 101(6) 42(4) 36(4) 10(3) 18(4) 

C52 42(4) 45(3) 41(3) 19(3) 21(3) 14(3) 
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Table 4 Bond Lengths. 

Atom Atom Length/Å   Atom Atom Length/Å 

O1 C2 1.388(7)   O7 C28 1.376(7) 

O1 C3 1.384(7)   O7 C29 1.400(7) 

O2 C81 1.397(6)   O8 C34 1.401(7) 

O2 C9 1.363(7)   O8 C35 1.342(7) 

O3 C12 1.359(7)   O9 C39 1.377(8) 

O3 C23 1.428(8)   O9 C49 1.419(9) 

O4 C13 1.377(8)   O10 C40 1.388(8) 

O4 C24 1.434(8)   O10 C50 1.427(9) 

O5 C18 1.381(7)   O11 C45 1.378(7) 

O5 C25 1.436(9)   O11 C51 1.444(8) 

O6 C19 1.354(7)   O12 C46 1.362(7) 

O6 C26 1.435(8)   O12 C52 1.430(7) 

N1 C22 1.130(8)   N2 C36 1.145(8) 

C1 C2 1.377(8)   C27 C28 1.391(8) 

C1 C9 1.401(8)   C27 C352 1.399(8) 

C1 C22 1.439(8)   C27 C36 1.442(8) 

C2 C91 1.380(8)   C28 C35 1.385(8) 

C3 C4 1.374(8)   C29 C30 1.365(8) 

C3 C8 1.383(8)   C29 C34 1.382(8) 
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C4 C5 1.391(9)   C30 C31 1.406(9) 

C5 C6 1.410(8)   C31 C32 1.405(8) 

C5 C10 1.498(8)   C31 C37 1.502(8) 

C6 C7 1.406(8)   C32 C33 1.406(8) 

C6 C16 1.493(8)   C32 C43 1.484(8) 

C7 C8 1.365(8)   C33 C34 1.360(8) 

C10 C11 1.402(9)   C37 C38 1.413(9) 

C10 C15 1.389(9)   C37 C42 1.353(9) 

C11 C12 1.382(9)   C38 C39 1.387(9) 

C12 C13 1.402(9)   C39 C40 1.397(10) 

C13 C14 1.347(10)   C40 C41 1.350(9) 

C14 C15 1.427(10)   C41 C42 1.422(9) 

C16 C17 1.405(8)   C43 C44 1.404(8) 

C16 C21 1.381(8)   C43 C48 1.385(8) 

C17 C18 1.359(9)   C44 C45 1.374(8) 

C18 C19 1.420(9)   C45 C46 1.411(8) 

C19 C20 1.381(8)   C46 C47 1.382(8) 

C20 C21 1.384(9)   C47 C48 1.374(8) 

11-X,-Y,1-Z; 2-X,-Y,1-Z 
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Table 5 Bond Angles. 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

C3 O1 C2 115.2(4)   C28 O7 C29 114.8(4) 

C9 O2 C81 115.4(4)   C35 O8 C34 115.5(4) 

C12 O3 C23 117.4(5)   C39 O9 C49 116.6(6) 

C13 O4 C24 116.3(6)   C40 O10 C50 115.7(5) 

C18 O5 C25 115.4(5)   C45 O11 C51 116.1(5) 

C19 O6 C26 117.0(5)   C46 O12 C52 115.9(4) 

C2 C1 C9 120.1(5)   C28 C27 C352 120.9(5) 

C2 C1 C22 119.9(5)   C28 C27 C36 119.4(5) 

C9 C1 C22 120.0(5)   C352 C27 C36 119.7(5) 

C1 C2 O1 116.9(5)   O7 C28 C27 117.2(5) 

C1 C2 C91 121.0(5)   O7 C28 C35 122.6(5) 

C91 C2 O1 122.1(5)   C35 C28 C27 120.2(5) 

C4 C3 O1 117.7(5)   C30 C29 O7 117.8(5) 

C4 C3 C8 119.9(5)   C30 C29 C34 120.4(5) 

C8 C3 O1 122.4(5)   C34 C29 O7 121.8(5) 

C3 C4 C5 121.0(5)   C29 C30 C31 120.8(5) 

C4 C5 C6 119.5(5)   C30 C31 C37 116.8(5) 

C4 C5 C10 118.4(5)   C32 C31 C30 119.4(5) 

C6 C5 C10 122.1(5)   C32 C31 C37 123.8(5) 
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C5 C6 C16 124.7(5)   C31 C32 C33 117.3(5) 

C7 C6 C5 117.9(5)   C31 C32 C43 125.7(5) 

C7 C6 C16 117.4(5)   C33 C32 C43 117.0(5) 

C8 C7 C6 121.5(5)   C34 C33 C32 122.5(5) 

C3 C8 O21 121.9(5)   C29 C34 O8 121.9(5) 

C7 C8 O21 118.0(5)   C33 C34 O8 118.6(5) 

C7 C8 C3 120.1(5)   C33 C34 C29 119.5(5) 

O2 C9 C1 118.0(5)   O8 C35 C272 118.0(5) 

O2 C9 C21 123.1(5)   O8 C35 C28 123.1(5) 

C21 C9 C1 119.0(5)   C28 C35 C272 118.9(5) 

C11 C10 C5 121.2(5)   N2 C36 C27 178.9(7) 

C15 C10 C5 120.2(6)   C38 C37 C31 118.2(6) 

C15 C10 C11 118.6(6)   C42 C37 C31 122.3(6) 

C12 C11 C10 121.7(6)   C42 C37 C38 119.5(6) 

O3 C12 C11 124.7(6)   C39 C38 C37 120.0(6) 

O3 C12 C13 117.1(5)   O9 C39 C38 123.8(7) 

C11 C12 C13 118.3(6)   O9 C39 C40 116.7(6) 

O4 C13 C12 113.8(6)   C38 C39 C40 119.5(6) 

C14 C13 O4 124.3(6)   O10 C40 C39 115.4(6) 

C14 C13 C12 121.8(6)   C41 C40 O10 124.0(6) 

C13 C14 C15 119.8(6)   C41 C40 C39 120.6(6) 
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C10 C15 C14 119.7(6)   C40 C41 C42 120.0(6) 

C17 C16 C6 121.2(5)   C37 C42 C41 120.4(6) 

C21 C16 C6 120.7(5)   C44 C43 C32 121.2(5) 

C21 C16 C17 118.1(5)   C48 C43 C32 120.2(5) 

C18 C17 C16 120.7(5)   C48 C43 C44 118.6(5) 

O5 C18 C19 113.9(6)   C45 C44 C43 120.0(5) 

C17 C18 O5 125.1(6)   O11 C45 C46 114.4(5) 

C17 C18 C19 120.9(5)   C44 C45 O11 124.8(5) 

O6 C19 C18 116.0(5)   C44 C45 C46 120.8(5) 

O6 C19 C20 125.7(5)   O12 C46 C45 116.0(5) 

C20 C19 C18 118.3(5)   O12 C46 C47 125.3(5) 

C19 C20 C21 120.2(5)   C47 C46 C45 118.7(5) 

C16 C21 C20 121.8(5)   C48 C47 C46 120.4(5) 

N1 C22 C1 178.8(7)   C47 C48 C43 121.6(5) 

11-X,-Y,1-Z; 2-X,-Y,1-Z 
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Table 6 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103). 

Atom x y z U(eq) 

H4 6502.96 291.06 2400 46 

H7 9340.58 1959.02 5464.13 42 

H11 9439.64 2765.16 2981.18 51 

H14 8133.31 -165.8 222.49 76 

H15 7635.39 -272.76 1474.07 62 

H17 10594.95 1319.6 3303.19 45 

H20 12642.12 4385.66 6030.06 47 

H21 10672.69 3427.14 5590.07 44 

H23A 11131.13 4587.34 2533.7 111 

H23B 11252.99 3945.78 3094.53 111 

H23C 10097.91 4124.83 2799.02 111 

H24A 9252.42 777.61 -1112.47 121 

H24B 8087.41 359.37 -974.3 121 

H24C 9134.7 69.79 -609.83 121 

H25A 11542.09 1299.89 2313.04 121 

H25B 11898.5 757.9 2930.02 121 

H25C 12725.49 1156.79 2472.05 121 

H26A 14314.71 5359.05 6011.66 77 
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H26B 15443.12 5162.94 6012.48 77 

H26C 14678.38 4689.68 6476.32 77 

H30 4121.11 2721.04 7741.72 50 

H33 3973.85 1602.7 4727.42 42 

H38 6204.5 2799.77 8556.93 58 

H41 8247.55 6008.21 8884.53 59 

H42 6539.06 4824.3 7506.05 58 

H44 7408.01 3068.32 6953.6 43 

H47 6667.29 3477.08 4214.73 46 

H48 5152.67 2967.41 4656.54 44 

H49A 7564.47 2477.14 9545.55 123 

H49B 6685.9 2791.41 9946.04 123 

H49C 7885.75 2907.17 10633.2 123 

H50A 9971 6650.23 9873.84 113 

H50B 10617.41 7066.17 10969.68 113 

H50C 9428.47 7154.87 10542.68 113 

H51A 9108.98 2894.21 7367.15 93 

H51B 9415.55 4049.93 7946.81 93 

H51C 10411.18 3713.93 7784.58 93 

H52A 8147.51 3310.97 3755.26 64 

H52B 9432.61 4157.48 4168.77 64 
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H52C 8388.03 4465.14 4235.33 64 
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Sample:  benzo[5,6][1,4]dioxino[2,3-b]dibenzo[b,e][1,4]dioxine-6,13-dicarbonitrile 

(DCTOP, 3.39) n19007 (LKH-4-126) 

X-ray Structure Report  

 

 

Louise N. Dawe, PhD 

 

Department of Chemistry and Biochemistry 

Wilfrid Laurier University 

Science Building 

75 University Ave. W. 

Waterloo, ON, ON 

ldawe@wlu.ca 

 

June 29, 2018 

 

Introduction 

 

Data for this structure was collected by Dr. Paul D. Boyle, Western University 

 

All hydrogen atoms were introduced in calculated positions and refined on a riding model. 

All non-hydrogen atoms were refined anisotropically. 
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Experimental 

 

A single crystal of C20H8N2O4 was selected and collected on a Nonius diffractometer. The 
crystal was kept at 110(2) K during data collection. Using Olex2 [1], the structure was solved 
with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the 
ShelXL [3] refinement package using Least Squares minimisation. 

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. 

Appl. Cryst. 42, 339-341. 

2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8. 

3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8. 

 

Crystal structure determination  

Crystal Data for C20H8N2O4 (M =340.28 g/mol): orthorhombic, space group Pbca (no. 
61), a = 7.15370(10) Å, b = 19.3801(3) Å, c = 20.9999(4) Å, V = 2911.41(8) Å3, Z = 8, T = 
110(2) K, μ(CuKα) = 0.925 mm-1, Dcalc = 1.553 g/cm3, 52409 reflections measured (8.422° 
≤ 2 ≤ 135.15°), 2604 unique (2522 with I > 2σ(I); Rint = 0.0736, Rsigma = 0.0168) which were 
used in all calculations. The final R1 was 0.0671 (I > 2σ(I)) and wR2 was 0.1511 (all data). 
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Table 1 Crystal data and structure refinement 

Identification code n19007 (LKH-4-126) 

Empirical formula C20H8N2O4 

Formula weight 340.28 

Temperature/K 110(2) 

Crystal system orthorhombic 

Space group Pbca 

a/Å 7.15370(10) 

b/Å 19.3801(3) 

c/Å 20.9999(4) 

α/° 90 

β/° 90 

γ/° 90 

Volume/Å3 2911.41(8) 

Z 8 

ρcalcg/cm3 1.553 

μ/mm-1 0.925 

F(000) 1392.0 

Crystal size/mm3 0.405 × 0.139 × 0.101 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 8.422 to 135.15 
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Index ranges -6 ≤ h ≤ 8, -23 ≤ k ≤ 22, -24 ≤ l ≤ 24 

Reflections collected 52409 

Independent reflections 2604 [2522 with I > 2σ(I); Rint = 0.0736, Rsigma = 0.0168] 

Data/restraints/parameters 2604/0/235 

Goodness-of-fit on F2 1.363 

Final R indexes [I>=2σ (I)] R1 = 0.0671, wR2 = 0.1500 

Final R indexes [all data] R1 = 0.0694, wR2 = 0.1511 

Largest diff. peak/hole / e Å-3 0.30/-0.26 
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Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103). Ueq is defined as 1/3 of of the trace of the orthogonalised 

UIJ tensor. 

Atom x y z U(eq) 

O1 5026(3) 2343.2(9) 6620.7(8) 28.5(5) 

O2 6312(3) 3261.8(9) 7594.1(8) 29.8(5) 

O3 7716(3) 4936.5(9) 6034.5(8) 25.9(4) 

O4 6408(3) 4027.7(9) 5060.2(8) 27.0(4) 

N1 4307(3) 2407.7(11) 4994.5(11) 31.3(5) 

N2 8344(4) 4887.8(11) 7666.4(10) 30.7(6) 

C1 5743(4) 3197.6(12) 5857.5(12) 23.5(6) 

C2 5707(4) 2988.3(12) 6491.9(12) 25.0(6) 

C3 4938(4) 2170.8(13) 7263.4(12) 25.2(6) 

C4 4233(4) 1529.7(13) 7420.9(13) 27.7(6) 

C5 4127(4) 1340.1(13) 8056.2(13) 29.9(6) 

C6 4701(4) 1790.2(13) 8530.0(13) 31.4(6) 

C7 5409(4) 2431.9(13) 8365.7(13) 28.2(6) 

C8 5535(4) 2616.6(13) 7738.4(13) 26.5(6) 

C9 6346(4) 3427.8(12) 6962.1(12) 23.5(6) 

C10 7056(4) 4074.4(12) 6794.3(12) 23.0(6) 

C11 7079(4) 4285.0(12) 6160.3(12) 24.4(6) 
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C12 7737(4) 5124.4(13) 5396.4(12) 24.4(6) 

C13 8423(4) 5768.9(13) 5245.4(12) 26.0(6) 

C14 8495(4) 5970.8(13) 4611.8(13) 27.5(6) 

C15 7866(4) 5532.2(13) 4135.9(13) 28.2(6) 

C16 7161(4) 4880.7(13) 4291.9(12) 26.5(6) 

C17 7107(4) 4685.4(13) 4917.9(12) 25.2(6) 

C18 6443(4) 3847.0(13) 5689.2(12) 24.2(6) 

C19 4972(4) 2754.1(13) 5374.6(12) 24.9(6) 

C20 7763(4) 4528.6(12) 7279.7(12) 23.7(6) 
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Table 3 Anisotropic Displacement Parameters (Å2×103). The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. 

Atom U11 U22 U33 U23 U13 U12 

O1 41.7(11) 17.8(9) 26.0(10) 0.6(7) -0.8(8) -5.8(8) 

O2 47.3(12) 18.7(9) 23.5(9) 1.6(7) 0.0(8) -7.0(8) 

O3 39.3(11) 15.0(8) 23.4(9) 0.9(7) 0.4(8) -3.7(7) 

O4 40.5(11) 18.7(9) 21.8(9) -0.1(7) 0.5(8) -3.1(8) 

N1 39.5(14) 22.2(11) 32.3(12) -4.2(10) -4.7(11) 0.4(10) 

N2 44.7(14) 21.7(11) 25.8(12) 0.3(9) -2.2(10) -2.9(10) 

C1 27.0(13) 16.9(12) 26.5(13) -4.4(10) -0.9(11) 1.6(10) 

C2 29.3(14) 15.2(12) 30.4(14) -0.4(10) 2.8(11) 0.3(10) 

C3 27.6(14) 19.9(12) 28.1(13) 3.6(10) -0.8(11) 2.9(11) 

C4 30.0(14) 19.0(12) 33.9(14) -1.7(11) 0.5(12) 0.5(11) 

C5 36.0(15) 16.8(12) 36.8(15) 4.2(11) 0.6(12) -0.9(11) 

C6 41.8(16) 23.9(13) 28.6(14) 3.4(11) 4.6(12) 2.8(12) 

C7 35.6(15) 20.2(13) 28.8(14) -0.8(10) 1.5(11) 2.0(11) 

C8 30.8(14) 16.2(12) 32.4(14) 1.6(10) 1.4(11) 1.0(10) 

C9 26.3(13) 19.0(12) 25.2(13) 0.0(10) 0.9(10) 2.4(10) 

C10 27.7(14) 17.6(12) 23.9(13) -0.8(10) -0.2(11) 2.3(10) 

C11 27.9(14) 16.1(12) 29.1(14) -1.2(10) 2.4(11) 1.7(10) 

C12 27.8(14) 23.2(13) 22.3(12) -0.7(10) 2.2(11) 4.3(11) 
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C13 29.3(14) 18.9(12) 30.0(14) -1.5(10) 2.0(11) 1.0(11) 

C14 31.2(14) 19.9(12) 31.6(14) 5.1(11) 1.5(11) 1.7(11) 

C15 33.1(15) 26.6(13) 24.8(13) 3.9(11) 2.6(11) 3.4(11) 

C16 29.9(14) 22.0(13) 27.5(14) -2.1(10) -2.2(11) 2.1(11) 

C17 26.7(14) 17.6(12) 31.1(14) 0.5(10) 1.3(11) 2.0(10) 

C18 28.2(14) 19.4(12) 25.1(13) -0.3(10) 1.5(11) 4.6(10) 

C19 30.9(14) 17.6(12) 26.3(13) 2.1(10) 0.4(11) 2.9(11) 

C20 30.9(14) 15.3(11) 24.9(13) 3.9(10) -1.0(11) -1.0(10) 
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Table 4 Bond Lengths. 

Atom Atom Length/Å   Atom Atom Length/Å 

O1 C2 1.369(3)   C3 C8 1.387(4) 

O1 C3 1.392(3)   C4 C5 1.386(4) 

O2 C8 1.402(3)   C5 C6 1.385(4) 

O2 C9 1.366(3)   C6 C7 1.386(4) 

O3 C11 1.368(3)   C7 C8 1.368(4) 

O3 C12 1.389(3)   C9 C10 1.397(4) 

O4 C17 1.402(3)   C10 C11 1.393(4) 

O4 C18 1.367(3)   C10 C20 1.439(3) 

N1 C19 1.146(3)   C11 C18 1.381(4) 

N2 C20 1.147(3)   C12 C13 1.379(4) 

C1 C2 1.393(4)   C12 C17 1.392(4) 

C1 C18 1.400(4)   C13 C14 1.388(4) 

C1 C19 1.439(4)   C14 C15 1.387(4) 

C2 C9 1.382(4)   C15 C16 1.399(4) 

C3 C4 1.381(4)   C16 C17 1.369(4) 
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Table 5 Bond Angles. 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

C2 O1 C3 115.3(2)   C2 C9 C10 119.5(2) 

C9 O2 C8 115.3(2)   C9 C10 C20 119.9(2) 

C11 O3 C12 115.60(19)   C11 C10 C9 120.5(2) 

C18 O4 C17 115.6(2)   C11 C10 C20 119.6(2) 

C2 C1 C18 120.7(2)   O3 C11 C10 117.3(2) 

C2 C1 C19 119.5(2)   O3 C11 C18 122.6(2) 

C18 C1 C19 119.7(2)   C18 C11 C10 120.1(2) 

O1 C2 C1 117.5(2)   O3 C12 C17 122.2(2) 

O1 C2 C9 122.6(2)   C13 C12 O3 117.6(2) 

C9 C2 C1 119.9(2)   C13 C12 C17 120.2(2) 

C4 C3 O1 117.7(2)   C12 C13 C14 119.3(2) 

C4 C3 C8 120.0(2)   C15 C14 C13 120.4(2) 

C8 C3 O1 122.3(2)   C14 C15 C16 120.1(2) 

C3 C4 C5 119.3(2)   C17 C16 C15 119.0(2) 

C6 C5 C4 120.5(2)   C12 C17 O4 121.2(2) 

C5 C6 C7 119.6(3)   C16 C17 O4 117.8(2) 

C8 C7 C6 119.9(3)   C16 C17 C12 121.0(2) 

C3 C8 O2 121.5(2)   O4 C18 C1 117.9(2) 

C7 C8 O2 117.9(2)   O4 C18 C11 122.8(2) 
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C7 C8 C3 120.6(2)   C11 C18 C1 119.3(2) 

O2 C9 C2 122.9(2)   N1 C19 C1 178.0(3) 

O2 C9 C10 117.6(2)   N2 C20 C10 179.3(3) 
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Table 6 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103). 

Atom x y z U(eq) 

H4 3824.23 1222.17 7097.26 33 

H5 3656.84 897.92 8167.77 36 

H6 4610.75 1659.86 8964.95 38 

H7 5806.95 2742.85 8688.11 34 

H13 8842.06 6071.42 5571.54 31 

H14 8977.63 6412.12 4503.44 33 

H15 7915.24 5674.46 3703.31 34 

H16 6725.84 4578.32 3968.14 32 
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Sample: 2-(2-aminophenoxy)-3-fluoro-10H-phenoxazine-1,4-dicarbonitrile (3.22) 

(Western Univeristy Sample Code b18201) 

 

X-ray Structure Report  

 

 

Prepared by 

 

Louise N. Dawe, PhD 

 

Department of Chemistry and Biochemistry 

Wilfrid Laurier University 

Science Building 

75 University Ave. W. 

Waterloo, ON, ON 

ldawe@wlu.ca 

 

February 6, 2018 

 

Introduction 

 

Data for this structure was collected by Dr. Paul Boyle at Department of Chemistry X-Ray 

Facility, Western University. 
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N-H hydrogen atoms were introduced in difference map positions, and refined isotropically. 

All other H-atoms were introduced in calculated positions and refined on a riding model. 

Non-hydrogen atoms were refined anisotropically.  
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Experimental 

A single crystal of C20H11FN4O2 was selected and collected on a Bruker APEX-II 
CCD diffractometer. The crystal was kept at 110(2) K during data collection. Using Olex2 [1], 
the structure was solved with the ShelXT [2] structure solution program using Intrinsic 
Phasing and refined with the ShelXL [3] refinement package using Least Squares 
minimisation. 

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. 

Appl. Cryst. 42, 339-341. 

2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8. 

3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8. 

Crystal structure determination 

Crystal Data for C20H11FN4O2 (M =358.33 g/mol): monoclinic, space group P21/n (no. 
14), a = 4.5752(12) Å, b = 22.619(6) Å, c = 15.627(5) Å, β = 96.157(10)°, V = 
1607.9(8) Å3, Z = 4, T = 110(2) K, μ(MoKα) = 0.107 mm-1, Dcalc = 1.480 g/cm3, 85634 
reflections measured (4.454° ≤ 2Θ ≤ 52.736°), 3293 unique (2783 with I > 2σ(I); Rint = 
0.0351, Rsigma = 0.0126) which were used in all calculations. The final R1 was 0.0322 (I > 
2σ(I)) and wR2 was 0.0914 (all data). 
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Table 1 Crystal data and structure refinement 

Identification code LKH-5-10 (Western b18201) 

Empirical formula C20H11FN4O2 

Formula weight 358.33 

Temperature/K 273.15 

Crystal system monoclinic 

Space group P21/n 

a/Å 4.5752(12) 

b/Å 22.619(6) 

c/Å 15.627(5) 

α/° 90 

β/° 96.157(10) 

γ/° 90 

Volume/Å3 1607.9(8) 

Z 4 

ρcalcg/cm3 1.480 

μ/mm-1 0.107 

F(000) 736.0 

Crystal size/mm3 0.63 × 0.078 × 0.071 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 4.454 to 52.736 
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Index ranges -5 ≤ h ≤ 5, -28 ≤ k ≤ 28, -19 ≤ l ≤ 19 

Reflections collected 85634 

Independent reflections 3293 [Rint = 0.0351, Rsigma = 0.0126] 

Data/restraints/parameters 3293/0/256 

Goodness-of-fit on F2 1.026 

Final R indexes [I>=2σ (I)] R1 = 0.0322, wR2 = 0.0850 

Final R indexes [all data] R1 = 0.0409, wR2 = 0.0914 

Largest diff. peak/hole / e Å-3 0.22/-0.22 
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Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103). Ueq is defined as 1/3 of of the trace of the orthogonalised 

UIJ tensor. 

Atom x y z U(eq) 

F2 -2779.1(16) 6469.0(3) 7707.4(4) 23.40(18) 

O1 2846.1(18) 7389.9(3) 5737.0(5) 20.0(2) 

O2 -1291.5(18) 5361.3(3) 7164.2(5) 20.7(2) 

N1 4561(2) 6294.5(4) 5127.8(7) 20.1(2) 

N3 3068(2) 4778.4(4) 5672.3(7) 23.9(2) 

N4 -1904(3) 4170.2(5) 7072.0(7) 24.2(2) 

N2 -1719(2) 7937.6(4) 7175.1(7) 25.4(2) 

C3 62(2) 6919.8(5) 6709.8(7) 16.4(2) 

C4 1926(3) 6875.2(5) 6069.4(7) 16.0(2) 

C13 -894(3) 7489.0(5) 6970.9(8) 18.2(2) 

C16 154(3) 4411.9(5) 7688.2(8) 19.9(3) 

C2 -959(3) 6407.0(5) 7088.3(7) 18.0(2) 

C5 4762(3) 7356.4(5) 5095.1(7) 17.8(2) 

C15 665(3) 5019.0(5) 7723.0(7) 18.9(3) 

C10 5608(3) 6814.1(5) 4783.0(7) 17.9(2) 

C12 1709(3) 5818.1(5) 6168.5(8) 17.2(2) 

C1 -158(3) 5860.7(5) 6831.6(8) 17.9(2) 
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C11 2776(3) 6318.7(5) 5775.1(7) 16.7(2) 

C6 5764(3) 7882.5(5) 4794.4(8) 22.1(3) 

C20 2826(3) 5271.7(5) 8287.6(8) 24.3(3) 

C9 7519(3) 6805.7(5) 4147.8(8) 21.0(3) 

C14 2469(3) 5240.1(5) 5895.8(8) 18.4(3) 

C7 7675(3) 7869.0(6) 4158.5(8) 24.9(3) 

C8 8541(3) 7332.9(6) 3839.6(8) 24.5(3) 

C17 1915(3) 4063.6(6) 8274.2(9) 26.3(3) 

C19 4570(3) 4914.2(6) 8854.7(9) 30.1(3) 

C18 4076(3) 4310.4(6) 8845.9(9) 31.1(3) 
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Table 3 Anisotropic Displacement Parameters (Å2×103). The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. 

Atom U11 U22 U33 U23 U13 U12 

F2 27.6(4) 17.9(4) 27.3(4) -2.1(3) 15.1(3) -0.1(3) 

O1 26.1(5) 11.7(4) 24.0(4) 0.8(3) 10.8(4) 0.8(3) 

O2 22.1(4) 12.3(4) 28.1(5) 3.4(3) 5.2(4) -1.7(3) 

N1 26.9(6) 12.3(5) 22.7(5) -1.3(4) 10.3(4) 3.0(4) 

N3 31.6(6) 14.5(5) 27.0(6) -0.4(4) 9.1(5) 2.8(4) 

N4 29.9(6) 13.5(5) 29.7(6) 2.7(4) 5.4(5) -3.7(5) 

N2 32.1(6) 16.0(5) 29.4(6) -3.6(4) 9.2(5) 3.2(4) 

C3 18.0(6) 12.4(5) 18.7(6) -2.1(4) 1.7(5) 1.1(4) 

C4 17.9(6) 11.2(5) 18.6(6) 0.9(4) 0.8(5) 0.4(4) 

C13 19.9(6) 16.1(6) 19.3(6) 0.3(5) 4.8(5) -1.3(5) 

C16 23.2(6) 16.1(5) 22.3(6) 1.4(5) 11.2(5) 0.0(5) 

C2 18.4(6) 17.5(6) 19.1(6) -1.4(4) 6.1(5) 0.4(4) 

C5 17.2(6) 18.8(6) 17.7(6) 1.5(4) 3.6(5) 1.3(4) 

C15 22.0(6) 15.9(6) 20.2(6) 2.1(4) 9.2(5) 1.6(4) 

C10 18.2(6) 17.2(6) 17.9(6) 0.9(4) 0.9(5) 0.8(4) 

C12 18.9(6) 11.9(5) 20.7(6) -2.1(4) 2.0(5) 1.9(4) 

C1 19.8(6) 12.3(5) 21.8(6) 1.2(4) 2.9(5) -1.8(4) 

C11 17.4(6) 15.7(6) 17.1(5) -1.2(4) 2.4(4) 2.2(4) 
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C6 23.1(6) 17.1(6) 26.1(6) 2.1(5) 2.8(5) 0.0(5) 

C20 28.8(7) 21.7(6) 23.7(6) -1.1(5) 9.2(5) -4.1(5) 

C9 20.9(6) 23.6(6) 18.7(6) -1.3(5) 2.6(5) 2.8(5) 

C14 20.9(6) 15.3(6) 19.6(6) 2.3(4) 4.8(5) -0.1(4) 

C7 24.6(6) 24.0(6) 26.5(7) 7.3(5) 4.4(5) -4.0(5) 

C8 22.4(6) 31.4(7) 20.1(6) 3.2(5) 4.6(5) -0.7(5) 

C17 29.0(7) 20.0(6) 31.8(7) 7.6(5) 11.5(6) 3.1(5) 

C19 28.3(7) 39.3(8) 22.8(6) 2.8(6) 3.2(5) -5.5(6) 

C18 28.3(7) 36.2(8) 29.6(7) 13.2(6) 6.3(6) 4.6(6) 

  

  



203 

 

Table 4 Bond Lengths 

Atom Atom Length/Å   Atom Atom Length/Å 

F2 C2 1.3497(13)   C16 C17 1.3962(18) 

O1 C4 1.3598(13)   C2 C1 1.3615(16) 

O1 C5 1.4031(14)   C5 C10 1.3904(16) 

O2 C15 1.4126(15)   C5 C6 1.3759(16) 

O2 C1 1.3686(14)   C15 C20 1.3769(18) 

N1 C10 1.3988(15)   C10 C9 1.3916(17) 

N1 C11 1.3675(15)   C12 C1 1.4151(17) 

N3 C14 1.1436(15)   C12 C11 1.4011(16) 

N4 C16 1.3851(17)   C12 C14 1.4296(15) 

N2 C13 1.1401(15)   C6 C7 1.3928(18) 

C3 C4 1.3865(16)   C20 C19 1.3873(19) 

C3 C13 1.4330(16)   C9 C8 1.3859(18) 

C3 C2 1.4047(16)   C7 C8 1.3849(18) 

C4 C11 1.4091(16)   C17 C18 1.378(2) 

C16 C15 1.3929(17)   C19 C18 1.384(2) 
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Table 5 Bond Angles 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

C4 O1 C5 118.00(9)   C5 C10 N1 119.09(11) 

C1 O2 C15 116.51(9)   C5 C10 C9 118.84(11) 

C11 N1 C10 120.52(10)   C9 C10 N1 122.06(10) 

C4 C3 C13 120.07(10)   C1 C12 C14 117.77(10) 

C4 C3 C2 120.13(10)   C11 C12 C1 122.16(10) 

C2 C3 C13 119.78(10)   C11 C12 C14 120.07(11) 

O1 C4 C3 116.93(10)   O2 C1 C12 120.33(10) 

O1 C4 C11 122.19(10)   C2 C1 O2 120.81(11) 

C3 C4 C11 120.88(10)   C2 C1 C12 118.71(10) 

N2 C13 C3 178.44(13)   N1 C11 C4 118.99(10) 

N4 C16 C15 120.98(11)   N1 C11 C12 123.78(10) 

N4 C16 C17 122.32(11)   C12 C11 C4 117.23(11) 

C15 C16 C17 116.62(12)   C5 C6 C7 118.85(11) 

F2 C2 C3 118.33(10)   C15 C20 C19 119.46(12) 

F2 C2 C1 120.79(10)   C8 C9 C10 119.81(11) 

C1 C2 C3 120.88(11)   N3 C14 C12 179.54(14) 

C10 C5 O1 121.15(10)   C8 C7 C6 120.10(11) 

C6 C5 O1 117.00(10)   C7 C8 C9 120.56(12) 

C6 C5 C10 121.85(11)   C18 C17 C16 121.34(12) 
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C16 C15 O2 115.08(11)   C18 C19 C20 119.12(13) 

C20 C15 O2 122.17(10)   C17 C18 C19 120.75(12) 

C20 C15 C16 122.69(11)           
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Table 6 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103) 

Atom x y z U(eq) 

H6 5162.18 8248.59 5016.74 26 

H20 3119.69 5687.49 8288.8 29 

H9 8122.12 6439.54 3925.98 25 

H7 8386.2 8228.17 3943.06 30 

H8 9845.37 7326.5 3406 29 

H17 1616.05 3648.06 8278.77 32 

H19 6083.91 5081.62 9243.92 36 

H18 5240.97 4063.39 9238.53 37 

H4A -2620(30) 3820(7) 7242(10) 32(4) 

H4B -3360(40) 4413(8) 6858(10) 36(4) 

H1 5030(30) 5954(7) 4915(10) 32(4) 
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Sample:  2,3-difluoro-10H-phenoxazine-1,4-dicarbonitrile (3.23):  (Western Univeristy 

Sample Code b18202) 

 

X-ray Structure Report  

 

 

Prepared by 

 

Louise N. Dawe, PhD 

 

Department of Chemistry and Biochemistry 

Wilfrid Laurier University 

Science Building 

75 University Ave. W. 

Waterloo, ON, ON 

ldawe@wlu.ca 

 

February 6, 2018 

 

Introduction 

 

Data for this structure was collected by Dr. Paul Boyle at Department of Chemistry X-Ray 

Facility, Western University. 
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The N-H hydrogen atom was introduced in its difference map position and refined 

isotropically. All other H-atoms were introduced in calculated positions and refined on a 

riding model. Non-hydrogen atoms were refined anisotropically.  
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Experimental 

A single crystal of C16H11F2N3O2S was selected and collected on a Bruker APEX-II 
CCD diffractometer. The crystal was kept at 110(2) K during data collection. Using Olex2 [1], 
the structure was solved with the ShelXT [2] structure solution program using Intrinsic 
Phasing and refined with the ShelXL [3] refinement package using Least Squares 
minimisation. 

4. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. 

Appl. Cryst. 42, 339-341. 

5. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8. 

6. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8. 

Crystal structure determination  

Crystal Data for C16H11F2N3O2S (M =347.34 g/mol): triclinic, space group P-1 (no. 
2), a = 6.840(2) Å, b = 10.791(5) Å, c = 10.962(4) Å, α = 78.435(16)°, β = 73.804(10)°, γ = 
84.616(9)°, V = 760.6(5) Å3, Z = 2, T = 109.98 K, μ(MoKα) = 0.250 mm-1, Dcalc = 1.517 g/cm3, 
42045 reflections measured (4.982° ≤ 2Θ ≤ 57.39°), 3935 unique (3352 with I > 2σ(I); Rint = 
0.0462, Rsigma = 0.0264) which were used in all calculations. The final R1 was 0.0336 (I > 
2σ(I)) and wR2 was 0.0905 (all data). 
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Table 1 Crystal data and structure refinement 

Identification code LKH-5-12 (Western b18202) 

Empirical formula C16H11F2N3O2S 

Formula weight 347.34 

Temperature/K 109.98 

Crystal system triclinic 

Space group P-1 

a/Å 6.840(2) 

b/Å 10.791(5) 

c/Å 10.962(4) 

α/° 78.435(16) 

β/° 73.804(10) 

γ/° 84.616(9) 

Volume/Å3 760.6(5) 

Z 2 

ρcalcg/cm3 1.517 

μ/mm-1 0.250 

F(000) 356.0 

Crystal size/mm3 0.355 × 0.122 × 0.053 

Radiation MoKα (λ = 0.71073) 

2 range for data collection/° 4.982 to 57.39 
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Index ranges -9 ≤ h ≤ 9, -14 ≤ k ≤ 14, -14 ≤ l ≤ 14 

Reflections collected 42045 

Independent reflections 3935 [Rint = 0.0462, Rsigma = 0.0264] 

Data/restraints/parameters 3935/0/223 

Goodness-of-fit on F2 1.056 

Final R indexes [I>=2σ (I)] R1 = 0.0336, wR2 = 0.0859 

Final R indexes [all data] R1 = 0.0425, wR2 = 0.0905 

Largest diff. peak/hole / e Å-3 0.41/-0.33 
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Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103). Ueq is defined as 1/3 of of the trace of the orthogonalised 

UIJ tensor. 

Atom x y z U(eq) 

F1 6979.5(12) 7702.7(7) 7932.9(7) 21.74(18) 

F2 7035.2(12) 5437.2(8) 9550.6(7) 22.62(18) 

O1 7553.5(15) 3266.2(8) 6130.6(9) 19.5(2) 

N1 7489.6(17) 5567.1(10) 4411.6(11) 16.9(2) 

N2 7245.9(19) 2233.7(11) 9408.5(11) 24.0(2) 

N3 7423.2(19) 8886.8(11) 4727.4(12) 24.4(3) 

C1 7100.5(18) 6619.9(12) 7490.9(12) 16.3(2) 

C2 7104.3(19) 5485.7(12) 8302.8(12) 16.8(2) 

C3 7232.8(18) 4357.6(12) 7829.0(12) 15.7(2) 

C4 7370.1(18) 4396.0(11) 6535.8(12) 14.4(2) 

C5 7668.2(18) 3283.6(11) 4833.2(11) 14.7(2) 

C6 7846.5(19) 2129.4(12) 4444.6(13) 17.0(2) 

C7 8008(2) 2103.3(12) 3154.0(13) 19.6(3) 

C8 7974.9(19) 3227.6(13) 2283.6(13) 19.0(3) 

C9 7794.5(18) 4387.1(12) 2686.5(12) 16.6(2) 

C10 7646.6(18) 4423.7(11) 3972.5(12) 14.1(2) 

C11 7364.9(17) 5564.4(11) 5679.5(11) 13.6(2) 
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C12 7244.3(18) 6676.2(11) 6180.3(12) 14.8(2) 

C13 7243.3(19) 3168.0(12) 8693.0(12) 17.4(2) 

C14 7321.6(19) 7899.5(12) 5365.4(12) 17.0(2) 

S1 7799.4(5) 8744.4(3) 1755.2(3) 18.89(9) 

O3 7375.9(18) 7374.9(9) 2332.9(10) 30.2(2) 

C15 5435(2) 9604.9(13) 2174.9(14) 23.3(3) 

C16 7968(2) 8855.1(13) 80.5(13) 23.7(3) 
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Table 3 Anisotropic Displacement Parameters (Å2×103). The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. 

Atom U11 U22 U33 U23 U13 U12 

F1 30.9(4) 15.1(4) 22.4(4) -9.3(3) -9.4(3) 3.2(3) 

F2 31.5(4) 23.6(4) 14.4(4) -4.8(3) -8.3(3) 0.3(3) 

O1 33.8(5) 10.1(4) 14.9(4) -1.4(3) -8.1(4) 0.1(4) 

N1 27.1(6) 9.5(5) 13.6(5) -0.5(4) -6.0(4) 0.6(4) 

N2 31.9(6) 20.1(6) 20.3(6) -0.4(5) -10.1(5) -0.5(5) 

N3 34.6(7) 14.9(6) 25.8(6) -3.1(5) -12.2(5) 0.2(5) 

C1 17.5(6) 12.9(6) 20.1(6) -7.1(5) -5.6(5) 1.9(4) 

C2 18.6(6) 19.7(6) 12.8(6) -3.6(5) -5.4(5) 0.3(5) 

C3 16.4(6) 14.5(6) 15.4(6) -0.2(5) -5.2(5) 0.4(4) 

C4 15.2(5) 11.2(5) 16.7(6) -1.9(4) -4.6(4) -0.3(4) 

C5 16.5(6) 13.8(6) 13.6(6) -2.3(4) -4.2(4) -0.4(4) 

C6 18.3(6) 11.6(6) 20.5(6) -1.9(5) -4.7(5) -0.6(4) 

C7 21.4(6) 15.2(6) 23.7(7) -8.3(5) -5.2(5) -1.2(5) 

C8 20.3(6) 21.2(6) 17.3(6) -6.5(5) -6.0(5) 0.1(5) 

C9 17.4(6) 15.9(6) 16.2(6) -2.0(5) -5.2(5) 1.0(5) 

C10 14.0(5) 11.7(5) 16.6(6) -3.2(4) -4.3(4) 1.0(4) 

C11 13.7(5) 12.1(5) 14.3(5) -1.4(4) -3.4(4) 0.1(4) 

C12 15.1(5) 11.8(5) 17.6(6) -2.2(4) -5.5(5) 0.9(4) 
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C13 20.5(6) 18.1(6) 14.5(6) -3.0(5) -6.2(5) 0.1(5) 

C14 19.8(6) 13.3(6) 19.9(6) -6.0(5) -7.2(5) 1.5(4) 

S1 28.18(17) 12.65(15) 16.34(16) -0.47(11) -9.41(12) 2.63(12) 

O3 57.5(7) 12.0(5) 20.0(5) 1.9(4) -13.1(5) 2.9(4) 

C15 27.0(7) 19.2(6) 24.0(7) -3.5(5) -8.6(6) 2.0(5) 

C16 34.1(7) 20.0(7) 16.6(6) -0.5(5) -8.8(5) 1.0(5) 
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Table 4 Bond Lengths  

Atom Atom Length/Å   Atom Atom Length/Å 

F1 C1 1.3391(15)   C4 C11 1.4131(17) 

F2 C2 1.3460(15)   C5 C6 1.3795(18) 

O1 C4 1.3626(16)   C5 C10 1.3939(17) 

O1 C5 1.3988(15)   C6 C7 1.3937(19) 

N1 C10 1.3964(17)   C7 C8 1.3876(19) 

N1 C11 1.3681(17)   C8 C9 1.3921(19) 

N2 C13 1.1467(18)   C9 C10 1.3932(18) 

N3 C14 1.1476(17)   C11 C12 1.4028(18) 

C1 C2 1.3616(18)   C12 C14 1.4343(18) 

C1 C12 1.4017(18)   S1 O3 1.5071(12) 

C2 C3 1.4025(18)   S1 C15 1.7787(15) 

C3 C4 1.3868(18)   S1 C16 1.7873(15) 

C3 C13 1.4351(18)         

  

Table 5 Bond Angles 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

C4 O1 C5 118.05(10)   C8 C7 C6 119.99(12) 

C11 N1 C10 120.00(11)   C7 C8 C9 120.51(12) 
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F1 C1 C2 120.30(11)   C8 C9 C10 119.95(12) 

F1 C1 C12 118.90(11)   C5 C10 N1 119.65(11) 

C2 C1 C12 120.80(11)   C9 C10 N1 121.71(11) 

F2 C2 C1 120.53(11)   C9 C10 C5 118.64(11) 

F2 C2 C3 119.65(11)   N1 C11 C4 119.27(11) 

C1 C2 C3 119.80(12)   N1 C11 C12 123.03(11) 

C2 C3 C13 119.28(12)   C12 C11 C4 117.70(12) 

C4 C3 C2 120.15(11)   C1 C12 C11 120.71(11) 

C4 C3 C13 120.56(11)   C1 C12 C14 118.02(11) 

O1 C4 C3 117.15(11)   C11 C12 C14 121.25(12) 

O1 C4 C11 122.01(11)   N2 C13 C3 178.28(14) 

C3 C4 C11 120.83(11)   N3 C14 C12 178.13(14) 

C6 C5 O1 117.10(11)   O3 S1 C15 106.35(7) 

C6 C5 C10 121.90(12)   O3 S1 C16 104.27(6) 

C10 C5 O1 120.99(11)   C15 S1 C16 97.51(7) 

C5 C6 C7 119.01(12)           
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Table 6 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103) 

Atom x y z U(eq) 

H1 7540(30) 6283(18) 3841(18) 33(5) 

H6 7858.81 1363.66 5047.59 20 

H7 8141.55 1315.99 2870.29 23 

H8 8075.97 3205.79 1406.03 23 

H9 7772.29 5152.78 2084.97 20 

H15A 4367.61 9171.36 2006.17 35 

H15B 5550.37 10460.58 1655.99 35 

H15C 5084.93 9656.8 3093.62 35 

H16A 9201.75 8391.95 -324.73 36 

H16B 8024.81 9746.41 -343.66 36 

H16C 6768.61 8487.64 -8.24 36 
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Sample: 7,14-didecyl-7,14-dihydrobenzo[5,6][1,4]oxazino[2,3-b]phenoxazine-6,13-

dicarbonitrile (3.31) n19005 (LKH-5-86) 

X-ray Structure Report  

 

 

Louise N. Dawe, PhD 

 

Department of Chemistry and Biochemistry 

Wilfrid Laurier University 

Science Building 

75 University Ave. W. 

Waterloo, ON, ON 

ldawe@wlu.ca 

 

June 29, 2018 

 

Introduction 

 

Data for this structure was collected by Dr. Paul D. Boyle, Western University 

 

All hydrogen atoms were introduced in calculated positions and refined on a riding model. 

All non-hydrogen atoms were refined anisotropically. The asymmetric unit contains half the 

molecule; the other half is generated by an inversion centre. 
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Experimental 

 

A single crystal of C40H50N4O2 was selected and collected on a Nonius diffractometer. 
The crystal was kept at 110(2) K during data collection. Using Olex2 [1], the structure was 
solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined 
with the ShelXL [3] refinement package using Least Squares minimisation. 

4. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. 

Appl. Cryst. 42, 339-341. 

5. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8. 

6. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8. 

 

Crystal structure determination  

Crystal Data for C40H50N4O2 (M =618.84 g/mol): triclinic, space group P-1 (no. 2), a = 
7.2788(2) Å, b = 8.7498(2) Å, c = 13.4900(5) Å, α = 81.525(2)°, β = 83.346(3)°, γ = 
82.899(2)°, V = 839.07(4) Å3, Z = 1, T = 110.15 K, μ(CuKα) = 0.587 mm-1, Dcalc = 
1.225 g/cm3, 15321 reflections measured (10.282° ≤ 2 ≤ 134.96°), 2933 unique (2138 with 
I > 2σ(I); Rint = 0.0565, Rsigma = 0.0307) which were used in all calculations. The final R1 was 
0.0425 (I > 2σ(I)) and wR2 was 0.1228 (all data). 
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Table 1 Crystal data and structure refinement  

Identification code n19005 (LKH-5-86) 

Empirical formula C40H50N4O2 

Formula weight 618.84 

Temperature/K 110(2) 

Crystal system triclinic 

Space group P-1 

a/Å 7.2788(2) 

b/Å 8.7498(2) 

c/Å 13.4900(5) 

α/° 81.525(2) 

β/° 83.346(3) 

γ/° 82.899(2) 

Volume/Å3 839.07(4) 

Z 1 

ρcalcg/cm3 1.225 

μ/mm-1 0.587 

F(000) 334.0 

Crystal size/mm3 0.338 × 0.193 × 0.071 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 10.282 to 134.96 
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Index ranges -8 ≤ h ≤ 8, -10 ≤ k ≤ 7, -16 ≤ l ≤ 15 

Reflections collected 15321 

Independent reflections 2933 [2138 with I > 2σ(I); Rint = 0.0565, Rsigma = 0.0307] 

Data/restraints/parameters 2933/0/209 

Goodness-of-fit on F2 1.055 

Final R indexes [I>=2σ (I)] R1 = 0.0425, wR2 = 0.1071 

Final R indexes [all data] R1 = 0.0665, wR2 = 0.1228 

Largest diff. peak/hole / e Å-3 0.20/-0.23 
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Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103). Ueq is defined as 1/3 of of the trace of the orthogonalised 

UIJ tensor. 

Atom x y z U(eq) 

O1 3422.5(15) -1591.0(13) 9593.5(9) 27.7(3) 

N1 2911.8(19) 1614.3(16) 8891.1(11) 25.3(3) 

N2 1628(2) -4398.1(18) 10958.2(13) 37.9(4) 

C1 359(2) -1564.5(18) 10332.2(13) 24.3(4) 

C2 1739(2) -730.5(19) 9765.0(13) 24.3(4) 

C3 4788(2) -893.1(19) 8935.1(13) 25.0(4) 

C4 6348(2) -1844(2) 8658.5(13) 27.0(4) 

C5 7778(2) -1220(2) 8019.5(14) 31.2(4) 

C6 7612(2) 363(2) 7675.3(14) 32.7(4) 

C7 6024(2) 1306(2) 7957.5(14) 29.1(4) 

C8 4563(2) 698.4(19) 8589.4(13) 24.7(4) 

C9 1455(2) 858.4(19) 9426.6(12) 23.6(4) 

C10 1003(2) -3156(2) 10682.7(14) 27.6(4) 

C11 2988(2) 3299.7(19) 8836.2(13) 26.7(4) 

C12 2571(2) 4242.9(19) 7830.4(13) 26.4(4) 

C13 2746(2) 5960.1(19) 7832.6(13) 27.8(4) 

C14 2423(2) 6956.1(19) 6832.6(13) 27.9(4) 
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C15 2721(2) 8656.5(19) 6815.2(13) 27.5(4) 

C16 2286(3) 9679(2) 5840.6(14) 30.4(4) 

C17 2645(3) 11360(2) 5822.3(14) 30.1(4) 

C18 2271(3) 12411(2) 4847.4(14) 32.3(4) 

C19 2706(3) 14059(2) 4837.8(15) 35.0(5) 

C20 2440(3) 15109(2) 3848.1(16) 41.1(5) 
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Table 3 Anisotropic Displacement Parameters (Å2×103). The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. 

Atom U11 U22 U33 U23 U13 U12 

O1 20.2(6) 20.8(6) 38.7(7) 1.1(5) 0.7(5) 1.5(5) 

N1 23.5(7) 18.5(7) 32.0(8) 0.4(6) -0.2(6) -1.9(6) 

N2 31.3(9) 25.0(9) 51.9(11) 3.3(7) 1.8(7) 2.4(7) 

C1 26.2(9) 18.1(8) 28.0(9) -0.4(7) -5.9(7) -0.8(7) 

C2 21.5(9) 23.5(9) 27.5(10) -3.3(7) -3.8(7) 0.6(7) 

C3 23.0(9) 24.9(9) 26.6(9) -0.2(7) -3.8(7) -3.9(7) 

C4 24.8(9) 23.6(9) 32.1(10) -2.3(7) -6.8(7) 0.8(7) 

C5 23.2(9) 31.2(10) 37.5(11) -4.1(8) -1.6(8) 2.2(7) 

C6 24.0(9) 35.6(11) 36.2(11) -1.1(8) 1.2(8) -3.1(8) 

C7 27.6(10) 25.6(9) 33.2(10) 0.4(8) -3.8(8) -3.3(7) 

C8 22.5(9) 24.4(9) 27.3(9) -2.0(7) -4.7(7) -1.8(7) 

C9 23.9(9) 20.3(9) 25.5(9) 0.1(7) -3.5(7) -1.4(7) 

C10 21.3(9) 25.7(10) 34.3(10) -2.4(8) 1.2(7) -2.3(7) 

C11 25.5(9) 19.6(9) 34.1(10) -1.4(7) -1.3(7) -3.9(7) 

C12 25.7(9) 21.4(9) 31.2(10) -0.7(7) -2.1(7) -2.6(7) 

C13 30.0(9) 21.0(9) 31.6(10) 0.0(7) -5.3(8) -1.7(7) 

C14 28.7(9) 22.9(9) 31.4(10) -0.1(7) -4.5(8) -2.8(7) 

C15 26.9(9) 24.4(9) 31.2(10) -2.0(7) -3.5(8) -4.3(7) 
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C16 34.1(10) 24.4(9) 32.4(10) -0.3(8) -5.5(8) -4.1(7) 

C17 31.1(10) 24.9(9) 34.2(10) 1.0(8) -4.5(8) -6.7(7) 

C18 35.8(10) 26.6(10) 34.1(11) 2.3(8) -8.0(8) -5.1(8) 

C19 34.6(11) 28.6(10) 40.2(11) 3.3(8) -1.3(9) -8.0(8) 

C20 40.3(12) 31.8(11) 47.0(13) 9.7(9) -2.9(10) -6.7(9) 
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Table 4 Bond Lengths  

Atom Atom Length/Å   Atom Atom Length/Å 

O1 C2 1.3708(19)   C5 C6 1.389(3) 

O1 C3 1.391(2)   C6 C7 1.385(2) 

N1 C8 1.413(2)   C7 C8 1.391(2) 

N1 C9 1.392(2)   C11 C12 1.522(2) 

N1 C11 1.473(2)   C12 C13 1.524(2) 

N2 C10 1.151(2)   C13 C14 1.520(2) 

C1 C2 1.402(2)   C14 C15 1.526(2) 

C1 C91 1.411(2)   C15 C16 1.520(2) 

C1 C10 1.442(2)   C16 C17 1.521(2) 

C2 C9 1.396(2)   C17 C18 1.521(2) 

C3 C4 1.371(2)   C18 C19 1.512(2) 

C3 C8 1.398(2)   C19 C20 1.523(3) 

C4 C5 1.385(3)         

1-X,-Y,2-Z 
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Table 5 Bond Angles  

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

C2 O1 C3 117.76(13)   C3 C8 N1 119.93(15) 

C8 N1 C11 117.57(14)   C7 C8 N1 123.05(15) 

C9 N1 C8 118.09(14)   C7 C8 C3 117.02(16) 

C9 N1 C11 122.69(14)   N1 C9 C11 125.39(15) 

C2 C1 C91 121.96(15)   N1 C9 C2 119.75(15) 

C2 C1 C10 113.84(15)   C2 C9 C11 114.86(15) 

C91 C1 C10 124.11(16)   N2 C10 C1 175.66(18) 

O1 C2 C1 114.59(14)   N1 C11 C12 114.80(14) 

O1 C2 C9 122.25(15)   C11 C12 C13 111.06(14) 

C9 C2 C1 123.14(15)   C14 C13 C12 113.60(14) 

O1 C3 C8 120.94(15)   C13 C14 C15 113.50(14) 

C4 C3 O1 116.50(15)   C16 C15 C14 113.78(14) 

C4 C3 C8 122.56(16)   C15 C16 C17 113.17(15) 

C3 C4 C5 119.55(17)   C16 C17 C18 114.70(15) 

C4 C5 C6 119.35(17)   C19 C18 C17 113.46(15) 

C7 C6 C5 120.41(17)   C18 C19 C20 114.33(17) 

C6 C7 C8 121.10(17)           

1-X,-Y,2-Z 
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Table 6 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103)  

Atom x y z U(eq) 

H4 6447.45 -2922.73 8903.48 32 

H5 8861.91 -1868.14 7818.47 37 

H6 8594.77 800.49 7243.81 39 

H7 5929.55 2386.06 7715.46 35 

H11A 4245.06 3475.38 8977.21 32 

H11B 2086.27 3693.64 9372.1 32 

H12A 1293.51 4117.32 7695.17 32 

H12B 3448.01 3847.02 7285.31 32 

H13A 1834.54 6353.98 8364.83 33 

H13B 4005.25 6069.13 8003.48 33 

H14A 1133.86 6902.95 6683.65 34 

H14B 3277.52 6520.7 6293.03 34 

H15A 1925.64 9071.54 7382.36 33 

H15B 4033.13 8713.04 6921.62 33 

H16A 963.28 9651.59 5743.98 37 

H16B 3054.61 9249.05 5270.3 37 

H17A 3958.52 11377.77 5940.89 36 

H17B 1853.57 11790.29 6385.46 36 
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H18A 3028.57 11966.51 4279.19 39 

H18B 944.72 12431.75 4740.39 39 

H19A 4012.53 14030.01 4984.65 42 

H19B 1899.24 14518.48 5384.72 42 

H20A 3282.42 14696.03 3305.93 62 

H20B 2717.09 16158.31 3906.59 62 

H20C 1150.37 15148.93 3694.76 62 
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Sample: 10-ethyl-2,3-difluoro-10H-phenoxazine-1,4-dicarbonitrile (3.32):  b19042 (LKH-6-

89) 

X-ray Structure Report  

 

 

Louise N. Dawe, PhD 

 

Department of Chemistry and Biochemistry 

Wilfrid Laurier University 

Science Building 

75 University Ave. W. 

Waterloo, ON, ON 

ldawe@wlu.ca 

 

June 29, 2018 

 

Introduction 

 

Data for this structure was collected by Dr. Paul D. Boyle, Western University 

 

All hydrogen atoms were introduced in calculated positions and refined on a riding model. 

All non-hydrogen atoms were refined anisotropically. The N-ethyl group was disordered 

with 0.891(4): 0.109(4) occupancy. N-C and C-C distances in this group were treated with a 



234 

 

similarity restraint (SHELX SADI) using default standard uncertainties, while the anisotropic 

displacements for the carbon atoms in the ethyl group were constrained to be identical. 
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Experimental 

 

A single crystal of C16H9F2N3O was selected and collected on a Burker APEX3 
diffractometer. The crystal was kept at 110(2) K during data collection. Using Olex2 [1], the 
structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing 
and refined with the ShelXL [3] refinement package using Least Squares minimisation. 

7. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. 

Appl. Cryst. 42, 339-341. 

8. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8. 

9. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8. 

 

Crystal structure determination  

Crystal Data for C16H9F2N3O (M =297.26 g/mol): monoclinic, space group P21/n (no. 
14), a = 10.5348(3) Å, b = 6.6611(2) Å, c = 19.1688(5) Å, β = 98.785(3)°, V = 
1329.36(7) Å3, Z = 4, T = 110.15 K, μ(MoKα) = 0.116 mm-1, Dcalc = 1.485 g/cm3, 50162 
reflections measured (6.484° ≤ 2Θ ≤ 54.2°), 2925 unique (2907 with I > 2σ(I); Rint = 0.0310, 
Rsigma = 0.0107) which were used in all calculations. The final R1 was 0.0716 (I > 2σ(I)) 
and wR2 was 0.1526 (all data). 
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Table 1 Crystal data and structure refinement  

Identification code b19042 (LKH-6-89) 

Empirical formula C16H9F2N3O 

Formula weight 297.26 

Temperature/K 110.15 

Crystal system monoclinic 

Space group P21/n 

a/Å 10.5348(3) 

b/Å 6.6611(2) 

c/Å 19.1688(5) 

α/° 90 

β/° 98.785(3) 

γ/° 90 

Volume/Å3 1329.36(7) 

Z 4 

ρcalcg/cm3 1.485 

μ/mm-1 0.116 

F(000) 608.0 

Crystal size/mm3 0.280 × 0.268 × 0.080 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 6.484 to 54.2 
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Index ranges -13 ≤ h ≤ 13, -8 ≤ k ≤ 8, -24 ≤ l ≤ 24 

Reflections collected 50162 

Independent reflections 2925 [2907 with I > 2σ(I); Rint = 0.0310, Rsigma = 0.0107] 

Data/restraints/parameters 2925/2/208 

Goodness-of-fit on F2 1.334 

Final R indexes [I>=2σ (I)] R1 = 0.0716, wR2 = 0.1523 

Final R indexes [all data] R1 = 0.0722, wR2 = 0.1526 

Largest diff. peak/hole / e Å-3 0.47/-0.31 
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Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103). Ueq is defined as 1/3 of of the trace of the orthogonalised 

UIJ tensor. 

Atom x y z U(eq) 

F1 6348.9(14) 3234(2) 5970.5(8) 36.2(4) 

F2 3983.5(15) 3156(3) 5184.2(7) 37.1(4) 

O1 2069.3(14) 2603(3) 7221.5(8) 25.5(4) 

N1 4442.0(16) 2563(3) 8102.7(9) 22.3(4) 

N2 777(2) 2889(3) 5492.2(10) 29.7(5) 

N3 7866.4(18) 3220(3) 7542.9(13) 33.7(5) 

C1 3040(2) 2939(3) 6226.8(11) 19.0(4) 

C2 3187.2(19) 2806(3) 6952.5(11) 16.9(4) 

C3 2123.5(19) 2788(3) 7947.9(11) 17.0(4) 

C4 966.5(19) 2920(3) 8191.5(12) 19.2(4) 

C5 954(2) 3011(3) 8911.5(12) 24.1(5) 

C6 2103(2) 2986(3) 9372.7(12) 24.2(5) 

C7 3270(2) 2876(3) 9116.1(11) 20.5(4) 

C8 3296.0(19) 2764(3) 8394.3(11) 16.7(4) 

C9 4402.6(18) 2794(3) 7386.0(11) 16.4(4) 

C10 5473.2(19) 2971(3) 7028.3(11) 18.4(4) 

C11 5300(2) 3079(3) 6286.3(12) 22.8(5) 
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C12 4122(2) 3056(3) 5889.7(11) 23.6(5) 

C13 1775(2) 2909(3) 5818.6(11) 21.3(5) 

C14 6793(2) 3088(3) 7348.5(12) 21.6(5) 

C15 5650(2) 2165(4) 8584.7(13) 20.7(5) 

C16 6290(2) 4096(4) 8883.6(14) 27.9(6) 

C15A 5625(15) 3490(30) 8572(10) 20.7(5) 

C16A 6310(20) 1550(30) 8810(12) 27.9(6) 
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Table 3 Anisotropic Displacement Parameters (Å2×103). The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. 

Atom U11 U22 U33 U23 U13 U12 

F1 30.5(8) 50.0(10) 32.9(8) 1.3(7) 20.5(6) 1.8(7) 

F2 45.1(9) 51.8(10) 15.4(7) 0.4(6) 7.4(6) 0.4(7) 

O1 9.7(7) 48.6(11) 17.3(7) -2.6(7) -1.0(5) -1.8(7) 

N1 10.4(8) 39.5(11) 15.8(9) -0.2(8) -1.9(7) 1.5(7) 

N2 33.0(11) 28.9(11) 22.4(10) -1.9(8) -11.1(8) 0.3(9) 

N3 14.3(9) 37.7(12) 49.5(13) 0.8(10) 6.3(9) -0.6(8) 

C1 21.2(10) 17.4(10) 17.0(10) -1.6(8) -2.1(8) 2.6(8) 

C2 13.0(9) 19.3(10) 18.2(10) -1.7(8) 1.9(7) 0.4(8) 

C3 15.1(9) 19.6(10) 15.9(9) 1.3(8) 0.9(7) -0.2(8) 

C4 12.2(9) 16.6(10) 28.5(11) 0.5(8) 2.7(8) -0.3(8) 

C5 22.4(11) 21.1(11) 32.2(12) 0.0(9) 15.1(9) -2.8(9) 

C6 31.2(12) 25.5(11) 18.0(10) 1.1(9) 10.2(9) -3.3(9) 

C7 22.9(11) 18.9(10) 19.1(10) 1.0(8) 0.9(8) -1.1(8) 

C8 12.3(9) 18.6(10) 18.8(10) 1.7(8) 1.2(7) 0.0(8) 

C9 11.9(9) 19.3(10) 18.0(10) -1.4(8) 1.8(7) 1.0(8) 

C10 13.4(9) 17.5(10) 24.6(11) -2.3(8) 3.5(8) 0.6(8) 

C11 20.3(11) 25.2(11) 25.6(11) 0.0(9) 11.6(9) 1.2(9) 

C12 32.9(12) 24.7(11) 14.2(10) -0.4(8) 6.5(8) 2.3(9) 
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C13 27.8(12) 18.9(10) 15.1(9) -1.0(8) -3.9(8) 0.6(9) 

C14 15.1(10) 20.6(11) 30.8(12) -1.4(9) 8.5(8) 0.6(8) 

C15 11.9(11) 26.7(13) 21.5(11) 4.7(10) -3.7(9) 0.8(10) 

C16 19.6(12) 38.3(15) 23.7(13) -2.9(11) -3.3(10) -6.0(11) 

C15A 11.9(11) 26.7(13) 21.5(11) 4.7(10) -3.7(9) 0.8(10) 

C16A 19.6(12) 38.3(15) 23.7(13) -2.9(11) -3.3(10) -6.0(11) 

  

  



242 

 

Table 4 Bond Lengths  

Atom Atom Length/Å   Atom Atom Length/Å 

F1 C11 1.342(2)   C2 C9 1.416(3) 

F2 C12 1.339(2)   C3 C4 1.373(3) 

O1 C2 1.363(2)   C3 C8 1.391(3) 

O1 C3 1.390(2)   C4 C5 1.384(3) 

N1 C8 1.412(3)   C5 C6 1.386(3) 

N1 C9 1.377(3)   C6 C7 1.394(3) 

N1 C15 1.478(3)   C7 C8 1.390(3) 

N1 C15A 1.550(15)   C9 C10 1.411(3) 

N2 C13 1.139(3)   C10 C11 1.408(3) 

N3 C14 1.139(3)   C10 C14 1.433(3) 

C1 C2 1.379(3)   C11 C12 1.353(3) 

C1 C12 1.397(3)   C15 C16 1.523(4) 

C1 C13 1.438(3)   C15A C16A 1.518(18) 
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Table 5 Bond Angles  

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

C2 O1 C3 117.68(16)   C3 C8 N1 119.35(18) 

C8 N1 C15 118.42(18)   C7 C8 N1 123.17(18) 

C8 N1 C15A 113.1(8)   C7 C8 C3 117.45(19) 

C9 N1 C8 119.15(17)   N1 C9 C2 118.23(18) 

C9 N1 C15 122.41(18)   N1 C9 C10 126.12(18) 

C9 N1 C15A 115.7(8)   C10 C9 C2 115.62(18) 

C2 C1 C12 119.75(19)   C9 C10 C14 126.2(2) 

C2 C1 C13 120.03(19)   C11 C10 C9 120.35(19) 

C12 C1 C13 120.21(19)   C11 C10 C14 113.41(19) 

O1 C2 C1 114.67(18)   F1 C11 C10 118.10(19) 

O1 C2 C9 122.25(18)   F1 C11 C12 119.7(2) 

C1 C2 C9 123.03(19)   C12 C11 C10 122.23(19) 

O1 C3 C8 120.78(18)   F2 C12 C1 119.9(2) 

C4 C3 O1 116.33(18)   F2 C12 C11 121.1(2) 

C4 C3 C8 122.85(19)   C11 C12 C1 118.98(19) 

C3 C4 C5 119.1(2)   N2 C13 C1 179.6(3) 

C4 C5 C6 119.7(2)   N3 C14 C10 173.7(2) 

C5 C6 C7 120.5(2)   N1 C15 C16 111.9(2) 

C8 C7 C6 120.4(2)   C16A C15A N1 98.0(13) 
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245 

 

Table 6 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103)  

Atom x y z U(eq) 

H4 185.16 2949.1 7870.1 23 

H5 161.65 3090.46 9088.94 29 

H6 2095.73 3044.23 9867.26 29 

H7 4052.63 2876.87 9436.59 25 

H15A 6247.66 1425.18 8326.35 25 

H15B 5464.6 1304.45 8978.22 25 

H16A 6389.9 5011.73 8495.77 42 

H16B 7135.58 3784.85 9150.99 42 

H16C 5754.81 4732.86 9196.54 42 

H15C 6137.93 4347.47 8298.32 25 

H15D 5381.9 4263.31 8972.87 25 

H16D 6371.68 704.5 8398.24 42 

H16E 5828.48 836.15 9132.3 42 

H16F 7176.25 1852.67 9054.71 42 

  

Table 7 Atomic Occupancy  

Atom Occupancy   Atom Occupancy   Atom Occupancy 
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C15 0.891(4)   H15A 0.891(4)   H15B 0.891(4) 

C16 0.891(4)   H16A 0.891(4)   H16B 0.891(4) 

H16C 0.891(4)   C15A 0.109(4)   H15C 0.109(4) 

H15D 0.109(4)   C16A 0.109(4)   H16D 0.109(4) 

H16E 0.109(4)   H16F 0.109(4)     
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Sample:   10-benzyl-2,3-difluoro-10H-phenoxazine-1,4-dicarbonitrile (3.38) 

X-ray Structure Report  

 

 

Louise N. Dawe, PhD 

 

Department of Chemistry and Biochemistry 

Wilfrid Laurier University 

Science Building 

75 University Ave. W. 

Waterloo, ON, ON 

ldawe@wlu.ca 

 

July 1, 2018 

 

Introduction 

 

Data for this structure was collected by Dr. Paul D. Boyle, Western University 

 

All hydrogen atoms were introduced in calculated positions and refined on a riding model. 

All non-hydrogen atoms were refined anisotropically.  
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Experimental 

 

A single crystal of C21H11N3OF2 was selected and collected on a Nonius diffractometer. 
The crystal was kept at 110(2) K during data collection. Using Olex2 [1], the structure was 
solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined 
with the ShelXL [3] refinement package using Least Squares minimisation. 

10. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. 

Appl. Cryst. 42, 339-341. 

11. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8. 

12. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8. 

 

Crystal structure determination  

Crystal Data for C21H11N3OF2 (M =359.33 g/mol): monoclinic, space group P21/c (no. 
14), a = 10.5788(2) Å, b = 7.2672(2) Å, c = 21.1444(6) Å, β = 96.154(2)°, V = 
1616.18(7) Å3, Z = 4, T = 110(2) K, μ(CuKα) = 0.919 mm-1, Dcalc = 1.477 g/cm3, 13578 
reflections measured (8.406° ≤ 2 ≤ 132.832°), 2780 unique (2312 with I > 2σ(I); Rint = 
0.0394, Rsigma = 0.0202) which were used in all calculations. The final R1 was 0.0587 (I > 
2σ(I)) and wR2 was 0.1719 (all data). 
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Table 1 Crystal data and structure refinement  

Identification code n18049 (LKH-5-64) 

Empirical formula C21H11N3OF2 

Formula weight 359.33 

Temperature/K 110(2) 

Crystal system monoclinic 

Space group P21/c 

a/Å 10.5788(2) 

b/Å 7.2672(2) 

c/Å 21.1444(6) 

α/° 90 

β/° 96.154(2) 

γ/° 90 

Volume/Å3 1616.18(7) 

Z 4 

ρcalcg/cm3 1.477 

μ/mm-1 0.919 

F(000) 736.0 

Crystal size/mm3 0.782 × 0.280 × 0.142 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 8.406 to 132.832 
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Index ranges -12 ≤ h ≤ 12, -8 ≤ k ≤ 5, -24 ≤ l ≤ 25 

Reflections collected 13578 

Independent reflections 2780 [2312 with I > 2σ(I); Rint = 0.0394, Rsigma = 0.0202] 

Data/restraints/parameters 2780/0/244 

Goodness-of-fit on F2 1.063 

Final R indexes [I>=2σ (I)] R1 = 0.0587, wR2 = 0.1563 

Final R indexes [all data] R1 = 0.0701, wR2 = 0.1719 

Largest diff. peak/hole / e Å-3 0.49/-0.35 
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Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103). Ueq is defined as 1/3 of of the trace of the orthogonalised 

UIJ tensor. 

Atom x y z U(eq) 

F1 8551.1(12) 7166(2) 5791.9(7) 39.5(4) 

F2 6249.0(14) 7180(2) 5117.4(7) 44.5(4) 

O1 4274.0(14) 6048(2) 6963.9(8) 36.2(4) 

N1 6608.7(17) 5986(3) 7720.7(9) 33.1(5) 

N2 3070(2) 6976(4) 5409.7(11) 53.2(7) 

N3 9948(2) 7048(3) 7274.6(11) 45.4(6) 

C1 5274(2) 6620(3) 6054.0(12) 34.3(5) 

C2 5382(2) 6326(3) 6703.0(12) 32.5(5) 

C3 4308(2) 6215(3) 7623.0(11) 32.7(5) 

C4 3168(2) 6353(3) 7872.0(12) 35.5(6) 

C5 3147(2) 6502(3) 8520.9(13) 38.7(6) 

C6 4292(2) 6478(4) 8913.7(12) 39.7(6) 

C7 5438(2) 6312(3) 8658.0(12) 36.8(6) 

C8 5470(2) 6179(3) 8004.9(11) 32.3(5) 
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C9 6578(2) 6279(3) 7072.9(11) 31.4(5) 

C10 7646(2) 6594(3) 6748.7(12) 33.1(5) 

C11 7521(2) 6832(3) 6089.0(12) 34.4(5) 

C12 6353(2) 6859(3) 5743.5(12) 36.2(6) 

C13 4036(2) 6773(4) 5699.2(12) 40.4(6) 

C14 8920(2) 6801(4) 7062.3(12) 37.3(6) 

C15 7685(2) 5067(3) 8089.9(11) 35.0(6) 

C16 8510(2) 6274(3) 8546.9(10) 31.3(5) 

C17 8403(2) 8169(4) 8570.6(12) 37.1(6) 

C18 9223(2) 9179(4) 8990.6(12) 39.6(6) 

C19 10161(2) 8310(4) 9389.5(11) 37.7(6) 

C20 10265(2) 6423(4) 9373.6(11) 37.3(6) 

C21 9437(2) 5401(4) 8957.2(11) 35.2(5) 
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Table 3 Anisotropic Displacement Parameters (Å2×103). The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. 

Atom U11 U22 U33 U23 U13 U12 

F1 23.8(7) 55.3(9) 39.6(8) 1.0(6) 4.6(6) -1.6(6) 

F2 33.3(8) 67.3(10) 32.1(8) 5.3(7) -0.7(6) 1.4(7) 

O1 20.9(8) 52.3(10) 34.8(9) -0.3(7) -0.8(6) -2.3(7) 

N1 20.8(9) 43.7(11) 33.7(11) 0.0(9) -2.5(8) 1.1(8) 

N2 31.1(12) 82.3(18) 43.8(14) 5.2(12) -7.5(10) -1.6(11) 

N3 23.3(11) 68.1(15) 43.4(13) 1.0(11) -1.9(9) -3.5(10) 

C1 25.9(12) 39.4(13) 36.1(13) -1.3(10) -4.6(9) 0.2(10) 

C2 22.9(11) 36.0(12) 37.7(13) -2.7(10) -1.0(9) 0.4(9) 

C3 27.4(11) 34.7(12) 35.2(13) -0.6(9) -0.7(9) -0.6(9) 

C4 22.6(11) 38.0(13) 45.1(14) 3.1(10) -0.3(9) 0.4(9) 

C5 27.9(12) 43.0(14) 46.2(15) 0.4(11) 8.6(10) -0.5(10) 

C6 37.4(13) 45.0(14) 36.9(13) -0.9(11) 4.7(10) -3.7(11) 

C7 26.6(12) 45.2(14) 37.3(13) 0.4(10) -2.1(10) -2.0(10) 

C8 23.3(11) 35.6(12) 37.3(13) -0.2(10) 0.7(9) 0.7(9) 

C9 24.1(11) 34.5(12) 34.7(12) -2.1(9) -1.8(9) -0.1(9) 

C10 22.8(11) 36.5(12) 39.3(13) -3.0(10) -0.5(9) 2.0(9) 

C11 24.8(11) 38.1(12) 40.1(13) -1.4(10) 3.0(10) -0.4(9) 

C12 32.2(13) 43.0(14) 32.9(13) 0.3(10) 0.6(10) 1.7(10) 
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C13 29.5(13) 56.4(16) 34.4(13) 1.5(11) -0.8(10) -0.8(11) 

C14 27.2(13) 47.9(14) 36.7(13) 0.0(11) 2.9(10) -0.3(10) 

C15 25.9(11) 40.4(13) 37.3(13) 2.1(10) -4.0(9) 2.6(10) 

C16 20.7(11) 42.4(13) 30.4(12) 2.0(10) 0.1(9) -1.9(9) 

C17 24.6(11) 47.9(14) 37.4(14) 2.7(11) -3.5(10) 4.5(10) 

C18 32.0(12) 40.9(14) 45.0(14) -5.4(11) -0.2(10) -3.1(10) 

C19 24.2(11) 55.8(16) 32.2(13) -5.6(11) -1.1(9) -5.9(10) 

C20 23.5(11) 54.2(16) 33.3(13) 3.3(11) -1.7(9) 0.9(10) 

C21 28.8(12) 41.9(13) 33.6(12) 1.9(10) -1.8(9) 0.1(10) 
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Table 4 Bond Lengths. 

Atom Atom Length/Å   Atom Atom Length/Å 

F1 C11 1.337(3)   C4 C5 1.379(4) 

F2 C12 1.337(3)   C5 C6 1.393(4) 

O1 C2 1.363(3)   C6 C7 1.384(3) 

O1 C3 1.396(3)   C7 C8 1.388(3) 

N1 C8 1.409(3)   C9 C10 1.401(3) 

N1 C9 1.383(3)   C10 C11 1.398(4) 

N1 C15 1.470(3)   C10 C14 1.446(3) 

N2 C13 1.143(3)   C11 C12 1.367(3) 

N3 C14 1.145(3)   C15 C16 1.511(3) 

C1 C2 1.381(3)   C16 C17 1.383(4) 

C1 C12 1.387(3)   C16 C21 1.391(3) 

C1 C13 1.442(3)   C17 C18 1.384(3) 

C2 C9 1.415(3)   C18 C19 1.384(4) 

C3 C4 1.370(3)   C19 C20 1.377(4) 

C3 C8 1.397(3)   C20 C21 1.389(3) 
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Table 5 Bond Angles. 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

C2 O1 C3 117.42(17)   C10 C9 C2 116.5(2) 

C8 N1 C15 117.87(19)   C9 C10 C14 123.6(2) 

C9 N1 C8 118.46(18)   C11 C10 C9 120.9(2) 

C9 N1 C15 122.02(19)   C11 C10 C14 115.3(2) 

C2 C1 C12 120.3(2)   F1 C11 C10 119.8(2) 

C2 C1 C13 120.2(2)   F1 C11 C12 118.8(2) 

C12 C1 C13 119.4(2)   C12 C11 C10 121.2(2) 

O1 C2 C1 116.2(2)   F2 C12 C1 120.4(2) 

O1 C2 C9 122.0(2)   F2 C12 C11 120.3(2) 

C1 C2 C9 121.8(2)   C11 C12 C1 119.2(2) 

O1 C3 C8 120.1(2)   N2 C13 C1 176.8(3) 

C4 C3 O1 117.5(2)   N3 C14 C10 175.0(3) 

C4 C3 C8 122.4(2)   N1 C15 C16 115.9(2) 

C3 C4 C5 119.8(2)   C17 C16 C15 123.9(2) 

C4 C5 C6 119.1(2)   C17 C16 C21 119.1(2) 

C7 C6 C5 120.7(2)   C21 C16 C15 117.0(2) 

C6 C7 C8 120.7(2)   C16 C17 C18 120.2(2) 

C3 C8 N1 119.7(2)   C17 C18 C19 120.6(2) 

C7 C8 N1 123.0(2)   C20 C19 C18 119.5(2) 
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C7 C8 C3 117.3(2)   C19 C20 C21 120.1(2) 

N1 C9 C2 118.4(2)   C20 C21 C16 120.4(2) 

N1 C9 C10 125.1(2)           
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Table 6 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103)  

Atom x y z U(eq) 

H4 2394.87 6346.45 7598.47 43 

H5 2362.6 6619.89 8697.82 46 

H6 4286.54 6575.75 9361.42 48 

H7 6210.12 6289.81 8932.27 44 

H15A 8228.8 4510.12 7788.23 42 

H15B 7347.61 4051.61 8334.8 42 

H17 7765.24 8779.4 8297.54 45 

H18 9141.82 10479.28 9005.2 48 

H19 10729.88 9011.8 9672.43 45 

H20 10903.6 5818.07 9648 45 

H21 9504.28 4097.52 8952.41 42 
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8. Appendix B – NMR Spectra 

2,3,5,6-Tetrafluoroterephthalonitrile (2.4): 
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1,2-dibromo-4,5-bis(methoxymethoxy)benzene (2.12) 
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3,3'',4,4''-tetramethoxy-4',5'-bis(methoxymethoxy)-1,1':2',1''-terphenyl (2.13) 

O

O

OMe

MeO

MeO

OMe

O

O

 

 

 

 

 

 

 

 

 

 



262 

 

3,3'',4,4''-tetrakis(hexyloxy)-4',5'-bis(methoxymethoxy)-1,1':2',1''-terphenyl (2.16b) 
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3,3'',4,4''-tetrakis(decyloxy)-4',5'-bis(methoxymethoxy)-1,1':2',1''-terphenyl (2.16a) 
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3,3'',4,4''-tetramethoxy-[1,1':2',1''-terphenyl]-4',5'-diol (2.14) 
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3,3'',4,4''-tetrakis(hexyloxy)-[1,1':2',1''-terphenyl]-4',5'-diol (2.17b) 
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3,3'',4,4''-tetrakis(decyloxy)-[1,1':2',1''-terphenyl]-4',5'-diol (2.17a) 
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2,3,9,10-tetrakis(3,4-dimethoxyphenyl)benzo[5,6][1,4]dioxino[2,3-

b]dibenzo[b,e][1,4]dioxine-6,13-dicarbonitrile (2.1c) 
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2,3,9,10-tetrakis(3,4-bis(hexyloxy)phenyl)benzo[5,6][1,4]dioxino[2,3-

b]dibenzo[b,e][1,4]dioxine-6,13-dicarbonitrile (2.1b) 
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2,3,9,10-tetrakis(3,4-bis(decyloxy)phenyl)benzo[5,6][1,4]dioxino[2,3-

b]dibenzo[b,e][1,4]dioxine-6,13-dicarbonitrile (2.1a) 
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7,8-bis(3,4-dimethoxyphenyl)-2,3-difluorodibenzo[b,e][1,4]dioxine-1,4- dicarbonitrile 

(2.18) 
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2,3-bis(3,4-dimethoxyphenyl)benzo[5,6][1,4]dioxino[2,3-]dibenzo[b,e][1,4]dioxine- 

6,13-dicarbonitrile (2.19): 
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2,3-difluoro-10H-phenoxazine-1,4-dicarbonitrile (3.23): 
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N-(2-hydroxyphenyl)acetamide (3.26): 
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2-(N-ethylamino)phenol (3.27): 
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7,14-diethyl-7,14-dihydrobenzo[5,6][1,4]oxazino[2,3- b]phenoxazine-6,13-

dicarbonitrile (3.28): 
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N-(2-hydroxyphenyl)decanamide (3.29):  
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2-(N-decylamino)phenol (3.30): 
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7,14-didecyl-7,14-dihydrobenzo[5,6][1,4]oxazino[2,3-b]phenoxazine-6,13- 

dicarbonitrile (3.31): 
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10-ethyl-2,3-difluoro-10H-phenoxazine-1,4-dicarbonitrile (3.32): 
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10-benzyl-2,3-difluoro-10H-phenoxazine-1,4-dicarbonitrile (3.38): 
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2,3-difluorodibenzo[b,e][1,4]dioxine-1,4-dicarbonitrile (3.16): 
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14-ethyl-14H-benzo[5,6][1,4]dioxino[2,3-b]phenoxazine-6,13-dicarbonitrile (3.51): 
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9,10-bis(3,4-dimethoxyphenyl)-14-ethyl-14H-benzo[5,6][1,4]dioxino[2,3- 

b]phenoxazine-6,13-dicarbonitrile (5.53): 
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N,N'-(1,2-phenylene)diacetamide (3.61): 
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N1,N2-diethyl-1,2-benzenediamine (3.62): 
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5,10-diethyl-2,3-difluoro-5,10-dihydrophenazine-1,4-dicarbonitrile (3.69): 
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2,3-difluoro-5,10-dihydrophenazine-1,4-dicarbonitrile (3.17): 
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N,N'-(1,2-phenylene)bis(decanamide) (3.65): 
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2-(N-ethylamino)thiophenol (3.77): 
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7,14-diethyl-7,14-dihydrobenzo[5,6][1,4]thiazino[2,3-b]phenothiazine-6,13- 

dicarbonitrile (3.80): 
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12-ethyl-12H-benzo[5,6][1,4]dioxino[2,3-b]phenothiazine-6,13-dicarbonitrile 

(3.84): 
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