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Abstract

In this thesis, I study collisional transport of a hot magnetically confined plasma in a
tckamak. The weakly collisional plasma is modeled by Grad’s two-fluid thirteen moment
equations. This model provides a better treatment of the stresses and the heat fluxes than
do collisional fluid models such as Braginski’s. Using physical parameters for a typical
tokamak, I estimate the orders of magnitude of various effects. I obtaii: a reduced system
by neglecting small terms in the two-fluid thirteen moment equations. This reduced model
includes small particle flows, pressure anisotropy and temperature variation within flux
surfaces. The reduced model is compared with standard fluid models. To understand
better the behavior of solutions of this system, I expand the solution in a formal series in
powers of the small parameter (m./m;)!/4. Flux coordinates are used to solve the equations
in a general axisymmetric geometry. In lowest order, the equilibrium solution consists of
a number of arbitrary flux functions together with a Grad-Shafranov equation relating the
poloidal flux and the toroidal current. The energy dynamics of the system is complicated and
requires determining the solution to high order. As corrections to the lowest order solution
are calculated, the equilibrium is extended to successively longer time scales until on the
time scale 7.m;/m,, time independent solutions are in general not possible. 1 calculate
the time evolution of the lowest order solution on the time scale r.m;/m., a time scale

consistent with experiment.
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INTRODUCTION

In this thesis, I study the transport of particles and energy of a hot magnetically confined
plasma in a tokamak. Sufficiently hot and well confined plasmas are required to achieve
controlled nuclear fusion. The tokamak is a particular toroidally symmetric magnetic con-
finement device. Magnetic confinement systems use the property that charged particles
tend to move along magnetic field lines rather than across them. The magnetic field lines in
a tokamak spiral around a torus and are confined jn a finite volume. In an ideal plasma, par-
ticles follow the field lines and are perfectly confined. Transport across field lines is caused
by non-ideal effects such as collisions, waves, instabilities, trapped particles and turbulence.
This work considers transport due to collisions in a plasma represented by Grad’s two-fluid
thirteen moment equations. The work in this thesis consists of two parts. First, a suitable
mathematical model is found. I begin with Grad’s two-fluid thirteen moment egaations for
a plasma extract from this equation set a reduced model containing the essential physics.
In the second part of my thesis, I analyze the solutions of the reduced equations. I find and
describe solutions that vary slowly in time. The solutions evolve on a time scale comparable

to that seen in experiment.
The Thirteen Moment Model

A first step in studying a physical system is to choose a mathematical description uppro-
priate to the problem. Here, I will use Grad’s thirteen moment description to approximate
a kinetic model of a plasma [1]. In a kinetic description, each species of charged particles
in the plasma is represented by a distribution function, f(x,£,t). The distribution function
gives the number probability density of particles at time ¢, at the position x, with velocity
§. The evolution of the distribution functions is given by a Fokker-Planck equation [2]. The
Fokker-Planck equation includes the effects of the electromagnetic fields and particle colli-

sions on the particle distribution. The Fokker-Planck equation itself is an approximation
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but it is reasonable to assume that it gives a sufficiently accurate representation of a hot
plasma. The electromagnetic fields are described by Maxwell’s equations with source terms
from the plasma.

The kinetic model described above provides detailed information about the plasma. The
state space of the system (x, §) is six dimensional. Mathematical or numerical analysis of
the model is difficult in general because the distribution function may have a complicated
structure in velocity space. Experimental measurements give information only about a few
low order velocity moments of the distribution function, such as the particle number density,
the average particle velocity, and the temperature. Since experimental data are limited to
a finite number of moments, it is reasonable to attempt to extract from the kinetic model
a set of equations that describe the evolution of a finite number of moments. One can
calculate equations for the evolution of the moments of the distribution function by taking
moments of the Fokker-Planck equation. However, this procedure does not yield a closed set
of equations; the equation for the moment of order N contains moments of order (N + 1).

The same difficulty of going from a kinetic description to a moment description is en-
countered in gas dynamics. There, the gas is described by the kinetic Boltzmann equation.
There are a variety of methods of closing the system of moment equations; the best known
are the collisional closures of Hilbert and Enskogg (for a discussion of these closure methods
see [3]). These closure methods use formal calculations based on the assumption that the
effect of collisions on the system is large. A measure of the collisionality of a gas is the
ratio of the system dimension to the mean distance a particle travels between collisions.
In a strongly collisional gas, a particle has many collisions while traveling a distance the
order of the system length. A collisional system is easier to describe because collisions force
the distribution function to be close to a local Maxwellian distribution, fas. That is, the

distribution function is approximately

= =N/ 2 g Y
St = n(5m ) Peap(~m(€ - w)*/2T)
where the number density n, the temperature T" and the fluid velocity u depend on x and
t; the particle mass is m. In the limit of large collisionality the deviation of the distribution
function from a Maxwellian can be formally found in terms of n, T, u and their gradients.

In the limit of large collisionality the velocity space structure of the distribution function



is greatly simplified. However, & hot plasma is weakly collisional; for the plasma I consider
here, a particle travels on the order of 1000 system lengths between collisions. Hence,
using a collisional closure like the Hilbert or Enskogg closures is questionable in a model
representing a fusion plasma.

A method of closing the system of moment equations when the system is weakly colli-
sional was introduced by Grad to describe a rarifed gas. In this method the distribution
function is expanded about a local Maxwellian in an infinite series of Hermite polynomials
in velocity. From the kinetic equation one can calculate equations for the evolution of the
coefficients of the Hermite series. With some reasonable assumptions on the distribution
function, the infinite set of Hermite coefficients and equations is equivalent to the original
system. A level of approximation to the kinetic model is introduced by truncating the
series with a finite number of terms. A closed system for the coefficients is found using
the orthogonality of the expansion. By using enough terms in the series one hopes to ap-
proximate solutions to the kinetic equation. In the thirteen moment approximation all the
Hermite coeflicients through second order and part of the third order coefficient are used.
The Hermite coefficients can be expressed as linear combinations of the velocity moments
of the distribution. Since the \"elocity moments of the distribution function have standard
physical interpretations, they are used as the unknowns rather than the Hermite coefficients.
This representation leads to equations for thirteen (scalar) velocity moments: density (1),
fluid velocity (3), pressure tensor (6), heat flow vector (3). The thirteen moment model
contains the minimum complexity needed to include anisotropy and skewness in the velocity
space structure of the distribution function. In this work I use a two-fluid thirteen moment
approximation of the Fokker-Planck kinetic theory to model a tokamak plasma. Similar

models were presented in [4,5].
The Transport Problem

I now discuss the application of the thirteen moment model to the problem of tokamak
transport. [ am considering the behavior of a hot plasma in a tokamak. A tokamak is
a toroidally symmetric device as shown in Figure 1. The generated magnetic field has
toroidal and poloidal components. The magnetic field lines spiral around the the tokamak,

sweeping out surfaces called flux surfaoces. The innermost degenerate flux surface is called
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the magnetic axis. One would like to confine a hot plasma to the vicinity of the magnetic
axis. Since particles tend to move along field lines rather than across then, particles will
tend to move in flux surfaces rather than across them. I use the thirteen moment model to
examine the transport of particles and energy across flux surfaces.

The earliest calculations of transport in plasmas considered the effect of collisions on an
equilibrium plasma in a uniform magnetic field. The effects of the electric field, the spatial
variation of the magnetic field, and the pressure anisotropy were neglected. The results of
these calculations, usually referred to as “classical” transport theory, give estimates for the
rate at which energy and particles diffuse across flux surfaces. A calculation of this type is
included in Section (1.2). The actual transport of particles and energy seen in experiment
exceeds that predicted by classical transport theory by several orders of magnitude. In
addition, classical transport predicts that the electron energy is much better confined than
that of the ions, which is not seen in experiment.

Later work known as neoclassical transport theory included the effects of the electric
field, the pressure anisotropy and the spatial variation of the magnetic field. The nonuni-
formity of the magnetic field was found to be important. These descriptions included the
effects of trapped particles. Initially these calculations were done in the framework of a
kinetic theory (see for example [6]); later moment methods were used (see for example [7]).
Neoclassical transport theory predicts transport that is larger than in the classical theory
but still smaller than what is measured.

A key difference between the analysis here and usual neoclassical calculations is the
scaling of the distribution function. In neoclassical calculations the distribution function is
taken to be a local Maxwellian plus an extremely small non-Maxwellian part. For many
systems this may be appropriate. However, for a tokamak plasma there are reasons sug-
gesting that other scalings should be investigated. One reason is the low collisionality of
the system. The order of magnitude of the deviation of the distribution function from a
lorai Maxwellian can be estimated to be the product of the Mach number and the mean
free path. The Mach number of the flows in the system is quite small but the mean free
path is very long. Another reason for the system to not be so close to a local Maxwellian
is that there are sources driving the system. Thes~. sources include the magnetic field, and

various forms of plasma heating. The size of these source terms are key to determining the



character of the system. In this work the non-Maxwellian part of the distribution is taken
to be small, but considerablely larger than in neoclassical transport theory.

The spirit and method of this work is similar to that in [8] where a simplified two-fluid
Braginski model was used to describe tokamak dynamics. There, equilibria were described
and a procedure for the determination of the time evolution sketched. Small particle flows
were included in a self-consistent manner. The work done by the fluid stresses was found to
be an important mechanism for energy dissipation. Equilibria varying within fiux surfaces
were fourd. Determination of the energy dynamics required detailed information about
the equilibrium flows. Electron and ion transport was seen on a time scale comparable
with experiment. An objection to the analysis in [8] and a reason for using the thirteen
moment model here is that the Braginski model is derived under the assumption of large
collisionality and thus its validity for a weakly collisional fusion plasma is unclear.

The full two-fluid thirteen moment equations are quite complicated, so I extract from the
two-fluid thirteen moments model a reduced set of equations tailored to match the operating
parameters of a typical tokamak. When one examines the relative sizes of the terms in the
equatiqns, a number of characteristic dimensionless numbers appear. ] restrict my interest
to a specific range of operating parameters and fit these characteristic numbers using a
single parameter. By neglecting small terms in the thirteen moment equations, I obtain
a reduced model. Taking this reduced set of equations as a model for tokamak dynamics,
one is led to a number of mathematics and physics questions, such as whether the system
closed and on what time scale does the system evolve. The structure of the equations is
not standard and such issues are not immediately clear. The reduced system still contains
terms of very different sizes. A reasonable approach to understanding the structure of the
equations and their solution is to expand the solution in a small parameter. I do so and
then solve the system order by order. As is typical in asymptotic calculaticns, solvability
conditions play an important role. Equilibria are first found on a fast time scale and then
extended to longer times scales until sources are required to maintain a steady-state. The

system evolves on a time scale comparable to that seen in experiment.



Guide to the Thesis

In Chapter 1 the complete two-fluid thirteen moment equations for a plasma are derived.
Forms similar to this system are found in the literature [4,5]. I show that in a particular limit
the thirteen moment equations reduce to a system like the standard collisional Braginski
model [9]. In this collisional limit I sketch the usual classical transport results for the
perpendicular fluxes of particles and energy. In Chapter 2 a scaling suitable for a tokamak
plasma is introduced. A new reduced set of equations is obtained by neglecting small
terms in the full thirtee:. moment equations. Differences between this system and standard
collisional models are discussed. Axisymmetry is used to simplify the form of the equations.
The equations are written using a coordinate system related to the magnetic field. In
Chapter 3 the solution is expanded in an asymptotic series and the equations are solved
through O(y/m./m;). In Chapter 4 the system is studied through Q(m./m;) and the time
evolution on the time scale e~%7,, determined. Approximations for the moments of the

Fokker-Plank collision terms are calculated in Appendix A.

Notation

I use the following conventions. The subscript a is a species subscript, here either e for
electrons or ¢ for ions. Fluid variables without species subscripts are total plasma variables.
Vector notation is used where possible; vectors are written in boldface. When component
notation is used, the summation convention is used; that is I sum over repeated indices. I
use the following notation: w,, , is the partial derivative with respect to z of the component

of w, in the » direction.
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electric field
magnetic field

“3-vector in physical space

3-vector in velocity space
distribution function for species a
Fokker-Planck collision operator
current density

electron charge

speed of light

number density

fluld velocity

thermal velocity

pressure tensor

scalar pressure

siress tensor

temperature

heat flow vector

fourth order moment

normalized 3-vector in velocity space
Hermite polynomial weight function
Hermite polynomial of order n
Kronecker delta

momentum transfer due to collisions
energy transfer due to collisions
collistonal term in stress equation
collisional term in heat flow equation
characteristic collision time
gyrofrequency

Lamor radius

poloidal flux function

toroidal part of B

vector potential

scalar potential

loop voltage

flow across flux surfaces
approximate poloidal stream function
toroidal rotation frequency

poloidal angle
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1. THE THIRTEEN MOMENT MODEL OF A PLASMA

In this chapter I apply the thirteen moment approximation to the kinetic Fokker-Planck
model of a plasma. I compare the thirteen moment system to a standard collisional model,
the Braginski equations. In the limit of large collisionality I calculate the fluxes of particles

and energy across the magnetic field.
1.1. The Thirteen Moment Approximation

I consider a simple hydrogen plasma of electrons and singlely charged hydrogen ions. I

assume the plasma to be accurately represented by the two Fokker-Planck equations

0[& afa €a £ afa - ‘
(1.1) W+€.H+E(E+:XB)'5?“;C“

where a is the species index, e for electrons, ¢ for hydrogen ions. The distribution function

fa(x,&,1) is defined so that

/D falx,€,1) dx d€

is the probable number of particles of species a, in the domain D, a subset. of six dimensional
(x,€) space, at time t. The particles are affected by the electric field E and the magnetic
field B through the Lorentz force. The term C,; represents the effects of collisions between
species a and b on the distribution function f,. 1 discuss the the form of the collision
operator in Appendix A. Physical constants are: e, the charge of a particle of species a,
M, its mass and c the speed of light. In this model the plasma is assumed to be neutrally
charged, that is the number density of electrons is the same as that of the ions everywhere

in physical space. Charge neutrality is equivalent to

(1.2) / folx, 6,1) dE = / fi(x,£.1) de,



where the integrals are over all of velocity space. The electromagnetic field are governed by

a quasi-magnetostatic form of Maxwell's equations:

(1.3) VxB =4ty
10B

(1.4) VXE= -

and

(1.5) V:B=0,

where the current density J is defined to be

(1.6) = [ e - ) de.

In the above system, there are nine scalar differential equations (1.1) and (1.3) - (1.5),
and the constraint (1.2) for eight scalar unknowns, suggesting the system may be over
determined. However, equation (1.5) is an initial condition for equation (1.4); that is (1.4)
implies that V - B is constant in time and (1.5) says that constant is zero. To determine

the role of the constraint (1.2) it is convenient to use the fact that

(1.7) / Cus d€ = 0.

Using (1.7), equations (1.3) and (1.1) imply that

(18) 2 [Ue-syae=o

Hence, the constraint (1.2) is also an initial condition. The Fokker-Planck-Maxwell model
consists of the two kinetic equations (1.1), Maxwell’s equations (1.3)-(1.5), the definition
(1.6) and the charge neutrality constraint (1.2).

The Fokker-Planck-Maxwell kinetic model above permits a detailed description of a
plasma. Physical quantities such as those measured in experiment can be calculated by

taking moments in velocity of f,. Let us define some velocity moments of f,. The zero




order moment,
(19) R CORY FACR IR

is number density of particles of species a, which according to (1.2) is the same for electrons

and ions. The mean velocity of particles of species a is

(1.10) vt =2 [ Efulx 1) de.

The pressure tensor P, is the second order moment,

(1.11) Pa=m [(€ - ua)(€ - va)fa(x,&,1) dE.

It is usual to define a scalar pressure, p, = %trPa and a trace-free stress tensor p, = P,—p,1.
I define the temperature T}, so that p, = nT,; the units of T, are such that the Boltzmann

constant is unity. The heat flow vector S, is the third order moment

(1.12) Sa = ma [(€ - ua)(€ - wa)fu(x,6,) d

Finally, I define the fourth order moment R, to be

(113) Ra = ma [(€ - ua)(€ = wa)(€ = ua)(€ — wa)falx, &) d.

In the thirteen moment approximation the detailed velocity space structure found in f, is
replaced by the limited information given by the velocity moments defined above.

In Grz;xd ’s moment description [1] the distribution function f (it is convenient to drop the
species in%iex) is expanded in Hermite polynomials about a locally Maxwellian distribution

fo defined as

n
(1.14) Jo(€) = —speap(-v"),
where
(1.15) y = f; u

The thermal velocity v is defined by

10



1
(1.16) T = §mv2.

The moments n, u and T are functions of x and ¢. The Maxwellian distribution f; contains
the moments n, u and T and is spherically symmetric in velocity space. Let f(§) =

fo(r)f(y) and expand f(y) in a Hermite polynomial series in y using the weight function

WH,
3
(1.17) wi = = folr).
That is,
(1.18) £(€) = fo(r) Y a™MHM(y),
n=1
where
-1,
(1.19) HO)(y) = (wi, Viwn.

The coefficients al®) are functions of x and ¢. Such a series expansion converges if

(1.20) / 121 fodf < oo

where the integration is over all velocity. The infinite series (1.18) is equivalent to f. An
infinite system of equations for the coefficients a{™ can be found by substituting the series
into the Fokker-Planck equation (1.1). A level of approximation to the kinetic theory is
chosen by truncating the Hermite series for f. One can then use the orthogonality of the
expansion to obtain a finite set of equations for the truncated set of coefficients. By using
a sufficient number of terms, f, can be approximated arbitrarily closely. However, there is
no guarantee that the solutions of the equations satisfied by the Hermite coefficients will
approximate a solution of the Fokker-Planck equation.

The first few Hermite polynomials defined by (1.19) are:

(1.21) HO(y)=1,

11



(1.22) BM(y) = yj,
1
(1.23) HP(y) =y - 505k

1
(1.24) HEHY) = jvew — 5(vi6k + vedi + widsi).

The polynomials are orthogonal with respect to the weight wy.
The thirteen moment approximation uses the Hermite polynomials through second order

completely and the contracted third order polynomial

2 2
(1.25) HP(y) = H{(Y) = %(5v* - 1)

In the thirteen moment approximation f has the form

(1.26) f= fo(r)(@@HO + «VHD 4+ DHP + P HD).

The Hermite coefficients a(™ in terms of the moments of f are,

(1.27) a® =1,
(1.28) oV =0,
(1.29) al? = pi;/p,
(1.30) al® = %S;/pv.

Thus, in the thirteen moments approximation the distribution function f is

(1.3 716) = fo(r)(1 + w2 4y, Zr By -y

The fourth order moment R can calculated to be

12
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Rijikr = T(pijbkr + pikbjr + Pirbjk + Djkbir + Pjrbir + Prrbi;)
(1.32) +pT'(6ijbkr + bikbjr + 0irbjk).

The thirteen moment approximation contains the minimum number of moments needed
to introduce anisotropy and skewness in the velocity dependence of f. The coefficients of
the Hermite polynomials are linear combination of the moments of the distribution function.
Since the moments of the distribution function have standard physical interpretations, it is
convenieht to use the moments as the unknowns instead of the Hermite coefficients. Hence,
in the thirteen moment description the unknowns are the density n, the fluid velocity u,
the pressure p, the stress tensor p and the heat flow vector S.

Taking moments of (1.1) gives the following ¢ juations:

on
(1.33) 5t-+\7'(nu°)"0
0110, U,
(1.34) man—gt—— +man(uy - V)ug+ V- Py —en(E+ —xB)=F,
¢
(1.35) s L G (ugpe + 28a) + 2Py : Vi, = E
6t ara 3 a 3 a a a
a 1
"‘a%g + Vj : (“ajpa) + 5 {VSa} 4 {pa : Vua}
€a
(1.36) +pa {Vu,} - mac {Pa xB} =T,
0S, 7 2 2
o1 + VJ ' (uaJSu) + g’(sa * v)ua + gvua ¢ Sa + gsav *Uq
+man(2pa + 5PaI) -F, - manpa V. (pa + paI) + Tn‘;'v *Pa
1 €4
(1.37) oo VT (Tha + 5paD) = (S, X B) = Qu.

The relation (1.32) is used to calculate the fourth order moment that appears in (1.37).

The moments of the collision term are

13



(1.38) F, = E/wab d§,
b

(1.39) E, = ‘2](6 ~ ug)*Cap d€,
b
(1.40) T, = trace freeZ/(f - ug )(€ — ug)Cyp dE,
b

and
(1.41) Qo =Y [(€ - va)*(€ - va)Cus de.

5 .
In (1.36) I use the notation
(1.42) {Wik} = Wi + Wi - %VVlléjk-

In (1.33) I use that the collision operator conserves particles, equivalent to (1.7); this result
along with approximations for the moments of the collision term are found in Appendix A.

I retain Maxwell’s equations (1.3) - (1.5) with

(1.43) J = en(u, ~- ;)

replacing (1.6).

Several of the equations in the thirteen moment system have physical interpretations
familiar from fluid dynamics. Equation (1.33) expresses the conservation of particles. Equa-
tion (1.34) describes the momentum balance, including the Lorenz force. The collision term
F, allows momentum transfer from one species of particles to another but conserves the
total momentum of the plasma; that is, F. = —F;. Equation (1.35) is the balance of energy
including heat flows and work done by the pressure and the stresses. The collision terr,
E, in this equation conserves the total energy of the plasma; E, = —E;. The less familiar
equations (1.36) and (1.37) for the stress tensor p, and the heat flow vector S, complete
the fluid equations.

The complete two-fluid model consists of the 26 scalar equations (1.33) ~ (1.37) for the
fluid variables, coupled to the Maxwell equations, (1.3) - (1.5) and (1.43). Again, equation

14



(1.5) is to be interpreted as an initial condition since a consequence of (1.4) is that if V. B
vanishes initially then it vanishes for all time. The relation between charge neutrality and
the condition V -J = 0 implied by (1.3) is perhaps clearer in the moment equations than
in the Fokker-Planck-Maxwell system. If one assumes equation (1.33) for one species and
equation (1.3), then equation (1.33) for the other species is a consequence.

The two-fluid thirteen moment description presented above appears quite complex.
However, the thirteen moment model represents a considerable simplification of the ki-
netic theory. By assuming the distribution functions to have a simple structure in velocity
space, the phase space has been reduced from six dimensions to three. Enough features
have been retained in the model, such as a realistic treatment of the stresses and the heat

flows, that one expects the model to provide a useful description of a tokamak plasma.
1.2. Classical Transport from the Thirteen Moment Model

In this section I examine the connection between the thirteen moment system and a widely
used collisional model, the Braginski equations [9]. 'The Braginski model consists of equa-
tions for mass, momentum and energy balance along with relations for momentum and
energy transfer due to collisions; the unknowns are the densities, the fiui? velocities and the
temperatures. The form of the equations for conservation of mass, momentum and energy
is the same in both models; differences appear in the determination of the stress tensor
and the heat flow vector. In the Braginski model, the stress tensor and the heat flow are
expressed in terms of the density, the fluid velocity, the temperature, the magnetic field and
their gradients. In the thirteen moment model the stress tensor and heat flow are solutions
to differential equations. I show that by neglecting terms in the thirteen moment system a
Braginski-like model can be obtained. The interest here is in identifying the assumptions
underlying the Braginski model and examining their validity for a fusion plasma. The fol-
lowing are qualitative features of a fasion plasma: the system evolves on a time scale that
is long compared to the collision time, the flow velocities are small relative to the thermal
velocity, the pressure anisotropy is small, and the mean free path is long.

The differential equation for the stress tensor (1.36) can be reduced to an algebraic
equation that can be solved explicitly, if terms containing derivatives of the stress tensor

and derivatives of the heat flow vector are neglected and the stress tensor is taken to be
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small compared to the scalar presure. The resulting equation is:

ea - R_

Taa

where A is a numerical factor. Solving this equation for the components of the stress tensor

pi; one finds

1T Taa

(1.45) P2z = A W..
A? nT,A nT,
(1,46) (1 + m)pyz = Q2 Wyz + -ﬁ--‘lva '
A? nl, A Tu
(1.47) (1+ TN Taa)g)sz = O, 2T W, + — O 2Wy.
1 1 A
(1.48) Prx = nTaTaa((X - )W zz + va) 29 Ten va
1 1 1 A
(1.49) Pu = nTataa(( 5 = )W + 5Wee) + 55——Wey

where B is taken to be in the z direction and W = {Vu,}. This agrees with the Braginski

results up to numerical factors of order one. The gyrofrequency §, is

eB

1.5 L=
(1.50) 2 =~

the like species collision time 7,, is defined in Appendix A. The assumptions used to obtain

(1.44) are:

(1.51) -T-‘ﬂ <1,

the collision time is small compared to a characteristic time £,

(1.52) Ps 1,

Pa

the trace-free part of the stress tensor is small compared to the scalar pressure, and
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Palg

The assumptions (1.51) — (1.52) are consistent with the features of a fusion plasma men-

<1

(1.53)

tioned before. The last assumption (1.53) used to neglect terms containing gradients of the
heat flow, is less clearly appropriate. Later I will take S, ~ pgu, and retain the effects of
the heat flow strain in the equation for the stress tensor.

The magnitude of the diagonal terms of the Braginski stress tensor is roughly

Ug Vg Taq
i pa y
ve L

where L is the system length scale. The second factor in (1.54) v,,%a,,/ L the ratio of the

(1.54)

mean free path to the system length, is a parameter that is large in a fusion plasma. If the
scaling assumption (1.52) is to hold and the strese tensor be s1.all relative to the pressure,
the first factor in (1.54) u, /v, corresponding roughly to the Mach number of the flow, must
be small. Hence, when the mean free path is long, particle flows with flow velocities small
compared to the thermal velocity can lead to significant production of stresses.

I now consider the determination of the heat flow. By neglecting terms, the thirteen

moment equation for the heat flow (1.37) can be reduced to the algebraic equation

5nT S. nT,
2 (Sa xB) = Al_ + Az —(ug — wp),

Mgy mgc aa

(1.55)

where A; and A, are numerical factors of order one. Equation (1.55) can be solved to obtain

A? 5nTyTaa o, , 5nT, 5410714,
(1 - (Q Tan)2 )Sﬂ- B Alma V||Ta - bx VIt g

maQ (m NaTan)? aTaa)?
(1.56) +AnTyb - (u, — uy)b + Az b x (ug ~ up),

——=V. T,

GQQ
~where b is the unit vector in the direction of B, V|j = (b- V) and Vi = -b x (b x V).

The representation (1.56) agrees with Braginski up to numerical factors of order one. The

assumptions used to neglect terms in equation (1.37) are:

(1.57)



------

Sa ,u 2
(1.58 —(—) 1
(1.58) paua(v..)

‘ug L
(1.59) P <1,
and o
(1.60) % € 1.

a

These assumptions are reasonable for a fusion plasma at least in the sense of a lowest order
approximation. The usual conclusion drawn from equation (1.55) is that the temperature
gradient in the direction of B must be small since it is balanced ohly by the very small
collisional terms on the left hand side. However, consider the size of the collisional terms
that are retained in (1.55). The sizes of the two terms on the right hand side of (1.55)

(relative to the term containing the gradient of the ter.perature on the left hand side) are

respectively
S. L
(1.61) Lo 2
Palqg Vg VgT
and
u, L
1.62 -
( ) Vg VgT

The two collisional terms in (1.55) are of comparable size to those that have been neglected.
If instead of retaining the collisional terms in (1.55) the terms involving the stress tensor
are kept, terms that I have previously argued may be significant, then the temperature
variation along field lines may be balanced by the effects of the stresses.

The assumptions needed to extract a collisional Braginski-like system from the thirteen
moments have been stated quite explicitly. Assuming that the thirteen moment approxi-
mation is more accurate, one can comment on the validity of the Braginski model in weakly
collisional regimes. Most of the assumptions used here hold even in the case of long mean
free path. The Braginski form of the stress tensor except for not including the heat strain
does seem reasonable in lowest order. The Braginski form of the heat flow is more question-

able in the weakly collisional regime. The Braginski form of the heat flow in the direction
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perpendicular to B seems reasonable but there are difficulties with the heat flow parallel to
B.

I now sketch how “classical” transport results are derived from this collisional model.
First, I describe how to calculate the flux of particles across the magnetic field due to
cdllisions. Take the momentum equation (1.34) and neglect the derivatives of u,. Take
only the scalar pressure p, and neglect the electric field E. For simplicity take just two

species of charged particles denoted by a and . The momentum balance is then

1 ( Sb
502+ 07 \Tab  Thg

(1.63) Vpa - e—cf‘-nua xB = (ua - u) +3 =

where I have used the expression for Fa given by (A25) Then one can solve for u,; =

b x (u; x b)

n

1.64 = - —
( : ) el 1)2 + 'Uz('rab Tha

c ~MgN L
e,,Bbx("?;;’(“°'“")+ ))+—--be1)¢

Using the expression (1.56) for the heat flow and keeping terms only through order (Q,7,)~2

gives
gy = -—— L1 xB)
S T e Ty B
‘ 3 1 n 1 1 Ty
1.65 += VT - — =V, T,
( ) 2ma92 (1+ ——ETE)(TM, Toa Lo + b)
Summing equation (1.63) over species gives
1
(1.66) -C~J x B = Vp,

where p = p, + p; is the total pressure. It is reasonable to assume that the surfaces
p = const form nested surfaces. From (1.66 the pressure gradient is perpendicular to B,

and Vp = V¥V p. One then has

nuaL‘V_Lp=--

1
Qz ‘—|le|2
a

3 1 n 1 17T
—Z2VT)- V.p,

1.67 += —(—VT, -
(1.67) 2ma Q2 (14 —-7#327a)(rab Toa T
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for the particle fluxes across magnetic field lines. Note that nug, - Vip = nu,, -V p; the
particle flux across the magnetic field is the same for both species. From (1.67) one can

write

(1.68) ‘ nugy ~ D,V n

where D, = p?/74, and ps = v,/8,. Note that D. ~ D; ~ D. Using equation (1.33) and

only considering perpendicular derivatives,

(1.69) ns+ DV3in = 0.

This suggests that the density evolves on the time scale 7,,L2/p?. This result can be
interpreted as diffusion generated by a random walk with step size p, taken at time intervais
Tab-

The similar relation for the heat flow across the magnetic field

(1'70) Sa ~x1aV . T,

with x4 = np?/7,, is obtained from (1.56). This along with equation (1.35) gives

(1'71) Ta.t + X.Lavﬁ_Ta =0,

suggesting that the temperature evolves on the time scale 7,,L?/p2. This is equivalent to
diffusion generated by a random walk with step size p, taken at time intervals of 7,,. Like-
particle collisions lead to heat transport, in contrast to particle transy ort that is driven only
by unlike-particle collisions. Note that Te. ~ \/m./m; 7i;. Thus, the electron temperature
evolves on a time scale that is longer by a factor of \/m;/m. than that of the ions.
Typical tokamak parameters are n = 10°°m=3, T. ~ T} = 2.5KeV, B = 4T. The
collisional transport calculations above suggest that the particle confinement time is on the
order ~ 8000sec for both electrons and ions. The energy confinement time for the electrons
1s predicted to be ~ 16000sec and for the ions to be 200sec. In experiment, typical energy
confinement times are roughly the same for electrons and ions and are on the order of a
hundred miliseconds {10]. Particle confinement times are more difficult to measure. Hence,

classical collisional transport theory calculations do not at all agree with experiment.

20



2. REDUCED MODEL

In this chapter I extract a reduced set of equations from the full two-fluid thirteen moment
model presented in Chapter 1. For a choice of physical pa.rémeters relevant to a fusion
plasma, I estimate the order of magnitude of the various terms in the full system and
neglect the terms that are small. The axisymmetry of the tokamak is used to simplify
the form of the equations. Finally, I write the equations using coordinates related to the

magnetic field geometry.
2,1, Scaling

The two-fluid thirteen moment equation set is quite complicated. A reasonable method
of reducing the complexity of the system is to estimate the sizes of the various terms
in the equations and neglect those that are small. In section (1.2) it was shown that
with a particular collisional scaling the thirteen moment model reduces o a Braginski-like
description. Here, I will use a scaling more appropriate for a fusion plasma. A systematic
way to examine the relative sizes of the terms in the equations is to non-dimensionalize
the equations. Let u, be a characteristic velocity, a a characteristic length (here the minor
radius of the tokamak), { a characteristic time and let the heat flow § ~ O(pu) and assume
smeot! Jaminar flow. As seen in section (1.2), several dimensionless numbers arise. Familiar
from gas dynamics are the following: u,/v, a quantity that is roughly the Mach number
of the fluid flow, vs7/a the ratio of the mean free path to the minor radius, and /7, the
Knudsen number. The magnetic field introduces another scale into the problem. It is
convenient to use the for this scale the quantity Q,7,, roughly the number of rotations a
particle makes about a field line between collisions. In addition a drift velocity © is defined
by

(2.1) é—;—enf}.

=

o it
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One of the interesting features of this problem is that for typical tokamak parameters, the
dimensionless numbers introduced above are not order one quantities. The flow velocity
is quite small compared to the thermal velocity; the mean free path is long; the Knudsen
number is large; 2,7, is large. In particular consider a “typical” tokamak with the following
characteristics: number density n = 10%°m=3, B = 4T (tesla), T; = T, = 2.5KeV, minor
radius a = 0.5m, coulomb logarithm = 15. Using the above parameters one can calculate
for each species in a hydrogen plasma the self-collision time 7, the thermal velocity v, the

mean free path vr/a and the parameter Qr:

T v vr/a B/ven Qr
€| 2.9x10°s|21x10 m/s|1.3%x10°]|1.9% 102 | 7.8 x 10° |
i 11.7%x 1079 [4.9%x10°m/s | 1.8x 10°| 8 x 10~1 [ 2.2 x 107

The usual measure of the collisionality of a plasma is the smallness of the mean free path

and thus as mentioned before a fusion plasma is only weakly collisional.
To compare the relative magnitude of terms it is convenient, though somewhat artificial
to introduce a single small parameter into the problem. I take as a small parameter € =

m./m; = 1/1836. I write the dimensionless quantities in terms of the small paramet: . ¢

vepT/a | Of/ven | ur/ven | upfven | Qat
el ¢* € /2 €? 4
i| € 1 el/? € €3

where the P and T subscripts refer to poloidal and toroidal components. Scaling all these
quantities in terms of € is not completely natural and in the case of Qr, ¢ could be replaced
by 2¢ to better fit the data. The flow velocities are such that the Lorentz force balances the

pressure gradient, that is

(2.2) SnupB~ L
[+ a

A priori | assume that quantities vary on the time scale ¢~%r,.. That is I take,

0 ¢ ¢
2.3 0., 8.8
( ) 91.’ 5 Te

For the parameters above e~?7,, ~ 50ms. Actually, I will show that (2.3) is not an assump-

tion but a property of the system.
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In this scaling 3, the ratio of thermal energy to magnetic energy is

(2.4) ﬂ "~ -3?-5 ~ €,

that is on the order of a few percent. I take the aspect ratio, the ratio of the major radius
R, to the minor radius a tc be
R

P Vh
(2.5) -~ e

I take the size of the heat flow tc be

(2.6) Ss ~ pu,.

Hence, the order of magnitude of the deviation of the distribution function from a Maxwellian
due to the heat flows is Sq/pus ~ Ua/ve Which is O(€!/?) for the ions and O(¢¥/?) for the

electrons. I assume that

(2.7) Pa/pa ~ O(e/?).

This implies that the distribution function f, is locally Maxwellian to order €/, This
choice of scaling is quite different from the usual neo-classical scaling one which takes f,
to be a Maxwellian to order §, = p,/a, the ratio of the Larmor radius to minor radius.
For the parameters presented here, §, = 6 x 10~% and é; = 3 x 10~3. I present a simple
argument for a choice of scaling with larger anisotropy than in the neoclassical theory, The
non-Maxwellian part of the distribution depends on the particle flows and temperature
gradients. This dependence is seen in the following simple calculation. Take f = fp(1+ g)

where fas is a locally Maxwellian distribution. Then g satisfies the equation
dg
ot

where the source term F, is

(2.8) F(E-V)g—e(E+E/ex B)%—g- + (14 9)F, = C'(g, f)

.2 1 u F
Fy = ;y(u'gﬁ-(u'V\u"-'T"‘_;"’;W_ﬂ-e(E+;XB)—;;;)
)

2)(11qu +n(u- V)T + -z—nTV ‘u - %trT)

1 2
e
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(29) +2( = D)y VIT+ 3y = D (Vu+ (Vu)T = 2429 ),

and C'(g, fm) is a collision operator with magnitude of order g/r. The strain and temper-
ature gradient act as sources for the non-Maxwellian part of the distribution function. The
magnitude of g is then approximately

uvr

(2.10) 22

So that in the case of small flows but long mean free path, ¢ may not be extremely small.
The same estimate for the the size of the anisotropy can be obtained using the stress tensor
equation directly and examining the terms that produce the classical stress tensor as was
done in Section 1.2.

Another reason for taking the non-Maxwelian part of the distribution functions to be
relatively large is that tokamaks are driven by external sources. Thus, the system is not
in the thermodynamic sense a closed system. The effect of sources on the system will be
included in the model. This choice of scaling is a key element in model presented here. By
considering this scaling I select a different set of solutions than is considered in neoclassical
calculations. The scaling used in neoclassical theory results in a system with quite different
properties.

Tapply the scaling described above to the thirteen moment system introduced in Chapter
1 and keep terms through O(e?). A reason for keeping terms through O(e?) is that this
is the size of the temperature and density time derivatives that appear in the system. A
consequence of this scaling is that in the equation for the stress tensor (1.36), the term
P. X B has relative size ¢™4. Thus to the order needed for this calculation the trace free

tensor p, has the form

(2]1) Pa = (p[ia - pa)bb + (p.La - pa)(I - bb)

where b is the unit vector in the direction of B. The condition that the stress tensor be

trace free is:

(2.12) Plla + 2PLa = 3Pq.
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Of the three scalar pressures that appear in (2.11) one may choose any two independent

linear combinations as our variables; I take as unknowns p,, and (p, ~ p1o). Thus

(2'13) Pa = 2(pa - p.La)bb - (pa b p.La)(I - bb)-

It is convenient to introduce the temperature anisotropy (Ta ~ Tq) = (Pa — P1a)/n.

I now examine the remaining equations. The equations (1.33) for the conservation of
particles are retained completely. In the momentum equations (1.34) all terms are scaled
relative to the size of the pressure gradient term, p/a. The order of magnitude of the

collisional terms F, is

(2.14) F.~F;~ 2Dy, ~ :iem.

e

and hence are dropped. The term mgnu, is O(€'/2) for the electrons and O(¢"/2) for the

ions and are neglected. The inertial term in the ion momentum equation is
(2.15) min(u; - V)u; ~ 63/25'

and is retained. The inertial term in the electron momentum equation is ~ ¢’/?p/a and is
dropped. The pressure equations (1.35) are kept completely. The equation for the stress
tensor (1.36) is replaced by its bb component and the time derivative terms dropped. The
scaling of the heat flow equation (1.37) parallels that of the momentum equation with
collisional terms and time derivatives of the heat flow being neglected for both electrons
and ions and with convective terms being kept in the ion heat flow eqﬁation and neglected
in the electron heat flow equation.
The reduced equations are: mass balance for both species,
on

(2.18) 57 + V. (nug) = Ng,

electron momentum balance,

b e
(217)  3(B - V)(7g(pe = pre)) = V(pe = pic) + Ve - en(B + = x B) = Py,



jon momentum balance,

min(ua - V)u; + 3B - V(H‘;—,(p.- — p1)) - V(pi - pri) + Vi

(2.18) +en(E + “7 x B) = P,;,

pressure balance for both species,

o B.(B-V 1
61’; +V. (uapa + Sa) + Pav ug + ?(Pa p.l.a)(_'("BT""}'ua - §V . ua)
24/3 m, n(Ta Ty)
(2.19) = = 3 ""'; Too +‘ Eq.a’
pressure anisotropy equations for both species,
B v 1
29 - (ua(pe - paa)) + (22 Vs, _ 1y s,)
B- B v 1
(220) +(pa - 2pa - pra ) 2B ( BB Dy ivou)=b-T,

3

electron heat flow equation,

I-%-I(-Sn(n = T1)(B - V)T. = Tie) — 8(T. = T1)}(B - V)n
+10n(T, = T1e)(B - V)Te + 4nTo(B - V)(T. — Tie)
+5nTe(B - V)T, + 6(—2n(Te = Tie)? + nTe(Te - Ty.))|B|V - b)
—2n(T, = Ty o)V (Te = Tie) = 20(T. — T1e)?Vin
~50(Te = T1e)ViTe + 2T(T. = T1e)Vin + 50TV T,
(2.21) +6n((Te = Tue)* + Te(Te = Te))(b- V)b - 58, x B = 0,

and the ion heat flow equation,

7
m;V - (u;S;) + mig(si -Vu; + m.%Vui -Si + mi-g-SiV -y

b
+|—B—'(—8n(Te =TL)B V)T = Tyw) - 8(T; - TL)}(B - V)n
+10n(T; ~ T15)(B - V)T; + 4nTy(B - VY(T; - Ty;)

26



+5nTe(B - V)T + 6(~2n(Ti — T1;)? + nTi(T; - T4;))|B|V - b)
—on(T; = Ty)V (T = T1) = 2n(T; ~ T1)*Vin
=5n(T; = T1)ViT: + 2T(T — T1)Vin + 50TV T;

(2.22) +6n((T; = T1s)? + TiT; - Tui))(b- V)b + %S-' x B = 0.

The only collision terms retained in the system are those appearing in the pressure equations

and those appearing in the stress equations,

~3-(1+2"%) (p. - pi.)

L
(2.23) | b-T. = : —

31 e (Pi = PLi)
S = sy [Me \Pi T PLi)
(2.24) b T} = ~2(F) N ——

The teriﬂ‘s N,, Py, and E,, are particle, momentum, and energy sources respectively, all
O(€?). These source terms are taken to be known. I keep the Maxwell equations (1.3)
- (1.5) and (1.43). A consequence of (1.3) is that the particle sources must be the same
for each species, that is N. = N; = N. At this point one can only hypothesize that this
reduced system is a closed one. At least, the number of unknowns is equal to the number
of equations. The question of what data is appropriate for the system is complicated and
requires more careful exarmination of the system; the system is not of standard type. These
questions of what is a well-posed problem are one motivation for the asymptotic expansion
of the solution in Chapters 3 and 4.

In [8] a similar scaling was used to extract a reduced model from the two-fluid Braginski
model. I comment on some of the similarities and differences of the reduced thirteen moment
system with the reduced Braginski model used in [8]. The mass and momentum balance is
essentially the same in both models. In (8] the stress tensor appearing in the momentum and
energy equations is generated by the component of the fluid strain parallel to the magnetic
field. Here, the stress tensor includes in addition to the parallel strain, terms coming from
the gradients of the heat flow. From the results in [8] I expect the work done by the stresses
to be important in determining energy transport.

In (8] the heat flow is given by an expression like (1.56). Hence, the temperature is forced

to be constant on magnetic surfaces. If the temperature is constant on magnetic surfaces,
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then the Braginski heat flow across those surfaces is O((22,7,)?) and in this scaling negligible.
Hence in [8] there is no energy transport to heat flows. Here, the parallel component of the
heat flow is not determined from the heat flow equation. Instead, the parallel component of
the heat flow equation provides a relation between variation of the temperature and of the
temperature anisotropy along field lines. By allowing the temperature to vary on magnetic

surfaces, I have included realistic perpendicular heat flows in this model.
2.2. Axisymmetry

I now use the axisymmetry of the system to simplify the form of the equations. I use usual
polar coordinates (r, z,0) with unit vectors , z and 8 and assume that no quantities depend
on 6. I first examine the electromagnetic relations. From (1.5) the magnetic field has the

form

B = Vi x VO + xV6

(2.25) = ¥ 5% L 6X,
T T T

The toroidal and poloidal components of the magnetic field are By = xV6 and Bp =
V1 x V8. The surfaces 1) = const. are assumed to form a family of nested flux surfaces.

Using (1.43) and (2.25) the components of (1.3) are

e
(2.26) Xz = --47r-c-,uonr(u,~, — Uer),
[
(2.27) Xy = ~-47rz,uonr(u,-z — Uez),
and
(2.28) A= s+ 1(2), = —an
. = Y,z22 'T' o= W'Eﬂonr(uiﬂ - ucO)-

I introduce a vector potential A such that V x A = B, with choice of gauge V- A = 0.
Then

(2.29) A =yVl+ VA X Vo
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where

(2.30) A*A = —x

with the boundary condition A = 0 on the boundary. Solving (1.4) for E,

(2.31) E=-V&-A,-V()Vo

where @ is the scalar potential and V/(t) the loop voltage taken to be O(e?).

I reexamine the scaling of the mass balance equation (2.16). The time derivative of the
density n; is ~ €*nu/a, as is the particle source N. It is convenient to introduce a flow U
in the direction of V4, that is across flux surfaces with magnitude e?u that contains the

effects of the density time variation and of the particle source N. That is let U satisfy

(2.32) ny+V-(aU) = N.

Then, it follows that V - (nu, — nU) = 0. Thus, the fluid flow can be written as

(2.33) nug = VA, X VO + 720w,V + nU.

To O(€?), the functions A, are streamfunctions for the flow in the poloidal plane; the
approximate streamlines of the flow are A, = constant. The functions w, are toroidal
rotation frequencies. If the flux of particles through a flux surface ¥ = 1 is calculated, one

finds that

(2.34) /vaEn <(nug) dS = w—?in - (nU) d§,

where n is the unit normal to the surface ¢ = % and dS the surface element. That is, the

o

flux of particles through a flux surface (or through any closed surface for that matter) is
the same for both species. This result is a direct consequence of the assumption of charge
neutrality. The equations for conservation of mass (2.16) are now replaced by the relation
(2.32) for U and the definitions (2.33).

The definition (2.33) implies that

[4
(2.35) Xir = AT —pio(Air = Ae ),
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and

€
(2.36) Xz = 4”2”0(Ai.z - ’\3.2)1

or that

=
i

xo(?) -+ 47"#0%(1\' - Ae)
(2.37) = xo(t)+ xa-

The part of the toroidal field given by xo can be identified as the vacuum magnetic field and
that given by x2 as the contribution from the poloidal plasma currents. The generalized

Grad-Shafranov [11] equation (2.28) has the form

(2.38) A% = -47r-z-uon'r2(w,- - We).

In summary, the electromagnetic equations (1.3) - (1.4) have been replaced by represen-
tations for the magnetic field (2.25) and the electric field (2.31), along with definitions for
the vector potential (2.29) and (2.30), the toroidal field (2.37), and a generalized Grad-
Shafranov equation for the poloidal flux (2.38).

I now examine the reduced momentum equations (2.17) and (2.18). The 6 components

of (2.17) and (2.18) are respectively

3x 1
(239) (B V)N - (e = picl] = en(y + V(1) + 2U-V9) + rPcs,
and
3
(B~ =X + 3(pi - pui)] = —en(w, + V(1)
1
(2.40) +;U V) - %(A;_,(w;ﬂ)'z ~ Xio(wit?) ) + 7 Py

In order that solutions to (2.39) and (2.40) exist, the following conditions must be satisfied
. 1
(2.41) / _en(ty+V(t)+ U V4 rPg)dV = 0
1237 ¢
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1
(2'42) ‘/"psw ;[Ai.r(wi"'z),z - '\i.z(wirz),r} dv = LSJT(P’GG + Paiﬁ) dv

for all values of 1, where the integrals are calculated over the volume bounded by the surface
% = 3. If the conditions (2.41) and (2.42) are satisfied then equations (2.39) and (2.40) are

equivalent to

(243) EXe = Fu($) ~ X(pe - p1c) = fu
(2.44) E)ﬁ + F(¢) + %’-g'(m - pri) = —f4 - fis

where F,(v) and F.(v) are arbitrary functions of ¢ énd the order €? quantities f; and fiq

are given by

(2.45) (B V)fa = en(tps + V() + %U V) + T Poeg

(2.46) (B-V)fia= %[f\i,r(ww?),z = Xiz(wit?) 1] = 7(Pies + Pyig).

Solving (2.43) and (2.44) for (T, — Ty.) and (T; ~ T1;), one finds

B? ¢
(2'47) Tc - T.Lc = m(;’\c - Fe(“/’) - f4)1
and
B2
(2.48) T;-Tyi= 3’,&("5’\‘ + Fi(¥) + fa = fie).

These can be rewritten accurate through order ¢* as

€
T, - Ty, = ﬁ%z-(zxc — Fo())

1 |Vy[?
(2.49) +m( X

+X2)(2he = Fe(¥)) - 2o fo

and
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T - T = 255 (R(¥) - <X)

(2.50) + 'W"

+ x2)(Fi(¥) - —'\ ) - 3m,2(f«4 fa).

3nr2(

The toroidal components of the two momentum balance equations have been replaced by
the above relations for (T, — T'..) and (T; - 2.;) along with the definitions (2.45) and (2.46)

for f4 and fi4 and the constraints (2.41) and (2.42).

I now turn to the poloidal components of the momentum equation. The poloidal com-

ponent of the electron momentum equation is

| b
(Bp ) V)[Igt (pe - P.Lc)] +nVT, + T, Vn + V(pc - P.Lc)
. 3x? . ex e
(2.51) +l"§'2-7:§(1’e = Pie) = —enVe ~ z-;_;V)\e + EWeVVJ + P,

and for the ions

b
(B, V)[TBEI'(P:' = p1i)]+ VT + T;Vn + V(p; — p1;)

. 3x? ex €
(252) +r-§—2?§(p,‘ - pii)=enVP + C_'I‘EV,\' - -Enwng + P,",
where
(2.53) P! = Pt + -EnxU X V8 — en(VA, x V6),
and
(2.54) P! = Py -E-nxU X V6 + en(VA, x V8);

P.poi and Py, are tie poloidal components of the the momentum sources; B, is the poloidal

part of B; b, is the poloidal part of b. P; and P! are order O(¢?) momentum sources gen-

erated by the time varying parts of the density and electromagnetic fields and the external

momentum sources.
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Equations (2.51) and (2.52) have the form

(2.55) M, = eV,
and
(2.56) M; =eVe,,

where the vectors M, and M; have only poloidal components. This form is not particularly
convenient for the analysis that will follow. I seek a system where & does not appear and
that with appropriate data is equivalent to (2.51) and (2.52). The equations (2.55) and
(2.56) imply ‘

(2-57) Mcr'z - Mcz’r = O
and
(2-58) Mg‘r'z - M;‘z'r = 0.

The equations (2.57) and (2.58) only require that M. and M; be gradients; a condition

relating these two gradients is needed, for example the condition

(2.59) M, + M; = 0,

is sufficient. The condition (2.59) along with the equations (2.57) and (2.58) is equivalent

to

(2.60) B (M, +M;)=0

applied at all points and the constraint

(2.61) a- (M, +M;) =0

applied on a curve from the magnetic axis to the plasma edge with the vector a nowhere
parallel to B. Thus, I replace (2.55) and (2.56) with the equations (2.57), (2.58) and (2.60)
and the constraint (2.61). Explicitly (2.57) and (2.58) are
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1
- ;(nvrjlevz - n,zTe,r)

4xo€
3 ;(22 (nrhez = Mz Ae,r)

Xo_ . __zzc_. ¢(B.
+3 g Fe(B)(B- V)n+ —5de; + —r(B - V)w,

__?.’_‘.0_[5,\ — F()n, + —""'TBrF, (%)

3r3n?
exze (n07 )\ev

r2nzc
IWJI2

3n2 'z[r"’(

|V¢|2
+3n2 "[r2(

n.z)\e r) + (X2,rAe z ™ X2,z ’\e,r)

€

+x)(EA = B0,

€

+x2)(Ehe - RO
2Xn,z

~(Er - Bw) - fo) X2z - 2y (o v><——< “Ae = F(¥) = fO)l.e

(262 ~[(B- V(N = B0 = flet 2 fur+ (52 ")r-<”°">z-- ,
and
(1 Tis = 1aTir) + (i = i) = 22 F(P)(B - V)
=X e = (B Vi + A (- I\ + Bl ~ 25 B F()
‘; (o his = n2di) = —5(xarhice = X i)
3n2 nl 5 4 -2t B,
+gpnel (2 ot X)X + B
~(-Eh+ W)= 0% - 22y 4 128D (-t RO - )L
—[(1B-V>(§§(-§A.»+F(> et 28 fus+ (B, - (B,
(263 +mi 22y B . vyvy+ ZAB)(B VB, - (B VB, =0,

Equations (2.60) and (2.61) are

- SN - X (R - S0
+Z(B-V)A=-B-[B, V(—XE(FW)) =)

(B-V)p - (B V)25(F(¥
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IV#’I2 (F(w)

+8 - L Lo EL- 2y 4 B rmna?

fld

(2.64) +B-<Bp-vx3p )= (B- V)2 i) + B2 S + P B,

applied at all points and

(4

- (8- 9)B, T, 4 o vy —a VI () - £
ot (IW)I

€

+ x2)(F(¥) - ;'\)] - aw;g(F(w) - =4)

+a - E_V'\ - enwa + Vi = —a,rminw? —

iy

(2.65) AA($))(B - V)B, + 8- V[(B, - V)(B, f“("”“))],

3r2

applied on a curve from the magnetic axis to the plasma edge, where the total plasma

variables are

(2.66) A= A=Al
(2.67) W = Wi — w,
(2.68) F(y) = Fi(¥) - Fe(¥)
(2.69) P = pi+Pe.

In (2.64) and (2.65) I have anticipated that in lowest order A; and n are functions of 1 alone.
The electrostatic potential ® has been eliminated from the system and the four poloidal
momentum balance equations replaced by the three equations (2.62), (2.63) and (2.64) and
the constraint (2.65).

The pressure and stress equations are kept in their original form. The pressure equations

are
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1 ‘ 1 T
;(Ta.z'\a,r - Ta,r'\a,z) + ‘3'V +Sg - ﬁ(n,z'\,r - n,r’\,z)

2(Ta = T1a) 2n(T, — T1a)
+“"‘£§';"‘;""(".z'\n.r ~Nyrdaz)+ -—-—-—-1—3-2-———--[)((3 - Vw,

2 Aoy Aoy 243 m, n(T, - Ty)
e Mg,z — Br(B - V)(-;;;) + B,(B - V)(—)] —_ »

m T 3 mp Tee
(2.70)  —nTag=ToN = n(U - VYT, = TaV - (nU) + Eay.

The equations for the stresses are

2 o 1
;[(Ta - TJ.a),z/\a.r - (Ta - [la).r’\a,z] + Py
2

2 1 1
5 (Ta = Tia)(®dar = Brdas) + Zl 5B (B V)S, - 2V -5,

Ta(nc,z ’\a,r ~ Ny Aa.z)

1 x* Aar
+n[Ta - 2(Ta - T.La)]Ef[X(B ' V)“”a - ;'a‘;;’\a.z - Br(B * V)(';F)
(2.71) +B,(B- V)(%‘;’-)} = —3Tun,+b T,

I now consider the reduced heat flow equations (2.21) and (2.22). It is convenient to
separate these equations into components perpendicular and parallel to the magnetic field.

Consider first the reduced electron heat flow equation (2.21). The scalar product of this
equation with B is

~8n(T, = T1)(B - V)(Te = Tye) = 8(Te = T1e)*(B - V)n

+100(T, = Tie)(B - V)T, + 4nTo(B - VY(T. — Tie) + 5nTe(B - V)T,

(2.72) +6[—2n(Te ~ Tye)? + nTo(T. -~ T1))|B|V - b = 0.

This equation relates the variation of the temperature, density and anisotropy along field

lines. The scalar product of the electron heat flow equation (2.21) with Vi x B is

(T, = Tie)(B - V)T = Tie) + 2Te ~ T1e)2(B - V)n
~50(T. = TLe)(B - V)T, - 2T(T. - T1.)(B - V)n - 50Te(B - V)T,
(273)  +6n[(T. = Tie)® + Te(T. - TL))[((b- V)b) - (V) x B)]/x - -C-%B’(se - V),
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an algebraic equation for the component of the electron heat flow in the direction of V3.

Finally, the scalar product of the electron heat flow equation with Vy is

V- [20(Te = T1e)V(Te = Tie) 4 2(Te = Tie)?*Vn = 50(T, — Ty )VT.
~2To(Te = T1.)Vn - 50TV Te] + 6n[(T. — Ty.)?
(274)  +T(Te = Te)l((b- V)b)- V] - S8, - (V¥ x By = 0,

an algebraic equation for the electron heat flow in the direction of (V4 x B). The parallel
component of the electron heat fiow equation (2.107) will be one of the primary equations
in the system and the perpendicular components (2.73) and (2.74) will be used to define
the perpendicular electron heat flow. o

The red aced ion heat flow equation dotted with B is

_12
5

7".‘B|ry-"-?—'sl"-‘2 + m;By(u; - V)5 + -;-miBa(Si - V)uis
+-§-m;5eo(B + V)uig + m;Bg uiorsso + gm;Ba
+m;By(n; - V)Sir + m;B;(u; - V)Si; + g’miBr(Si V)i

Siotir

€

9 2 2
+'5-Bz(si . V)uiz - gmiBrSiz(uir,z - uiz,r) + 'gmiBzSir(uir.z - uiz,r)

_%m;%;;—?;(/\g,n'z — Aizny) = 8n(T; — T }(B - VYTi - TL)
~8(T; = T1i)*(B - V)n + 10n(T; - T1,)(B - V)T;
+4nTy(B - VY(T; — T1;) + 52Ty(B - V)T;

(2.75) +6[=2n(T; = T1i)* + nTy(T; - T.))|B|V - b = 0,

This equation is like the electron one (2.73) except that derivatives of the ion fluid and heat

flows are included. The reduced ion heat flow equation dotted with Vi x B is

12 05 2 2
—-—m;Bwu—oS-g - m; VY] (i V)8~ Zm‘_WUJl (8 V)uig
r X0 5 XoT

2 2.5 26, .
'{"'misgg(B . V)u‘-g -, val M — gmnﬁﬂ_ﬂ&
5 Xor T 5" xor T

+miBy (Ui - V)Sir + miBy(u; - V)Sis + gm.-Br(s,- -V gy
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‘ 2 2
+§Bz(si y V)uiz - gmiBrSu(uir.z - un‘z,r) + gmiBzSir(uir,z - uiz,r)
7 1 .
‘gml:’l‘g‘('\u.r",z - '\n,zn,r)(suﬂ Yo - S; B)

+20(T; — Tyi)(B - VY(Ti - Tu;) + 2(T; - T1)* (B V)n
~5n(T; = TL)(B - V)T, = 2T4(Ti = Tui)(B - V)n — 5aTi(B - V)T,
+6n[(T; - T1i)* + Tu(Ti - TL))l((b- V)b) - (V¥ x B))/x

(2.76) 4-39;32(5.- . V) = 0.

The scalar product of reduced ion heat flow equation with V is

12 2 ‘ |
?m."B,S;gug + gm;S.fng Vg + mirB,(u; - V)S;y — mirB,(u; - V)S;z

9 9
‘*"gmir-Bz(si . V)'air - ',')'miTBr(si ' V)uiz - 2m,-r(S,- . B)(uir.z - uiz,r)
7 1 .

"gmi‘;’r‘ﬁ'si VP(Aigns = Aigng) + VY- 20T - TL)V(T — Tw)
+2(T; - T_L,')QVn = 5n(T; = Ty )VT; ~ 2Ty(T; — T1;)Vn - 5nT;VT;)

(277) 46Ty L)+ T(T = Tu)((b- V)b) - V4] + 28, - (V4 x B) = 0.

One would like to be able to use equations (2.76) and (2.77) as algebraic definitions of the
perpendicular ion heat flow. However, these equations contain derivatives of the ion heat
flow. Let us examine the terms that contain derivatives of the heat flow. In equation (2.76),

there is the term

1V, ,
(2.78) - m, ™0 (u; - V)85.

Since, this term is O(e?) it only requires knowing S5 in lowest order and thus does not

contain perpendicular components of the jon heat flow. Also in equation (2.76) are the

O(€?) terms

(2.79) m;Br(v; - V)8 + miB,(u; - V)S;,.

However, the terms above can be eliminated from (2.76) using equation (2.75). The terms

(2.80) mu'B,(u,- . V)S,‘r - m,-rB,.(u,- . V)S,’,
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in equation (2.77) are nominally O(€?) but it is convenient to anticipate that in lowest order
u; is parallel to B and that the heat flow is in lowest order a function of ¢ alone. Hence,
the above terms are O(¢%/2) relative to the largest terms in equation (2.77), V¢ - VT; and
may be dropped.

Let us now review our equation set. The primary unknowns are ¥, A,, wg, n, Ty, and
the components of the electron and ion heat flow parallel to the magnetic field, a total
of ten scalar variables. The primary equations are a generalized Grad-Shafranov equation
(2.38), electron poloidal momentum balance (2.62), ion poloidal momentum balance (2.63),
the parallel component of the sum of poloidal momentum balance (2.64), electron and ion
pressure equations (2.70), electron and ion stress equations (2.71), parallel component of
the electron heat flow equation (2.72), and parallel component of ion heat flow equation
(2.75). The secondary variables (T, — Ty.), (T; — T1i), U, f4, fia» Se - V9, S, - (V¢ x B),
Si - V4, S; - (V¢ x B) are defined by (2.49), (2.50), (2.33), (2.45), (2.46), (2.73), (2.74),
(2.76), (2.77). In addition there are the constraints (2.41), (2.42), and (2.65). The system I
study consists of ten equations for the ten primary unknowns along with three constraints
and a number of side relations.

Clearly, the form of the system is complicated. However, the reduced system is a con-
siderable simplification of the full thirteen moment system. The complete thirteen moment
equation set has twenty-five scalar fluid variables and six scalar electromagnetic variables.
Just in the number of unknowns, the reduced system is much simpler. In addition, by
neglecting small effects I have gone from a system that described a wide range of phe-
nomena on a variety of time and length scales, to system that describes a much narrower
range of plasma behavior. In the reduction, care has been taken to retain essential physics
of the problem. In particular, effects such as particle flows, anisotropy, variation of the
temperature along field lines, and a realistic treatment of the heat flow have been kept in
the model. Hence, an investigation of the reduced model should give valuable information

about tokamak transport.

2.3. Flux Coordinates

The equation set presented in the previous section has a simpler form when variables related

to the magnetic field are used. Issues of solvability conditions are more easily addressed
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in such a coordinate system. I now replace the coordinates (r, z) with the flux coordinates
(1, @) (see Fig. 2). The coordinate 1 labels flux surfaces and the coordinate ¢ is a poloidal
angle variable in a flux surface going fiom 0 to 2r. The choice of poloidal angle is not
specified; the calculations are carried out for a general system of flux coordinates. In order
to rewrite the equation set using these flux variables some simple cilculations are useful.

The Jacobian, J of the transformation from (4, ¢) to (r,2) is

(2.81) J= ’J’,rd’.z - ¢'.z¢,r = T(B ‘ V)¢

Thus the volume element is

(2.82) dV = 2rrdr dz = 2ndy do/J.

From the relations

(2.83) Tobr + Tty =1,
(2.84) Zods+ 2y =1,
(2.85) red:+ry¥.=0,
and

(2.86) zZgdr + zy¥r =0,

the poloidal magnetic field is found, rB, = Jr 4 and 7B, = Jz4. The above implies

0
_J:')E'

Simple calculations give the following relations for other derivatives appearing in the equa-

(2.87) (B - V)

tions

(2.88) == J(r




a o 0
(2.89) F J("z.df% + Z.«ﬁg;,;),
and
(2.90) (fir8z = f290) = I(fu9.6 — f89.0)-
The heat flow vector S can be written
_ Vi B x V‘l/)
(2‘91) S, = S”aB + SJ.a r + Ya TB

As in the case of the particle fiows, the toroidal heat flow is taken to be larger than the

poloidal heat flow by a factor of e=1/2. Thus, initiall); 1 assume

(2.92) Si~ Sta~ v~ B

In order to write the equation set in flux coordinates a few vector calculations are useful.

The component of the strain parallel to the magnetic field is

r. 1
7(‘53(
Bg( bt (f\.ﬂ,w Awre)) + 53 ('w)¢

é) (VY -Vé
o 3)¢+< 22) y(TT0)

W J
(2.93) _'7;;5'3—2(3.¢(J7‘.¢).¢ +r6(Jzy)e) — §;V - (nU).

1 1
B.(B:V)u) - §V ‘m) = 5};(",4"\.'// - nyAe)

The divergence of the heat flow is

).d* + (S-La

)w)-

The parallel component of the heat flow strain, appearing the pressure anisotropy equations

Vi Vo
J

2
(294) VSa= L(Sja =7+ St vy

is
-L-;;B‘(B-V)Sa = (B V)8, - I}';T(B V)|B| =S, - (b- V)b
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J rv¢ 1 D
= -T-(S'“a.os - S"a(_";‘ + -r-fB—z(zxmm + (IV91),4))
b2
(2.95) +(81a24 ~ Tam)).

The following geometric expressions are useful in the heat flow equations

(2.96) TBIV b= Kyt (VY6

(297) (b VIb)- (V¥ x B) = Ery - E(1VHP) 6 + (1 - B)xas,
(2.98) L0 V)B) V= ~bozg + 1 B2,

@99) S.(v9xB)= w2 ok 4 ([T, 5 4 g7y 4 o

With the above calculations, the equation set can now be easily written using flux
variables. Equations (2.62) and (2.63), poloidal momentum balance for the electrons and

the ions respectively have the following form in flux coordinates

~(nyTep ~ ngTey)~ -53;3“( NyAed = NgAe .¢)+ Xo F'("/’)".d»

=2 (g hewy = Twhed) + S = (2N, - Erens
X0 P = =22 (e - F($)ngrs
+323(n,w\ ¥~ Myleg) + "“"2'(X2,¢)\e,w = X2,9Ae,d)
(2.100) BTG NI S TG
—(nyTip —neTiy)+ g-—-"(n.w i = MgAig) = o5 2F'(?/))n.¢
+-‘53‘—§-(r.¢x.¢ ~ wAe) = Snwig 8 (SN 4 R(¥))rany
X0 Fi(re = 22N - F(p)ngry
—;%%(n YAy —n wf\i.qb) - zﬁ(X2.¢/\i.¢ = X2,9Ai )
(2.101) 3(}: ) + "(P' r).z + O(e?)
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Equation (2.64), the parallel component of the sum of the electron and ion poloidal mo-

mentum equations is

X € 4ex
(2.102) Po = 55(F(¥) = =Nrg+ 3324 = O(&¥/%).

Pressure and stress equations are written using flux coordinates. The electron pressure

equation is

. T
(Tt,éAe,dl - Te,¢1\3'¢) - _;:_(n,¢Aer¢ - nt"’Acl¢)
V.-V

T )
+1(Su )¢+_[ A = Fu($)]0es = F-(rudes = rsdew)]
2.e

=—3[=e - - RWI; o 2ty (52,

e V.-V Aeo
*+ r{f’)v¢< ’fm ¢> et Uzg(Uru) e+ Ire(J24).6)]

24/3 me n(T. - T;)
my Tee

2 1
+5-(Te = Tie)(nghew = nydes) + 5(S)e = e + Ste-
|V¢I

(2.103) -%(-mrc,t ~T,N — n(U - V)T, - + Ee,).

The ion pressure equation is

¢

T; 2
(Tigpdin = Tiphig) = —(ngdiy = nyAig) + g7 (Ti = Tei)(ngdiy = nydig)

2 (S -+ 5V 4 (5, 7Y 'V‘“ )

+‘2‘["£/\:’ - Fi( w)][w-',aa - ~—(T.¢f\i.¢> - ’".w\:'.w)]

= 2Sn+ RN+ 2B,

+(5,-;j’) UALE ,3 S (J2gIrw) e+ Tre(J7) )]
(2.104) -g(nT.-,, ~ TN = n(U - )T, + 2 Pomen(Te =Ty | E).

i Tee
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The electron stress equation is

2
32",°2F:(w)Ae.¢ + 2905, - R(- 2042 = rohes)

2 re , b3 .
-;("w\e.-p ~nyAes)| + "(S"e ¢+ Sje2- + ""(‘S.J.ez.é )

V 2
- L (S e+ 5028 4 (5., D )
nTeX

HEEE = Che = F()wes = = (rudes = rodey)]

r 1
+"‘3"1:;[Te - 2(Te - 1.'-1-5)](A )\bn'é - Av¢nv¢) = :-I_(.:;Tev ' (nU)

-3.91/3 -
+ 352 nTeTeeTJ.e) 3nr2(|v¢' +X2)F‘é('¢’)/\e,¢
2
cn(Ee = RO (55 ('V“" +x)ohe - (g (2 4 x0)) )
B2 pw e, + 2t
(2105)  +(2u) (TLT8)_ ek (2 y(Urg) e + IrelIzw) o))

The ion stress equation is

2, 2
_'3'1'3%51’(10)'\:‘.05 + Xo(—-"f\ + F(w))(—-( By~
1 :
—=(RgAiy — nydig)) + -(5u='.¢ + 5'ur—'— + -—(Suz.qs - %ir )

TwAig)

2 2
'E((S“.‘ - i+ 5. tp ) + (51 |V}b| )
T;
+[nmX - (—%'\i + E(@/)))}(w;'d, - m(’l'_w)\,’@ - 1"4,)«,"‘&))

*1“[T' = 2(Ti - Twi))(A '.wn ¢ = Aighy) = -3'(—2(7’.' - Tu)N
~2n(U - V)(Ti - T1i) + ( ~ 2(T; = T1i))V - (nU)

1T, (T - Ty A
2T~ Tus) o+ (‘“)”ﬂ/—m-"- e m 2l 3m.,,(' S

2
(lv¢| + Xx2)) N — ( (vaI2

+ x2)F{ (¥) Mg
(=N + R(#))(

3nr2 + X?)).W’\i.d’)

nlix 2 e ,,;. Aw o2
[z = 3(=sN + E(¥) ][ “2) 6+ x5 (Bh)e
Aep V:-Vo Ae,b

(2.106) +(—F)o(—g7—) - rgnt(‘]Z.¢( rw)e + ITe(Jzy) el
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The parallel components of the heat flow equations (2.72) and (2.75) are

~8n(Te = Tie)(Te = Tie)p — 8(Te — Tie)?ng + 10n(Te — Ty o). s
+4nTe(Te — Tie) g + 50T Te g

(2.107) +6-5—[-—2n(T, = T1e)? + 0To(T. — T1.)]IB|V - b = 0,
and
12 L 7
~<uigSie=- + Bo (u; V)uis + £ BaSjitio,s + Swu:o,¢
1

+Bou.‘aS||.'—:;- + gBoSiot&sr-j = 8n(T; = Twi)(Ti ~ Tui) ¢

-8(T; - T_L;)zn,d, + 10n(T; - T1i)Tip + 4nTi(Ti — T'yi) ¢ + 50T T g
(2.108) +s§[-f2n(1",' ~ 1) 4 nT(T; - T1)]|BIV - b = O(é2).

Of the remaining side relations, it is convenient to write those for the perpendicular electron

heat flow (2.73) and (2.74). The equation for S, is

2(Te = Tie)(Te = Tie)y + 2Te — Tie)’ng
—5n(Te - T_,Le)Te'(b - 2Te(Te b Tl,_.)n,d, — 5nT,Tc‘¢
. . 1
+6FU(T, = Tuo)* + Tl Te = Ti(b- V)b] - (V4 x B

2
(2.109) —E?;B’(SLCLYJEL) =0.

The equation for v, is

Vi (20(Te = Tie)V(Te = Tie) + 2(Te — T'1e)?Vn
=5n(Te = T1e)VTe = 2Te(Te — Ty )V = 50TV T,)

+6n[(Te — Tie)? + Te(Te = Tie)ll(b- V)b]- V¢

(2.110) Zvcle¢|2(IV1/2)|2

+1)=0

The perpendicular jon heat flow equations (2.76) and (2.77) are
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2 7V 2
152’ wioSio +'— '/" - (wi V)Sia +5| YL s 9o

+2n(T| TJ.:)(Tl TJ.t),¢ + 2(Tt T.Li)z b
=5n(Ty = TLi)Tig — 2Ti(Ti — Tui)ng — 5nTiTig
1
(T = Tad)? + Ti(T: = Tull(b - V)] - (V4 x B)_

(2.111) +— B‘(S 'V'l’l 1) = O(€?),

and

12
—?ﬁJSaou;9+ S|9V¢ Vg

+V - (2n(T; - T_L,)V(T, ~T1) + 2(T; = Ty)*Vn
=5n(T; = Ti)VT; - 2T(T; - T1i)Vn - 50T VT;)
+6n[(Ti = Tui)? + Ti(Ty ~ Tui)]((b- V)b] - V¢

ev.X|VY|? | V|?
(2.112) +=2 XL2"/| ( x'f' +1) = 0(e).

For the constraint (2.65) arising from poloidal momentum equations, I choose a = ry =
(v, 2,y) and impose the constraint on the curve ¢ = const. from the magnetic axis to the

plasma boundary. The constraint (2.65) is:

(2113)py = Zmw + P (9) - Z5(F(9) - ZA)ry = 35(F(9) = 2X) 4 = O(€/2).

I now discuss the role of the constraint (2.113). In the equation set the unknown w,
appears only in the form w, 4. Hence, one may add an arbitrary function of 4 to w,. I claim
that the constraint (2.113) can be satisfied by the appropriate choice of this flux function.
To verify this claim, I show that w4 calculated by taking the sum of (2.100) and (2.101) is
the same as w ¢4 calculated by taking the derivative of (2.113) with respect to ¢. The sum
of the poloidal momentum equations (2.51) and (2.52) has the symbolic form

(2.114) Ve = M’
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where M’ has only poloidal components. The constraint (2.113) is then just

(2.115) w =M ry.

Taking the derivative of (2.115) with respect to ¢ gives

1 1, 1
(2.116) we = (=M ry)g =58V x (-M'),

where I use that M’ - B = 0. The sum of equations (2.100) and (2.101) is just

1, 1.,
(2.117) wg= 56V x (=M.

Thus (2.113) may always be satisfied by the appropriafe choice of the arbitrary flux function
part of w.

Let us now review the equation set. The primary unknowns are ¥, Ay, ws, n, T,,
S)ja» @ total of ten scalar variables. The equations in flux coordinates are a generalized
Grad-Shafranov equation (2.38), electron poloidal momentum balance (2.100), ion poloidal
momentum balance (2.101), the parallel component of the sum of poloidal momentum
balance (2.102), the electron pressure equation (2.103), the ion preésure equation (2.104),
the electron stress equation (2.105), the ion stress equation (2.106), the parallel component
of the electron heat flow equation (2.107), the parallel component of ion heat flow equation
(2.108). The secondary variables (T. — Ty.), (T — T1:), U, fas fitr Sies Yes S1i, and 7
are defined by (2.49), (2.50), (2.33), (2.45), (2.46), (2.109), (2.110), (2.111), and (2.112).
In addition there are the constraints (2.41), (2.42), and (2.65). Later I will show that the
constraint (2.42) reduces to a condition only on the momentum sources. I have shown that
the constraint (2.65) can always be satisfied by choosing the part of w, constant on flux
surfaces appropriately. The remaining constraint (2.41) will be used to determine the time
evolution of . Note that the time evolution appears explicitly only in the definition of U,

the pressure equations, and in the constraint (2.41).
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3. FORMAL EXPANSION

To understand better the physics and mathematics of the model, the solution is expanded
in an asymptotic series in powers of ¢/2. Equilibria are found first on the electron-electron
collision time scale 7.., and are then extended to longer time scales. In lowest order the
solutions are functions of 1 alone and the poloidal magnetic field is given by a Grad-

Shafranov type equation. Corrections to the lowest order solution give the poloidal variation.
3.1. Expansion Procedure

The reduced two-fluid thirteen moment system is still quite complicated. The structure
of the equations is not standard. Even after neglecting small quantities, the largest and
smallest terms in the equations differ by a factor of €2 ~ 2000. The appearance of small
quantities in the system suggests that a reasonable method of investigating the properties of
the solution, is to expand the solution in a formal series. The largest of the small parameters
that appear is O(€'/2), so the solutiow is expanded in powers of €!/2. That is, all variables

are written in the form

(3.1) W=wWo+ w4 wep+ wiadwg+...

where wy, /wp ~ O(e"/?). I define

(3.2) r=R+r(¥,¢),
and
(3.3) z = z21(¢, ¢).

I substitute thes» expansions in the equation set and find the asymptotic solution order

by order. At each order, the system can be arranged in a almost “triangular” manner. The
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solution scheme is the following. First, I know the temperature anisotropy (7T, — Ty,), a
secondary variable, in terms of the poloidal stream functions A, from equations (2.49) and
(2.50). Then I solve equations (2.107) and (2.108), coming from the parallel component of
the heat flow equations to find the temperature T, in terms of the anisotropy (T, — T';,). I
then solve equation (2.102) to find the density n in terms of the te.aperature and the peloidal
stream functions. At this point the temperatures T,, anc the density n are known in terms
of the poloidal stream functions A,. The perpendicular cornponents of the heat flows S,
and 74, secondary variables, are given by the algebraic definitions (2.109), (2.110), (2.111)
and (2.112). Then I find the parallel heat flow ), from the pressure equations (2.103)
and (2.104) in terms of density, temperature, and poloidal flow. I find the toroidal flow
w, using (2.100) and (2.101), equations derived from poloidal momentum balance. At this
point, all quantities are known in term of the poloidal stream functions A, and J;, which
are then determined using the two stress equations (2.105) and (2.106). Finally, there is
the generalized Grad-Shafranov equation for 1. The ten primary unknowns in the system
have been at least partially determined. There remain the three constraints, (2.41), (2.42),
(2.65). The constraint (2.41) contains only fourth order quantities and will only be used
in fourth order. The constraint (2.42) will be shown to be satisfied by appropriate choice
of momentum sources. It was shown in the previous chapter that the constraint (2.65) is
satisfied by choosing correctly the part of w, that is constant on flux surfaces, a quantity
that is not determined by the equation set.

I now describe in more detail the structure of the equations that will be solved. Impor-
tant issues are the existence and uniqueness of solutions. The structure of the generalized
Grad-Shafranov equation is that of a nonlinear elliptic differential equation and is fairly stan-
dard. The other nine equations in the ordered system have two distinct forms. The eight
ordered equations (2.107), (2.108), (2.102), (2.103), (2.104), (2.100), (2.101) and (2.106)

have the general form

(3.4) we = G(,9),

where w is an unknown, and G is periodic in ¢; equation (3.4) can be solved by integration.
In first and second order the right hand side of (3.4) is an exact derivative with respect to

¢ and the solutions are quite explicit. The unknown w is periodic in ¢ if and only if the
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condition

2r
(3.5) (G) = 5= (TG as=0

holds. If, as in the first and second order systems, G is an exact derivative with respect to
¢ then (3.5) holds trivially. The solution w is not determined uniquely since an arbitrary
flux function can be added to w. The other form of equation encountered is that of (2.105)

the electron temperature anisotropy equation which has the form

(3.6) e + G1(d, ¥)w = Ga(¢, ¥)

with G, and G, periodic in ¢. The nndifferentiated term G, comes from collisional terms.
The homogeneous equation (G2 = 0) has a non-zero periodic solution only if (G;) = 0.

Thus, if (G1) # 0 equation (3.6) has a unique periodic solution.
3.2. Zero Order

I now consider the lowest order system. I follow the procedure sketched in the previous

section. The scaling assumption

(To = T1a)
I,

along with the relations (2.49) and (2.50) imply that Aeo = F(%) and Ajo = Fi(%). From the
parallel components of the heat ¢quations (2.107) and (2.108), I find that Teg = Teo(%) and

T;o = To(v) with Top and T;p undetermined. All these flux functions also have an explicit

(3.7) ~ O('%).

dependence on time that will be suppressed until required. From equation (2.102) one finds
that ng = ng(9). From (2.73), (2.74), (2.76) and (2.77) the perpendicular components of

the heat flow in lowest order are

(3.8) Se- V¥ = Sip-Vih = 0
and
5ngTeocR?
(3.9) Yeo = _M-E-"Teo.w
€Xo
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(3.10) Yio = —

The pressure equations (2.103) and (2.104) in lowest order are V- Sgo = 0, implying Sjje0 =
Sjja0(¥). From equations (2.100) and (2.101), I find that weo = wao(%). Thus, the smallness
of the anisotropy forces all the fluid variables to be in lowest order functions of v alone.
The remainder of the system is the generalized Grad-Shafranov equation (2.38) and the
constraints (2.113), (2.41), and (2.42). The integral constraint (2.42) reduces to a constraint

on the toroidal components of the momentum sources:

(3.11) / _T(Pua + Pa.'o): 01
Yy

and once satisfied can be dropped from the system. The constraint (2.41) involves only

fourth order quantities. The constraint (2.113) is in lowest order the pressure balance

(3.12) Poy — -Enolu‘c + %%F’(w) = 0.

Combining this with equation (2.38) gives

(3.13) A = dmpo(RPpp(¥) + x0F ().

The equilibrium magnetic field depends on the total fluid pressure profile po(4), the poloidal
current Ao(t) and the vacuum toroidal field xo(t). The flux functions ng(¥), Tuo(%¥), Aao(®),
wao(¥) and 5j40(%) are arbitrary except for satisfying the relation (3.12). The lowest order
solution contains eight arbitrary flux functions. At this point in the calculation there is
no information about the time evolution of the lowest order solution described here. The
system must be solved to higher order to determine the evolution of the lowest order solution

and to determine additional constraints on the zero order solution.
3.3. First Order

The first order system introduces the poloidal dependence of the unknowns. The general
structure of the system was described in section (3.1). From (2.43) and (2.44), the anisotropy

in first order is
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(3.14)

[
(Te = Tuch = 525 he
and
(3.15) (T; = Toi) = - =22

Ingck2
From the parallel component of the heat flow equations (2.107) and (2.108), the poloidal

variation of the temperature is balanced by that of the anisotropy so that,

4 .
(316) Tel.¢ = —'S'(Te - T.Le).da

and
4

(3.17) Tag = ~5(Ti = Tii)e-

Thus,
4 .

(3.18) Ta = —'i'sn—i—xg—z;/\el + Ter ()
and
(3.19) fexo

Th = W/\u + T (v)

where T (¢) and T}; (%) are arbitrary flux functions of order O(€'/?). From equation (2.102)
one finds that

1 4exo
(3.20) e = (=noTie ~ 3= Me)
or
(321) ny = 88X°

= BRI T T M) )

where #;(¢) is an O(e!/?) arbitrary flux function.

The compenents of the heat flow in the direction of V¢ are found from the algebraic
equations (2.109) and (2.111) to be:

52



|Vy)? _ 50R2noTeoT
- el

(3.22) SJ.GI eXO v¢’
and

? 20 7]
(3.23) 5y VYL SeRinoTioy

J Xoe€
The net heat flow across a flux surface for electrons and ions respectively is

Vo[

(324) (S.Lel 7 ) =0,
and
(3.25) (S1i 'Vj"z) - 0.

The components of the heat flow perpendicular to B but within the flux surface are:

R? i 4
Ye1 = %i;(“?Teo(Te = Tyehnoy = 5no(Te = T1)1Teow

V.V

(3.26) =8(n1Teo + n0Te1)Te0,y — 5n0Teo(Ter,y + Tel,qu

T
)+ 2'}%%0

cR?
i1 = E‘X_O'(2Ti0(Ti = Tyrinnoy + 5no(T; - TiinTiow

VY .Ve¢

(3.27) +5(n1Ti0 + noTi1)Tio,y + 5n0Tio(Tirw + Tit o —5—5— LZ%E MLARL )P L R'Y.o

The divergence of the perpendicular part of the heat flow is then for the electrons

Vy .V Vyl? cR?
(erg = (51125570 5 = (S10 70 0) = (- 2Teamo (T, = Tich
(3.28) =510Te0,¢(Te = Tie)1 = 5TeoTeo,yn1 + 510,y TeoTe1) ¢ + 27e0 22 R ,
and for the ions
V.V Vy|? R?
(vir,e = (SLir- 7 ¢) (54..1] wl —)w) = 5‘------(2Tuono WTi = TLin
(3.29) +5n0Ti0,u(Ti — Tiih + 5T,‘0T,'ol¢n1 - 5n0,¢T.-oT,~1)‘¢, - 2‘)’,’0-—}-;3.
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The pressure equations (2.103) and (2.104) are used to find the parallel heat flows S

and Sy that give an equilibrium energy balance

1 T
35le16 = —(TergAeow = TeopAer o) + —ﬂ(m BAe0,) = 0,y Ae1,6)

A v¢)¢—(5u1|vf| )W)

1
(3.30) +§('Ye1,d» - (SLer—

and

1 T;
3516 = —(Tagdioy — Tiowing) + -19("1.4»'\'0 ¥ = opAi1e)

v/ 2
(3.31) -+-%('7.‘1'¢ - (S1n thJ ¢) - (SLi1——— lv';‘[)t ) )

Using the previous relations the parallel heat flow can be written in terms of 7y, A.; and
A1

];5 = 10cRnoTeoT 0,y r 4 M( 8T 0T 0,y _ 8exoTe0Ae0,v )
E eXo 3(Te0 + T.o) 5¢R?no(Teo + Tio)
46 Ae 4 5T€
(3.32) +/\e1(—-1>—<5(-)é-ﬁ-g-’-‘-b- + §T¢o,¢ oro, \0) + S||¢1(¢)
and
2 = 10‘3Rn0Ti0Tio,wr1 + A 8T0T50,¢ N 8exoTioAio,y
3"l exo 3(Teo + Tio) 5032”0(7},0 + Tio)
dexoX; 4 5Tion
(3.33) (=208 1 Ty - T 4 25w,

where 5||c1(¢) and -§|ii1(¢) are arbitrary flux functions of O(¢!/?).
The poloidal momentum balance equations (2.100) and (2.101) are used to find the

toroidal flows we; and wyy

e . Moy Teo,y €X0
“Wer = Tey - ny( = Aeo,y QRQ)

(3.34) el( 2R2 —ng,y) + T1( co,w) + ;@el(l/))
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e Ty _ TX0
cwtl = Tnl + 1(—= o Aio,y canz)

(3.35) .1( 2 R2 no,¢) + 7‘1( Aiow) + -quJ)
Using the previous relations
€ €X0Ae0, 16exomo,y
W = Mg T A T
8exo €x0Ae0,y €.
e _ . eXolioy 16¢xon0.y
qw = M g Ay
8exo exoriow o\ oy €.

I have now expressed the unknowns ny, Te1, T, S)je1s S)ji1y wer, wir in terms of A,
Ai1, 71 and seven undetermined O(¢/?) flux functions. The structure of the system has
been such that all solvability conditions have been trivially satisfied. Finally A.; and A\
are found using the two stress equations. Note the difference between the ion and electron
stress equations; the electron stress equation contains the undifferentiated term A.; coming
from the collision term. There is no corresponding collisional term in the ion equation in

first order. The electron and ion stress equations in first order are respectively:

2 .
ImoRile (V) Aer,6 + (b||e1.¢ +1 (5||¢o Yeo)) + '5'(’1e1.¢'\eo.w = Teo,phe1,s)

T noT.oR? 21/3ex0 A1
(3.38) +;;(nx.¢f\eo,w = no,yAelg) + *—Xe-o"—( el,6 + R3 “===Ae0,yT1,8) = ScRT'J_r:

and

2 2
=3 FU) N+ 3(Sne + (S0 = o)) + Z(Th.shiow - Tawhisg)

noT.'oR

Tio
(3.39) +7zB'(1ll"”'\’°"" - noyAirg) + (wirg + =53 R3 AiowT1,6) = 0.
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From these two equations one can obtain an expression for A;; in terms of A, 1 and an

arbitrary flux function ;;(%). Then one can write an ordinary differential equation for A

of the form
(3.40) A(¥) a1, + -B-(Jﬂ,\cl = C(¥)3

where A(¢), B(¥) and C(%) depend on the zero order solution. In general the above
equation has a unique periodic solution if B(%) is not zero. Thus one can solve (3.40) for
Ae1 and the first order solution would be known up to the eight arbitrary first order flux
functions already introduced.

Before calculating A.; more explicitly, it is convenient at this point-to leave the sequence
of the solution scheme and look ahead to the second order system. The reason for doing so
is that solvability conditions encountered in the second order system have a striking effect

on the nature of the first order solution. Consider equation (2.102) in second order,

4exo
JR2 3cR? 3c R3

In order that equation (3.41) have a periodic solution the first order solution must satisfy

(341)  noTzg+nagTo + (mTh) g — o5 MiT1g + g o + 220 —=3riAre = 0.

the condition

(342) (7‘]‘¢./\e;) = 0.
However, multiplying (3.40) by A.; and applying (-) gives that
A

(3.43) (=

j1=0

which implies that A.; = 0. Thus to O(¢) the electron poloidal flow is in the flux surface.

Setting A,; = 0 imposes the condition on the zero order solution that

(3.44) C(¥) =0,

reducing the number of arbitrary flux functions in the zero order solution to seven. Thus, the
collisional term in the electron anisotropy equation forces the electron distribution function

to be Maxwellian to O(¢) rather then O(e'/?) as was assumed.
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I now summarize the changes in the solution resulting from setting A.; to zero. From

the electron stress equation A;; is

2T30T¢o‘¢cR2 )
A = (2Teo)\eo + 3exo

8T30Tc0,1/) ___25exoTe0Ac0,y -
3(Teo+ Tio)  15c¢R?no(Teo + Tio)

2
+ % Sjle0)

(3.45) ( Y4 da(v).

Other effects of setting A,y = 0 are

(3'46) T, = S.Lcl = (Te - TJ.c)l = 0,

the electron temperature is a flux function to O(e€) and the perpendicular electron heat flow

and the electron anisotropy are O(e). Also

BTeoTeO,xb,\‘l _ 106R2noTeoTeo'¢ E_

(3.47) To = =R, o 2
and
lo - _ 1OCRn0T30T¢o'¢ " 1( STeoTeO-'l’
37 llet exo 3(Teo + Ti0)
8exoTc0Ae0,4 1;
Note that V- S, = 0. Also
| 8exo -
3.49 = o .
( ) ny 5CR2(T¢0 + Tm)’\tl + nl(d})a
and
e Xero €X0Ae0,y 8exo €X0Ae0,y e.
3.50) ~wer = i . Te - .
( ) “Wel =1 oy + A 1(5nocR2(Teo T ( —yy + Teo,w) + cwel(w)

The final part of the first order solution is the constraint (2.113) which determines the

arbitrary flux function part of (nw);. The constraint (2.113) in first order is

4 2
(3.51) %(now1+n1wo> (p1+ o) - )T

TR M R
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From the above solutions one can find that

2 € - .
(352) %(nowl + nle) = - eXO F’('k/l) 'c'(no"v'l + nlwo).

From the constraint (3.51) one finds

4exo
3Rz )

(3.53) = ¢(noT-1 + 1 To + —53

e . . 0
-c-(nowl + 1ywo) = —;/)-(Px +

4f'Xo
SeRi )"

This constraint reduces the number of arbitrary O(¢!/?) flux functions in the first order
solution from eight to seven. Assuming the zero order solution given, the first order solutions
are determined up to the seven first order arbitrary flux functions appearing in the solution.

A simple consequence of the structure of the first order solutions is that for any &

(r¥hing) = (rhwing) = (Fwerg) = (rfnyg)
(3.54) = (rfTie) = (1 5)i1,6) = (¥ S)je1,6) = 0.

These properties will be used repeatedly in the evaluation of solvability conditions in higher
order.

It is convenient to absorb the seven arbitrary O(¢!/?) flux functions that were introduced
in the first order solution into the seven arbitrary flux functions in the zero order solution.

For example, A; through first order is

(3.55) Ai = Aio(¥) + Lu(w) + Aa(¥),

where L;; is determined from the zero order solution accurate to 0(61/ 2). I now redefine

Aio(%) so that through first order ); is

(3.56) A= Xo(®) + La(¥)

The following representation is convenient for the first order solution:

(3.57) Ay = .1(¢)
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(3.58)

(3.59)

where

(3.60)

(3.61)

and

(3.62)

3.4. Second Order

The same solution scheme used in first order will be applied to the second order system. As
in first order, most of the second order solutions are not unique; they are known up to the
addition of arbitrary flux functions. It will be seen later that the arbitrary flux functions

appearing in the second order solution do not affect transport. First, from equations (2.43)

m = Ni(¥) 3,

Ta = Ta(¥) 3,
2T 0T eo,ycR?n 2
Lia(¥) = (2Teodeoy + — ;2;‘0 ® + =Seo)
8T30T30,gb 256X0Te0'\30,¢'

_ -1
(3(Te0 + Tio) 15cR%no(Teo + T.'o)) '

88X0 L:l (7r/))

Mi(¥) = " B5cR2Te + Tio'
: dexo
Ta(v) = mhﬂ@-

and (2.44) the second order correction to the temperature anisotropy is

(3.63)

and

(3.64)

(T - Tie)s = . X0

3ngcR? 2
N Xo €Xo ny  2r
(Tl T.Lx)2 == R2 ’\32 + — 3n ch /\xl( + Ro )

The parallel electron heat flow equation (2.107) in second order is

(3.65)

4
Tez g = —g(Te ~Tie)2s
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The parallel ion heat flow equation (2.108) in second order is

8
5T = (Ti = Toi)(Ti = Toih e

+ (T - Tuiduo+ (T + ) Tag + 500 - Tug.

p)
(2,6 = —-—(T‘ TiinTae+
4(T31
5 T

Using the first order solution equation (3.66) can be written

(3.66) +2

2 4
(3.67) Ty = o= (Ti = Tuili(Ti = Tuidig + 2(Ti = Tuidag.
5Tyo 5

Equations (3.65) and (3.66) can be integrated to find T,z and T;z up to the addition of O(e)
flux functions. These O(¢) arbitrary flux function will not be needed to calculate transport;
only Ti3 4 and T3 4 are needed. The solvability conditions associated with equations (2.107)
and (2.108) are clearly satisfied.

From equation (2.102) one finds the second order correction to the density to be

' 1 exo dexo
(3.68) | n2g = "'-:;:a(noTz.et +(mTu)e + g darie + 355 (dee - 2/\u.¢R))
Equation (3.68) can be integrated to find n;. The solvability condition is automatically
satisfied. From the perpendicular heat flow equations, (2.109) and (2.111) one finds

vy|? R?
(3'69) SJ.c'.’I :;pl = _50 nOTeOTe2.¢a
€Xo
and
Vyl* cRZ
S.Li2L‘:;£L = o0 —(=2n0(Ti = TLi(Ti = Toihr,e + 5n0(Ti = TiinTi e
+2Ti(Ti = Toihimg + 5(n0Ti0Ti2,¢ + (noTiy + miTio)Tin )
. oy TLe [Vy[?
(3.70) +6noT.'o(I'.‘ - 7.]_")1 R )+ 2 S_L, J .

There is no net heat flow through a flux surface, that is

2 2
(3:1) (51000 = (5,572 < 0

To calculate the parallel heat flow in second order I need to calculate 4.; and ;3. From the

equations (2.110) and (2.112) one finds
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R? ,
Ye2 = %;J(-5no(f e = Tie)2Teow — 2Teo(Te = Tie)zno,9

VoV

—5ﬂoTe0(Te2.¢ + Te2'¢ |V1/)|2

CT‘IR

— 5noTe2Te0,y

( 1071 TeoTeo,p — 5n0Te0Tio,y R)

v 3
(3.72) +—&5nOTeoTe0’¢(| "bI 2 rl ),
€Xo o
and
v
Yi2 = 2%%1 (3 + = + | ¢| ———)Yio

R2
—c—(2no(T Ty (T = Teih + 2T = Tii)inoy —

5no(T, - TyinTap - 50 (2 = Teih Tiow

=5n0(T; — T1i)2Tio,y — 2T00(Ti = TLinmw

2T (T = Tri)inow — 2Ti(Ti = Tii)amoy
—5noTioTiz,w — S(noTia + mTi0)Ti1 g — 511 T Tiow
—6n0T5o(Ti — Tih le"b + Vlg;;;’p(Qno(Ti - Toi(Ti = T
=5no(Ti ~ TLinTag - 2Ti0(T€ -Tiihne

(3.73) =5n0T0Ti2,6 + 5(noTio + n1Ti0)Ti1,4))-

The parallel heat flows are found from the pressure equations to be

1
§S||'52'd’ = _(TGQ.O?J)‘G,O.VJ - TcOn/)'\cZ,da)
y2

cR
""")Z}‘(snOTeO,w(Te - T..Le)2.¢ - 2Te0n0.w(Te - T.L.c)2,qb

r Ty
.—5720-¢Tc0Te2.¢» + 10T 0 Te0 w(-é—nl)’¢ + 5n0Te0,¢ M IR;#’
3ri

v
(374) —-5n0TeoTeo¢(| Xd)' "l" R2) )

and

61

R IR

(AN O ]



1
35024 = ~(TizgAiow — Tioghizg) — (T ey — Tia whiag)

T.
+?';,g(nz,¢/\ao,¢ = nowAizg + n18Aiy = 11,ydie)

Tio . T n
+;f(ﬁ - EII,' (n1,6Ai0,9 = no,yAi1,8)

-a—(T: - = T1ih(n1,gAiow = mopAing) + ’\:l(“’tl.¢ + R3 —===T1,6Ai0,0)

3
2
ve-V4) __(Smlv;bl "

(3.75) +§‘7i2,¢ (S.L:Z

These equations have solutions that are determined up to the addition of O(¢) flux functions.
All the solvability conditions associated with these equations are satisfied.

From the momentum balance I find the toroidal flow

Teoy , Sexo dex
4 A
no + 3cRnd Acoy) = 3c R2n2 nowend

n
We2,¢ = — °"”T,2,¢ + ng,4(
o

(3.76) —21—7%]-'-?1 :;;X; Aeo,y + R(SI(;;;\O? Topons MeAe0y + iix Ae0,¥T1,6)s
and
Wiz,p = —-——Tzz b T 12,0 ;oow + 3«:5;;502 0,9) = 34Rz o3 o Aizg
—“E;(nl,wTil,dz - m¢Tiy) - 34;222( ngAine — n1,¢f\i1,¢)
_(11% + 3].’;.1. _;2259_2(5 n1ghioy + ano,,,,\,, 5) - R4 X0 ) imirig
(3.77) .+c;"° (r1.6Ap = T1pAing) + 23R2 e R T VY

The equations above determine w,; and w;; up to the addition of O(e) flux functions, I
have expressed the unknowns, Tey, Tiz, ny S|ie2> Sjjizs Wez and wip in terms of Aeg, Az, 71
and z. Finally the two stress equations are ‘used to determine Ae2 and Aj3. The ion stress
equation in second order is

2Tt0n

2

27‘1

2T,
+"f\i0,wTi2,¢ + == - r\to,‘z,nqu +3 R2 ,(Tﬂ)( ))\n é

5
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2 r 7Y, 21,
=2Xi0,6Ai171,6 + -(ffuu*'}-é2 = o~ L1t 481 }:

r ryr
-1 ;;6 + Yio— 1.¢») + (Tu,‘b)\u.w - Taprie)

2T00

(n1.¢»\.1.¢ nyAing) + (-— - ")("LV‘"OM - no,pAil,é)

2noTioR? n ( T 27’1
3xo mo Tao

This equation can be solved for A;; in terms of A.; and other known quantities if the

3
(3.78) +5(=2a+ & Dwine+ R,r\.o.m.¢)

following solvability condition holds

(3.79) (SLi171,4) = 0,

which implies

(3.80) <|-‘~7-:-:/;-larn,¢21.¢?' = 0,

I now make a final assumption on the system. I assume that ¢(r, z), correct through order
¢ is an even function of z. To the same order, »;(%, ¢) is then an even function of ¢ as
are [V4| and J; 21(9,¢) is an odd function of ¢». Under this symmetry assumption the
solvability condition (3.80) is satisfied. I will show later that this assumption is indeed
reasonable and consistent with the structure of the generalized Grad-Shafranov equation
for 1.

The electron stress equation is

I B2 Sz Fe(V)Aez,s + % Sllez.d + W
r r rr
+g(~‘!’||e1-'}f§zi = Ye1 }; + Yeo— l'°$)
2110T¢0R2 (3] 21‘1 —2”36)(0
3.81 ——— (= We i o
( ) + XD no -+ -R ) lv¢ 5JT¢3CR AG?

Using the two stress equations one obtains a single equation for A, of the form

ez = C(0) g 4+ D(p) The2ke

(3.82) AW e + B(J'”

This equation determines A.; uniquely in terms of the coefficients in (3.82). The func-

tions A(¢), B(v), C(¢) and D() are deterrnined by the zero order solution. Thus, Aes
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is undetermined to the extent that the zero order solution contains seven undetermined
functions.

The final part of the first order system is the generalized Grad-Shafranov equation for
. The solutions above give that nw through O{e) is

(3:83) Zw = B F(W) - 2z La (W)l + ()

where v(¢) is an arbitrary flux function. Imposing the constraint (2.113) determines v()

to be

€ r? [+ r
(3.84) V() = pp(p= 2P = S + 220 Ty 4 S5,

Recall the discussion of section (2.3) where it was shown that the right hand side of (3.84)
is indeed a function of ¢ alone.

I now comment on the assumption that 1 to O(¢) is an even function of z. Assume that
that the domain in which the Grad-Shafranov equation is solved has reflection symmetry in
the plane z = 0. Since the source terms to O(¢) in the generalized Grad-Shafranov equation
depend only on t and r, the equation for ¢ is to O(¢) symmetric with respect to z. Thus,
it is reasonable to hypothesize that t(r, z), correct through order € is an even function of
z. This is a real assumption since solutions to approximately symmetric nonlinear elliptic
differential equations need not have approximately symmetric solutions. If the assumption
of the up-down symmetry of 1 does not hold, then the equilibria still must satisfy (3.80).

Unlike the first order solutions that have up-down symmetry given symmetry assump-
tions on ¥, A,z and hence the second order solution does not have a given partity. This
breaking of symmetry is due to the collisional term that appears in the electron stress
equation. Later in fourth order it will be shown that the odd part of A,y is a source of
transport.

I now summarize the characterization of O(¢) steady solution. The lowest order soiution
contains nine flux functions, of which seven may be prescribed independently. The poloidal
flux function 1 is then given by a Grad-Shafranov type equation. This solution is steady on
the fast time scale 7,. To extend this solution to the time scale ¢=1/?r,, the self-consistent

first order corrections to the solution must be calculated. These corrections include the

64



TN

poloidal variation of the solution. To extend the zero order solution to the time scale e,
requires calculating the second order corrections. In order that the second order solutions
exist, there are certain restrictions placed on the first order corrections; the poloidal varia-
tion of the electron temperature T, 4, the electron temperature anisotropy (T, - Ty.), and
the poloidal variation of the electron stream function ). 4, are all O(e) rather than O(e!/2)
as they are for the ions.

If the poloidal flux function ¢ is approximately up-down symmetric then some comments
can be made about the symmetry of the solutions; the first order solution has up-down
symmetry. Collisional effects lead to a loss of symmetry in the second order solution. The
structure of the equation for )., is such that if the zero order solution is given then A,y is
completely determined. In third and fourth order constraints on A.; will be interpreted as
constraints on the zero order solution.

The following simple results from the second order solutior are useful in later calculations
in fourth order. The first set of relations show that averages of r? and second order quantities
can be expressed in terms of (r?A.24). I present the relations in the same sequence as was

used to solve the system.

(3.85) (riTea) = = gtz (rFhers),
(3.86) (riTig) = -ﬁ%?éa(’”f/\nm%
(3.87) (r(T, = Tie)y) = ggfﬁi<r3A,2.¢),
(3.88) (AT = Tuidag) = =~ 52 trihins),
(3.89) (s ) = = 572 (A = Mz,

(r3Sje2.6) = =3Ae0,{TiTe2,6) + 3Te0,u(rAe2,0)
) 3cR?
€Xo

(5n0T w0,y (r3(Te = Tie)2,6) — 2Teomno,u(r2(Te ~ Tic)2,6)
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[y

(3.90) ~5n9,yTeo{r{Te2,4)),

, T;
(riSjize) = —Miow(riTize) + Tiow)riding) + ;;'ff\eo,ab("'?"m)

Viy-V¢

y I; 1 1 V|?
691 - Doy (hias) + (rivaa) - 510 "0 ) - 3rHSna P ),

(1i2r171,6) = =5meTi0,9(r171,6(Ti — Tai)2) ~ 2Tionoy(r1ir1,¢(Ti — Tui)2)

v
(3.92) ——5noT.‘o<r¥T§2,¢) - 5noTso(r1rl'¢T‘2'¢ |g¢'2¢)7
2 2T
( ";zfr(w g0y + 52 rfh)
2 2T;
(3.93) = g("lsnez.a») + gf\fo,w(ﬁT"z.qb) + ";;égf\-'o.w(ff"m)-

The following relations for the averages of products of second order quantities will be
used in fourth order. The point of the calculation is to show that the averages of product of
second order quantities that appear in fourth order solvability conditions can be expressed

in terms of averages of A.; alone.

(3.94) (n2g(Te = Tack) = 522 (msher)
2
. e e r
(3.95)  (nog(T; - Tis)s) = —5-%-%5(1:2,4,/\.-2) e ’i‘}?, .1( +2)(n2675)
. 4
(3.96) (noTe2e) = “g(nz(Te - Tie)24)

TITié,, 2 €Xo 8 €X0_y2
T; = e M o i |
(n2Tiz ) = (n2 >(To3n CRQLu’! 1+ TiO(Ld 3noCR2)

N1 4

4e
(3.97) +Higm )3{2 ———=Li1 + Tn)( = -+ )+ g(na(Ti ~ Tii)ze)
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, 4 - Te 1Ty,
(3.98) To({nz,gAe2) = —no(Ae2Tizg) — :,;;%%(f\ez)ww) - (NMTa - 5 ;;g Liy ){~53 4’,\,2)
To(na,eAiz) = —no{Mi2Tiz,¢) — no(AizTez,0)
Te - T1T1,¢ 4exo
(3.99) +('73—(_:;%Li1 - Nlﬂx)(r\iz-lklzg) + W(AiQ/\eZM)
2 exo 8 €X0 2
()\e2Ti2,¢) = (ﬂmLuTcx + 5T (3n R Li)
4 T
(3100) (7 + TGy la - ) ) + 3 2= Tuag)
e 17y,
(3.101) Aeo(Ti = Tii)2 ) = “ﬁﬁg(f\w i2,0) + = f:(;iz Ltl( + 2)(Ae2— 5 d,)
4
(3.102) (AieTe2,9) = "'5(/\1'2(Tc = Tie)2,0)
e€x
(3.103) MalTe = Tucrg) = 32 mrAadene)

At this point all the averages of products of second order quantities above can be ex-
pressed in terms of (Ae2,47?) and {Aez,4Aiz). The following relations shows that (A.2,¢Ai2,¢)

can be expressed in terms of (r?).24) and other averages of J.2.

(3121X;z2 HORE A QT“?%” (Ngher) + 2 (Siiz.ehen)
+j§"\i0.¢<Tt2 #Ae2) + T"—v\.o w{nzeres) + 32)(;2 F’(t{))( + 2)Liy (e ”"‘f’)
—2/\¢o.wLi1(/\e2r1;2¢ + (S||;1 Ae2) — -5-5'“,-0(7‘1;24’)\32)4- Z(81q z;é Ae2)
_.g(.m r;;’\ _ym(rm 4)/\:2) + -(T,-, . Lu)(rn‘l.aﬁ)‘ 2)
$2 0 (NIl - ML) A + ) P LTI
(8.104) +§( L+ 29%1_;,9_1_2__(___ e+ D)W+ s hou)(Hgptha) =0,
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1
3{ShizgAe2) = —Aioy(TiagAez) + Tiow(Aiz.gAez)

LS ™r s
~(Tu Ly = ThLy) (=2 w) + 0('\no w("zw\ez) - no,y(Aiz,pAe2))
T; ™T N
+;§((N113 ~ NjLi (= 1'd'f\ez) + ("" - '7701" (N1dio,y — n0.¢Lu1)(r1rl’¢'\e2))

2
“m(kaeo.-/' = nowLa){(Ti = Tii)1 22 Aes)

R
2 r 1 1 Vy .V
+§Len(—l~(w.'1,¢ + hf%gﬁ.w\io,w)'\ez) + §(‘7i2.¢f\ez) - E(S.L"z—?‘,—-f),wcz)
1 Vyl?
(3.108) - 3((5.2: 220 g = 0,
V.V Vl?
{(7i2,¢ = (SpLia— LA ¢)¢"‘(SJ.|2'_})'L W) Ae2)
V 2
=2<%("ri1.¢~(5m 'bJ ).¢-(5'u1‘ _;M )0 )Ae2)

+2n0,y((Ty = Tui)i(Ti = Tuidr,eAe2) + 5n0,0{(Ti = Tii)1Ti1 g Ae2)
+5T50,u(m1 (T3 = T1ri)1Ae2,4) = 5n0Tio,y{(Ti = Tii)z,pAe2)

+2n0,y(Tit(Ti = Trihrhez,6) — 20 Tiol(Ti — Tii)2,6)e2)
~5(noTio),u{Tiz,ehez) + 5Tiow(n1Ti Aea,g) — 6((noTio(T; — Tui)y =22 )w'\cz)

(3.106)  ~6maTio((Ti ~ Tuih 222.1) phea) - 7o 2t + T2

'\e2.¢)~
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4. THIRD AND FOURTH ORDER SYSTEMS

In this chapter I examine the third and fourth order systems. Only limited information is
needed from the third and fourth order systems. In third order I check that all solvability
conditions are satisfied and calculate some averages of the third order solution. The infor-
mation needed to calculated the explicit time evolution of T, and T in the fourth order

system is determined. The time evolution of the lowest order states is presented.
4.1. Third Order

The third order equations will be examined in the same sequence used in Chapter 3. In
first and second order it was possible to calculate the solutions explicitly. The third order
solutions are more difficult to calculate explicitly because solving the third order equations
requires integrating expressions of the form r;\.2 4. Fortunately, only limited information
from the third order solution will be required to compute the time evolution of the zero
order solutions. It is necessary that any solvability conditions associated with the third
order equations be satisfied.

The third order corrections to the temperature anisotropy found from (2.43) and (2.44)

are
2
(4.1) (T. - Tie)s = ——"-3‘2—( Aes - "1,\ 2 = - hea),
and
eXo ' M 2n
(Ti = Tii)a= OCR2(~/\.3+ f\az(no + 5 ))
exo ny 3 |VYE xp

4.2 - 1 — — g toes w—— ),
(4.2) 3ncR2)‘1( +n0+R2+ x4 +xo)

Equation (2.107) in third order is
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(4.3) 4noTeo(Te = Tic)3,p + 471 Teo(Te — Tie)2,6 + 5n0Te0Tea g + 5n1Te0T ez 4 = 0.

This equation can be integrated to find 7,3 up to the addition of a flux function. The

condition that a solution to (4.3) exist is

(4.4) 4T¢0(N1(Tc - TJ_C)Q’.,&) <+ 5Tc0<n1T32.¢) = 0.

Equation (3.65) implies that condition (4.4) is satisfied.
The third order quantity T} is found from equation (2.108) in third order,

=80y (Ti = T (Ti = Tuig — 8no(Ti = Tuihi(Ti = Tii)ae
~8no(T; = T1i)2(Ti = Tuihrg — 8(T; — Tui)jma e
+10n0(T; = T1ihTizyg + 10n0(T; =~ Tii)2Tin g
+10n0(T; — T'1i)2Tin g + 1001(T; = T14)Tiy 4 + 4noTio(Ti — Tii)se
+4(n1Tio + noTa (T — Tui)2,g + 4 Tia (T = Tridr g
+(4noTiz + n2Tio)(Ti = Tiihrg + 5n0TioTiz g
+5(noTi1 + n1Tio)Tiz,e + 5(nm1TianoTiz + n2Tio) T e

2
(4.5) +6n0Tio(T; - TJ_,.)I.(I__Y;_Z’X_EM —o.
0

The solvability condition for this equation reduces to

(4.6) (ri(IVe[),6)) = 0.

which is satisfied with the symmetry assumptions that r; and 4 are even functions of ¢ to
O(e). I have identified the equations that determine T.3 and Tjs up to the addition of flux
functions and have verified that the solvability conditions associated with these equations
hold.

Equation (2.102) in third order is

’ [ r
n3,¢To + nolz,e + (n2Th) g + (M1T2) 6 + c—%%(rl.w\z - - 12"’ Ait)
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4€X0

X2 ’\ 2ry 3r?
3cR2

(4.7) e = - A2e + "ﬁ%f\iw) ~ r1,gwfonoR = 0.

—=z (A 3,¢+

This equation can be solved for ns if

(4.8) (1‘1@/\2) =

Examining the second order solution one finds that (4.8) is equivalent to

(r1de2,8) = (r1ghi2) = (r1,4Te2) = (r1,4Ti2) = (T1,672)
(4.9) = (11,¢(Ti = Tii)2) = (r1,6(Te - T+e)2) = (T1,65)e2) = 0.

In particular, to satisfy (4.9) one need only insure that (riA.;4) = 0. The condition
(4.9) provides an additional constraint on the zero order solution, reducing the number of
independent functions in the zero order solution from seven to six.

As in the previous calculations the parallel heat flows are found using the pressure

balance equations. In third order the electron pressure equation is

2
(Tca.rﬁ’\eo,w - Tco,w’\eB,cﬁ) + a'_(Te - TJ.e)an,qb’\eO,w

- VY-V v
+-.(S"33¢—7e3¢+($_1_53--1/-)--——?)¢+(s.1‘e3' ¢'I )

3
(4.10) +'"‘/\e2(wel.¢ + R3 ’\60 1117‘1.4’)

This equation need not be solved for Sijes but for a solution to exist the following condition

must hold:
2Xe 1 vy|?
ngtﬁ("l.di(Te = Tyie)2) + 3<(9_Le3| le )w)
3e 3exoAen,y
4-11 —_ e e —— = U.
( ) +20('\ 2“) 11¢> + 2n0cR3 <A327'1'¢,> 0

All the terms containing products of first and second order solutions are clearly proportional
to (71,¢Ae2) and vanish. The remaining term involving S).3 can be calculated easily from

(2.109) to be
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v 2T,
| }bl ) = -ﬁ("w*ez)— (=5~

Hence, the condition (4.11) is satisfied and no additional information is gained.

(4.12) ((S1e3 ’d’,\ 2) = 0.

The next equation is the ion pressure equation (2.104)

(Tiz.griow — Tiowhizg) + (Tizgrir + Tingdizy — Tizgding — Tiwhizg)
2
+ 3 (Ti = Tiida(m gdioy — noyAin,e)
no

n
+(Ti = Tiii(nz gAioy — RowAizg — ;li-(nx.w\.-o,.p - Mo,y Ai1,g)

+(n1,6M,9 — m,wring))] + g(slli3 = Yis + Siia)g + 5(5“3 J )
2
-—5-21\;'2(%'1.4’ + —)%‘2"'1'¢’\"°"”)
2% 2"
(4.13) ~ 5 hilwizg - Rz(r""”\'l"” redny = (g )TIW\‘O o=

This equation does not need to be solved explicitly. The condition that a solution exist
is satisfied and gives no new information. The conditions that the poloidal momentum
equations (2.100) and (2.101) can be solved for w3 and w;3 are satisfied.

The ion stress equation in third order has the solvability condition

(4.14) %((szm) = (Yi2r1,6)) + ?;::cc: \/—_'(Teo)m( .;1) 0

Let us examine the terms in this condition:

(4.15) (S_L'gzl ¢,> = 5-6—-@71071'0(-—;]——-21 Te2 )

b} § CXO Ly lvw!z ,¢ e .¢ 1

Vo¢-V
(4.16) (1i2r1,6) = —5n0Tio(m1 6Ti2,y) — 5noTio(—|-%m#ﬁ.¢Ti2.¢),
and
Ail Li(v),m

a. Ay Lal®) 11y
(417) (2 = 2l

While the condition (4.14) contains second order solutions, it does not depend on the

arbitrary flux functions that enter in second order. It does depend on A.; and the zero order
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profiles in the equation for A.;. Hence, the condition (4.14) is another relation between the
zero order profiles. At this point, having used the constraints (4.9) and (4.14) there are five
independent zero order functions. The final equation in the system is (2.105) for A.3 which
in general has a unique periodic solution.

In third ordér the solutions have not been calculated explicitly. Rather, I have deter-
mined what conditions are necessary for solutions to exist and have shown that they can
be satisfied. I have determined additional constraints on the zero order solution, (4.9) and
(4.14. In the next section the fourth order system containing the explicit time evolution of
T.o and T;o will be analyzed. It will be seen that only partial information about the third
order solution is needed to calculate transport. In particular, one only needs some averages
of the product of third order quantities with ry. I show below that these averages can be
expressed in terms of (Ae3,471). The sequence of calculating these relations below parallels
that used in solving the ordered system. Just as the unkaowns, (T, —Ty.), (T —Ty;), Te, T,
7y S|jer S|ji» Wes wi and A; were expressed in terms of A, here the averages (r1,4(Te — T'L¢)a),
(r1,6(Ti = T1i)s)s {r1,6Tea)s (r1,6Ti3)s (P1,6m3), {T1,65|1e3)s (T1,6Sia)y {T1,6wea), (r1,4wi3) and
(r1Ai3) will be expressed in terms of (ryAes).

I begin with the relations (2.43) and (2.44). I multiply the relations by 7,4 and take

the average with respect to ¢ to obtain

€xo Ny T171,¢
(4.18) (Te = Tre)amg) = W[(Aesﬁm) - (;;3' +2)(Ae2—p )]
and
' _ _ exo ‘ Ny T1T1,¢
(4.19) (Ti = Tiidarre) = ”m[('\:sﬁ.cb) - (;;(']' + 2)(Aiz R )]

I calculate from equations (2.107) and (2.108) that

_ 46X0 N1 2’!‘17‘1,4,
(4.20) (r1Tesp) = -m[(/\eaﬁ.¢) - (‘T;E' + 2){Aea—7))]
and
4
(r11Ti3,e) = —g(rl(Ts -~ T1i)ae)
(4.21) +20<1‘1(T; - T.Lu')l ‘;2'¢> + 20(7‘1(T“ — TJ_;)QT,'Ld,).
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Using equation (2.102) one finds

To(ring,g) = —no(Ts4m1) — (Tl(anz) $)
2
(4.22) —(r1(n2Th) ¢) + 3R3( Phae) - ™ R2[<f1)\3.¢)+2('\2.¢'—)l

From the relations (2.109) and (2.111) one can calculate

V| \
X (i 5 ) = 228 (5. )~ 2otram (T — Tl

2 RI\R J
r
(4.23) ~5n0Te0(r1Tes,¢) — 5Teo(r1n1Te2,6) + 66T e0{(Te — Tiie)2 _lg,d))
and
exo V|2 2 Vo[
-C-Rﬂhs.ual-*jl-) = gﬁ%(ESmLT'—) = 8no(r1Tin,¢(Ti — Tii)z)

=5n0(r1(Ti = ToLi)1(Ts = Tii)z) — 2Too{r1(Ti = Tri)amy g)
(4.21)  =2Tio(r1(Ti = Tii)lng,g) — 5noTio(r1Tia,e) — 5Tio{rimiTiz,e) — 5Tio(r1n2Tin ),

2
(T15)jia,6) = -3Aeo.¢<T1Tia ¢) + 3Tioy{ridiae) - 3L;; (Tﬂ.d»%)

d r?
—-3L{1 3'!’( 12 ¢2R) l(’\:2,4z l) 3 1l a,‘p()‘n,qb’é'lﬁ)
——[(/\:o w1 = noywLia )(r1m1,0(Ti — Tii)2) + Miow(ri(Ti = TLi)ima,e)
Vi Vd)
).6)
2 e 2e

|V e
(4.25) —(7‘1(5_1_;3—":,“—),.,') +2-({rwn gAiz,g) - n—ﬂ;%/\:'O.w(rlrl,ab/\-‘z) -~ 2;(/‘\f1?1w¢1.¢)

=n0,9{T1(Ti = TLi)1A2,6)] = (r17i3,6) = (11(SLia

From the pressure equations (2.103) and (2.104)

1, » , T
5(?17‘7 *Sea) = —Aeo,w (M1 Te3,6) + Teoy(T1Aes ) + -;i;q[/\ew("ms.cb)
-ng w(rv\ea ¢) + (r1mgdezy — 1101y Aez 6)
T. n
+(r, (--- - -——)(ng #A0,y — NoYAe2,6)) + (TI(E(% - ‘Ez')"l,daAeO.w]
. 3e 3exoAen,
(4.26) - '2"C'<7'1)‘e2w61,¢) - —W#(ﬁ'ﬂ,w\ez),
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and

i 0
g(ﬁ}V +Sia) = =iow(r1Tiag) + Tiow(riAiae) + ;.; 50 —(Tiz,673)

2A|0 1[}

Ty
+ — R (7'17'1'¢/\|2) + — ((T‘i T.Ll‘)lrlnz'¢)

2
+ :Z"p((Ts - T.Li)l"l’\i2.¢) = Xiow{r(Ti = T1i)inag)
2e
+n0,y(r1Aiz,¢(Ti = Teih) + Ez(z\izﬁwnp)
' 2exoXiow
(4.27) e

In calculating the transport the quantities (riwes,g) and (rywis¢). The final relation

. 2e
e (AT 71 ) + '3;(7'1'\1‘1‘-‘*"'2'&5)'

needed from third order is obtained from equation (2.106) and is

2 ‘ n 2r 4e
3nf;22[("1/\i3.¢) - (Tx(“‘l' = & Pizell + 3 23’\0.11}(7'17’1@'\:'2)
2
+§ﬂ9‘3(71)\=1("2 oMo — nowdizg)) + ¢ [<TIS|||;3 o+ (2 Su.z)
1 r R
R(S.Lﬂzl.dﬂ'l) - —(7‘1 r1,¢%i2)] — 15(-1——‘7 +Sia)
R%nTy 2 n
+ ~[(riwis g) + (n(F Ly 2 '1 Jwizg)]
T, T,
+—'Q[(~r1(r1,¢f\i2.¢ + r1,¢A;2,¢)) + (T1r1,¢T—,)]
T T;
['\ao w{rinag) = noy(ridiae) + <("f:§ - ~)T1(/\:o.¢nz.¢ - Ai2,s70,0))]
T T
+""'< '2(/\a0.w"1.¢ Ait,¢noy)) — ——[((T' = Tiihimi(Miownz,s — Aizgnow))
T, R A;
(4.28)  +(r (T = Tii)2(Miowni,e — MowAine)) + = \/—' (2222 :Xo(rl—jl) = 0.

Thus, the quantities (r1(Te — Tie)se)s (T1(Ti = T1i)ag) (r1Tesg)s (T1Tia,8) (T1M3,4)
(r181e3| V12 /), (11813 VY|2/T), (rir/JIV « Sea), (ri7/JV - Si3) and (r1Ai3,4) have been
expressed in terms of (r;Ae3,4). The quantity (ryAes ) has not yet been determined. It will
be seen that fourth order solvability conditions give sufficient information to find (riAes ¢)-
This process by which solvability conditions give information about lower order solutions
was seen earlier when the second order solvability conditions gave that A.; = 0 and when

the third order solvability conditions implied that (ryAe2,4) = 0.
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4.2. Fourth order |

The analysis of the fourth order system, as in third order, focuses on determining and sat-
isfying the solvability conditions rather than calculating the explicit solutions. A goal here
is the calculation of the time evolution of T.p and Tjo appearing in the pressure equations
and subsequently the calculation of the time evolution of the complete zero order solution.
It will not be necessary to calculate the fourth order solution in order to determine the
transport. Instead the time evolution of the temperature will be found by satisfying the
solvability conditions associated with the fourth order pressure equations. Terms of the
form ((third order)ry 4) appear in these conditions; they are determined using the relations
from the previous section. Additional relations between the zero profiles will be determined.

I now examine the fourth order equations in the same sequence used in lower order, not
computing the solutions but verifying that the solvability conditions are satisfied. Equation

(2.107) in fourth order can be used to determine T.4. The condition that one can solve for

T¢4 is
(T. - nc»@’fﬁ) (T - T 02
(4.29) +(T. - TL,')Q"""'“”>+<(T Ty)akdy = 0.

R

This condition can be rewritten as

Vo[

(430) = (ero5E) 4 5 (EE + ) Pae) + (AT = 0

The condition (4.30) expresses (Aes,¢71) in terms of (Aeg ¢73), and (Ae2,4|V9|?). Using the
relations at the end of the previous section, a number of other averages of third quantities
are also known in terms of averages of A.z.

Equation (2.108) is used to determine Tj4. The solvability condition for this equation

gives the following relation between (r1M3,4), (T2Xe2,6)y (Ae251i121,6)and (Aez,0|VY|2),

—8no((Ti = Twi)i(T; = Tridag) + 8(n1,6(Ti = Tii)1(T; ~ T1;)2)
~8((Ti - T1i)inge) — 16((Ti = T (Ti = T1i)ana,e)
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+10n0{(1; ~ T1ihTia,e) + 10n0{(T; — Ti)2Tiz,6)

+10n0(Ti1,4(T; = T1i)a) + 10{(ny(T; - TLih Tiz )

+10{n1 Ti1,4(Ts — T1i)2) + 10{na(T; ~ Tui)1Tian)

+ano(Tia(T; = T1i)ae) + 4no({Tia(Ti — Tiidae)

+4Tio(n1(T; — T1i)a,e) + 4Tio(n2(Ti = Tii)2,¢) + 5no(Tir Tiz )
+5Tio(mTia,g) + 5Tio(noTiz,g) — 24no( 32 (T = Tui)i(Ti = Tui)a)

v 2
+6n0Tio{(T; - T1i)a( "1r,e + (1 fé ).é)

R?
] r ]
+6m0( 22 Ta(Ty - Tuih) + 6Tio{ma(Ti = Tuih 32)
r
(4.31) +6n0Tio{ H(Ti = Tai)s) = 0.

Since the average (ryA.3,4) is expressed in terms of the second order averages (rf).;), and
{Ae2,6/V|?), the above condition (4.31) gives a constraint on A.z. This constraint reduces
the number of independent functions in the zero order solution from five to four.

Continuing with the remaining fourth order solvability conditions, equation (2.102) in
fourth order is used to find n4. The solvability condition is

exo eXo exo ,IV¥[?
’ (4.32) S (Neda) = 3 {ringds) + 5505 ‘*;g'")‘m) ~ (P -rg).

The condition (4.32) is an additional constraint on A.2, since the term (r; 4As) is known
in terms of averages of A,;. Hence, the number of independent functions in the zero order
solution is reduced from four to three.

The pressure equations are used to determine the fourth order parallel heat flow. These
equations have solvability conditions. Appearing in these conditions are the time derivatives
of the zero order temperatures, Ty and T;o. Hunce, to determine the slow time evolution of
the temperature it is not necessary to solve the fourth order equations but only to evaluate
the solvability conditions. Evaluating the solvability conditions is relatively simple since
no information is required from the fourth order solutior and only limited information is
needed about the third order s. ition.

. The solvability conditions are complicated. Jt is convenient to write the solvability

conditions not in flux coordinates but in the original polar coordinates,
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Condl

0 1
(5752 + (37 - (uapa + 382)) +(5PaV - u)

B(BV) 1

r
+2(j’(pa PLa)( - ‘gv "u))
(4.33) - 3 ';,"17 -r” + ('an.)-

I will show that in general it is not possible to set the time derivative in the above expression
to zero. That is, the lowest order solution does evolve on the time scale hypothesized
initially, e~27,,. To determine the slow time evolution one must calculate the various terms
in this expression. First consider terms explicitly involving the time variation of the lowest

order solution are,

(430) (520 4 (29 (uepa)) = mot 20

The time derivative of a flux function is no longer a flux function. The work done by the

20 4 Toof= N)+(7ﬂo(U V)Ta0)-

pressure is calculated to be

r r on Te
(435)  (5PeV - ua) = Tao(5(N = =2 = (U~ V)no)) = (-2(n,gAay = nyda))
where
T T Teo
(- (ngdey = nydes)) = W("o("l Aesg)) + “—tz;("o(ﬂzf\ez é))
Teo O . /\ Ae
__eo_ %(RO(nf)‘e‘l.é)) + _';';(';1<Tc2"2,¢> + —;1;'“(Te3"1.¢)
T Aed Teo
(436) —-——n-g--—<ﬂ1'n1,¢n2> ig;-gﬂ-ﬁi(nl‘,ng)
and
T; Tio O
(F(nediy = mydig)) = =2 om((maghi) + (nghis) + (maehia))
Tw, T;
+';£( 7':‘7:; - — )("3 dAi0w = NoyAize + N2,6Ai1,¢ — N2uAile

+n1,8Ai2,y - “1.w\«2.¢))
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N 1T

T né Thn

+-19(( ;;'5 -t )(n2.¢)\io.w - no,yAizg))
T n n

+-'-ll —?'ﬂow a2.¢)+ (( Tu ;%)(n1.¢Asl.w—n1,wAi1.¢))
TsO T.a mng Tnm _ Tunz

(4.37) )(n1,6Xi09 — NowAine))-

o (Tt 2

ng  Tino Tiono

Consider the next term in (4.33) containing the divergence of the heat flow,
|Vy?

S(J J )

This requires calculating the flux surface average of the fourth order perpendicular heat

(4.38) 'V -S,) = (s“

flow. For the electrons, this is

(Siecq

V 2 V 2 V 2 3 Vl|?
2 2
"25@-(7’.:1( ~Tic)amie) + 3::0 (Teo(Te = Tie)2n2,4)

R? cR?
—2Te0 'c""“((T T.Le)3"1,¢> 5T, X0 (aneS ¢)

R T . cR?* mr
+6Tc0.___<_3.'2-n1(2 —-7_1_5) ) GnoTeo p ( ! 1'¢

)S.Le2>

(Te = T1e)2)

(4.39) —3noTeo 2 ((T ~ T1e)2(|VY 2),45)'

The flux surface average of the fourth order ion perpendicular heat flow is

g q |:|,LI2T'1 sv l:¢|2 31‘1 |:¢|2
" — i T + »

=2{n1,6(Ts = Tei)i(Ts = Twi)z) + 2(na(Ty - Tuih(Ti = Tridre)
+2((T; = Twi)ingg) + 4((Ti = TLh(Ty = Tii)ami )

=5n0((Ti = T1ihTia,e) = 5n0{(Ti — T1i)2Tize)

=5n0((T; = T2i)aTine) = S(mi(Ti = TLih Tiz,g)

=5(n1(T; = T1i)2Ti,¢) = 5{n2(Ti = TLinTir g)

—2Too((Ti = Trihinae) — 2T0ol(Ti — Tii)anz g)

=2T30{(Ti = Tuidanig) = ATalTi = Toihnog)

Vo[
J
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Hully

[ |"i i

=2Ta(T; - Tii)amg) + (Toa(Ts —~ Tii)inag)

~5T0(n1Ti3,4) — 5Tio(n2Tiz,¢) — 5(nsTi1Tiz ¢)

=5Ti0(n3Tin,¢) + fi;;-9—(noTi0((Ti ~ Tyi)ar,¢)
(4.40) +To{rm1 (T = Tui)ar,e) + (n2(Ti — Tiihirig))

I now calculate the flux surface average of the work done by the stresses,

(4.41) (';'(pa - P.La)('B;(Big'—v"")'ua - %V *Wg)).

This calculation is straightforward but lengthy. I first calculate the work done by the
electron stresses. It is convenient to return for a moment to the original form of the reduced

electron stress equation (2.20). An exact consequence of the reduced equation is

~3.213 (pe — pre)?
5 Tee

1 1
(pe - P.Lc)('ﬁ‘iB (B-V)u, - 3V ue) =

o (Pe = Pie) 2pe = puc) 1 -
_Q_Ti-v‘(ue(pe - PLe)) — 5p, -(—B-EB-(B-V)Se - §V~Se)
2pe — pue)® 1 1
(4'42) + pc (BzB (B V)ue 'jv ue).

If terms through order €? only are retained then the last term on the right hand side may
be dropped. Now calculate the flux surface average of the terms in the above expression

(4.42). The flux surface average of the first term is

_Ri -3.21/3 (Pe = p.Le)z) - n2—3 : 21/3R((Te - Tle)%)
J 5 Tee -0 5Tee J .

The flux surface average of the second term is

(4.43) (

.R e — Ple
(-~72-(-?~I;-:wv (ue(pe — p.Le)))

A
(4.49) = =255 (T, = Tue)o(Te = Tiehao) = 0.
[

The flux surface average of the remaining term is

(R2Upe=pic) 1

: 1
J 5D BQB (B- V)8, - §V - 8e))
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(|V¢I2).¢

= T 7 ((Te = Tie)a(Sjjez,e + S[]el_ﬁ' = Sjjeo——3—"= 2
- V 2
(4.45) "yelr‘}z'g - g(sm' }M )w)):

The flux surface average of the work done by the electron stresses has been specified.

Now, I calculate the work done by the ion stresses. First one finds that

1 1 3T T; - Ty;)?
(pi = PLi)(HzB - (B~ V)ui - 3V w) = - (3 eo)a/z 2 ['“( ¢)

LY

~2(1 - 2(7’1' ‘;ip.l.t'))—l(pi -;)',FU)V (ui(ps = pLi)) ~

(Pi = p1i) 1 2(pi —pui) 1 S P
(4.46) (1-2 > )~? 5 (ﬁB-(B-V)S, 3V S:).

Taking the average of this expression, the first term is

(4.47) ~(§-§(%—g)3/2ng\/:( = Tui)?y _ 37eo)3/zR\/—'((T Tt

Tee

The average of the next term is

, _(_§_2(1 _ 2(1’.’ ;’Pu))-l (pi ;'Pu)v (wi(pi = pii)))
1 1 0

= (/\.2,¢(T Tw)?) - T,-;:?‘z/—)<'\“’¢(T‘ = T1i)1(Ti = Tii)2)
)

2T 3#
'Oi'p(nl.nﬁ(Ts Tiin(Ti - Tii)2)
TsO

(448) “'M(TQ(T TJ-I)I(T TJ-')1.¢>

The average of the final term is

{

R (pi = pLi)\—12(pi — p.L;) 1 1
7(1—2 o )y~? B B.-(B- V)S-—;;V S:))

° ’ |
= ~57 K(Ti = TLi)iSyiz,e) + ((Ti = TiidaSyag)] + 'ﬁ;(Tﬂ(T,‘ = T1i)28)i1.6)
! 2
Fim (Tl = TaihSjja o) + 7= (Ti = Tui)i i)

S ; 1 r
(T = L1997 6) = (T~ Tun(5Y - Si)
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JH [N l

1 TI' - T |' T| T s V . V
“-5(((1"' ~Tuida - ( T-L bl + 20 T i )(S)jiz = Yizie + (SiLi2 ,‘,{)J ¢).¢
i0 |O

IVt/:l TJ.:)IT|2 CUELIVEN

—(S1i2 )w)) - = langle(T. Tii)s -

2
o JV"’),¢ - (5.0 280 ).

(4.49)~7i1,¢ + (SLir =

The flux surface cm rage. M the work done by the stresses has been calculated,

I summarize th s’m} vms Qf the fourth order system up to this point. Using the condition
(4.30), (r1)e3,6) is known completely if Aoz is known. The relations (4.31) and (4.32) are
satisfied by the appropriate choice of two of the arbitrary first order flux functions in
Ae2. The calculation of the solvability condition associated with the pressure equations
gives expressions for the time evolution of the lowest order temperature. All the terms in
this solvability can be expressed in terms of averages of A.;. Thus, when ). is completely
specified the time evolution of the temperature will be known. I proceed with the remainder
of the fourth order system.

The solvability conditions for weq, wiq and n4 are not independent; there are only two
independent conditions. This can be shown by examining the structure of these three
equations. While three equations are derived from the poloidal momentum balance, there

are only two independent solvability constraints. Recall that these equations have the form

(4.50) ";‘(Mer,z - Mcz.r) = 0’
(451) "];(Mt'r,z - Miz,’r) =0,
and

(4.52) -}B (M. + M;) = 0.

The associated solvability conditions are obtained by taking the average of the above equa-

tions with respect to ¢. A simple calculation shows that

d
(4.53) /7“—5(1;,‘, -v,,) = 'b% iiJ—quB v
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where v is any vector with no § component. Hence, if the average of any two of the above
equations vanishes so does the third.

The solvability condition for w4 is:

1
W("z.ﬂez) +— aw(nl.asTea) - (nxna o)+ = (anea ¢)
i)
+""'—(("1) ¢Te2) + ("1" .¢> - *"—'(" T, ¢) + "““(nzTe? )
ng 0 no n?
T X Teo'¢ 46)(0 3
+—g(n1n:,¢nz) plry Rl ey [%(nz.w\ez) + §J<"I.¢Ae3.¢)

1 0
"?-Aeo,'j:((l"l‘ + ﬂ-)na o)~ 2no((%i~ + %)&3,& - ;1;5;/;«’??),@::2)

1
R 8¢<T1T1.¢’\e2) + 3( Ea)(’f"zd"\ew - oy Ae2,673)

2

'\w.wl 2((-— —)na,¢)+3( “"-+ >)n2,4)

+°’1;'(')'“(n2’\e2.¢>]+ 32 2 R2

6 6 e
+ag(mamgna) + = (ranams ] + -KE [ (1o )

N 2Xe0
=(= — ~+ 3)2R sz(r’ Aez,8) + Aeo a/:("-'”w) - ——-——-(n1n2r1,¢,)]

2x° Ley 8 N
. “3n k5 2k 1) +(adarig) = Fdanrig)

2N;.n €
+(3+ = O'w Z(r1m,6Ae2) — noy{Aeari o)) + X;Zz Aeo,yl: 2(n1n2r1,¢>
0
1 3
(4.54) '--—-(r1,¢n )+ —g(reming)] + —'< (Pezr = Per,2))-
No R

The constraint (4.54) reduces the number of independent function in the zero order solution
from three to two, With all the quantities in the energy balance solvability conditions known,
the time evolution of the lowest order temperature is determined.

The remaining equations in the system are the ion and electron stress equations. The
solvability condition for the ion stress equation includes the term (ﬁ\y) The second order
solution A;; has an undetermined flux function part that may be chosen such that the solv-
ability condition is satisfied. There is no solvability condition associated with the electron
stress equation. The constraint (2.41) must now be satisfied. This constraint determines
the time evolution of 1.

I summerize the zero order system. There zero order system initially consists of nine
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arbitrary functions of 1 and a Grad-Shafranov type equation for 1. The seven constraints
(3.12), (3.44), (4.9), (4.14), (4.31), (4.32), and (4.54) serve to reduce the number of inde-
pendent functions to two. Hence, with the time evolution of T.o and Tj given by (4.33)
the time evolution of the nine zero order functions is known. The remaining part of the
zero order solution is 1 whose time evolution is determined by the constraint (2.41) and

the system is closed.
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5. SUMMARY AND DISCUSSION

In this thesis, I have presented and analyzed a mathematical model describing transport
in a tokamak. The model is derived from a thirteen .aoment two-fluid description. The
thirteen moment system was chosen as an initial description because one expects it to
provide a reasonable description of a weakly collisional plasma while still being sufficiently
simple that a detailed analysis is possible. The full thirteen moment system includes a
wide variety of phenomena. A reduced model is obtained by neglecting small effects. The
question of which effects are important to transport and which mny be neglected is not easily
answered. I have taken typical values of the temperature, the density and the magnetic field
and assuming the plasma to be stable and quiescent, used these to estimated the order of
magnitude of various effects. I include small smooth laminar flows. I introduce a single
scaling parameter, €2 = m./m;.

It is in the matter of scaling that this work differs most significantly from neoclassical
calculations. In particular, I take the velocity space anisotropy of the distribution function
to be considerablely larger than in standard neoclassical calculations. One of the results of
this work is that the assumed size of the anisotropy directly determines the magnitude of
the flux surface variation of the other quantities in the system and plays an important role
in transport. It would appear that by assuming different sizes of the anisotropy one can
obtain self-consistent systems with dramatically different properties. The question is then
what is appropriate in a tokamak system.

There are plausible reasons for taking the anisotropy to be relatively large. One reason
is related to the low collisionality of the system. An estimate of the size of the anisotropy is
given by the product of the Mach number and the mean free path. While the flow velocities
are small, the mean free path is long and thus the possibility of significant anisotropy in
the system exists. Another perhaps more fundamental reason is that tokamak devices are

not in the thermodynamic sense closed systems. They are driven by external sources such
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as the transformer loop voltage and various heating schemes. This model includes particle,
momentum and energy source terms. It is the order of magnitude of these sources that
determine the character of the system. Hence, I take the anisotropy to be initially O(el/ 2,
collisional effects force the electron anisotropy to be Of(e). |

Once the scaling is decided it is straightforward to extract from the full thirteen moment
system a reduced model that includes terms through O(e?). Using the toroidal symmetry
of the physical system some additional reduction in the form of the equations is possible.
The system finally consists of ten primary unknowns and ten equations along with three
constraints. The reduced system though considerablely simpler than the full thirteen mo-
ment system still retains particle flows and pressure anisotropy. The qualitative features of
the solutions of such a system are not at all appa.renf. '

This reduced model is quite complex and non-standard. The equations still contain
terms of very different size, varying from O(1) to O(€?). There are a number of fundamental
guestions about the model that one would like to address. There are questions about the
mathematical structure of the system, such as what data can be specified, is the system
closed and the time evolution determined. Also, there are questions about the physics of
the model, what are the effects of particle flows, what is the role of the anisotropy, how does
collisionality affect the solution, and on what time scale do solutions evolve. A reasonable
method of exploring these questions is to expand the solution in an asymptotic series using
the scaling already introduced. The calculation of the asymptotic solution is straightforward
but lengthy.

The asymptotic solution provides detailed information about the model. I find that
with two flux function profiles initially specified and the external sources known, the lowest
order solution and its self-consistent time evolution is determined. I find that the lowest
order solution evolves on the time scale e~27, ~ 50ms. This time scale is comparable to
energy confinement times seen in experiment.

I now describe the asymptotic solution in detail. The lowest order system gives that
the poloidal flux function 9 is given by a Grad-Shafranov type equation and the other nine
unknowns are undetermined functions of 9. A first order constraint reduces the number of
independent undetermined functions from nine to eight. This solution is steady on the time

scale 7. It is typical of asymptotic solutions that the zero order solution is not completely
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determined by the zero order system. From the first order system I calculate corrections
to the solution so that the lowest order solution is steady on the time scale €=1/27,. I next
calculate the second order corrections and extend the zero order solution to the time scale
¢~17,. In order that solutions to the second order system exist, restrictions are placed on the
first order solution. These restriction imply that A.; = 0. By setting A.; to zero, I impose
a constraint on the zero order solution, reducing the number of undetermined functions in
the zero order solution from eight to seven. Another solvability condition in the second
order system is satisfied by assuming that v is approximately symmetric with respect to
z. It is seen that with this assumption of symmetry, the solution to O(€!/?) is up-down
symmetric but that collisional effects lead to a loss of this symmetry in second order. Later,
this up-down asymmetry is found to be a mechanism for transport.

The analysis of the third order system concentrates on identifying and satisfying all the
solvability conditions associated with the third order equations. The third order system
provides two additional conditions on the lower order solution, which are interpreted as
additional constraints on the zero order solution. Hence, the number of undetermined
function in the zero order solution is reduced from seven to five. The analysis of the
fourth order system is similar. From solvability conditions, I find that the time derivatives
of the zero order temperature profiles can be set to zero only if the energy sources are
carefully chosen. Hence, in general the system evolves on the time scale e~%7.. By satisfying
the remaining solvability conditions for the fourth order system, I obtain three additional
constr:a.if:uts on the zero order solution. Thus, with the time evolution of the temperature
profiles known and the time evolution of the magnetic field given by another constraint, the
self-consistent time evolution of the zero order solution is determined.

I have presented a model for tokamak transport derived based on a thirteen moment
model of a plasma. The model contains a careful treatment of particle flows, anisotropy
and heat flow. A key element in this model is the assumed size of the anisotropy. While the
model is somewhat complicated it is sufficiently simple that a detailed study of the behavior
of asymptotic solutions is possible. The work done by the stresses is a significant mechanism
for energy dissipation. Up-down asymmetry is another source of transport. This model also
finds energy transport due to heat flows. The system evolves on the time scale ~ 50ms, a

time scale comparable to experimental energy confinement times.
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A. THE FOKKER-PLANCK COLLISION OPERATOR

I now make explicit the form of the collision operator Cyp in (1.1) and calculate its mo-
ments. In this section it is convenient to supress the spatial and time dependance of various

quantities. The Fokker-Planck collision operator has the form (see for example [2])

1_.
(A'l) Cap = -Ve g (Aabfa - §V€ : (Dabfa))-;

where the frictional force vector A,y is

(A.2) A = 2To(1+ %‘:)Vehb,

the diffusion tensor D is

(A3) Dab = ZfPaVeVegb,

and

47("2064 ln Acou[

(A.4) | I, = =

Here In Acoy is the Coulomb logarithm, an approximate quantity related to the introduction
of a cut-off of the Coulomb potential. The operator V is the gradient operator in velocity

space. The functions g, and hy are the Rosenbluth potentials defined by

(A.5) | AZ gy = 2hy

(A.6) Abhy = —4r fy,

with the boundary conditions h(£) goes to zero and g(€)/€n goes to one as § goes to
infinity, I first show that this collision operator has the necessary properties of conserving

mass, momentum and energy of the plasma. I assume that the distribution function f, is
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sufficiently smooth and vanishes as & goes to infinity. Integration by parts gives zero order

moment

(A7) [ Cwde =0

hence, particles are conserved in collisions. A simple calculation gives

(A.8) ma / €Cap dE = —my / ECha dE.
Thus ‘
(A.9) > ma [ €Cu de =0,

b

and the total momentum of the plasma is conserved by collisions. Likewise the total energy

of the plasma is conserved by collisions since

(A.10) ma ] (€ = ua)2Cap dE = —my / (€ = u,)?Chy dé
and
(A11) Yma [(€ - wa)*Cus d = 0.

b

““““

There are no similar conservation relations for higher order moments. Another important
property of this collision operator is that 3~ Cyp = 0 if and only if f, and f; are uniform
Maxwellians with common velocity and temperature.

In order to complete the thirteen moment equations I need to calculate moments of the
collision terms. I first calculate the thirteen moment approximations for the Rosenbluth

potentials g and h. Using (1.31), a simple calculation shows that

lpg 818 8
4 p Oy;0yw 120pv 0y;0ykOYs o
Since fp is a function of » = |y| alone this can be written

7 18S;.

= l&'ﬁ.“.“ _6l_ ____1 2 pININ
(A.13) [= (14 7500 () = i (),

(A.12) f=0+
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where y = y/r and prime denotes differentiation with respect to r. Symbolically, (A.13)
can be written, f = L(fo]. This form allows the thirteen moments approximations for g
and I to be calculated as h = L[hp] and g = L{go) where | |

(A.14) | Algo = 2ho
and
(A.15) | Athg = —4n fo.

The functions go and hy are found to be

(A16) o = n((5= +TI&(r) + 7/ %ezp(~r%))
and
_ n8(r)
(A.17)  he=12

where ®(r) is the error function.
In order to make the calculation as explicit as possible I use the following standard

approximation, valid for fluid velocities much less than the thermal velocity (see for example

(2])

ngn3/? 2.2 25
foo = —gmexp(-utry)(1 = 269 - (g - ug)/mp)

: 0
(A.18) fao = SO+ 18
where p = vy /v,. Now to minimize notation let y = y,.

The integrals over velocity space are conveniently calculated using spherical coordinates.

The following identities are used for the radial integrals,

o . n
(A.19) / dr rhe™" = ll‘(li—l—)s""%i
-5 2 2
it - 8
(A.20) / dr r(r)e = YLTS
) 23
o1
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“where I'(z) is the usual gamma funciion. The calculation of the integrals with respect to the
angular variables uses the following simple identities for the solid angle integral of various

tensor products of the unit vector ¥ with itself

(A.21) / dQ = 4,

o 4

(A.22) ‘ /dQ Uiy = -3-ﬂ6i_,‘,

) - . e 4 . ‘

(A.23) /dﬂ ViVt = 3-57(5-'55'@1 + 8ikb1 + bk ),

where the integration is over the surface of a sphere. The integral of odd tensor products
of § vanishes. With above identities the calculation of the moments of the collision term
while complicated is straightforward. As an additional simplification, I will present only
the collision terms linear in the moments u,, ps and S,; quadratic terms are neglected.

I can now simply calculate the first order moment

(A.24) Fo = Tomg(1+ =2 ™) ,,/faahb

where f, is given by (1.31) and (A.18). Keepmg only linear terms one has

- N 3 1 S Sy
A.25 = - - = =2 .=
( ) Fa Tab (“u UB) + 5‘ + Tab Tba
where
(A.26) 1 4 n2fl(1 + mg/my)

Tab = 2

3ri/2 (v2 4 v7)3/2
The time 7,5 gives the characteristic time scale for momentum transfer from species b to
species a. There is no momentum transfer in like-species collisions.

The integral for the second order moments is

1 a")gb

Mg Ohy
A27 T, =z . =2 Sy dy
( ) ¢Tamav} /(? my Y o v? 6y6y)f dy

The resulting linear terms are
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mgn (mav? — mbv;")l Pa (2mqv? + 3myv2 + 5mgv? + 6myv})
Tab Mg + My Tab (ma + "n'b)(v2 + vb)

1 Py 3mav + 2mbv - m;,vb

5T (Mo + my)(V2 + v?)

T, =

(A.28)

The integral for the third order moments is

Mo\, ne. Ohy  Ohy
Q. = #Tamasf | (r’(l + --)(2yyk5a +3)

) 2r
(A.29) +2uyrhy + ~ w: a 6y —2-)fa dy

Integration gives the linear terms

man (Ua ~ wp)
Py r— (3mgv? + 3my? ~ 2myv})
f35 1 !

10 Tab (mn + mb) v2(v2 +v )
+60mvivf + 6myv2v + 30myvf + 10myvf)

38, v? 1 2 2
e G o ) (1Ot At = Smaed = Hmind).

Qa"‘"‘

75 (18mevs + 6myvf + 63mavivf + 17myvie?

(A.30)

These results can be simplified using that m./m, is small. It will be shown that for our

purposes the only the leading order terms are needed. They are:

/3.
- . = _91/30 e 21/3.9 m,
(A.31) F.= ~-F; = -2 — (e - W) + —5— T Se e+ O( ‘)
.91/3 (T T . 1/3
1 ee ee 3

(A.33) 1,2 220 men(T =T, 3pi o(™e

. T = 3 m; Tee 57_‘_‘ m; )
(A.34) Q. =1 70—S—~ - 0. 84--—(u, -u;) + ()(

. A T, S; Si Me
(A.35) Qi = 189,[,' — T 957_" + 0(;“-:).
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Figure 1. Tokamak Geometry
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