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Abstract

Inthis thesis, I study collisional transport of a hot magnetically confined plasma in a

tckamak. The weakly collisional plasma is modeled by Grad's two-fluid thirteen moment

equations. This model provides a better treatment of the stresses and the heat fluxes than

do collisional fluid models such as Braginski's,. Using physical parameters for a typical

tokRmak, I estimate the orders of magnitude of various effects. I obtain, a reduced system

by neglecting small terms in the two-fluid thirteen moment equations. This reduced model

includes small particle flows, pressure anisotropy and temperature variation within flux

surfaces. The reduced model is compared with standard fluid models. To understand

better the behavior of solutions of this system, I expand the solution in a formal series in

powers of the small parameter (me/m_) 1/4. Flux coordinates are used to solve the equations

in a general axisymmetric geometry. In lowest order, the equilibrium solution consists of

a number of arbitrary flux functions together with a Grad-Shafranov equation relating the

. poloidal flux and the toroidal current. The energy dynamics of the system is complicated and

requires determining the solution to high order. As corrections to the lowest order solution

are calculated, the equilibrium is extended to successively longer time scales until on the

time scale 7"erai/m_, time independent solutions are in general not possible. I calculate

the time evolution of the lowest order solution on the time scale 'remi/rae, a time scale

consistent with experiment.
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INTRODUCTION

In this thesis, I study the trausport of particles and energy of a hot magnetically confined

plasma in a tokamak. Sufficiently hot and well confined plasmas are required to achieve

controlled nuclear fusion. The tokamak is a particular toroidaliy symmetric magnetic con-

finement device. Magnetic confinement systems use the property that charged particles

tend to move along magnetic field lines rather than across them. The magnetic field lines in

a tokamak spiral around a torus and are confined Jn a finite volume. In an ideal plasma, par-

ticles follow the field lines and are perfectly confined. Transport across field lines is caused

by non-ideal effects such as collisions, waves, instabilities, trapped particles and turbulence.

This work considers transport due to collisions in a plasma represented by Grad's two-fluid

thirteen moment equations. The work in this thesis consists of two parts. First, a suitable

" mathematical model is found. I begin with Grad's two-fluid thirteen moment equations for

a plasma extract from this equation set a reduced model containing the essential physics.

In the second part of my thesis, I anal.yze the solutions of the reduced equations. I find and

describe solutions tb_t vary slowly in time. The solutions evolve on a time scale comparable

to that seen in experiment.

The Thirteen Moment Model

A first step in studying a physical system is to choose a mathematical description appro-

priate to the problem. Here, I will use Grad's thirteen moment description to approximate

a kinetic model of a plasma [1]. In a kinetic description, each species of charged particles

in the plasma is represented by a distribution function, f(x, _, t). The distribution function

gives the number probability density of particles at time t, at the position x, with velocity

_. The evolution of the distribution functions is given by a Fokker-Planck equation [2]. The

- Fokker-Planck equation includes the effects of the electromagnetic fields and particle colli-

sions on the particle distribution. The Fokker-Planck equation itself is an approximation
w,
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but it is reasonable to assume that it gives a sufficiently accurate representation of a hot

plasma. The electromagnetic fields are described by Ma_xwell's equations with source terms
B

from the plasma.

The kinetic model described above provides detailed information about the plasma. The

state space of the system (x, _) is six dimensional. Mathematical or numerical analysis of

the model is difficult in general because the distribution function may have a complicated

structure in velocity space. Experimental measurements give information only about a few

low order velocity moments of the distribution function, such as the particle number density,

the average particle velocity, and the temperature. Since experimental data are limited to

a finite number of moments, it is reasonable to attempt to extract from the kinetic mode]

a set of equations that describe the evolution of a finite number of' moments. One can

calculate equations for the evolution of the moments of the distribution function by taking

moments of the Fokker-Planck equation. However, this procedure does not yield a closed set

of equations; the equation for the moment of order N contains moments of order (N + 1).

The same difficulty of going from a kinetic description to a moment description is en-

countered in gas dynamics. There, the gas is described by the kinetic Boltzmann equation.
J

There are a variety of methods of closing the system of moment equations; the best known

are the collisional closures of Hilbert and Enskogg (for a discussion of these closure methods

see [3]). These closure methods use formal cah:ulations based on the assumption that the

effect of collisions on the system is large. A measure oi" the coUisionality of a gas is the

ratio of the system dimension to the mean distance a particle travels between collisions.

In a strongly collisional ga.s, a particle has many collisions while traveling a distance the

order of the system length. A collisional system is easier to describe because collisions force

- the distribution function to be close to a local Maxwellian distribution, fM. That is, the

distribution function is approximately

fM = u)2/2T)
where the number density n, the temperature T and the fluid velocity u depend on x and

t; the particle mass is rn. In the limit of large collisionality the deviation of the distribution

function from a MaxweiIian can be formally found in terms of n, T, u and their gradients.

In the limit of large colllsionality the velocity space structure of the distribution function
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is greatly simplified. However, a hot plasma is weakly collisional; for the plasma I consider

here, a particle travels on the order of' 1000 system lengths between collisions. Hence,

using a coUisional closure like the Hilbert or Enskogg closures is questionable in a model

. representing a fusion plasma.

A method of closing the system of moment equations when the system is weakly coUi-

sional was introduced by Grad to describe a rarifed gas. In this method the distribution

function is expanded about a local Maxwellian in an infinite series of Hermite polynomials

in velocity• From the kinetic equation one can cailculate equations for the evolution of the

coefficients of the Hermite series. With some reasonable assumptions on the distribution

function, the infinite set of Hermite coefficients and equations is equivalent to the original

system. ,_, level of approximation to the kinetic model is introduced by truncating the

series with a finite number of terms. A closed system for the coefficients is found using

the orthogonality of the expansion. By using enough terms in the series one hopes to ap-

proximate solutions to the kinetic equation. In the thirteen moment approximation 'all the

Hermite coefficients through second order and part of the third order coefficient are used.

The Hermite coefficients can be expressed as linear combinations of the velocity moments

of the distribution. Since the velocity moments of the distribution function have standard

, physical interpretations, they are used as the 'unknowns rather than the Hermite coefficients•

This representation leads to equation_ for thirteen (scalar) velocity moments" density (1),

fluid velocity (3), pressure tensor (6), heat flow vector (3). The thirteen moment model

contains the minimum complexity needed to include anisotropy and skewness in the velocity

space structure of the distribution function. In this work I use a two-fluid thirteen moment

approximation of the Fokker-Planck kinetic theory to model a tokamak plasma. Similar

model3 were presented in [4,5].

The Transport Problem

I now discuss the application of' the thirteen moment model to the problem of tokamak

transport. I am considering the behavior of a hot plasma in a tokamak. A tokamak is

a toroidally symmetric device as shown in Figure 1. The generated magnetic field has

toroidal and poloidal components. _l'he magnetic field lines spiral around the the tokamak,

sweeping out surfaces called flux surfaces. The innermost degenerate flux surface is called
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the magnetic axis. One would like to confine a hot plasma to the vicinity of the magnetic

axis. Since particles tend to move along field lines rather than across then, particles will
,i

tend to move in flux surfaces rather than across them. I use the thirteen moment model to

examine the transport of particles and energy across flux surfaces.

The earUest cMculations of transport in plasmas considered _he effect of collisions on an

equilibrium plasma in a uniform magnetic field. The effects of the electric field, the spatial

vaxiation of the magnetic field, and the pressure anisotropy were neglected. The resalts of

these calculations, usually referred to as "classical" transport theory, give estimates for the

rate at which energy and particles diffuse across flux surfaces. A calculation of this type is

included in Section (1.2). The actual transport of particles and energy seen in experiment

exceeds that predicted by classical transport theory by several orders of magnitude. In

addition, classical transport predicts that the electron energy is much better confined than

that of the ions, which is not see.n in experiment.

Later work known as neoclassical transport theory included the effects of the electric

field, the pressure anisotropy and the spatial v_iation of the magnetic field. The nonuni-

fortuity of the magnetic field was found to be important. These descriptions included the
,i

effects of trapped particles. Initially these calculations were done in the framework of a

kinetic theory (see ibr example [6]); later moment methods were used (see for ex_tmple [7]).

Neoclassical transport theory predicts transport that is larger than in the classical theory)

but still smaller than what is measured.

A key difference between the analysis here and usual neoclassical calculations is the

scaling of the distribution function. In neoclassical calculations the distribution function is

taken to be a local MaxweUian plus an extremely small non-MaxwellJan part. For many

systems this .may be appropriate° However, for a tokamak plasma there are reasons sug-

gesting that other scalings should be investigated. One reason is the low collisionaLity of

the system. The order of magnitude of the deviation of the distribution function from a

locM Maxwellian can be estimated to be the product of the Mach number and the mean

free path. The Mach number of the flows in the system is quite small but the mean free

path is very long. Another reason for the system to not be so close to a local MaxweUian

rf"t_ _fis that there are sources driving the system_ 1he sources include the magnetic field, and

various forms of pla.sma heating. The size of these source terms are key to determining the .i
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character of the system. In this work the non-Maxwellian part of the distribution is taken

to be small, but considerablely larger than in neoclassical transport theory.

The spirit and method of this work is similar to that in [8] where a simplified two-fluid

. Braginski model w_s used to describe tokamak dynamics. There, equilibria were described

and a procedure for the determination of the time evolution sketched. Small particle flows

were included in a self-consistent manner. The work done by the fluid stresses was found to

be an important mechanism for energy dissipation. Equilibria varying within flux surfaces

were found. Determination of the energy dynamics required detailed information about

the equilibrium flows. Electron and ion transport was seen on a time scale comparable

with experiment. An objection to the analysis in [8] and a reason for using the thirteen

moment model here is that the Braginski model is derived under the assumption of large

coUisionality and thus its validity for a weakly collisional fusion plasma is unclear.

The full two-fluid thirteen moment equations are quite Complicated, so I extract from the

' two-fluid thirteen moments model a reduced set of equations tailored to match the operating

parameters of a typical tokamak. When one examines the relative sizes of the terms in the

equations, a number of characteristic dimensionless numbers appear. I restrict my interest

to a specific range of operating parameters and fit these characteristic numbers using a

. single parameter• By neglecting small terms in the thirteen moment equations, I obtain

a reduced model. Taking this reduced set of equations as a model for tokamak dynamics,

one is led to a number of mathematics and physics questions, such as whether the system

closed and on what time scale does the system evolve. The structure of the equations is

not standard and such issues are not immediately clear. The reduced system still contains

terms of very different sizes. A reasonable approach to understanding the structure of the

equations and their solution is to expand the solution in a small parameter. I do so and

then solve the system order by order. As is typical in asymptotic calculations, solvability

conditions play an important role. Equilibria are first found on a fast time scale and then

extended to longer times scales until sources are required to maintain a steady-state. The

system evolves on a time scale comparable to that seen in experiment.



Guide to the Thesis

In Chapter 1 the complete two-fluid thirteen moment equations for a plasma are derived.

Forms similar to this system are found in the literature [4,5]. I show that in a particular limit

the thirteen moment equations reduce to a system like the standard collisional Braginski

model [9]. In this collisional limit I sketch the usual cla, sical transport results for the

perpendicular fluxes of particles and energy. In Chapter 2 a scaling suitable for a tokam,_k

plasma is introduced. A new reduced set of equations is obtained by neglecting small

terms in the full thirtep., moment equations. Differences between this system and standard

collisional models are discussed. Axisymmetry is used. to simplify the form of the equations.

The equations are written using a coordinate system related to the magnetic field. In

Chapter 3 the solution is expanded in an asymptotic series and the equations are solved

through O(_/me/mi). In Chapter 4 the system is studied through O(me/mi) and the time

evolution on the time scale e-2ree determined. Approximations for the moments of the

Fokker-Plank collision terms are calculated in Appendix A.

Notation
p

I use the following conventions. The subscript a is a species subscript, here either e for

electrons or i for ions. Fluid variables without species subscripts are total plasma variables.

Vector notation is used where possible; vectors are written in boldface. When component.

notation is used, the summation convention is used; that is I sum over repeated indices. I

use the following notation: we_,, is the partial derivative with Iespect to z of the component

of we in the r direction.
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Symbols

0

E electric field

B magnetic field
" x 3-vector in physical space

3-vectorin velocityspace

fa distributionflmctionforspeciesa
Cab Fokker-Planckcollisionoperator

J currentdensity

e electron charge
c speedoflight
n number density
us fluid velocity
v, thermal velocity .
Po pressuretensor "

Ps scalar pressure
Ps stress tensor

Ta temperature
So heat flow vector
R,a fourthordermoment

y normalized 3-vector _n velocity space
wH Hermitepolynomialweightfunction

• H(") Hermitepolynomialofordern

6_j Kroneckerdelta,
. F_ momentum transferdue to collisions

Ea energytransferdue to collisions
Ta collisionalterm in stressequation

Q_ col]JsionMterm inLheatflowequation
rsb characteristic collision time

_/. gyrofrequency
Pa Lamor radius
¢ poloidal flux function

X toroidal part ofB

A vector potential
¢ scMax potential

V (t) loop voltage
U flow across flux surfaces

: Aa approximate pol.oidal stream function

w, toroidal rotation frequency

¢ poloidal angle
J Jacobian of (r,z) to (¢,¢)

7



4

1. THE THIaTEEN MOMENT MODEL OF A PLASMA

In this chapter I apply the thirteen moment approximation to the kinetic Fokker-Plan_

model of a plasma. I compare the thirteen moment system to a standard collisional model,

the Braginski equations. In the limit of large collisionaiity I cMculate the fluxes of particles

and energy across the magnetic field.

1.1. The Thirteen Moment Approximation

I consider a simple hydrogen plasma of electrons and singlely charged hydrogen ions. I

assume the plasma to be accurately represented by the two Fokker-Planck equations

(1.i) oY. ag _7. Ii oA0--7+_.-0--_x+ (E+-_xB). -_- =_C°bb
o

where a is the species index, e for electrons, i for hydrogen ions. The distribution function

fa(X,_,t) is defined so that

/D f_(x,_,,t) dx d_

is the probable number of particles of species a, in. the domain D, a subset of six dimensional

(x,_) space, at time t. The particles are affected by the electric field E and the magnetic

field B through the Lorentz force. The term Cab represents the effects of collisions between

species a and b on the distribution function la. I discuss the the form of the coUision

operator in Appendix A. Physical constants are: e_ the charge of a particle of species a,

ma its mass and c the sp_d of light. In this model the plasma is assumed to [,e neutrally

charged, that is the number density of electrons is the same as that of the ions everywhere

in phy_dcal space. Charge neutrality is equivalent to

(1.2) f y,(x,,,t) d, = f y,(x,,,,) d,,
,,,,,
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D

wheretheintegralsareoverallofvelocityspace.The electromagneticfieldaregovernedby

a qvasi-magnetostaticform ofMaxwell'sequations:
a

,. (1.3) V × B - 4_'_-_°J,
C

10B
(1.4) v ×E = ....cot'

(1.5) V. B = 0,

where the current density J is defined to be

/.

(1.6) J = e J _(fe - li) d_.

In the above system, there are nine scalar differential equations (1.1) and (1.3) - (1.5),

and the constraint (1.2) for eight ,scalar unknowns, suggesting the system may be over

. determined. However, equation (1.5) is a,n initiM condition for equation (1.4); that is (1.4)

implies that V. B is constant in time and (1.5) says that constant is zero. To determine

" theroleoftheconstraint(1.2)itisconvenientto usethefactthat

f

(1.7) J Cab d[_= O.

Using (1.7), equations (1.3) and (1.1) imply that

(1.8) (f' - =0.

Hence, the constraint (1.2) is also an initial condition. The l%kker-Planck-MaxweU model

consists of the two kinetic equations (1.1), Maxwell's equations (1.3)-(1.5), the definition
£

(1.6) and the charge neutrality constraint (1.2).

The Fokker-Planck-MaxweU kinetic model above permits a detailed description of a

plasma. Physical quantities such as those measured in experiment can be calculated by3

• taking moments in velocity of f,, Let us define some velocity moments of f,, The zero



order moment,

(1.9) n(x,t) = / fa(g,_,t) d_,
J 4

is number density of particles of species a, which according to (1.2) is the same for electrons

a_Ldions.The mean velocityofparticlesofspeciesa is

1/(1.10) v,(x,t) = _ _f,(x,_,t) d_.

The pressure tensor P_ is the second order moment,

f
(1.11) P. = j(e- .o)(e- u,)fa(x, _, t) d_.

It is usual to define a scalar pressure, Pa = ½trPa and a trace-free stress tensor Pa - Pa-PaI.

I define the temperature Ta, so that Pa - nTa; the units of Ta are such that the Boltzmann

constant is unity. The heat flow vector Sa is the third order moment

(1.12) s° = m°](_ - u,)_(_- u°)lo(x,_,t)d_.
Finally,Idefinethefourthordermoment Ra to be ii

t
(1.13) R,_ moj(e- uo)ce-.o)¢e-uo)ce-u,)fa(x, _, t)d_.

In the thirteen moment approximation the detailed velocity space structure found in f_ is

replaced by the limited information given by the velocity moments defined above.

In Gr'_d's moment description [1] the distribution function f (it is convenient to drop the

species index) is expanded in Hermite polynomials about a locMly Maxwellian distribution

fo defined as

where

(1.15) y= _-u.
v

The thermal velocity v is defined by

10
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1 2

(1.16) T = _mv .

The moments n, u and T are functions of x and t. The Maxwellian distribution fo contains

- the moments n, u and T and is spherically symmetric in velocity space. Let f(_) =

fo(r)](y) and expand ](y)in a Hermite polynomial series in y using the weight function

V 3

(1.17) w_/ = --/o(r).

That is,

CNO

where

(1.19) H(")(y) = _V_WH.
.c--¢_j-/'1

• The coefficients a('0 are functions of x and t. Such a series expansion converges if

" ( 1.20) / f2 / fod_
<.

where the integration is over all velocity. The infinite series (1.18) is equivalent to f. An

infinite system of equations for the coefficients a(") can be found by substituting the series

into the Fokker-Planck equation (1.1). A level of approximation to the kinetic theory is

chosen by truncating the Hermite series for f. One can then use the orthogonality of the

expansion to obtain a finite set of equations for the truncated set of coefficients. By using

a sufficient number of terms, fa can be approximated arbitrarily closely. However, there is

no guarantee that the solutions of the equations satisfied by the ttermite coefficients will

approximate a solution of the Fokker-Planck equation.

The first few Hermite polynomials defined by (1.19) are:

. H(°t(y)=1,

11



(1.22) H_l)(y) "- yj,

1

(1.23) HJ_)(Y)--- YjYk- _jk,

(1,24) (3) 1
H_kI(Y) = YjYkYl - _(Yj6kl "Jr"Yk6ji "F Yl6jk).

The polynomials are orthogonal with respect to the weight WH.

The thirteen moment approximation uses the Hermite polynomials through second order

completely and the contracted third order polynomial

22(!.25) H)3)(y) = HJ3_Cy)= yj(Toy - 1).

In the thirteen moment approximation f has the form

_(1)U(1) _ (2) lr..j"(2) _(3) r.r (3)
(1.26) f = lo(r)(a(°)H(°) +"j _'j +'_jk"jk +*=j _j )"

The Hermite coefficients a(") in terms of the moments of f are,

p

(1.27) a(°)= 1,

(1.2s) o,

(1o29) a!?),j = Pij/P_

(3) 1
(1.30) a i = _Si/pv.

Thus, in the thirteen moments approximation the distribution function f is

Sj(2y2(1.31) f(_) = f0(r)(1 + YjYk pj---._-k+ yj .- 1)).
p 6pv

The fourth order moment R can calculated to be

q.
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• Rijkr - T(Pij6kr + piktSjr 4" Pir_jk + Pjk_ir + Pjr6ik + Pkr6ij)

(1.32) +pT(6ij6kr + _ik6j_ + 6i,.6jk).

The thirteen moment approximation contains the minimum number of moments needed

to introduce anisotropy and skewness in the velocity dependence of f. The coefficients of

the Hermite polynonfials are linear combination of the moments of the distribution function.

Since the moments of the distribution function have standard physical interpretations, it is

convenient to use the moments as the unknowns instead of the Hermite coefficients. Hence,

in the thirteen moment description the unknowns are the density n, the fluid velocity u,

the pressure p, the stress tensor p and the heat flow vector S.

Taking moments of (1.1) gives the following e luations:

.

_- _n

(1.33) 0-7 + V. (nu_) - 0

OUa Ua

(1.34) m,_n--ff_- + man(u,_ • V)u, + V. Pa - ean(E + _ × B) = F,.

lt

" (1.35) Opa 1 20--7-+ v. (u_po+ _s_) + 5P_ : Vuo= E_

_

=

cgpa 1 {VS_} + {p_. Vus}o-7-+ v_.(uo_po)+
(1.36) +po{Vu_) _°{poxB}= To

W-ta¢

0Sn 7 S 2 2
o--7-+ vi. (uojSo)+ g( o. Vluo+ grub. so + gsov. uo

2 2_T__v+ I--_(2p_+ 5p_I).F_ - _p.. V. (p_+ p_I)+ .p_
5 man mar ma

(1.37) -4-_1 VTs ' (7pa + 5p.I)- e---2-_(S a × B) = Qa.
ma mac

: The relation (1.32) is used to calculate the fourth order moment that appears in (1.37).
z

= , The moments of the collision term are
5.

= 13

K



(1.38) FG = ___ / _.Cab d_.,b

(1.39) E, --" _ /(_ -- Ua)2Cab d_,b

(1.40) T, = trace free _ /(_. - ua)(_ - un)Cab d_.,b

and

P

(1.41)
Qa = _ J(_ - ua)2(_ - un)Cab d_..b

In (1.36) I use the notation

2

(1.42) {Wjk} = Wjk + Wjk- "_Wtl$jk.

In (1.33) I use that the collision operator conserves particles, equivalent to (1..7); this result

along with approximations for the moments of the collision term are found in Appendix A.

I retain MaxweU's equations (1.3)- (1.5) with

m

(1.43) J = en(u, - ui)

replacing ( 1.6).

Several of the equations in the thirteen moment system have physical interpretations

familiar from fluid dynamics. Equation (1.33)expresses the conservation of particles. Equa-

tion (1.34) describes the momentum balance, including the Lorenz force. The collision term

F_ allows momentum transfer from one species of particles to another but conserves the

total momentum of the plasma; that is, Fe = -F_. Equation (1.35) is the bMance of energy

including heat flows and work done by the pressure and the stresses. The collision term,

E_ in this equation conserves the total energy of the plasma; Ee = --Ei. The less familiar

equations (1.36) and (1.37) for the stress tensor Pa and the heat flow vector Sa complete

the fluid equations.
b

The complete two-fluid model consists of the 26 scalar equations (1.33)- (1.37) for the

fluid variables, coupled to the Maxwell equations, (1.3)- (1.5) and (1.43). Again, equation

14
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(1.5) is to be interpreted as an initial condition since a consequence of (1,4) is that if V. B

vanishes initially then it vanishes for all time. The relation between charge neutrality and
i.

the condition V. J - 0 implied by (1.3) is perhaps clearer in the moment equations than

in the Fokker-Planck-MaxweUsystem.Ifone assumesequation(1.33)forone speciesand

equation(1.3),thenequation(1.33)fortheotherspeciesisa consequence.

The two-fluidthirteenmoment descriptionpresentedabove appearsquitecomplex.

However, the thirteenmoment model representsa considerablesimplificationof the ki-

netictheory.By assumingthedistributionfunctionsto havea simplestructureinvelocity

space,the phase spacehas been reducedfrom sixdimensionsto three.Enough features

have been retainedinthemodel,suchas a realistictreatmentofthe stressesand theheat

flows,thatone expectsthemodel toprovidea usefuldescriptionofa tokamak plasma.

1.2. Classical TransprJrt froln the Thirteen Moment Model

In thissectionIexamine theconnectionbetweenthethirteenmoment systemand a widely

used collisionalmodel,the Braginskiequations[9].The Braginskimodel consistsofequa-

tionsformass, momentum and energybalancealongwith relationsformomentum and

energytransferdue tocollisions;theunknowns arethedensities,thefi_i_,velocitiesand the

• temperatures. The form of the equations for conservation of mass, momentum and energy

is the same in both models; differences appear in the determination of the stress tensor

and the heat flow vector. In the Braginski model, the stress tensor and the heat flow are

expressed in terms of the density, the fluid velocity, the temperature, the magnetic field and

their gradients. In the thirteen moment model the stress tensor and heat flow are solutions

to differential equations. I show that by neglecting terms in the thirteen moment system a

Braginski-like model can be obtained. The interest here is in identifying the assumptions

underlying the Braginski model and examining their validity for a fusion plasma. The fol-

lowing are qualitative features of a f'_sion plasma: the system evolves on a time scale that

is long compared to the collision time, the flow velocities are small relative to the thermal

velocity, the pressure anisotropy is small, and the mean free path is long.

The differential equation ibr the stress tensor (1.36) can be reduced to an algebraic

equation that can be solved explicitly, if terms containing derivatives of the stress tensor

, and derivatives of the heat flow vector are neglected and the stress tensor is taken to be
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small compared to the scalar presure. The resulting equation is:

(1.44) p,. {Vu,} - e---2_-{p. × B} = A p--La "
_taC Taa

where A is a numerical factor. Solving this equation for the components of the stress tensor

Pi_ one finds

A 2 nTaAwu z + n---_:Wxu(1.46) (I + (fl.ra.)z)puz = a2r. a

A 2 nT.A nT. .

(1.47) (1 + _'aaraa)2)pzz = a,_r.a_9_-Wxz +

1 1)Wx_+ Iwg,u) A Wxu(1.48) v= =nT._,°((]- _ 7 2a°_.°

1 1 1 W A Wxu(1.49) p_ =.To_..((] - _)w_ + 7 _) + 2a.r_---'---_
where B is taken to be in the z direction and W = {Vu,). This agrees with the Braginski

results up to numerical factors jf order one. The gyrofrequency _a is

eB
(_.50) a° =_,

mac

the like species collision time r.a is defined in Appendix A. The assumptions used to obtain

( 1.44) are:

(1.51) --:-ra"<< 1,
t

the collision time is small compared to a characteristic time i,

(1.52) P___a< 1,
Pa

the trace-free part of the stress tensor is small compared to the scalar pressure, and

16



Sa

(1..53)
. .PaUa

The assumptions (1.51) - (1.52) are consistent with the features of a fusion plasma men-

" tioned before. The last assumption (1.53) used to neglect terms containing gradients of the

heat flow, is less clearly appropriate. Later I will take Sa _ paua and retain the effects of

the heat flow strain in the equation for the stress tensor.

The magnitude of the diagonal terms of the Braginski stress tensor is roughly

( 1.54 ) --_Pa,Uava faaVa

where L is the system length scale. The second factor in (1.54) v.raa/I., the ratio of the

mean free path to the system length, is a parameter that is large in a fusion plasma. If the

scaling assumption (1.52) is to hold and the stress tensor be sh=all relative to the pressure,

the first factor in (1.54) ua/va corresponding roughly to the Mach number of the flow, must

be small. Hence, when the mean free path is long, particle flows with flow velocities small

compared to the thermal velocity can lead to significant production of stresses.

" I now consider the determination of the heat flow. By neglecting terms, the thirteen

moment equation for the heat flow (1.37) can be reduced to the algebraic equation
a

(1.55) 5nTavTa_ ea Sa nTa;.-5(s"×B)=A -- oo+ -.b),

where AI and A2 arenumericalfactorsoforderone.Equation(1.55)canbe solvedtoobtain

A_ 5nTa 5AlnTraa
)Sa 5nTaraaViiTa b × VT_ + V_Ta

(1 (_..raa) 2 = Alma ma_a (ma_aVaa)2

ni'. b
(1.56) +A2nTab'(ua- ub)b+ A2r_,fl" x (ua - Ub),

where b is the unit vector in the direction of B, VII = (b. V) and Vi_ = -b x (b x V).

The representation (1.56) agrees with Braginski up to numerical factors of order one. The

assumptions used to neglect terms in equation (1.37) are:

" S. Ua L r(1.57) . <<1
Pa Ua Va Var $

u

17
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(1.58) S. u. 2_1

(1.59) u. L _ 1, -
Va Var

and

(1.60) t_',, 4( 1.
Pa

These assumptions are reasonable for a fusion plasma at least in the sense of a lowest order

approximation. The usual conclusion drawn from equation (1.55) is that the temperature

gradient in the direction of B must be small since it is balanced only by the very small

collisional terms on the left hand side. However, consider the size of the collisional terms

that are retained in (1.55). ?['he sizes of the two terms on the right hand side of (1.55)

(relative to the term containing the gradient of the tex;,perature on the left hand side) are

respectively

S. Ua L
(1.61)

Pa Ua Va Va V

and

(1.62) u, L.
Va Va T

The two collisional terms in (1.55) are of comparable size to those that have been neglected.

If instead of retaining tile collisional terms in (1.55) the terms involving the stress tensor

are kept, terms that I have previously argued may be significant, then the temperature

variation along field lines may be balanced by the effects of the stresses.

The assumptions needed to extract a collisional Braginski-Uke system from the thirteen

moments have been stated quite explicitly. Assuming that the thirteen moment approxi-

mation is more accurate, one can comment on the validity of the Braginski model in weakly

collisionM regimes. Most of the assumptions used here hold even in the case of long mean

free path. The Braginski form of the stress tensor except for not including the heat strain

does seem reasonable in lowest order. The Braginski form of the heat flow is more question-

able in the weakly collisional regime. The Braginski form of the heat flow in the direction ,u

18



perpendicular to B seems reasonable but there are difficulties with the heat flow parallel to

B.

I now sketch how "classical" transport results are derived from this collisional model.

. First, I describe how to calculate the flux of particles across the magnetic field due to

collisions. Take the momentum equation (1.34) and neglect the derivatives of ua. Take

only the scalax pressure Pa and neglect the electric field E. For simplicity take just two

species of charged particles denoted by a and b. The momentum balance is then

ea -man 3 1 Sa Sb
(1.03) vp_- -_uo × B = (._ - ub)+ ( ),

c tab 5v_+v_ tab na
where I have used the expression for Fa given by (A.25). Then one can solve for ua± =

b × (ua x b)

c __man 3 n Sa Sb c...__.'b
(1.64)nua± =-ea'-'_b×( tab (Ua--Ub)+ 5V_+V_ (tab rbs))+eaB ×Vpa.

Usingtheexpression(1.56)fortheheatflowand keepingtermsonlythroughorder(ftarab)-2

gives

• I I i
_Lc_b= (J x B)+ xVpoTtUa±

mafl_ tab e eaB

3 1 n (iV±Ta 1 TbvlTb).mT_
(1.65) q'2ma_2a (1 + _) tab rba Ta

Summing equation (1.63) over species gives

(1.66) !j × s = rp,
c

where p = Pe + pi is the total pressure. It is reasonable to assume that the surfaces

p = const form nested surfaces. From (1.66 the pressure gradient is perpendicular to B,

and Vp = V±p. One then has

1 1 iV±Pl±
. nu_± • V±p = -maft_ tab

3 1 n i Tb

° . (1.67) + 2 raafl_ (1 + _')( l__rabVTa rba Ta VTb)" Vzp,
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fortheparticlefluxesacrossmagneticfieldlines.Note thatnu..k•V±p = nub.i.•Vi.p;the

particlefluxacrossthe magneticfieldisthesame forboth species.From (1.67)one can

write

(1.68) nuax~ DaVin

where D, = p_/Tab, and p, = v,/i_,. Note that De _ Di .'_ D. Using equation (1.33) and

only considering perpendicular derivatives,

(1.69) n,t + DVin = 0.

This suggests that the density evolves on the time scale r.bL2/p_i This result can be

interpreted as diffusion generated by a random walk with step size Pa taken at time intervals

Tab.

The similar relation for the heat flow across the magnetic field

(i.70) sa~ x£aV_T.
m

with X±. = npd/ra,isobtainedfrom (1.56).This alongwithequation(1.35)gives

a

(1.71) Ta,, + X±.V2Ta = O,

suggesting that the temperature evolves on the time scale raaL'_/p_. This is equivalent to

diffusion generated by a random walk with step size Pa taken at time intervals of faa. Like-

particle collisions lead to heat transport, in contrast to particle transport that is driven only

by unlike-pa.rticle collisions. Note that v_ ~ _rli. Thus, the electron temperature

evolves on a time scale that is longer by a factor of _e" than that of the ions.

Typical tokamak parameters are n = 102Om-3, Te ~ Ti = 2.5KEV, B :: 4T. The

collisional transport calculations above suggest that the particle confinement time is on the

order ~ 8000sec for both electrons and ions. The energy confinement time for the electrons

is predicted to be ~ 16000sec and for the ions to be 200sec. In experiment, typical energy

confinement times are roughly the same for electrons and ions and are on the order of a
,q

hundred miliseconds [10]. Particle confinement times are more difficult to measure. Hence,

classical collisional transport theory calculations do not at ali agree with experiment.

20
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2. REDUCED MODEL
,I

In this chapter I extract a reduced set of equations from the fllll two-fluid thirteen moment

model presentedirlChapter I. For a choiceof physicalparametersreJJevantto a fusion

plasma, I estimatethe orderof magnitude of the vaxiousterms m the fullsystem and

neglectthe terms that are small.The axisymmetryof Ithetokamak i_iused to simplify

the form of theequations.Finally,I writetheequationsusingcoordin_Itesrelatedtothe

magneticfieldgeometry.

2.1. Scaling

The two-fluidthirteenmoment equationsetisquitecomplicated.A reasonablemethod

of reducingthe complexityof the system is to estimatethe sizesof the variousterms

in the equationsand neglectthosethat aresmall. In section(]..2)i_twas shown that

. with a particular collisional[ scaling the thirteen moment model reduces 1',oa Braginski-like

description. Here, I will use a scaling more appropriate for a fusion plasma. A systematic

way to examine the relative sizes of the terms in the equations is to non-dimensionalize

the equations. Let ua be a characteristic velocity, a a characteristic length (here the minor

radius of the tokamak), i a characteristic time and let the heat flow S ,,_ O(pu) and assume

smc,ot} laminar flow..As seen in section (1.2), several dimensionless numbers arise. Familiar

from gas dynamics are the following: usva a quantity that is roughly the Mach number

of the fluid flow, var/a the ratio of the mean free path to the minor ra cl.ius, eatd t/ra the

Knudsen number. T_e magnetic field introduces another scale into the problem. It is

convenient to use the for this scale the quantity f_r_, roughly _he number of rotations a

particle makes about a field line between collisions. In addition a drift velocity _ is defirLed

by

B 4r
(2.1) -- = --.-ehf).

, a ¢
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One of the interesting features of this problem is that for typical tokamak parameters, the

dimensionless numbers introduced above are not order one quantities. The flow velocity
i

is quite small compared to the thermal velocity; the mean free path is long; the Knudsen

number is large; f_a% is large. In particular consider a "typical" tokamak with the following

characteristics: number density n = 10_°tn -a, B = 4T(teMa), Ti = 7_ = 2.5KEV, minor

radius a = 0.5m, coulomb logarithm = 15. Using the above parameters one can calculate

for each species in a hydrogen plasma the _elf-collision time r, the thermal velocity v, the

mean fr_ path vr/a and the parameter fr:

r v vr/a o/vth fir
e2.9×io-ss 2.1×10 7m/8 1.3× 103 1.9× i0 ':-_ _,.8×i0 s-

, i [l,TxlO-3s 4.9 ,x lO'_m/s i.8x i0 a 8x10 -I 2.2x 10v

The usual measure of the coUisionality of a plasma is the smallness of the mean free path

and thus as mentioned before a fusion plasma is only weakly collisional.

To compare the relative magnitude of terms it is convenient, though somewhat artificial

to introduce a single small parameter into the problem. I take as a small parameter _2 =

memi = 1/1836. I write the dimensionless quantities in terms of the small paramett, t

v,hl. lvih .rlv,h uPlv,h a°,:-
7 "c ' I " ,-,
T---t -z_ -1 ...... -c1/_'......... _' _-3 ....,,,

where the P and T subscripts refer to poloidal and toroidal components• Scaling all these

quantities in terms of e is not completely natural and in the case of ftr, e could be replaced

by 2e to better fit the data. The flow velocities are such that the Lorentz force balances the

pressure gradient, that is

(2.2) Pe-nupB ,.., -
C a

A priori I assume that quantities vary on the time scale t-2r_e. That is I take,

¢. ¢2

(2.3) 0"'_" 'I re

For the parameters above e-2ree ,,, 50ms. Actually, I will show that (2.3) is not an assump-

tion but a property of the system.

=
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In thisscaling_, theratioofthermalenergytomagneticenergyis

• p
(2.4) ~

- that is on the order of a few percent. I take the aspect ratio, the ratio of the major radius

R, to the minor radius a to be

(2.5) _R~
a

Itakethesizeoftheheatflowtobe

(2.6) Ss ~ pua.

Hence, the order of magnitude of the deviation of the distribution function from a MaxweUian

due to the heat flows is S./p'va ,,_ u,/va which is O(e 1/2) for the ionB and O(e 3/2) for the

electrons. I assume that

(2.7) p,/pa ~ 0(:/2).

This impliesthat the distributionfunctionf_ islocallyMaxwellianto orderel/_.This

, choiceof scalingisquitedifferentfrom theusualneo-classica.Iscalingone 'whichtakesfa

to be a MaxweIlianto order_a = paa, the ratioof the Larmor radiusto minor radius.

For the parameterspresentedhere,_e = 6 x 10-s and _i= 3 x 10-3. I presenta simple

argumentfora choiceofscalingwithlargeranisotropythanintheneoclassicaltheory.The

non-M_wettian partof the distributiondepends on the particleflowsand temperature

gradients.This dependenceisseeninthefollowingsimplecalculation.Take f = fM(l + g)

where fM is a locally MaxweUian distribution. Then g satisfies the equation

(2.8) 'c9-'_c9g 0g+ (_,. V)g- e(E+ ,f,/c × B)_--_ + (1 + B)Fo =- C'(g, fM)

where the source term Fs is

2 1 u F

. /v_ - _vY(U't + (u. V_u .....mn:"'v" - e(E + -c x B) - :'.Tmn)

+l_(y 2 5 3nTV _trT)- _)(nT, + n(u. V)T+ • u-p
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(2.9) +_(_2_ 25_)(y.V)T + (yy- I):(Vu + (Vu)r - _y V, uI),

and C'(g, fM) is a collision operator with magnitude of order g/r. The strain and temper_

ature gradient act as sources for the non-MaxweUian part of the distribution function. The
b

magnitude of g is then approximately

U VT"
---.t9 a

So that in the case of small flows but long mean free path, g may not be extremely small.

The same estimate for the the size of the anisotropy can be obtained using the stress tensor

equation directly and examining the terms that produce the classical stress tensor a_ was

done in Section 1.2.

Another reason for taking the non-Maxwehian part of the distribution functions to be

relatively large is that tokamaks are driven by external sources. Thus, the system is not

in the thermodynamic sense a closed system. The effect of sources on the system will be

included in the model. This choice of scaling is a key element in model presented here. By

considering this scaling I select a different set of solutions than is considered in neoclassical

calculations. The scaling used in neoclassical theory results in a system with quite different

properties.

I apply the scaling described above to the thirteen moment system introduced irt Chapter

1 and keep terms through O(E2). A reason for keeping terms through O(e 2) is that this

is the size of the temperature and density time derivatives that appear in the system. A

consequence of this scaUng is that in the equation for the stress tensor (1.36), the term

Pa x B has relative size _-4. Thus to the order needed for this cMculation the trace free

tensor Ps has the ibrm

(2.].1) Pa = (Plta "- p.)bb + (p±. - p.)(I -- bb)

where b is the unit vector in the direction of B. The condition that the stress tensor be

trace free is:

(2.12) PlI. + 2pj._ = 3p..
m
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Of the three scalar pressures that appear in (2.11) one may cb oose any two independent

linear combinations as our variables; I take as unknowns Pa, and (pa - P±a). Thus
o

• (2.13) Pa = 2(pa - p±a)bb - (Pa - p±G)(I - bb).

It is convenient to introduce the temperature anisotropy (Ta - T±_) = (Pa - p±a)/n.

I now examine the rexnaining equations. The equations (1.33) for the conservation of

paxticle_ axe retained completely. In the momentum equations (1.34) Ml terms are scaled

relative to the size of the pressure gradient term, p/a. The order of magnitude of the

collisional terms FQ is

(2.14) Fe _ Fi ~ m_nue "., P_er/2.
re a

and hence are dropped. The term manu,,t is O(_11/2) for the electrons and O(_r/2) for the

ions and are neglected. The inertial term in the ion momentum equation is

(2.15) min(ui. _7)ui _ _3/2P
a

and is retained. The inertial term in the electron momentum equation is ,,_ er/2p/a and is

, dropped. The pressure equations (1.35) are kept completely. The equation for the stress

tensor (1.36) is replaced by its bb component and the time derivative terms dropped. The

scaling of the heat flow equation (1.37) parallels that of the momentum equation with

collisional terms and time derivatives of the heat flow being neglected for both electrons

and ions and with convective terms being kept in the ion heat flow e4ation and neglected

in the electron heat flow equation.

The reduced equations are: mass balance for both species,

0-7+ v. (nuo)= jr°,

electron momentum balance,

b u_

(2.17) 3(B. V)(_-_(p, - PA,)) - V(p, - p±_)+ Vp, - en(E + -- × B) = P,_,o, C
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ion momentum balance,

b

m_,_(u.•V)u_+ 3B. V(_B-T(p_-pj._))- v(p_- p._)+ vp_
tS

(2.18) +en(E + ui-- × B) = P,/,
C "

pressure balance for both species,

(Op. I B.(B.V) 1
o-7-+ v. (.°po+ _s.)+ p.v •u°+ 2(p.- p±.)(_u°- _v...)

(2.19) - 24/3 me n(T. - Tb) + Eas,
3 m_ tee

pressure anisotropy equations for both species,

2 B.(B.V) 1V.S. )2v. (u.(p. - p.°)) + _( B2 so - 3

(2.20) +(Pa - 2(pa - p.k.))( B" (B. V) 1B2 u,- W.u.)=b.T_,

electron heat flow equation,

b

]-B--[(-8n(T_ - T±e)(B. V)(Te - T±e) - 8(T_ - T±e)2(B • V)n

+10n(_/e - Tj.e)(B • W)Te + 4nTe(B. V)(Te - Tj.e)

+5nTe(B V)Te+6(-2n(Te T )2• - ±, + nTe(Te- T±,))IBIV'b)

-2n(T_- T±_)Vj.(To-T±_)- 2n(T_- TL_)2V±n

-5n(To- T±o)Vj.To+ 2T(To- T±_)Vin+ 5nT.V±T_

(2.21) +6n((Te - T_) 2 + Te(T_ - T.ke))(b. V)b- es e × B = 0,
c

and the ion heat flow equation,

7 2miV . (u/Si) + mi_(Si . V)ui + mi-_Vui . Si + mi SiV.ui
b

+-_(-Sn(Ti - T±i)(B. V)(Ti - T±i) - 8(Ti - Tj.i)2(B • V)n

+I0n(T/- T±/)(B. V)Ti + 4nTi(B. V)(Ti - 2r:i)
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+5nTo(B.V)T,+ 6(-2n(T_ T,_)2+ nT_(T_- T±_))IBIV.b)

-2n(Ti - T_ti)Vj.(Ti - Ta._)- 2n(Ti - Ta.i)2V±n

-5n(Ti - T±i)Va.T_ + 2T(Ti - Tzi)V±n + 5nT_Va.Ti

" (2.22) +6n((Ti - T±i) 2 + Ti(Ti - T.Li))(b • V)b + esi x B = 0.c

The only collision terms retained in the system are those appearing in the pressure equations

and those appearing in the stress equations,

-3.(1 + z_/3)(p_-p_)
(2.23) b. T'e= 5 r_e '

, -.3To)_/_V_ (p_- p_)(2.24) b. T i = -g(_z _'ee '
...

The terms Ns, Paa and Ea, are particle, momentum, and energy sources respectively, all

O(e2). These source terms are taken to be known. I keep the Maxwell equations (1.3)

- (1.5) and (1.43). A consequence of (1.3) is that the particle sources must be the same

for each species, that is Ne = Ni = N. At this point one can only hypothesize that this

reduced system is a closed one. At least, the number of unknowns is equal to the number

• of equations. The question of what data is appropriate for the system is complicated and

requires more careful examination of the system; the system is not of standard type. These

questions of what is a wall-posed problem are one motivation for the asymptotic expansion

of the solution in Chapters 3 and 4.

In [8] a similar scaling was used to extract a reduced model from the two-fluid Braginski

model. I comment on some of the similarities and differences of the reduced thirteen moment

system with the reduced Braginski model used in [8]. The mass and momentum balance is

essentially the same in both models. In [8] the stress tensor appearing in the momentum and

energy equations is generated by the component of the fluid strain parallel to the magnetic

field. Here, the stress tensor includes in addition to the parallel strain, terms coming from

the gradients of the heat flow. From the results in [8] I expect the work done by the stresses

to be important in determining energy transport.

In [8] the heat flow is given by an expression like (1.56). Hence, the temperature is forced

. to be constant on magnetic surfaces. If the temperature is constant on magnetic surfaces,
]
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then the Braginski heat flow across those surfaces is O((Qja) 2) and in this scaling negligible.

Hence in [8] there is no energy transport, to heat flows. Here, the parallel component of the

heat flow is not determined from the heat flow equation. Instead, the parallel component of

the heat flow equation provides a relation between variation of the temperature and of the

temperature anisotropy along field lines. By allowing the temperature to vary on magnetic

surfaces, I have included realistic perpendicular heat flows in this model.

2.2. Axisymmetry

I now use the axisymmetry of the system to simplify the form of the equations. I use usual

polar coordinates (r, z, 0) with unit vectors _, $ and/_ and assume that no quantities depend

on 0. I first examine the electromagnetic relations. From (1.5) the magnetic field has the

form

B = V¢x VO + xV8

(2.25) = -i .¢--y-'r+ _ ¢'--L_+ OX .
r 7" 7"

The toroidal and poloidal components of the magnetic field are BT = xVO and Bp =

V¢x V0. The surfaces ¢ = const, are assumed to form a family of nested flux surfaces.

Using (1.43) and (2.25) the components of (1.3) are

e

(2.26) = -

(2.27) X,r = --4r e#onr(uiz - Uez),

and

(2.28) A'¢ = ¢,z_ + r(¢'---£),_ = -4rrep, onr(uio -ueo).
7' C

I introduce a vector potential A such that V × A = B, with choice of gauge V • A = 0.

Then

(2.29) A = eV0+ VA x V0
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where

(2.30) A*A - -X

• with the boundary condition A = 0 on the boundary. Solving (1.4) for E,

(2.31) E = -V¢- A,_- V(t)V6

where @ is the scalar potential and V(t) the loop voltage taken to be O(e2).

I reexamine the scaling of the mass balance equation (2.16). The thne derivative of the

density n,t is ,,_e2nu/a, as is the particle source N. It is convenient to introduce a flow U

in the direction of V¢, that is across flux surfaces with magnitude e2u that contains the

effects of the density time variation and of the particle source N. That is let U satisfy

(2.32) n,t + V. (nU) = N.

Then, it follows that V • (nua - nU) = 0. Thus, the fluid flow can be written as

(2.33) nu_ = VAa x V0 + r2nwaVO + nU.

, To O(e2), the functions Aa are streamfunctions for the flow in the poloidal plane; the

approximate streamlines of the flow are Aa = constant. The functions wa are toroidal

rotation frequencies. If the flux of particles through a flux surface ¢ = ¢ is calculated, one

finds that

¢ n.(nu,)dS=J¢ n.(nU) dS,
f

(2.34) . =_ _=¢

where n is the unit normal to the surface ¢ = ¢ and dS the surface element. That is, the

flux of particles through a flux surface (or through any closed surface for that matter) is

the same for both species. This result is a direct consequence of the assumption of charge

neutrality. The equations for conservation of mass (2.16) are now replaced by the relation

(2.32) for U and the definitions (2.33).

The definition (2.33) implies that

e

(2.35) X,,. = 4_'cUO(Ai,,-- Ae,,.),,¢,
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and

e

(2.36) X,z - 4_rc_UO(,Ai,z-Ae,z),

or that

= xo(t)+X

(2.37) = Xo(t) + X2.

The part of the toroidal field given by X0 can be identified as the vacuum magnetic field and

that given by X2 as the contribution from the poloidal plasma currents. The generalized

Grad-Shafranov [11] equation (2.28) has the form

(2.38) A'¢ - -4_rc#onr2(wi- ).

In summary, the electromagneticequations(1.3)- (1.4)have been replacedby represen-

tationsforthemagneticfield(2.25)and theelectricfield(2.31),alongwith definitionsfor

the vectorpotentiM(2.29)and (2.30),the toroidalfield(2.37),and a generalizedGrad-

Shafranovequationforthepoloidalflux(2.38).

I now examine the reduced momentum equations (2.17) and (2.18)o The 0 components

of (2.17) and (2.18) are respectively

e 3X 1(2.39) (B. V)[ Ae - _-_'(Pe - P.Le)]= en(¢,t + V(t) + -U. V¢) + rPseo,c

and

e 3X
(B' V_[cAi + _'_'(Pi- P.Li)] = -en(_.,,t + V(t)

1

(2.40) 4"lc'c VO)- r(Ai,,(w_','2),, - A_,z(wir2l,r) + rP, io.

In order that solutions to (2.39) and (2.40) exist, the following conditions must be satisfied

.,¢f<" en(¢,t + V(t) + 1U. V¢ + rP,_0)dV = 0
(2.41)

_ C
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(2.42) __._r 5_P

for all values of _, where the integrals are calculated over the volume bounded by the surface

" ¢ = _. If the conditions (2.41) and (2.42) are qatisfied then equations (2.39) and (2.40) are

equivalent to

(2.43) eat- Fe(¢)- _(pe- P±e) = f4C

2v

(2.44) -{-Fi(¢) -{-"_-'_(Pi - P.Li) -- --h -- li4
C D--

where Fe(¢) and Fe(¢) are arbitrary functions of ¢ and the order e2 quantities f4 and li4

are given by

(2.45) (B. V)f4 = en(_b,t + V(t) + 1U. V¢) + ,'Pse0
C

(2.46) (B' V)fi4 = l[Ai,r(wir2),z - Ai,z(wir2),r]- r(Pa_e $ Psie).
r

Solving (2.43) and (2.44) for (Tc - T±e) and (Ti - T.Li), one finds
|

B _ e

(2.47) Te- T±_ = 3--_X(cAe- Fe(¢)- A),

and

B 2 e

(2.48) Ti - T.Li = 3--n-_x(-cAi -t- Fi(¢) d- f4 - li4).

These can be rewritten accurate through order e2 as

" 3nr 2_c

(2.49) .3n_( ]_7: ]2-dr X2)( e--Ac-- _b-e(_))) XOc - 3nr'--"_ f4

" and
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xo ._

_, xo(2,50) + 3_._r_(1 [V_I"-'_2X+ X_)(F_(_)- ,Ai) 3rtr2 (f_4 - A).

The toroidal components of the two momentum bMance equations have been replaced by

theaboverdationsfor(T_- T±_)and(T_-2_) _ongwiththede_nitions(2,45)and(2,46)
for/4 and/_4 and the constraints (2.41) and (2.4_).

I now turn tothepoloidalcomponentsofthemomentum equation.The poloidalcom-

ponentoftheelectronmomentum equationis

(Bp. V)[_(pe - P±e)]+ nVTe + T_Vn + V(pe - P±e)

+_ 3X2 .
(2.51) "_f_Sr3tPe- P.Le) = -enV'eb - _--_VAe + enweV¢c + P''

and for the ions

/B_.V)ti_1!p,-P_,)I+_Vr,+r,Vn+V<p,- p_,)
(2.52) +f- 3X2

B--Y_r3(Pi - Pa.i) = enV¢_ + c_2 VAi - enwiV¢ + P[,12

where

(2.53) Pe_ = Per,or + e-nxU × VO- en(VA,t × VO),
¢

and

(2.54) P," = Pit,oi ....enxu × VO + en(VA,t × V8);c

P, pot and Pipot are the poloidal components of the the momentum sources; Bp is the poloidal

part of B; bp is the poloidal p_rt of b. P" and P' _re order O(e 2) momentum sources gen-

erated by the time v_rying parts of the density and electromagnetic fields and the external

momentum sources.
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Equations (2.51) and (2.52) have the form

• (2.55) Me = -eV_I,,

. and

(2.56) Mi = eV¢.,

where the vectors Me and Mi have only poloidal components. This form is not particularly

convenient for the analysis that will follow. I seek a system where _ does not appear and

that with appropriate data is equivalent to (2.51) and (2.52). The equations (2.55) and

(2.56) imply

(2.57) Mer,z - Me_,r = 0

and

(2.58) Mir,z- Miz,,. = O.

The equations (2.57) and (2.58) only require that Me and Mi be gradients; a condition

. relating these two gradients is needed, for example the condition

(2.59) Me + Mi = 0,

is sufficient. The condition (2.59) along with the equations (2.57) and (2.58) is equivalent

to

(2.60) B. (M.e + Mi)= 0

applied at all points and the constraint

(2.61) a. (M_ + Mi) = 0

applied on a curve from the magnetic axis to the plasma edge with the vector a nowhere

parallel to B. Thus, I replace (2.55) and (2.56) with the equations (2.57), (2.58) and (2.60)

. and the constraint (2.61). Explicitly (2.57) and (2.58) are
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1 , 4Xoe , , n,_A_,,)-n(n:7,,z - n,_T_,_) 3r--i-_n2ctn,_a,,_-

X°F:. ;_:_°,_ _(B V)_,+ 3--_n2 ,(¢)(B. V)n + + • i*

3r3n 2
e

ex2e (n,,Ac,, - n,,,Ae,,_)+ -_'-_r2(X2,,.A_,:- X2,_A_,r)cr2n2c

1 : lV¢l2 e

X

2x_,, [(_B.V)(_(_°-_ Fo(¢)- :,,))],,-(e-A,-, F,(¢)--f4)(Xn_ n2r 3 )+ Br ec

_ ' P_r_ =xo P_ -(--_-,,_ oB, ec)_e- Fe(_b)- f4))],r+ _r3 f4,z+ ( n ,,r(2.62) -[( B. v)(_x(
and

__ 4Xoe , Xo F/(¢)(B. V)n1(n,.Ti,_ - n,_Ti:) + 3r-Z-_n2ctn.A_,_- n,.Ai,.) 3rn2n

e X0 .I2x°--9--r-e-,_+ F_(¢l]n,_- _--_r3rB,_(¢)ex Ai,z -' r(B. V)wl + 3r3n2t cncr 3

_
1 1 IV¢l2

+ x2)(-£_,IF_(¢))]:3n_n,_[;_(--T
1

--_ IV'¢'12+ x2)(-e-Ai + F_(¢))]:

_(_eAi+ Fi(¢)_ f4)(X2;z 2xn,,)+ [(1B.v)(Br eAi+ Fi(¢)._ f4))], z-_ ,__ ,___ n ";Tx(- -c

-[(1B.v)(B_--( e-Ai + Fi(¢)- f4))],r+ Xo f4,z + (Plz_ _ ( ),z

(2.63) +mi-0 (A_°(¢))(B.V)lV¢l2+ m---2_A_2(¢)[(B. VB_),_ - (B. VBz):] = 0.0¢ no no

Equations (2.60) and (2.61) are

Xo , e_A]._ B,.X e(B. v)v- (_. v)[5;d(_(¢)- _ -7_-(r(_)- _)
ex Bp e

+r-_(B. V)A = -B. [Bp. V(.---(F(¢)x - _))1

34



°

+(B v)[(Ivel---,.--_2+ x_)((F(_)_" _))] + s_,n_,_X

)Co Xo p_
" (2.64) +B. (Bp. V)(Bp_) - (B • V1(8--_-/i4) + B,, _y-]_4+ .B,

• applied at ali points and

e

1 IV_l_+ x2)CF(_)-_:_)]-.,_(_'(,/,)- _)

' +a. SV,, x,- ev'_a. V'¢, = -arrmi_ -

(2.651 a. m--tiA_oC¢ll(B.VIB , + a. V[(B,. V) B,_c;(--_r2,/j,_0

appliedon a curvefrom the magneticaxisto the plasma edge,where the totalplasma

variables are

(2.66) >,= A_- A,
G

. (2.67) w = wi - we

(2._8) F(,/,)= F_(¢)- ._(¢)

(2.69) P = Pi+ Pe.

In(2.64)and(2.65)IhaveanticipatedthatinlowestorderAiand n arefunctionsof¢ alone.

The electrostaticpotential_ has been eliminatedfrom the system and the fourpoloidal

momentum balanceequationsreplacedby thethreeequations(2.62),(2.63)and (2.64)and

the constraint (2.65).

: The pressure and stress equations are kept in their original form. The pressure equations

: are

i lP

!
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(T.,.a.,. - r.,.a°,.) + Sv. s° - (n,._. - .,_,.)

4 2(To- T_.) 2n(7'_- T..)Snr (n,z,_,,,,- n,,,_,.,,,)+ B2 [x(B. V)w.
X2 A,,,. A,,,. 24/3 m,, n(T, - Tb)

--.rgn;_.,.- B.(B.V)(-_-) + B.(B, V)(-_. )]= -'5",_, ,-,,
(2.70) -nT.,t - T.N - n(U, V)T. - T.V. (nU) + E...

The equations for the stresses are

![(T. - T±.)._,,.,.- (T.- T..).,._.._]+ ._--_To(..._.,.- n.,._...)
1

2 1 1 S.]-3r--_(T,, - T.t.,,)(n,.A°,r - n,,.A,,,z) + g[_-B. (B. V)S,, _V.

1 X2 Aa,,.
+n[T, - 2(7", - T±,)]_-_[x(B. V)w, - r--_nA,., - B,(B. V)(--_-n )

Aa,, I
(2.71) +B,(B • V)(--rn-)] = -sT, n,t + b . T_.

I now consider the reduced heat flow equations (2.21) and (2.22). It is convenient to

separate these equations into components perpendicular and parallel to the magnetic field.

Consider first the reduced electron heat flow equation (2.21)o The scalar product of this

equation with B is

-8n(7"_ - T±,)(B. V)(Te - Tr,) - 8(T,, - T±,)2(B • V)n

+ 10n(Te - T±,)(B ..V)T, + 4nTe(B. V)(Te - Tj.,) + 5nT,(B. V)Te

(2.72) +6[-2n(T, - Ta.e) 2 + nZ'e(T, - T±,)]IBIX7.b = 0.

This equation relates the variation of the temperature, density and anisotropy along field

lines. The scalar product of the electron heat flow equation (2.21) with V¢x B is

2n(T,- T_,)(B. V)(T,- TA,)+ 2(T,- T.,)2(B. V)n

--5n(T, - T_,)(B. V)T, -- 2T,(T, - T±,)(B. V)n- 5nTe(B. V)T_

(2.73) +6n[(T_ - T±,) 2 + T,,(T, - T._e)][((b. V)b). (V¢x B)]/X- e--"B2(Se . rC),
cX ,.
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an algebraic equation for the component of the electron heat flow in tile direction of V¢.

Finally, the scalar product of the electron heat flow equation with V¢ is

• vo. [2nCT,- T_,)VCT,- T_,) + 2CT,- T_,)_Vn - 5nCT,- r_,)vr,

-2T,(T, - T±,)Vn - 5nT, VT,] + 6n[(T, - T±,) 2

(2.74) +T,(Te - T±e)][((b. V)b). V¢] - ese. (V¢x B) = 0,c

an algebraic equation for the electron heat flow in the direction of (V¢ × B). The parallel

component of the electron heat flow equation (2.107) will be one of the primary equations

in the system and the perpendicular components (2.73) and (2.74) will be used to define

the perpendicular electron heat flow.

The ree' aced ion heat flow equation dotted with B is

_.2 7- miBrUi°Si''-t°r + miBo(ui. V)Si0 + -gmiBo(Si. V)uio

2 --+ miBo_
+ gmiSio(B. V)uio + miBeUi°Si°r g9 Siouirr

,m

9

4-rniB,(ui. V)Sir + miB,(ui . V)Siz + -_miBr(Si" V)uir

, 9 B 2 2
+g ,(S,. V)ui, - "gmiBrSiz(ui_.z - uiz,,) + "gmiBzSi,(uir.z --uiz.,)

-gm_7S_.tn--5-B (,_.,n,,.- ,_.,n,,) - 8n(:/'_-Tz,)(B •V)(T_- Tz_)

: --8(Ti - Tzi)2(B • V)n + X0n(Ti - T±i)(B. V)Ti

+4nTi(B • V)(Ti -- T±i) + 5nTi(B • V)Ti

(2.75) +6[-2n(Ti - T.Li)2 + nT_(T_ - T±i)][B[V. b = 0,

This equation is like the electron one (2.73) except that derivatives ot' the ion fluid and heat

flows are included. The reduced ion heat flow equation dotted with Vg, x B is

Iu,
2 [V¢[2uiosio 9 IV¢[_8i0ui,

+'gmiSio(B' V)uio- mi gmi" x0r r Xor r
_ 9

"- . +miBr(ui "V)Sir + miBz(ui "V)Siz + grniBr(Si. V)uir
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9 S 2 2

7 1 Si. B) .-gmi_-_(Ai,,n,z - SioIvOI2Xor

+2n(Ti - Tj.i)(B. V)(Ti - T±i) + 2(Ti - T±i)2(B. V)n

-5n(Ti - T.tl)(B. V)Ti - 2Ti(Ti - 71_)(B. V)n - 5nTi(B. V)Ti

+6n[(Ti- T.Li)2 + Ti(Ti- T±i)][((b. V)b). (V¢x B)]/X

(2.76) -I-_e B2(Si • V_b) = 0.
cX

The scalar product of reduced ion heat flow equation with V¢ is

1-_rniB, Siou$ + _miSioV¢" Vuio + mirBz(ui . V)Sir - rnirBr(ui. V)Siz

+ 5rnirBz(Si . _7)uir" _ "59mirBr(Si ....V)uiz 2mir(Si B)(uir,z ui_,r)
7 1

--_rni--Si.rn2 V¢(Ai,,n,, - ,) + rC. [2n(T - - Tx )
+2(Ti - T.ti)2Vn- 5n(Ti -T.ti)VTi - 2Ti(Ti - :/_i)Vn- 5nTiVTi]

(2.77) +6n[(T/- i-.t.i)" + 7_(Ti - T±i)][((b. V)b). V¢] + esi. (V¢ x B) = 0.
C •

One would like to be able to use equations (2.76) and (2.77) as algebraic definitions of the

perpendicular ion heat flow. However, these equations contain derivatives of the ion heat

flow. Let us examine the terms that contain derivatives of the heat flow. In equation (2.76),

there is the term

IV¢l2,
(2.78) - mi--(ui . V)Sia.

rXo

Since, this term is O(e 2) it only requires knowing Si0 in lowest order and thus does not

contain perpendicular components of the ion heat flow. Also in equation (2.76) are the

O(e 2) terms

(2.79) miBr(ui. V)Si_ + miBz(ui. V)Siz.

However, the terms above can be eliminated from (2.76) using equation (2.75). The terms

(2.80) mirBz(ui. V)Sir - mirBr(ui. V)Siz
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in equation (2.77) are nominally O(e 2) but it is convenient to anticipate that in lowest order

u_ is parallel to B and that the heat flow is in lowest order a function of ¢ alone. Hence,
m

the above terms are O(e 5/2) relative to the largest terms in equation (2.77), V¢. VTi and

. may be dropped.

Let us now review our equation set. The primary unknowns are ¢, Aa, wa, n, Ta, and

the components of the electron and ion heat flow parallel to the magnetic field, a total

of ten scalar variables. The primary equations are a generalized Grad-Shafranov equation

(2.38), electron poloidal momentum balance (2.62), ion poloidal momentum balance (2.63),

the parallel component of the sum of poloidal momentum balance (2.64), electron and ion

pressure equations (2.70), electron and ion stress equations (2.71), parallel component of

the electron heat flow equation (2.72), and parallel component of ion heat flow equation

(2.75). The secondary variables (Tc - T.Le), (Tj - T±i), U, f4, fi4, Se. V_, Se. (V¢ x B),

Si. V¢, Si. (_7¢ × B) are defined by (2.49), (2.50), (2.33), (2.45), (2.46), (2.?3), (2.74),

(2.76), (2.77). In addition there are the constraints (2.41), (2.42), and (2.65). The system I

study consists of ten equations for the ten primary unknowns along with three constraints

and a number of side relations.

Clearly, the form of the system is complicated. However, the reduced system is a con-

. siderable simplification of the full thirteen moment system. The complete thirteen moment

equation set has twenty-five scalar fluid variables and six scalar electromagnetic variables.

Just in the number of unknowns, the reduced system is much simpler. In addition, by

neglecting small effects I have gone from a system that described a wide range of phe-

nomena on a variety of time and length scales, to system that describes a much narrower

range of plasma behavior. In the reduction, care has been taken to retain essential physics

of the problem. In particular, effects such as particle flows, anisotropy, variation of the

temperature along field lines, and a realistic treatment of the heat flow have been kept in

the model. Hence, an investigation of the reduced model should give valuable information

about tokamak transport.

2.3. Flux Coordinates

The equation set presented in the previous section has a simpler form when variables related

to the magnetic field are used. Issues of solvability conditions are more easily addressed
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insucha coordinatesystem.I now replacethe coordinates(r,z)withthefluxcoordinates

(¢,¢) (see,Fig.2). The coordinate¢ labelsfluxsurfacesand thecoordinate¢ isa poloidal

anglevariablein a fluxsurfacegoingflora0 to 27r.The choiceof poloidalangleisnot

specified; the calculations are carried out for a general system of flux coordinates. In order

to rewrite the equation set using these flux variables some simple c_lculations are useful.

The Jacobian, J of the transformation from (¢,¢) to (r,z) is

(2.81) J = ¢,r¢,z - ¢,z¢,_ = r(B. V)¢.

Thus the volume element is

(2.82) dV = 2rrdr dz = 2rd¢ d¢/J.

From the relations

(2.83) r,¢¢,_ % r,¢,¢,_ = 1,

t

(2.84) z,¢¢,z . z,¢¢,_ = 1,

(2.85) + = 0,,

and

(2.86) z,¢¢,r % z,¢¢,_ = 0,

the poloidal magnetic field is found, tBr = Jr¢ and rBz = Jz,¢. The above implies

r(B. V)= J_¢.
(2.87)

Simple calculations give the following relations for other derivatives appearing in the equa-

tions

0 _ J(r¢ - r,¢ ),(2.88) -
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# ==-J(-z,qj 0 0
(2.89) 0-7 _ + z,¢ _-_ ),h

and

0

(2.9o) (I._g,,-/,,g,,)- J(/.,og,,-/,,g.,o).

The he_tflowvectorS can be written

v¢ BxV¢
(2.91) s° = Sii=B+ S_°---:-'+ _= .r rBo

As in the case of the particle flows, the toroidal heat flow is taken to be larger than the

poloidal heat flow by a factor of e-1/2. Thus, initi',dly I assume

pu

(2.92) ,911,,_S,ks "_ % "_ -_-.

In order to write the equation set in flux coordinates a few vector calculations are useful.

The component of the strain parallel to the magnetic field is

4

r 1 (B.(B.V)u)-. 1 u) = 1

X X
+_(_,, + _(A,,_ _- _,¢_,,1)+_c _'¢1,,rtr3 B2 x n

Ac ,,,2_ A._, ,V¢.V¢)+N_ t''J'* + (7,-._'*t ;'b_

(2,93) JA,¢._2B2(_,_(g_,¢),_+ _,_(g_,_),_)- .Lr. (nc).3r

The divergence of the heat flow is

J s v¢ iV¢l______=
(2.94) V. Sa = r( ( II, - "Y+ S,k, JV¢)'O + (S.ks j ),q,).

The parallel component of the heat flow strain, appearing the pressure anisotropy equations

._s

1 SII= (b V)b_B. (S. v)so = (B. V)SII.-]-_(B. V)IBI-So. .
P
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JS S r r,_ 1 "2= 7( ll.,_- tl._-T + _-v-_B2txox2,_+ (Iv¢12),_))

(2.95) +b_(S±aZ,¢ - %r,¢)).
r

The following geometric expressions are useful in the heat flow equations °

(2.96) jIBIV, b = r,_ r2__X2,¢ + 1

r Xr X (IV¢12),_ + (1 - b_)x2,_,(2.9"/) _((b. V)b). (rC x B) = r '_ 2z2B 2

(2.98) r-((b. V)b). V¢ = -boz,¢ + r_ (-h--), #,J D" D z

(2.99) S.. (V¢ × B) = %X°lV¢12(1 r IV¢12 + X2 + 3
r2Xo

R_ - 2-_+ ( xo __-)) +°(_3/2)"
With the above c',flculations, the equation set can now be easily written using flux

variables. Equations (2.62) and (2.63), poloidal momentum balance for the electrons and

the ions respectively have the following form in flux coordinates

4xoe . . XO I
-(n,¢r_,¢ - n,¢T_,¢) _(n,¢,_,¢- n,¢A_,¢) + ,_r2F_(¢)n,¢

eXo e 2Xo
_,s(",_o,¢- ",,_o,,_)+ --,_,,,b (e__o_ Fo(¢))r,¢_,¢c 3nr 3 c

Xo T,,r.,._r = 2X0 enr 3 et,W) ,¢ --_r3( A.- F,(¢))n,¢r,¢
e

+ ncr2ex2(n,¢,_e,¢- n,¢Ae,¢)+ _r2 (X2,¢._e,¢- X2,q_)_e,¢)

(2.1oo) -7(--n--nP'. 1._+ 7(--C,.._P"_ +o(d)

4xoe , _o F_(_h

eXo, . e 2Xo (_eAi + Fi(¢))r,¢n,¢

e (X_,o_,¢ X_,_,o)
ex2 (n,¢Ai,¢- n,¢¢_i,¢)-, ct---_12cr 2

n P[._.
P'_)..+ 7(-F),_+ o(d)(2._ol) -7 ( n
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Equation (2.64), the parallel component of the sum of the electron and ion poloidal mo-

mentum equations is
m

, (2.102) p# - _r3(F(¢)- cA)r,, + _A,¢ = O(e3/2).

Pressure and stress equations are written using flux coordinates. The electron pressure

equation is

(T,,_,,_,,¢- T,,¢,_,,_)- _(n,_,,_,,,o- n,¢_,,_,)

1 vcj+_(To - T±.)(n,,a.,,_ - ,,,+,_,,_,)+ _(Sll.,- 7, + S_.,, .- V¢),_,

+l(s IV¢l2 3.e_ x

Fe_¢_ r p_.,ke,,/,,, A_,¢ (R 22[e,x__ B2= -- t JJt_B"_t--n--J,¢ + _,-v),¢3

rC. v¢ _,_+( ),¢,( r_3_ ) (gz,¢,(gr#),¢_ + gr c,(gz,¢),¢)]r2nB 2

r 24/3 m_ n(T_ - Tj) + Ee,).
(2.103) --_(-nTe,t - T,N - n(V. V)Te 3 mi re_

The ion pressure equation is

__ 2(T_,_,_,¢- T_,¢,X_,_)- (n,_,X_,¢- n,¢,X_._)+ _(T_ - T._)(n,_,X_,¢-n,¢,_,_)

1 s_ vcjv¢ IVCP,+5((SIIi- 7i + "_),¢ + (S±i-"-_-;,e)
X

+g - _

= _ _ 2 , , _i,q,

+( ),¢( r/_ ) (Jz,¢(gr¢),¢+Jr,¢(gz,¢),¢)]r2nB 2

(2.104) r 2't/3 m_ n(T, - Tj) + E_,).--7(nT_,, - T_N - n(U. V)Ti + 3,I mi Tee
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The electron stress equation is

2

2xo[_°_ F_(¢)][-7(_,_o,¢-_,_°,_)
1 2 S r,¢ b_ , z-_(,_,_,,,_- -,,_°,_)1+ _(s,,,_+ "_-7+ -(s_o ,_- -y,_,_))r

IV¢l=

,nT, x e

' r

+ [ro =Ct.- -  ( -rov.(.u)
-3.21la hT, - Ta,) 2 IV¢l=+ x2)F'(¢)A,,¢

+ 5 re, 3rtr 2( X

2 rlV¢l= . .2 IV¢l=+x=)),¢ao,_)--.(*-_o_- F.(¢))((a-_2,-7- + x2)),_,¢- (3-'_2( x

[ B = 3 n 2nB 2 _-P

rff i ,2nB 2 (Jz,¢(J,,¢),¢ + Jr,¢(Jz,¢),ee) ].

The ion stress equation is

2Xo F'(_b)A/,¢ + 2Xo ( 23rtr 2 _ "-e-Aic+ Fi(¢))(- (r.¢Ai.¢- r.¢Ai,¢)

__ 2 _'_+ _-_(s±_,_-_.,_))1 (n,¢ai,¢-- n,oai,¢))+ g(Slii,_ + 5'iii r rn

2 s, rC. v¢ IV¢l=-T_(( I1'- 7i + Sa.i j ),¢ + (S_i----ff--),¢)

X
+[ nTiXB__T._ (_ ceAi+ Fi(¢))](wi,¢ - r-_n (,',_,_i,¢ - r,¢Ai#))

1 r

+_-n[T/- 2(T/- T.i)](Ai.¢n,,- Ai.+n.¢)= 7(-2(Ti- T±i)N
1

--2n(U •V)(Ti - T±i) + 5(Ti - 2(Ti - 71i))V. (RU)

1 T,o.a,a _rn(Ti- T_.i) 2 IV¢i=' --: .... + x=)F'('_)_,_
-2n(T, - T_i),t + _o(-_io) V < Jr_ + 3-'_r_( X

_ 2 (IV¢l2+x=)),¢a_,_)2__/__(IV¢l=+ x=)),,_,\_,,_- (_ x-n(-eAic + Fi(_b))((anr2 X

(2 106) +( _r--_).¢( v¢" V¢ Ae,¢• - rB _ ) r2nB2(Jz,¢(Jr,v,),¢+ Jr,¢(Jz,¢),¢)].
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The parallel components of the heat flow equations (2.72) and (2.75) are

• -8nCT,- r±,)cr, - ra-,),_- 8(7o- T±o)2n,,+ 1On(T,- T±,)T,,_

+4nTe(T, - T_,).¢, + 5nT_T,,¢
a

(2.107) +6j[-2n(T, - r±,) 2 + nTe(T, - T±,)]IBIV.b - 0,

and

r 7 2
-- oudo"qi° _ + Bo-ff ( ui . V)ui8 + ._BoSiliUds,ch+ "_Sisuio,4,

r,¢ 9 1 _ 8n(Ti Ta-d)(Ti - T±i),_,.+ BouioSili-- r- + -_BoSioU;,r"ff

-8(Ti - Tzi)2n,¢ + lOn(Ti -. Ta-i)Ti,¢ + 4nTi(Ti - 7ki),¢ + 5nT_Ti,_,
?/"

(2.108) +6_[,2n(Ti - Tzi) 2 + nTi(Ti - T±_)]IBIV.b = O(e2).

Of the remaining side relations, it is convenient to write those for the perpendicular electron

heat flow (2.73) and (2.74). The equation for Sa-e is

2n(Te- Ta-e)(Te- Ta._),¢ + 2(Te - Ta-e)2n,¢

-5n(Te - Ta-e)Te,¢ - 2Te(Te - Ta-e)n,¢ - 5nTeTe,¢

+6_[(Te - Ta-e)2 + Tc(7; - Tze)][(b' V)b]. (V¢ x B) 1
X

e

B2(S±_Iv_jI') = O.(2.1o9) -7;

The equation for 7e is

V¢. (2n(Te - Ta-_)V(T_ - Ta.e) + 2(Te - Ta.e)2Vn

-Sn(Te--Ta-o)VTo- 2T_(T_- Ta-_)Vn-5nT,VTo)

+6n[(T¢ - T±e) 2 + Te(T_ - Ta-_)][(b. V)b]. V¢

(2.1xo) e _xlV¢l 2 IV¢l2
. -c r 2 ( X''-T- + 1) = 0.

The perpendicular ion heat flow equations (2.76) and (2.77) are
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z2,,_,_os_o+ IV___:_.(¢12 v)s_o+ 71v__¢.[2rsi. v)_o
5 r -xoj "u_' 5 xoJ "

- - - _) n,_+2n(Ti T±i)(Ti T±i),¢ + 2(Ti ' 2
ii

-5n(Ti- T±i)Tid,- 2Ti(TI - T.kl)n,¢- 5nTiTi,¢

+6j[(T, - T±,) 2 + T,(T, - Tzi)]t(b. V)b]. (V¢ x B) I

+ B"(s,lvj r')=o(e2),

and

i

12 Z,_b 2
J SisuiO "_" -_Si#Vlb" V uia

5 r b --

+V¢. (2n(T_- Tii)V(7"_--Tii) + 2(T_- Tli)2Vn

-5n(T_- T±i)VT_- 2T_(Ti- T±_)Vn- 5.T_VT_)

+6n[(Ti- T±i) 2 + Ti(Ti - T±i)][(b. V)b]. V¢

(2.112) -_e %xlV¢12( Iv¢i----_2+ 1) = O(e2).
c r 2 X 2

For the constraint (2.65) arising from poloidal momentum equations, I choose a = r,¢ =

(r,¢, z,¢) and impose the constraint on the curve ¢ = const, from the magnetic axis to the

plasma boundary. The constraint (2.65) is: '_

e Xo Xo e Xo e_(2.113)p,¢ - -r_o + F'(¢) - A)r,¢ _r 2 c_- 5_ (F(_)- - (F(¢)- ),¢= O(_3/2)

I now discuss the role of the constraint (2.113). In the equation set the unknown we

appears only in the form we,¢. Hence, one may add an arbitrary function of ¢ to w_. I claim

that the constraint (2.113) can be satisfied by the appropriate choice of this flux function.

To verify this claim, I show that w,¢ calculated by taking the sum of (2.100) and (2.101) is

the same as w,¢ calculated by taking the derivative of (2.113) with respect to ¢. The sum

of the poloidal momentum equations (2.51) and (2.52) has the symbolic form

(2.114) nwV¢ = M'
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,

whereM' has onlypoloidalcomponents.The constraint(2.113)isthenjust

m

(2.1'15) ru_,= M' •r,¢.

" Taking the derivative of (2.115) with respect to ¢ gives

1 1(2.116) w,, = (,lM'. r,¢),¢ = _8. V x (M')n

where I use that M'. B = 0. The sum of equations (2.100) and (2.101) is .just

(2.117) - v x (M').

Thus (2.113) may always be satisfied by the appropriate choice of the arbitrary flux function

part of w.

Let us now review the equation set. The primary unknowns are ¢, A_, wa, n, Ta,

Slla, a total of ten scalar variables. The equations in flux coordinates are a generalized

Grad-Shafranov equation (2.38), electron poloidal momentum balance (2.100), ion poloidal

momentum balance (2.101), the parallel component of the sum of poloidal momentum
b

balance (2.102), the electron pressure equation (2.103), the ion pressure equation (2.104),

the electron stress equation (2.105), the ion stress equation (2.106), the parallel component

of the electron heat flow equation (2.107), the parallel component of ion heat flow equation

(2.108). The secondary variables (Tc - T±e), (Ti -- T_i), U, f4, fi4, S±e, %, S±i, and 7i

are defined by (2.49), (2.50), (2.33), (2.45), (2.46), (2.109), (2.110), (2.111), and (2.112).

In addition there are the constraints (2.41), (2.42), and (2.65). Later I will show that the

constraint (2.42) reduces to a condition only on the momentum sources. I have shown that

the constraint (2.65) can always be satisfied by choosing the part of we constant on flux

surfaces appropriately. The remaining constraint (2.41) will be used to determine the time

evolution of ¢. Note that the time evolution appears explicitly only in the d_finition of U,

the pressure equations, and in the constraint (2.41).
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3. FORMAL EXPANSION

To understand better the physics and mathematics of the model, the solution is expanded

in an asymptotic series in powers of _1/2. Equilibria are found first on the electron-electron

collision time scale Tee, and are then extended to longer time scales. In lowest order the

solutions are functions of ¢ alone and the poloidal magnetic field is given by a Grad-

Shafranov type equation. Corrections to the lowest order solution give the poloidal variation.

3.1. Expansion Procedure

The reduced two-fluid thirteen moment system is still quite complicated. The structure

of the equations is not standard. Even after neglecting small quantities, the largest and

smallest terms in the equations differ by a factor of _2 ,,_ 2000. Tile _ppearance of sm'ali

quantities in the system suggests that a reasonable method of investigating the properties of

the solution, is to expand the solution in a formal series. The largest of the small parameters

that appear is O(el/_), so the solution, is expanded in powers of e1/2. That is, all variables

are written in the form

(3.1) w = w0 . wl + w2 + w3-_- w4 + ._.

where w,_/Wo ,,, O(e,42). I define

(3.2) r = R . r1(¢,¢),

and

(3.3) z = z1(¢,¢).

I substitute these expansions in the equation set and find the asymptotic _olution order

by order. At each order, the system can be arranged in a almost "triangular" manner. The

48



solution scheme is the following. First, I know the temperature anisotropy (Ta - T±a), a

secondary variable, in terms of the poloidal stream functions ,_a from equations (2.49) and

(2.50). Then I solve equations (2.107) and (2.108), coming from the parallel component of

, the heat flow equations to find the temperature Ta in terms of the anisotropy (Ta - _a). I

then solve equation (2.102) to find the density n in terms of tlhe te.nperature and the poloidal

stream functions. At this point the temperatures Ta, and the density n are known in terms

of the poloidal stream functions _a. The perpendicular components of the heat flows S±a

and 7,, secondary variables, are given by the algebraic definitions (2.109), (2.110), (2.111)

and (2.112). Then I find the parallel heat flow S[ia from the pressure equations (2.103)

and (2.104) in terms of density, temperature, and poloidal flow. I find the toroidal flow

wa using (2.100)and (2.101), equations derived from poloi&_l momentum balance. At this

point, all quantities are known in term of the poloidal stream functions _e and _i, which

are then determined using the two stress equations (2.105) and (2.106). Finally, there is

the generalized Grad-Shafranov equation for _. The ten priimary unknowns in the system

have been at least partially determined. There remain the three constraints, (2.41), (2.42),

(2.65). The constraint (2.41) contains only fourth order quantities and will only be used

in fourth order. The constraint (2.42) will be shown to be satisfied by appropriate choice

of momentum sources. It was shown in the previous chapter that the constraint (2.65) is

satisfied by choosing correctly the part of we that is constant on flux surfaces, a quantity

that is not determined by the equation set.

I now describe in more detail the structure of the equations that will be solved. Impor-

tant issues are the existence emd uniqueness of solutions. The structure of the generalized

Grad-Shafranov equation is that of a nonlinear elliptic differential equation and is fairly stan-

dard. The other nine equations in the ordered system have two distinct forms. The eight

ordered equations (2.107), (2.I08), (2.102), (2.103), (2.104), (2.100), (2.101) and (2.106)

have the general form

: (3.4) w¢ = G(¢, ¢),

where w is a.n unknown, and G is periodic in ¢; equation (3.4) can be solved by integration.

In first and second order the right hand side of (3.4) is an exact derivative with respect to

, ¢ and the solutions are quite explicit. The unknown w is periodic in ¢ if and only if the
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condition

1 fo2_(3.5) (G) = _ G dC = 0

holds. If, as in the first and second order systems, G is an exact derivative with respect to

then (3.5) holds trivially. The solution w is not determined uniquely since an arbitrary

flux function can be added to w. The other form of equation encountered is that of (2.105)

the electron temperature anisotropy equation which has the form

(3.6) w,_, + G1(¢, _)w = G2(¢, ¢)

with G1 and G2 periodic in ¢. The undifferentiated term G1 comes from collisional terms.

The homogeneous equation (G2 = 0) has a non-zero periodic solution only if (G1) = 0.

Thus, if (G1) _ 0 equation (3.6) has a unique periodic solution.

3.2. Zero Order

I now consider the lowest order system. I follow the procedure sketched in the previous
I

section. The scaling assumption

w

(3.7) (Ta- T.La) ,,_O((1/2).Ta

"alongwiththerelations(2.49)and (2.50)implythatAco= Fe(_/_)and Aio= Fi(¢).From the

parallelcomponentsoftheheatequations(2.107)and (2.108),I findthatTeo= Teo(¢)and

Tio= Tio(¢)withTeoand T_oundetermined.Allthesefluxfunctionsalsohave an explicit

dependenceon timethatwillbe suppresseduntilrequired.From equation(2.102)onefinds

that no = no(C).From (2.73),(2.74),(2.76)and (2.77)the perpendicularcomponentsof

the heatflowinlowestorderare

(3.8) S_o. V¢ = Sio.V¢ = 0

and

5noTeocR 2
(3.9) %0 = Teo,¢

eXo
,m
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5noT_ocR 2
(3.10) 7_o = _ T_o,¢.

• exo

The pressure equations (2.103) and (2.104) in lowest order are V. Sao = 0, implying ,gl[oo=

" Sii=o(¢).From equations(2.i00)and (2.101),IfindthatWao = Wao(¢).Thus,thesmallness

ofthe anisotropyforcesMl thefluidvariablesto be in lowestorderfunctionsof¢ Mone.

The remainderofthesystemisthegeneralizedGrad-Shafranovequation(2.38)and the

constraints(2.113),(2.41),and (2.42).The integralconstraint(2.42)reducestoa constraint

on thetoroidalcomponentsofthemomentum sources:

/#_ r(P,e0+ Po_0)0,(3.11) _<_
F _

and once satisfied can be dropped from the system. The constraint (2.41) involves only

fourth order quantities. The constraint (2.113) is in lowest order the pressure balance

e Xo
(3.12) Po,¢ - -no,,_c + _--_F (¢) = 0.

Combining this with equation (2.38) gives

, (3.13) A'_ = 4_r#0(Rap{)(¢) J. )_oF'(¢)).

The equilibrium magnetic field depends on the total flui _ pressure profile Po(C), the poloidal

current Ao(C) and the vacuum toroidal field Xo(t). The flux functions no(C), Tao(I/)), Aa0(_b),

wao(¢) and Sllao(_b) are arbitrary except for satisfying _,herelation (3.12). The lowest order

solution contains eight arbitrary flux functions. At this point in the calculation there is

no information about the time evolution of the lowest order solution described here. The

system must be solved to higher order to determine the evolution of the lowest order solution

and to determine additional constraints on the zero order solution.

3.3. First Order

The first order system introduces the poloidal dependence of the unknowns. The general

. structure of the system was described in section (3,1). From (2,43) and (2.44), the anisotropy

in first order is

w
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exo

(3.14) (Te- T±e)l = 3_ocR2Ael m

and

q

(3.15) (Ti- T±i)l = exo Ai1
3nocR 2 •

From the paxallel component of the heat flow equations (2.107) and (2.108), the poloidal

variation of the temperature is balanced by that of the anisotropy so that,

4

(3.16) Tel,_ = -_(Te- .7_e),_

and

4

(3.I7) T_I,_ = --_(T{ - T±{),¢.

Thus,

(3.18) Tel = 4exo Ac., + Te,(¢)
15noR2c

and

(3.19) Til = 4exo ,15n0-'- 2e-.+ T.(¢)

where Tel (¢) and T_I(¢) are arbitrttry flux functions of order O(e 1/2). From equation (2.102)

one finds that

_-;o" 4ex o(3.20) nI,¢ = (-n0Tl,¢ 3cR2 A1,¢)

or

8exo
(3.21) ni = -r, _ ,_ (Ai1 - Ac1) + til(C)

oer (:/_o + T_o)

where til(C)is an O(e 1/2) arbitrary flux function.

The components of the heat flow in the direction of V_ are found from the .algebraic

equations (2.109) and (2.111) to be:
q
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(3.22) S_el [V¢[2 = - 5cR2n°T_°Tel,_,
. " J exo

azad

(3.23) S.l.il ]V¢[2 5cR2n°Ti°T
"'_-- = xoe i1,¢.

The net heat flow across a flux surface for electrons and ions respectively is

(3.24) (S±el [_)=0,

and

(3.25) (S±il IV¢I2'---7_ - O.
The components of tile heat flow perpendicular to B but within the flux surface are:

cR 2
%1 = _(-2Teo(Te - T±e)lno,¢- 5no(Tc - T±e)jT_o,¢

eXo

- rC. rC)) _r_
(3.26) -5(nlTeo + noTel)Teo,¢ - 5noT_o(Tel,¢ + T_1,¢ i_- _ + 2-_%o

7_1 = cR2(2Tio(Ti- T.t.i)lno,¢ + 5no(Ti- T±i)lTio,¢
eXo

V¢. V¢ rl

(3.27) +5(nlTio + noTil)Tio,¢ + 5noTio(Til,¢ + Til,#, [V¢I 2 )) + 2_7io.

The divergence of the perpendicular part of the heat flow is then for the electrons

(3.28) --5noTeo,q,( T_ - T±e )l - 5TeoTeo,¢nl + 5no,¢TeoTel ),¢ + 2%o'_,

and for the ions

(_,, _ (S± rC, v¢ IV_l2
, j ),¢ - (S±il--_--),¢) = -_(2Tiono,¢(Ti - T±i)lexo

rl,¢

(3.29) +5noTio,¢(T#- T±i)l + 5TioTio,¢nl - 5no,¢T_oTil),¢ + 23'io-_--.t
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The pressure equations (2.103) and (2.104) are used to find the parallel heat flows Sllel

and Silil that give an equilibrium energy balance

no

and

Silil -(Til,#Aio,¢ Tio,¢An,#) + Ti° (na,¢Aio,q_ no,_Ail,_)'_ -- -- nO. --

1

(3.31) +](Tix,# (SsiaVCjV¢),¢ (S±n]V¢12_ _ -y-),¢).

Using the previous relations the parallel heat flow can be written in terms of rx, ,_a and

3Slle.l lOcRnoTeoTco,¢ 8TeoTeo,¢ 8exoTeoAeo,¢= - eXo rl + A3(3(T_o + Tio) - 5cR2no(T_o + Tio) ) "

( 4exoAeo,¢_ 94T 5Teono,¢ 1 -(3.32) +Aex + ,o,¢ 3no )+ 5Sll'x(¢)
d

and

1
lOcRn°Ti°Ti°'¢rl + A,( 8TioTio,¢ _

8exoTioAio,v,

-3 Sllix = exo 3(Teo + Tio) 5cR2no(T_o + Tio) )

(3.33) +Ai1( 4exoAio,¢ + 4 5Tiono,_ 1
15cR 2 -_Tio,¢ 3no ) . 5 "_11i1(¢)'

where -qllex(¢) and Sllix(¢) are arbitrary flux functions of O(ea/2).

The poloidal momentum balance equations (2.100) and (2.101) are used to find the

toroidal flows we i and wn

_e = T_.lno,,/, _ n, ( T_o,¢ A.o,,/, exo_,,,..)
cw"' no no cnb,n

4exo , eXo .
(3.34) + Aex("5±_,,2no,¢)+ rxt__-2"-aeo,¢)+ e_sex(_b)

c.tt_n0 c
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e -Til no,¢+ nx(T_°'¢ _ xXo
_dll nO nO. = -- ^_o,¢cn2oR2

4exo t exo,_o,_)+ eco.(¢)
. (3.35) + Aix( 3cn_.R2 no,_) + rl "cR3no c

Using the previous relations

e eXoAeo,¢ 16exono,q,
cw.x = cR3no 15cR2n_)

8exo _(exoAeo,q, e.
(3.36) +Aa(5cR2no(Teo + T,o)" _ + Teo,¢) + cwe,(¢)

e eXo,_o,¢ 16eXono,¢rl + A_a
cwil = cR3no 15cR2n_

8exo )(exoAio,¢ Tio,¢) + e(2'_1(¢)
(3.37) +Aa(5cR2no(Teo + Tio) _ c

I have now expressed the unknowns hl, Tea, Til, Silva, Salia, we1, win in terms of Ac1,

- Ai1, rl and seven undetermined O(eU2) flux functions. The structure bf the system has

been such that all solvability conditions have been trivially satisfied. Finally Ael and A_I

" are found using the two stress equations. Note the difference between the ion and electron

stress equations; the electron stress equation contains the undifferentiated term Aezcoming

from the collision term. There is no corresponding collisional term in the ion equation in

first order. The electron and ion stress equa,tions in first order are respectively':

3noR2F'(¢).L_,, + g(Sll_,, + (Sll.o- %0))+ (T._,,,Lo,¢- T_o,_Ao_,,)
)Co 21/3exo Ac1

(3.38) +Te°(nl,,Aeo,¢- no,¢Ae,,¢) + n°Te°R2(we,,¢ + n--_eo,¢rl,¢) = --no Xo 5oR2 Jfer,

and

2 ra,_ 2(T;_,,A_o,¢- T_o,oAa)2xo F'(¢)_.,. + g(S,l.,.+ -_-(SlI_o,- _o11+ g ,.3noR _

Xo
(3.39) +_(nl,¢A,o,q, - no,,,Ai_,¢)+ n°Ti°R'_(w,_,¢ + n--_A,o,¢r_,¢) = 0.. no Xo
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From thesetwo equationsone can obtainan expressionforAilin termsofAel,rl and an

arbitraryfluxfunctionAil(_).Then one can writean ordinarydifferentialequationforAel
i

oftheform

(3.40) + =
where A(_), B(,_)and C(,))depend on the zeroordersolution.In generalthe above

equationhas a uniqueperiodicsolutionifB(_) isnot zero.Thus one can solve(3.40)for

Ael and thefirstordersolutionwould be known up to the eightarbitraryfirstorderflux

functionsalreadyintroduced.

BeforecalculatingAelmore explicitly,itisconvenientatthispointtoleavethesequence

ofthesolutionschemeand lookahead tothesecondordersystem.The reasonfordoingso

isthatsolvabilityconditionsencounteredinthesecondordersystemhavea strikingeffect

on thenatureofthefirstordersolution.Considerequation(2.102)insecondorder,

Xo 4exo A2 ' 4eXo rl(3.41) .oT2,_+ ._,_ro+ (.,r_),_ - .-j_,n,_ + _ ,_+ _ _,_ = o.

In order that equation (3.41) have a periodic solution the first order solution must satisfy

the condition

(3.42) (r,._Ae,)= 0.

However,multiplying(3.40)by A,_and applying(.)givesthat

(3.43) =0

which implies that Ael = 0. Thus to O(() the electron poloidal flow is in the flux surface.

Setting A,.1 = 0 imposes the condition on the zero order solution that

(3.44) C(¢) = 0,

reducing the number of arbitrary flux functions in the zero order solution to seven. Thus, the

collisional term in the electron anisotropy equation forces the electron distribution function

to be Maxwellian to O(t) rather then O(ca/2) as was assumed.

w
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I now summarize the changes in the solution resulting from setting Ac1 to zero. From

the electron stress equation Ail is
I

2TeoTeo,¢cR2no 2rl

• A_I = __'_(2Te°Ae°'¢+ 3exo + gs,,_o)

. 8TeoTeo,¢ 25exoT, o,k,o,¢ )-1
(3.45) "_3(_¥_) - 15_R2_o(Too+T_o) + _"(¢)"

Other effects of setting _el = 0 are

(3.46) T,1 = S_,1 = (Tc - Ta.e)x = 0,

the electron temperature is a flux function to 0(¢) and the perpendicular electron heat flow

and the electron anisotropy are O(¢). Also

8T_oT¢o,¢
_il_ 10 R T. T.__c_flno_oo_oo,¢

rl

(3.47) %1 = - To eXo -R '

and

_1 = _ IOcRnoTeoTeo,¢ rl + Al( 8_/_oTeo,g,
. ;_S[[,1 exo 3(Teo + Tio)

8exoTeoA,o,¢ 1 -

(3.48) 5cR2no(T,o + Tio) ) + gS[[,1(¢).

Note that _7. S_1 = 0. Also

8eXo

(3.49) ni = -" 5cR2(Teo_ + T_o)Ai1 + fi1(¢),

and

(3,50) e eXoAeo,¢ 8e)co exoAeo,¢ ,r_ + ,_1( )( + r,o,¢)+e_._,_(_).
c w_'l = nocR 3 5nocR2(Teo + T_o) nocR 2 c

The final part of the first order solution is the constraint (2.113) which determines the

arbitrary flux function part of (nw)l. The constraint (2.113) in first order is

O 3__ Ai1)4exo 2eXOcR-'-_ Ft(C) rl(3._1) _-_(_o_,+ _,_o)=_(p, + -
B
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From the above solutions one can find that

e

(3.52) e(no_l + nlw0) = -c--_

From the constraint (3.51) one finds

i) 4exo
_-(_O_c+_0) = _(p_ + 3_--_^,_)

ff___ - 4eXo An).(3.53) = (noTn + _lTo +

This constraint reduces the number of arbitrary O(E 1/2) flux functions in the first order

solution from eight to seven. Assuming the zero order solution given, the first order solutions

are determined up to the seven first order arbitrary flux functions appearing in the solution.

A simple consequence of the structure of the first order solutions is that for any k

(3.84) -(r_Ti,,O} (r_Sllil,,_} k ,- = = (rl_llel,_) = O.

These properties will be used repeatedly in the evaluation of solvability conditions in higher

order.

It is convenient to absorb the seven arbitrary O(e 1/2) flux functions that were introduced

in the first order solution into the seven arbitrary flux functions in the zero order solution.

For example, Xi through first order is

(3.55) ,\i= xi0(O)+Li,(0)-_+ _.(_),

where Ln is determined from the zero order solution accurate to O(E1/2). I now redefine

Xi0(_b) so that through first order Ai is

rl

(3.56) Ai= X{0(I/_)+Ln(_)_.

The followingrepresentationisconvenientforthefirstordersolution:

(3.57) Xi,= Li,(lb)-_,
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(3.58) nl = N1(¢)-_,m

. 7'1

. (3.59) T. = T.(¢) _,
where

2T_oT_o,¢cg2no 2

L_1(¢) = (2TtoAeo,¢ + 3exo + 5 Slle°)

8TeoTto,¢ _ 25exoTeo_eo,¢ )-I
(3.60) "(3(Teo + T_o) 15cR2no(Teo + T_o) '

8exo L.(¢)
(3.61) N1(¢) = 5cR 2 Teo + Tio'

and

4eXo

(3.62) T"(¢) - I_o_R_Z_(¢).

3.4. Second Order

" The same solution scheme used in first order will be applied to the second order system, As

in first order, most of the second order solutions are not unique; they are known up to the

addition of arbitrary flux functions. It will be seen later that the arbitrary flux functions

appearing in the second order solution do not affect transport. First, from equations (2.43)

and (2.44) the second order correction to the temperature anisotropy is

(3.63) (Te - T.Le)2 = exo Ae2
3nocR 2

and

(3.64) (Tj - T.k_)2 = 3nocR2eX° ,ki2+ 3nocR2eX° ,kil(_00 + _2rl ).

The parallel electron heat flow equation (2.107_ in second order is

4

(3.65) Te2,¢ = -_(Te- T.L_)2,¢.I.
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The parallel ion heat flow equation (2.108) in second order is

m

(3.66) +g(_o_o + _ , .T_I ni ,., 4(T_ - T±i)2,_.

Using the first order solution equation (3.66) can be written

2 4

Equations (3.65)and (3.66) can be integrated to find Tc2 and Ti2 up to the addition of O(_)

flux functions. These O(_)arbitrary flux function will not be needed to calculate transport;

only Ti2,¢ and Ti2,¢ are needed. The solvability conditions associated with equations (2.107)

and (2:108) are clearly satisfied.

From equation (2.102) one finds the second order correction to the density to be

1 eXo., 4eXo,, 2Ail,¢R ) )(3.68) n2,¢ = --_oo(noT2,¢+ (nlTil),¢ + _^,1r1,¢ + 3---c-c_i(,_a,¢-

Equation (3.68) can be integrated to find n2. The solvability condition is automatically

satisfied. From the perpendicular heat flow equations, (2.109)and (2.111)one finds
,i

(3.69) S±e21V¢[2 = -5CR2noT_oTe2,¢,-
J eX.o

and

Iv¢l2
cR2(-2no(T_ - T±_)_(Ti- T.)._)_,¢ + 5no(T_ - T±_)_Ti_,¢

S±_2 g -e'-Xo

+2T_0(T_- T±ihn_,_+ 5(n0TioTi:,_+ (noTi_+ n_Tio)Ti_,_)
r_,_ r_ IV¢I2

(3.70) +6noTio(Ti - _1_)_--_) + 2_ S±i_ g .

There is no net heat flow through a flux surface, that is

(3.71) (S±_a----_--, = (S±ia > = 0

To calculate the parallel heat flow in second order I need to calculate 7_2 and 7i2. From the

equa,tions (2.110) and (2.112) one finds
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CR2 •
, %2 = e-'_'(-5no(Te- T±_)2Y_o,¢- 2Teo(Te - T±e)2no,¢

_. rC. V¢ 5noT_2T_o,¢-5.oT_o(To2,,+ _o2,__-¢-_N

+cr_R (_ 10mT_oT.o,.- 5no_oTio,.-_)eXo

• cR2" T "_ ,IV¢I 2 X2 3r_.
(3.72) -¢--'--ono. ,ol,o,¢k-'_o +- + "_-'V)'eXo Xo

and

rx r_ x_+ IV¢12)7_o_ =2_. - (3_ + xo x--Fo

-_R---_2(2.o(T_-T.,h(T_- Tx_)_..+ 2(T,- T._)_.o._-
eXo

5no(Ti.- :Z_i)_T.,¢.,-5n_(:Z_-:Zk_)_Tio,¢

-5no(T_- TxihT_o,¢- 2Tio(T_- T±i)_n_,_

-2T.(Ti - T±ihno,¢ - 2T_(T_-T±i)2no,¢

-5 oTioTi.,¢- 5(noTi_+ n_Tio)Ti_,¢ 5n_Ti_Tio,¢

. Jzl,¢ V¢. V¢ (2no(Tj- T±i)l(Ti - T_i)_,¢
, -6noTio(Ti - T±i)i _ + IV¢l2

-5no(T_- TxihT.,,- 2Tio(Ti- Txi)_nx,.

(3.73) -5noTioTi2,¢ + 5(noTio .4-n_Tio)TiI,¢)).

The parallel heat flows are found from the pressure equations to be

SIle2,¢ = -(Te2,¢A¢o,¢ - Teo,¢Ae2,¢)

cR 2
: ---(5noT_o,_(Te - T±,)2,¢- 2Teono,_z(T,- T.Le)2,¢

eXG
rl

--5no,¢TeoT_2,¢ + 10r_or¢o,¢(_n, 1,¢ + 5noT_o,¢ rz_j_z2'¢

(3.74) _5noT,oT_o,e(IV_;12 X.2 + 3r_x_ + xo _-_1"1'

and
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+_(n2,_Aio,¢ - no,¢,\12,¢ + nx,,/,An,¢ - nl,cAix,¢,)

Tm( Tn ni
+-_o Tio no)(nl,,Aio,¢ - no,¢An,_)

2 "T_ 2 A Xo
-'_no ( "- T±i)l(nl,¢Aio,¢ - no,o)ql,,) + -_ il(wn,, + n-_rl,,Aio,¢)

(3.75) I I S .rC I,o IV¢I2,

Theseequationshavesolutionsthataredeterminedup totheadditionofO(e)fluxfunctions.

Alithesolvabilityconditionsassociatedwiththeseequationsaresatisfied.

From themomentum bMance I findthetoroidalflow

w_2,¢,= - no,¢ Te2,¢ + n2,_(Te°'_ + 5exo 4exo no ' Ac2-,

(3.76) nlna,¢ 5eXo R 10exo 6exo , ,

and

Tio,¢ _ 4exowi2,¢ = -n--9-°_Ti2,¢ + n2,¢(------ +
no no 3 02AiO,¢) 3cR2no 2 _o,¢ Ai2,¢

_I___( 4exo
no nl'OTil'¢ - nx,¢Tix,¢) 3cR2no2(nl,oAix,¢ - nl,¢Ail,¢)

_(n..L + 2r] exo ,5 4 6Xo
no -R--) e-_o_ t ] nx'¢Ai°'¢ + _no,g, An,¢) noRaAio,¢r_ra,¢

exo 3eXo

(3.77) + .c.R3no(rl,CA_,_ -- rl,¢Ail,¢) + 2cR_n______onO,¢Ailrl,¢.

The equations above determine w,_ and wi2 up to the addition of O(e) flux functions. I

h_ve expressed the unknowns, Te2, Ti2, n_ Slle2, Siii2, _e2 and wi2 in terms of Ae2, Ai2, rl

and z_. Finally the two stress equations are used to determine Ac2 and Ai2. The ion stress

equation in second order is

2Xo 2, 2Tiono _ 2
-(3noRz-F[(¢) + g7io,¢ + ------_' )Aiz,Cno+ "5Slli2'¢

2 _ 2Tio 2Xo _ ni 2rl x_

+ + + .
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-2A_o,_bAi_r_,_+ 5(SU_-R- - °ll_°_ - + _'_T
rl,0 _ rl rl,_ _ 2 A '

. -7.'T" + 7io_j + -g(T.,_ .,,_ - Z.,vA.,_,)

T. ni )(nl,,A_o,_-no,_A.,.)

3 2noTioR 2 Tit 2rI Xo _ r
(3.78) +_(-Ail + 3Xo (_o + _ + --R-))Cwdl,_b+ n--_^,o,¢ 1,,y = 0=

This equation can be solved for Ai2 in terms of _e2 and other known quantities if the

following solvability cJndition holds

(3.79) (S±ilzl,_) - O,

which implies

J

(3.80) (_--_-_rt,¢z1,_))= O.

I now make a final assumption on the system. I assume that _b(r, z), correct through order

is an even function of z. To the same order, ri(¢,¢) is then an even function of ¢ as

. are [V¢[ and J; z_(¢,¢) is an odd function of ¢. Under this symmetry _sumption the

solvability condition (3.80) is satisfied. I will show later that this assumption is indeed

- reasonable and consistent 'with the structure of the generaJized Grad-Shafranov equation

for ¢.

The electronstressequationis

2Xo 2 2noT_.oR_

3noR_F_(¢)A_,¢ + gSll_,_, + w_,¢Xo

+g(sll*_"-g"- _-k" +_o0a2 ,

(3.81) +2noTeoR _ n_ 2r_ -2_/3exo Ae_.

Using the two stress equations one obtains a si:agle equation for A,) of the form

(3.82) ._(¢)Aeu,_ + -_A,_ = C(.,_,_T"_.,._r_r_,¢ + _D(_/,),,- , r_,_z_,_R_ .

This equa.tion determines Ae_ uniquely in terms of the coefficients in (3.82). The func-

. tions /1(¢), ]}(¢), (:'(¢) and D(¢) are deterrained by the zero order solution. Thus, A_

6:].

#II ', ,, Irll,l _' lI 'lllrl i_rli flrOk _i), qlDll,',,iI=_'ll',,'Ii'1'IF' '_''"' '_iill_l_"" _iI'I 'IIIP'IIl_i ,'



is undetermined to the extent that the zero order solution contains seven undetermined

functions.

The final part of the first order system is the generalized Grad-Shafranov equation for

¢. The solutions above give that r,w through G(_) is

-nUde= _ "F_(¢) 2oR 4L'l(¢)r_ + v(¢)kv v,../

where v(¢) is an arbitrary flux function. Imposing the constraint (2.113) determines u(¢)

to be

rl2

(3.84 ) _( ¢ ) _ (p _ 7_r2xX° 2cR 2eXOR 2 cR-'TeXO"Rr1

Recall the discussion of section (2.3) where it was shown that the right hand side of (3.84)

is indeed a function of ¢ alone.

I now comment on the assumption that ¢ to O(e) is an even function of z. Assume that

that the domain iv which the Grad-Shafranov equation is solved has reflection symmetry in

the plane z = 0. Since the source terms to O(e) iri the generalized Grad-Shafranov equation

depend only on ¢ and r, the equation for ¢ is to O(e) symmetric with respect to z. Thus,

it is reasonable to hypothesize that ¢(r, z), correct through order e is an even function of

z. This is a real assumption since solutions to approximately symmetric nonlinear elliptic

differential equations need not have approximately symmetric solutions. If the assumption

of the up-down symmetry of ¢ does not hold, then the equilibria still must satisfy (3.80).

Unlike the first order solutions that have up-down symmetry given symmetry assump-

tions on ¢, Ac2 and hence the second order solution does not have a given partity. This

breaking of symmetry is due to the collisional term that appears in the electron stress

equation. Later in fourth order it will be shown that the odd part of Ae2 is a source of

trar, sporto

I now summarize the characterization of O(e) steady solution. The lowest order somtion

contains nine flux functions, of which seven may be prescribed independently. The poloidal

flux function ¢ is then given by a Grad-Shafranov type equation. This solution is steady on

the fast time scale re. To extend this solution to the time scale e-_/2rc, the self-consistent

first order corrections to the solution muet be calculated. These corrections include the
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poloidal variation of the solution. 'ro extend tile zero order solution to the time scale _-lre

requires calculating the second order corrections. In order that the second order solutions

exist, there are certain restrictions placed on the first order corrections; the poloidal varia-

tion of the electron temperature Te,_, the electron temperature anisotropy (Tc - T_.e), and

the poloidal variation of the electron stream function ,_e,¢, are ali O(_) rather than O(_ 1/2)

as they are for the ions.

If the poloidal flux function lb is approximately up-down symmetric then some comments

can be made about the symmetry of the solutions; the first order solution has up-down

symmetry. Collisional effects lead to a loss of symmetry in the second order solution. The

structure of the equation for )_e2is such that if the zero order solution is given then Ac2 is

completely determined. In third and fourth order constraints on Ae2 will be interpreted as

constraints on the zero order solution.

The following simple results from the second order solution are useful in later calculations

in fourth order. The first set of relations show that averages of r_ and second order quantities

can be expressed in terms of (r_e2,_l. I present the relations in the same sequence as was

used to solve the system.

4exo, (3.85) = 15nocR2

4eXo

(3.86) <r_T_2,¢) = 15nocR 2<r_A,2'¢),

(3.87) <r_(Te- Tj.e)2) = eXo <r_Ae2,_)
3nocR 2

exo(3.88) - T±i)2,¢)= 3noc.R2

8eXo

(3.89) (r_n2,¢) = 5TocR2 (r_(_i2,¢-- A_.2,¢)),

2 2
. (r 1Slle2,_) = --3Aeo,_,(rl Te2,¢ ) + 3T¢o,¢(r_Ae2,¢)

3cR:
---(5noT_o,¢(r_(T_ - T±,)2,¢) - 2T_ono,¢(r_(T,. - T±_):,¢)

eXotl
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(3.90) -5no,_Tea(r_Te2,,)),

k

2' Tio , ' 2
(r_Slli2,¢) - -,_o,_(r_T_2,_) + T_o,¢)rlAi2,,_) + --,_io,_rln2,_?no

(3.91) 7_9_ono,_(x_2,_) + l/r_a,_)_ 1(r_(S_aV_v¢),_) _ 1 2 IV¢l2

rC.rC
(3.92) -5noT, o(r_Ti_,_) - 5noT_o(rlra,,/,T_2d, iV¢l2 :),

2X0 9 2T_o

H( 5T_°'¢+(_ ¢)+ _)(_'_'_)no

(3.93) = 2-(r_Sil,2,,)-I.. _Aio,¢(r_Ti2,,) + 2--Ti°Aio,¢(r2n2,,).5 no

The following relations for the averages of products of second order quantities will be

used in fourth order. The point of the calculation is to show that the averages of product of

second order quantities that appear in fourth order solvability conditions can be expressed

in terms of averages of Ac2 alone.

(3.94) (n2,¢_(Te- T.I.e)2) = exo (n_,¢Xe2)
3nocR 2

N1 r 2

(3.95) (n2,,_(Ti - T.t.i)2) = 3nocR 2eX°(n2,¢J_i;t) + 3nocR 2eX°Li_(_ + 2)(n:_,¢_!_2)

4

(3.96) (n2Te2,¢) = --g(n2(Te - T±e)2,¢)

, r_ra,¢,, 2 eXo Li_:I'i_ + 8 exo )2
(n2Ti2,¢) = _n_--_T- ?LTio 3nocR 2 5-_/o(Lia 3nocR 2

4exo 7_ Na 4

(3.97) +(Tg_Li, + Ti,)(_v_- + _--_o)) + 7o<n2(T_-- T±_)2,¢) "
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7exo _1rlr1,_ _
4exo (,_e2Ai2,¢) - (NITil 3cR2Lilj_---_- e2/• (3.98) To(n2,¢_e2) -- -no()_e2Ti2,_) 3cR2 -

2 eXo LilTil+ Lil8_£._C _xo )_
(,_,2Ti2,_) = ( Tio 3nocR 2 5Tio 3nocR 2

rlrl,¢_ 4 (,_,2(Ti Tj..i)2,¢)ZI N1 4 exo Lil-Z1)(,_e2--_--,+(3.100) -'(_oio + "_o)( 5 3nocR 2 _)

exo exo Li1 N1 ,_t_ rlrl,ch
(3.1ol) _,2(T_- T_)2,_)= 3no_ <_°_'_/+ ]_o_---h'_(_o + "_^'_-hv-)

4 (,hi2(Te - T.l.e)2,¢)(3.102) (£_2T¢2,¢) = -_

e_0 (_i_,,)
. (3.103) ()_i:(T_ - T._)2,_) - 3nocR_

At this point all the averages of products of second order quantities above can be ex-

pressed in terms of (_e2,_r_) _nd (_e2,_). The following relations shows that (_e2,_i_,¢)

can be expressed in terms of (r_)_2,_) and other averages of _e_.

2 2

+_Aio,¢(Ti2,¢)_e2) + "_-)_io,¢(n2,C,\e2)no+ 3noR:z2X0 .E_,(_,,)(Nl._o+ 2)Lil (),e2---_rlrl,¢ )

rlrl,¢ 2_o rl,¢_ _ 2 rlrl,¢_ _ 2(8.1.i1._e2 )- 2,_io,¢Lii ( i_2 --R"V- + _X,_lli_"-R--^e:/- -g[;tliO(.-R-_ ^e2! + -_

rlrl,¢Ae2)_r,r _,rlrl,¢ Til Ni )(N1Aio,¢ -- no,¢Lil)(_+2T---_°(N_L_"""_"_'--R -r-'_'_)+ (T_o no. _t0

2 2noTioR 2 Ni Til , Xo _ rlrl,¢
(3.104) -t-5(-Li, + 3X0 (_-o + _io + 2))(14'i,, + --)_io,¢)_--_--^_2)noRa '- O,
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I S

nO

+._9.((N1L_l N_L,l_rlrl._. , T_I N1 )(N1Aio.¢ - no.¢L,1)(_A,2))no - J__^e21% (T_o no

-_-_ (N1A_o,_- no,,Ldl )((Td - T±i)I--_ _2]
rl Xo 1 1 V¢ V¢

(3.105) -_ ' --'_),¢ e_) = O,

j ),_ - (±i_---_--),¢)A_2)

_ 2(rl V¢) V¢ [V¢I 2,- _(_.,_ - (s_. .- ),_- (S_.-T-),_)_._)
+2no,¢((T_- T._h(T_- T_._)_,_._)+ 5_o,¢((T_- T_)_T.,_2)

+5T_o,_(n_(_-T_)_,_)- 5_oT_o,_((T_-T_)2,_)

+2 o,¢(T_(T_-T_._)_,_2,_)-2no,¢T_o((T_T_)2,_o2)

-5(noT_o),¢{T_2,_A_)+ 5T_o,¢(_. A_,_)- 6((noT_o(T_-T._)_-.-_-),¢Ao_)

(3.106) -6noT, o((T, - T±,)_-L_J),4,Ae_ ) - 7io((-_"t"_Ae2,_).
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4. THIRD AND FOURTH ORDER SYSTEMSs

In this chapter I examine the third and fourth order systems. Only limited information is

needed from the third and fourth order systems. In third order I check that all solvability

conditions are satisfied and calculate some averages of the third order solution. The infor-

mation needed to calculated the explicit time evolution of Teo and Tio in the fourth order

system is determined. The time evolution of the lowest order states is presented.

4.1. Third Order

The third order equations will be examined in the same sequence used in Chapter 3. In

first and second order it was possible to calculate the solutions explicitly. The third order

solutions are more difficult to calculate explicitly because solving the third order equations

requires integrating expressions of the form riAe2,¢. Fortunately, only limited information

from the third order solution will be required to compute the time evolution of the zero

order solutions. It is necessary that any solvability conditions associated with the third

order equations be satisfied.

The third order corrections to the temperature anisotropy found from (2.43) and (2.44)

are

2rz A ,
(4.1) (Tr- T±e)3 = eXo (Ae3- n_Ae2-- -R7 _2)3nocR 2 no

and

(Ti - T±i)s= 3nocR2ex°(-,_i3+ _2( nz_+ _))

(4.2) eXo Aiz(n_ n2 3r_ IV¢l2 x2
, 3nocR 2 n-"_o+ --no+ _ + --'-X_ + --Xo)"

Equation (2.107) in third order is
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(4.3) 4noT_(Te - T.Lc)3,,I,+ 4nlT,..o(Tc - T±_)2,¢ + 5noT_Te3,_, + 5nlTeoTe2,¢, = O.

This equation can be integrated to find 7'e3 up to the addition of a flux function° The i

condition that a solution to (4.3) exist is

(4.4) 4Teo(nl(Te - T±e)2,_) + 5Teo(nlTe2,¢,) = O.

Equation (3.65) implies that condition (4.4) is satisfied.

The third order quantity Ti3 is found from equation (2.108) in third order,

-8n_(T_- Ta._)l(Ti- Ta._h,_- 8no(T_- T.L_h(T_- T.L_)2,_

-S_o(T_-Tj._)2(T_- T±_)_,_- S(T_- T_)_n_,_

+10no(T_-T±_)_T_,_+ lOno(T_- T.L_)_T.,,

+10no(T_- T±_)2T.,_+ 10nl(T_- Tzi)T.,. + 4noT_o(T_- T±_)3,_

+4(niTro + noTil)(Ti - Ta._)2,¢ + 4nlr_l(T_ - T±i)l,¢

+(4noT_+ _/_o)(:/_-T±_)_,_+ 5noT_oT_3,_

+5( noTi_ + n_ T_o)T_,¢ + 5( n_T_ no'.F_ + n_T_o)T_, 4,

(4.5) +6noT_o( T_ - T±_)i (IV¢l_)'*
2Xo_ = 0.

The solvability condition for this equation reduces to

(4.6) (r_(lv¢l_),_))=0.

which is satisfied with the symmetry assumptions that r_ and ¢ are even functions of ¢ to

O(e). I have identified the equations that determine T_3 and Ti3 up to the addition of flux

functions and have verified that the solvability conditions associated with these equations

hold.

Equation (2.102) in third order is

n3,¢To+noT3,¢,+(n2T_),c+(niT_),¢+ eX°_r " rlr_'¢Ai_)
cR 3 _, _,¢a2 R
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4eXo t. 2rl A 3r_.
(4.7) +37_ t^3'_+ _"'_xo - -a- 2,_+ _--_.,_)- r_,_onoR =0.

" This equation can be solved for n3 if

(4.8) (rl,¢A2) =0.

Examining the second order solution one finds that (4.8) is equivalent to

(4.9) = (rl,_(Ti- T±i)2) = (rl,¢(T, - T±,)2) = (rl,¢Sil_2) = 0.

h_ particular, to satisfy (4.9) one need only insure that (rlAe2,¢) = 0. The condition

(4.9) provides an additionM constraint on the zero order solution, reducing the number of

independent functions in the zero order solution from seven to si)_:.

As in the previous calculations the parallel heat flows are found using the pressure

balance equations. In third order the electron pressure equation is

p

. (T.3,_.X_o,¢- T_o,¢.X.3,_)+_n(T_- T±_)_n_,_.X_o,¢

1+g(SII.3,¢ - %3,¢ + (Slc3 VI/)j V¢),_b _" (S.Le3 ),¢

3e A ' Xo
(4.10) +_; o2t_., + _,_0._r,,,) =0.

This equation need not be solved for S[le3 but for a solution to exist the following condition

must hold:

l,,_ 1V¢12_,
3no

3e 3ek'oA_o,¢(A_r_,¢> = 0.(_'_) +_c('_°2_'_)+ 2nocR3

All the terms containing products of first and second order solutions are clearly proportional

" to (r_,¢A_2) and vanish. The remaining term involving S±_3 can be calculated easily from

(2.109) to be
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2Teo 14Teo iri,_(4.12) ((sj._3 )'_)= -3-_"_"_'_'_) 3 _-g"_'_ = o.
Hence, the condition (4.11) is satisfied and no additional information is gained.

The next equation is the ion pressure equation (2.104)

2

+3_ [(T_- T_._)2(nl,4AIo,¢ - no,¢A,l,¢)
nl

+(Ti - Tj.i),("2,O_io,¢- .0,¢_i2,¢- _00 (nl,O_io,¢- no,¢._il,_)

1 1,o lV¢l2,
+(nl,¢,_a,¢ - n1,¢,_i1,_))] + 5($11i3 - _'i3 :_ S.l.i3),¢ + 5_,oli3--"_ },¢

2e,_i2(wil,_ + Xo

(4.13) -3";2eAi1[w_2,¢ Xo ,(2rlR _oonoR2 (r_,¢Ail,¢ - r1,¢ kil,¢ - + )r_,cbAio,¢)] = 0.

This equation does not need to be solved explicitly. The condition that _ solution exist

is satisfied and gives no new information. The conditions that the poloidal momentum

equations (2.100) and (2.101) can be solved for we3 and wi3 are satisfied.

The ion stress equation in third order has the solvability condition

_((s,,_._) - <7,_._))+ _TC.V_ Y_o _) = 0.(4.14)

Let us examine the terms in this condition:

cR 2 • J

exo iVWl- -

_ ,rC. v¢
(4.16) (7i2r1,¢)= -5noT, o(ri,¢Ti2,¢)- 5no:/_o(_ lye[ 2 rl,¢Ti_,¢),
and

._ L,(¢)(_).(4.17) < ) = ._

While the condition (4.14) contains second order solutions, it does not depend on the

arbitrary flux functions that enter in second order. It does depend on ,ke2and the zero order
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profiles in the equation for Ac2. Itence, the condition (4.14) is another relation between the

zero order profiles. At this point, having used the constraints (4.9) and (4,14) there are five
a

independent zero order functions. The final equation in the system is (2.105) for Re3 which

. in generalhas a uniqueperiodicsolution.

In thirdorderthe solutionshave not been calculatedexplicitly.Rather,I have deter-

mined what conditionsarenecessaryforsolutionsto existand have shown that theycan

be satisfied.I have determinedadditionalconstraintson the zeroordersolution,(4.9)and

(4.14.In thenextsectionthefourthordersystemcontainingtheexplicittime evolutionof

Teo and Tiowillbe analyzed,ltwillbe seenthatonlypartialinformationabout the third

ordersolutionisneededtocalculatetransport.In particular,one onlyneedssome averages

ofthe productofthirdorderquantitieswith rl.I show below thattheseaveragescan be

expressedintermsof (Ae3,¢rl).The sequenceofcalculatingtheserelationsbelow parallels

thatusedinsolvingtheorderedsystem.Justastheunk_mwns,(Tc-T±e),(Ti-T±i),Tc,Tj,

n, Slle, Sjli, we, wl and Ai were expressed in terms of Ac, here the averages/rl,¢(Te - T±e)3),

<rl,_b(T/- T.L/)3), <FI,¢Te3), {r1,_bT/3),{PI,¢_t3), <FI,¢SIIe3), {?'l,_bSl[/3), {?'I,6_0J¢3),<?'1,¢_/3> and

(rlAi3) will be expressed in terms of (rlAe3/.

I begin with the relations (2.43) and (2.44). I multiply the relations by r1,¢ and take

, the average with respect to ¢ to Obtain

exo _v_+ 2)(_2_>](4.18) ((Tc-T_)3r,,¢)= 3cn0R2[(Ae3r',_>-(n--0"
and

eXo N1 o_/_ rlrl,¢
(4.19) ((T{- T±i)3rl,¢>= 3thor 2 [(_/3rI'¢> - ('_0 + ,_]_,_i2"---_->].

I calculate from equations (2.107) and (2.108) that

4exo Nln,_o.. 2)<Ae22rlrl'¢>](4.20) <r,T_3,¢>= 15cnoR2[<Ae3ri,¢> - ( R

and

. 4

(r,Ti3._>= -g<r,(T_-T±i)3._>

. (4.21) +20(r,(T,-7_),7_2._)+ 20(n(T_-T±_)2T,._).
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Using equation (2.102)one finds

ro(,'_n3.,d= -no(T3,_,'_) - (,.a(nar_)._)
Xo 4exo ,, 2

(4.22) -(ri(n2T,),_)+ _-R-_(r_A2,_)_c_t_riAa,_)+ 2(A2,¢-_)].

From the relations (2.109) and (2.111)one can calculate

(4.23) -5noTeo(rlTes,,h} 5Teo(rlnlTe2,¢) + 6noT_o((Te T _ rlrl,_,
-- -- ±e]2T]

and

exo._ IV,hl_ _xol_oc--_'__s-7 -)= _2,_o_2__)- 5.o(.,T_,,¢(T_-T_)_)
-5no(rl(Ti- T._)I(Ti - T±i)2) - 2T_o(rl(Ti - T±_)2n1,_)

(4.2_) -2T_o(n(T_- T±i)ln_,_)- 5-oT_o(rlT,3,_)- 5T_o(rln_T_,_)-5T_o(_n_T.,_),

(r_Slli3,¢) = -3Aio,¢(r_Ti3,¢) + 3T/o,¢(r_Ai3,¢) - 3L_1(T_2,¢_-)

O T' _ 3/h:, A r_ 0 r _-3L. ;5(,_,_2_>- _¥<,2,_)
2

- no[(Xlo,¢N, -no,¢Lil)(rlri,¢(Ti - Txi)2)+ Xio,,¢(ri(Ti - _ii),n2,¢)

- T±i)_A,_,¢)]- (r17i3,¢) - (r1(S±i3V_.j--V¢),¢)

2eXo
J /,V_

From the pressure equations (2.103)and (2.104)

1 r Tc0

-no,¢(rlAe3,¢) + (rlnl,¢Ae2,¢ - rlnl,¢)%2,¢)

T,2 n± )ni,¢AeO,¢)]
T,_ n_ )(n2,¢A,o,¢ - no,¢A,2,¢)) + (r_(T,_ no+(rl(Teo no

(4.26) 3e 3ex°A_°'_(r_r_,¢Ae2),"- _c (r_A"_w_l,¢) - 2cR3no
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and

Le1 0

(rir S_3)= -Aio,¢(riTi3,_)+ Tio,¢(riAi3,,)+ R 0¢ (T_2,,r_)

" 2Aio,¢
+-_.(rlrl,,Ai2)+ -'_no-(CTi- T±i)irln2,,)

+2no,¢((Ti - T±i)lrlAi2,¢) Aio,_{rl(Ti - T±i)ln2,4,)
no

2e

-{-no,¢(rlAi2,6(Ti- T.ki)l) + _(_i27'lb311,_b)

2e

In calculatingthe transportthe quantities(rlwe3,¢)and(rlw_3,¢).The finalrelation

neededfrom thirdorderisobtainedfrom equation(2.106)and is

2n Aio,¢(nn,,Ai2)3nor n0 -k--
2eXo 2 _rl rl,¢ S , _

-_ 3nocR2 (rlAil(n2,¢Aio,¢ - nO,g, Ai2,¢)) -{" _[(riSHi3,¢, ) -t- _-'-_ Ili22
1 1

--T-v

' "zcR2nTi°[<rlwi3'4')X----_+ <ri(2rl'R+__+nlnoTn )wi2'¢)]Tio

+ Ti'--P'°[(-r,(rl,¢Ai2,¢ + rl,,A/2,¢)) + (rlrl,,_)]no

Tio-

+ _-_no[Aio,¢(rln3,,) -no,¢(rlAi3,¢> + ((TilT{ononi )ri(Aio,¢n2,¢ - Ai2,¢n0,¢))]
2

+3_noT'°<,.i T,.._'2(Aio,¢ni,¢T{o - An,cno,c))- _---no[<(Ti- Tj./),r, (Aio,¢n2,¢- Ai2,¢no,¢))

1,/-m.__(TeO)a/'_cR <vl._) = O(4.28) +<r,(Ti- T±i)2(A,o,_nl,¢- no,_An,¢))] + _ V mi _o ex-'o

Thus, the quantities (ry(T_ - T±_)3,¢), (rl(Ti - T_,)3,¢), (rlT_3,¢), (rlT{3,¢), (r_n3,¢),

(r.lS±e3lV_2[2/J), (rlS±i3[V_/2[2/J), (rlr/JV. Se3), (rlr/JV. Si3) and (r1,\/3,¢) have been

expressed in terms of <r_Ae3,_). The quantity <rlA_3,¢) has not yet been determined. It will

be seen that fourth order solvability conditions give sufficient information to find (rlA_3,_).

This process by which solvability conditions give information about lower order solutions

was seen earlier when the second order solvability conditions gave that A_l = 0 and when

the third order solvability conditions implied that (rlAe2,¢) = 0.
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4.2. Fourth order

The analysis of the fourth order system, as in third order, focuses on determining and sat-

isfying the solvability conditions rather than calculating the expUcit solutions. A goal here
q

is the calculation of the time evolution of Teo and Ti0 appearing in the pressure equations

and subsequently the calculation of the time evolution of the complete zero order solution.

It will not be necessary to calculate the fourth order solution in order to determine the

transport. Instead the time evolution of the temperature will be found by satisfying the

solvability conditions associated with the fourth order pressure equations. Term_ of the

form ((third order)rl,,_)appear in these conditions; they are determined using the relations

from the previous section. Additional relations between the zero profiles will be determined.

I now examine the fourth order equations in the same sequence used in lower order, not

computing the solutions but verifying that the solvability conditions are satisfied. Equation

(2.107) in fourth order can be used to determine T _4. The condition that one can solve for

Tc4 is "

(CT,--T±_)2(Ivel_)'*s _:_:'*)
X---To--'-(CT,-T:o),:

4.29) +((Tc- T±e),narl'¢_ -. )3-r_--¢> 0. '_, + <(Ts T.L, =

This condition can be rewritten as

__.. /_ rl.¢_
(4.30) - (_2'_IV¢12Xo2 )+Y_(nol_:+ 1)(r_o2,,)+x_o3--2-/---0.
The condition (4.30) expresses (,_e3,¢r:) in terms of ()_e2,¢r_), and (,_e2,¢lV¢12). Using the

relations at the end of the previous section, a number of other averages of third quantities

are also known in terms of averages of ,_e2.

Equation (2.108) is used to determine Ti4. The solvability condition for this equation

gives the following relation between (rlAi3,¢), (r2Ae2,¢), (A_2S.Lilzx,¢)and (Ac2,_IV¢I2),

-8((T, 2- T±_)I'n2,¢ ) - 16((T_- T±i)l(Ti- T_)_,nx,¢)
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+ Ono(T.,dT- 4,lO(n(T -

+ lO(nlTil,_(Ti - T.Li)2) 4" lO(n2(Ti - T±i)lTil)

+4no(Til(Ti - T.t.i)s,_) + 4no(Ti2(Ti - T_.i)2,¢,)

+4T_o(nl(Ti - T.t.i)s,¢) + 4Tio(n_(2] - T±_)2,_) + 5no(TilTi3,_)

+5T_o(nl T_3,_) +

T _ ,r1_1_,¢, (IV¢I2),,_
+6noTio( (Ti .- .Lij21.--_"i- + X_ )

(4.31) +6noTio(_-_(Ti - T±i)_) = O.

Since the _verage (r_A_3,_) is expressed in terms of the second order averages (r_Ae2), and

(Ae2,¢IV¢12), the above condition (4.31) _ives a constraint on A_2. This constraint reduces

the number of independent functions in tt_e zero order solution from five to four.

Continuing with the remaining fourth order solvability conditions, equation (2.102)in

fourth order is used to find n4. The solvab;llity condition is

* (4.32) eXo _eXo, eXo _,!V¢[_ A ,
c'R-'3(rl'¢A3)- a_-R_rlrl'*A2)'t" 2cR2 " XT 2,,! - (P" r,_).

The condition (4.32) is an additiona_ constraint on Ac.2, since the term (rl,¢A3) is known

in terms of _ver_ges of Ae2. Hence, the number of independent functions in the zero order

solution is reduced from four to three.

']'he pressure equations are used to determine the fourth order parallel heat flow. These

equations h_ve solvability conditions. Appearini_ in these conditions are the t_me derivatives

of the zero order temperatures, T_o and Tio. Hence, to determine the slow time evolution of

the temperature it is not necessary to solve the fourth order equations but only to evaluate

the solvabil.ity conditions. Evaluating the solvability conditions is relatively simple since

no information is required from the fourth order solutio_ and only limited information is

needed about the third order s, _tion.

• The solvability conditions are complicated, lt is cortvenient to write the solvability

conditions not in flux coordinates but in the original polar coordinates,
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Op,,or__
(_-V (u.p. +

1

(j at _'+ " 5s_)l + (3pov..,,)

vz.)(B (B V) 1
+2(_(p_ B2 -un - _.V.u.)l

-- r

_ 24/z mt no(Tao T_) + (_E,,,).(4.33) - --"_ mi "tee

I will show that in general it is not possible to set the time derivative in the _bove expression

to zero. That is, the lowest order solution does evolve on the time scale hypothesized

initially, e-2rce. To determine the slow time evolution one must calculate the various terms

in this expression. First consider terms explicitly involving the time variation of the lowest

order solution are,

r _ r r 07'.o r r(4.34) (_ _. ) + (_.V. (uaPa)) = no("_-'_) + rao{'_N) + (_-no(U. V)Tao).

The time derivative of a flux function is no longer a flux function. The work done by the

press'are is calculated to be

r

(4.35) (-ffpc,V "u_,) - T,,o(j(N Ono (U. V)no)) TaOt - (T(n,_.x.,¢- n,¢.x.,,))
g

where

(-_(n,¢At.¢- n,¢,Xe,_))= _o_ _-_(no(nl,Xe3,¢)) + Tc°0_(n°(n2Ae2'¢))no

no T_o rto

:/_--_._.'_'"--_n n n TeoAe.o,¢

(4.36) n3o--X , 1,_ 2) ng (n,.)na)

and

( (n.,,x,.,- n.,,X;.,))= T.o ((n3.¢,Xia)+ (n_._,_,3)+ (n2._,Xi2))
nO

+ T/o ((T/1 ni )(n3,¢Aio,t_ _ rto,q, Ai3,_ + n2,4_Ail,_- n2,q, Ail,¢ ,
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+_ Ti2 n2 T.n,
_0((_ + _ T_ono)(n2,_o,¢-no,¢_,2,,))

--- T,o(cT,2 n2)Cnl,,,l,-. + T_o ( no,.._oAi2,,)+ no Tio nono

Tio,,T/3 nln2 Ti2nl _)(nl,,Aio,q,- no,,/,Ail.¢)).
- (4.37) +_o-/l'_,;o + no_ Tiono _io-o

Consider the next term in (4.33) containing the divel-gence of the heat flow,

1 r _ IV_l2(4.38) _(ffV.Sa)- .-,-(S±_ j ).

This requires calculating tile flux surface average of the fourth order perpendicular heat

flow. For the electrons, this is

IV¢12 IV¢12_s._s)-tIvwl23r2 IVg'12<s"_-7-) = ( J n "-7-(k -_+ X_o)&.o2)
oR2 T oR2T T-2----(V,_( ,- T.L,)2m._)+ 8--( ,0( , - T.L,)2n2._)
exo - - exo

cR _

-2T_ c-R--2((T,- T±elsnl,¢)- 5T, oe_o(nlT, s.,)exo

- - 6n T cR2/nn"c'r'v T.Le)2)+6r*°--<-'h-nl(T*e__ 7_)2) o,O----ex R2 x-'e--

(4.39) - 3noT,_oCe_2o((Tc -
T±_)2(IV¢I2),_).

The flux surface average of the fourth order ion perpendicular heat flow is

d R)+(sx_2 3r_ Iv¢12,,
-2(nl,¢(Ti -- T.u)l(Ti - Ta.i)'_) + 2(n2(Ti .....T±i)l(Ti - Tl.i)_,¢)

• _'l+2((Ti- T±i)_n2,¢)+ 4((Ti-Tzi),(Ti- Tx_)2 ,,,)

-5no((Ti- Ta.i),Tis,¢)- 5no<(Ti - Ta.i)2Ti2,,_)

-5no((T_- T±i)sTi_,¢)- 5(n_(Ti - T_.i),T_2,,)

--5(n,(Ti- T±i)_Ti_.,)- 5(n2(Ti-T_.i),Ti,,¢)

• -2rio((Ti-T_,),ns,_)-2Tio((Ti- r±i)2n2,,)

-2T_o((7_-T±,)_n_,,)- 2Uh(T,- T_,)_n_,_)
v
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-2(T.(T_- T±ih._,_)+ ('lh(T_- T±_)_n2,_)

-5T_o(nl T_s,_) - 5Tio(n2Ti2,_) - 5(n2T_l T_l,¢) m

, 6Xo (noTio((T, - T.L_)Srl,_b)-STio(n3_/..,)+ -_-
(4.40) +T_o(nl(T_ - Tx_)2rl,¢) + (n2(T_ - T_)lrl,¢)).

Inow calculatethefluxsurfaceaverageofthework done by thestresses,

r (B2 V) 1(7(p._p_.)(B:__:-._-_v.u_)).(4.41)

This calculationisstraightforwardbut lengthy.I firstcalculatethe work done by the

electronstresses,ltisconvenienttoreturnfora moment totheoriginalform ofthereduced

electronstressequation (2.20). An exactconsequenceofthereducedequationis

b 1 -3.21/3(Pe- P±e)2(p,-p_)( B.(B.V)u,-_v..o) = 5 _.
I

-2 (Pe - p±e)V, (u.(pe - p±_)) - 2(p_ - p±_)(_.TB ' (B. V)S_ - SV. S.)Pe 5p_

(4.42) +2(pe - p.Le)2 1 I
P, (_-/B.(B. V)u, - sV. u,).

Iftermsthroughordere2 onlyareretainedthenthelastterm on therighthand sidemay

be dropped. Now calculatethe fluxsurfaceaverageof the termsinthe above expression

(4.42).The fluxsurfaceaverageofthefirstterm is

-3.2'/3R (Tc - T±e)_

(4.43). (Rj -3.5.2a/3 (P_ -reeP±_)2) = n_ 5r'_'_ee ( J )"

The flux surface average of the second term is

R, (Po- _±")v. (u_(po- p±o)))("7 2 p_

= -2_T-_O_((T_- T_)2(7_- T±_)2._)=0.(4.44)

The flux surface average of the remaining term is
qt

1

(-.R2(p"- P'I")(-_T_B.(B.V)S e - 5V. Se))J 5pe
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2 ,..,,_ (IV¢12),,,
= -g._-_Lo((Z,- T.,.,,)2(s,,,2,_+ s,o_--_-- s,,,o x,_ -

1,.o IV.,/,I2, ,,
, rl,_ _t o_e__),¢ J].(4.45) %1 R

" The flux surface average of tile work done by the electron stresses has been specified.

Now, I calculate the work done by the ion stresses. First one finds that

1 1 3 T,o)3/2n__/-_'_(T_-T±_)2
(Pi- pj.d)C_-_-B. CB" V)ud- _V. ui) = -5(T-_do ° V rn_ re.

-2(1- 2(p_- ps_))__(p_- P_)v. (u_Cp_-p±_))-
Pi Pd

(4.46) (1 - 2 (p' -" P±i)) -1 2(p' - Psi)( 1 1_B. (B. V)S, - sv. s_).5p_P_

Taking the average of this expression, the first term is

3 .%oW2R m_' (T_- Tj._)_R3 Teo_s/2..2m/'_e(ri-T±/)2) =-5(!}"_o" _.. ( )"(4.4'7) - (7._(_-_o j ..oV _-._/ r,. J

The average of the next term is

R2( 1 _ 2.(Pi- p±/))_, (Pi- PJ")V. (u/(p/- p±,)))

1 a l a (An,¢(T{ - T.ki),(T_- T±{)2)= 2T,oa¢(_'*(T_ - Tz_)_) T_o0¢

._o,,_<T.,_(T_-T_._),(T_-T_)_>

(4.48) A{o.¢(T{2(T{ - T±i),(T{ '- T_.{),,¢).

The average of the final term is

(R(1 - 2(Pi-PiPa'i))-' 2(pi5pi-P±i) , 1 1_¢B. (B. V)S_- _V. S_))
2 1

= 5T_o[<(7}-Tz/)_SII{3,¢)+ ((T{- T.Li)3S[[{I,¢>]+ _o(T{,(T_- T_{)2SII;_,¢>

1 . T. 2 _S
• +;F-_o(T,2(,- T±,),SII,,,¢>+ _/o((r;- Tz{), I1_,¢)

Sllio _

. x_ ((_}- Tx_)_(IV¢I_)'*)-3((T'- T±i),(jV. Si3)>
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- - - - T ,)IT,1 -
(Sx,2IV¢!2. 1 langte(Ti- T±i)3 (Ti- T_i)ITi2

- " _)"_)) - 5 - Tio )( °cllil''l'

(4.49)-711,¢ + (S.l.i, Y¢;'V¢),,I, - (S.l.i, [V_7['),¢) ).

./

The flux surface av_._.'age!_f the work done by the stresses has been calculated.

I summarize th_ z,,n_y_ls of the fourth order system up to this point,. Using the condition

(4.30), (rlAe3,_) is known COmpletely if A_2 is known. The relations (4.111) and (4.]2)are

satisfied by the appropriate choice of two of the arbit.rary first, order flux functions in

Ac2. The calculation of the solvability condition associated with the pressure equations

gives expressions for the time evolution of the lowest order temperature. Ali the terms in

this solvability can be expressed in terms of averages of Ac2. Thus, when Ac2 is completely

specified the time evolution of the temperature will be known. I proceed with the remainder

of the fourth order system.

The solwbility conditions for we4, wi4 and n4 are not independent; there are only two

independent, conditions. This can be shown by examining the structure of these three

equat.ions. While three equations are derived from the poloidal momentum balance, there

are only two independent solvability constraints. Recall that these equations have the form ,

1 M
(4.50) _( _r,z - M_z,r) = 0,

1

(4.51) 7(M_,,, - Mi,.,)= O,

and

1

(4.52) 713. (M_ + M,) = 0.

The associated solvability conditions are obtained by taking the a,vera,[_eof the above equa-

tions with respect to ¢. A simple calculation shows that

_0 _B.v(4.53) / d_Cj(v'''- vz'') = 0¢/
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where v is any vector with no 0 component. Hence, if the average of any two of the above

equations vanishes so does the third.

The solvability condition for we4 is:

1 0 (nz,4,Tez) + --_---rg }la Teo,¢ (nlnz,,l,) + no,__£._
no 0¢ no O¢ "nl'¢'T_" n_ n;o

(nlTe3,¢)

no,_,,n_T , no,__£.O{n2T,2,4,)
1_0_ Te°'=---_O(n2an2,4) - "-_o '_1 ,2,,2+ n_+2no 0¢ ((n_),c_T,:) + na

_-:'ff"Te°'¢ _ Teo,¢ + 4e x o 0+,,0 (n'nx'+n2) n_ 3nocR 2

rl ._ ni _)_,3,+) no-2_.o,+((_ + _,)-a,,) 2.o((_ + 1 o 2-o . F¢(('_)'_°=)
N1 0

{rar,,+_,2) + 3(__ + _--_2)(r_n2,¢Aeo,¢ - no,cA,2,_r_)R 0¢ no ,

+2no,¢{n2Ae2,_)] + eXo ni ra ni r__o 3_o_cR2_°'d-2((_ + _)_,_1 + 3((_ + _)._,_)

6 6 eXo rff_.+_(,,,,',,,,,=_}+ _<,',._-,,,)1 + .o,,R_,,.,,.(",_o_,,>
1 0 2 -

_(N,n=_o+ 3)2-R0=¢ (r'A`_'¢) + Ae°'¢(n_ r''¢> 2AcO,Cn2° (n,n_r,,¢)]

2XO rLel 0 , 2_ • N_ (Ae2rlrl,+)
. 3n_RaL_-_-_--_rl _2,¢/+ (n-n--_-2Ae_r_,¢)- -_-_0

2
2N_)no,¢ ex° A,o,¢ (nan_r_,¢)

+(3+ _ -_-(u_,,_,_)- -o,+<_,3_,,_)]+ _o---_th_,
(4.54) 1 (r,,¢na)+ .:___()]3 + 1 (1 .p, p,,,o ,,o_-'''''_'_"_---o.__ ___.(,,,_-o,.,)).

The constraint (4.54) reduces the number of independent function in the zero order solution

from three to two. With all the quantities in the energy balance solvability conditions known,

the time evolution of the lowest order temperature is determined.

The remaining equations in the system are the ion and electron stress equations. The

solvability condition for the ion stress equation includes the term (_/. The second order

solution Ai= has an undetermined flux function part that may be chosen such that the solv-

ability condition is satisfied. There is no solvability condition associated with the electron

stress equation. The constraint (2.41) must now be satisfied. This constraint determines

the time evolution of ¢.

:- I summerize the zero order system. There zero order system initially consists of nine1¢
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arbitrary functions of _ and a Grad-Shafranov type equation for 4. The seven constraints

(3.12), (3.44), (4.9), (4.14), (4.31), (4.32), and (4.54) serve to reduce the number of inde-
b

pendent functions to two. Hence, with the time evolution of Tc0 and T_0 given by (4.33)

: the time evolutionof the ninezeroorderfunctionsisknown. The remainingpartof the

zeroordersolutionis_bwhose timeevolutionisdeterminedby the constraint(2.41)and

thesystemisclosed.
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5. SUMMARY AND DISCUSSION

In this thesis, I have presented and analyzed a mathematical model describing transport

in a tokamak. The model is derived from a thirteen ,loment two-fluid description. The

thirteen moment system was chosen as an initial description because one expects it to

provide a reasonable description of a weakly collisional plasma while still being sufficiently

simple that a detailed analysis is possible. The full thirteen moment system includes a

wide variety of phenomena. A reduced model is obtained by neglecting small effects. The

question of which effects are important to transport and which may be neglected is not easily

answered. I have taken typical values of the temperature, the density and the magnetic field

and assuming the plasma to be stable and quiescent, used these to estimated the order of

magnitude of various effects. I include small smooth laminar flows. I introduce a single

scalingparameter, _ - memi.

It is in the matter of scaling that this work differs most significantly from neoclassical
I

calculations. In particular, I take the velocity space anisotropy of the distribution function

to be considerablely larger than in standard neoclassical calculations. One of the results of

this work is that the assumed size of the anisotropy directly determines the magnitude of

the flux surface variation of the other quantities in the system and plays an important role

in transport. It would appear that by assuming different sizes of the anisotropy one can

obtain self-consistent systems with dramatically different properties. The question is then

what is appropriate in a tokamak system.

There are plausible reasons for taking the anisotropy to be relatively large. One reason

is related to the low collisionality of the system. An estimate of the size of the anisotropy is

given by the product of the Mach number and the mean free path. While the flow velocities

are small, the mean free path is long and thus the possibility of significant anisotropy in

, the system exists. Another perhaps more fundamental reason is that tokamak devices are

not in the thermodynamic sense closed systems. They are driven by external sources such
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as the transformer loop voltage and various heating schemes. This model includes particle,

momentum and energy source terms. It is the order of magnitude of these sourcc_ that

determine the character of the system. Hence, I take the anisotropy to be initially O(_1/2);

collisional effects force the electron anisotropy to be 0(_).

Once the scaling is decided it is straightforward to extract from the full thirteen moment

system a reduced model that includes terms through O(_2). Using the toroidal symmetry

of the physical system some additional reduction in the form of the equations is possible.

The system finally consists of ten primary unknowns and ten equations along with three

constraints. The reduced system though considerablely simpler than the full thirteen mo-

ment system still retains particle flows and pressure anisotropy. The qualitative features of

the solutions of such a system are not at all apparent.

This reduced model is quite complex and non-standard. The equations still contain

terms of very different size, varying from O(1) to 0(_2). There are a number of fundamental

questions about the model that one would like to address. There are questions about the

mathematical structure of the system, such as what data can be specified, is the system

closed and the time evolution determined. Also, there are questions about the physics of

the model, what are the effects of particle flows, what is the role of the anisotropy, how does

collisionality affect the solution, and on what time scale do so]utions evolve. A reasonable

method of exploring these questions is to expand the solution in an asymptotic series using

the scaling already introduced. The calculation of the asymptotic solution is straightforward

but lengthy.

The asymptotic solution provides detailed information about the model. I find that

with two flux function profiles initially specified and the external sources known., the lowest

order solution and its self-consistent time evolution is determined. I find that the lowest

order solution evolves on the time scale _-21"e_ 50m_. This time scale is comparable to

energy confinement times seen in experiment.

I now describe the asymptotic solution in detail. The lowest order system gives that

the poloidal flux function _ is given by a Grad-Shafranov type equation and the other n'_ne

unknowns are undetermined functions of 4. A first order constraint reduces the number of

independent undetermined functions from nine to eight. This solution is steady on the time

scale Tc. lt is typical of asymptotic solutions that the zero order solution is not completely
B
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determined by the zero order system. From the first order system I calculate corrections

to the solution so that the lowest order solution is steady on the time scale _-l/2re. I next

calculate the second order corrections and extend the zero order solution to the time scale

_-1_"e. In order that solutions to the second order system exist, restrictions are placed on the

first order solution. These restriction imply that Ael = 0. By setting Ael to zero, I impose

a constraint on the zero order solution, reducing the number of undetermined functions in

the zero order solution from eight to seven. Another solvability condition in the second

order system is satisfied by assuming that _ is approximately symmetric with respect to

z. It is seen that with this assumption of symmetry, the solution to 0(_ 1/2) is up-down

symmetric but that collisional effects lead to a loss of this symmetry in second order. Later,

this up-down asymmetry is found to be a mechanism for transport.

The analysis of the third order system concentrates on identifying and satisfying all the

solvability conditions associated with the third order equations. The third order system

provides two additional conditions on the lower order solution, which are interpreted as

additional constraints on the zero order solution. Hence, the number of undetermined

function in the zero order solution is reduced from seven to five. The analysis of the

fourth order system is similar. From solvability conditions, I find that the time derivatives

of the zero order temperature profiles can be set to zero only if the energy sources are

carefully chosen. Hence, in general the system evolves on the time scale _-2re. By satisfying

the remaining solvability conditions for the fourth order system, I obtain three additional

constra_i:,ts on the zero order solution. Thus, with the time evolution of the temperature

profiles known and the time evolution of the magnetic field given by another constraint, the

self-consistent time evolution of the zero order solution is determined.

I have presented a model for tokamak transport derived based on a thirteen moment

model of a plasma. The model contains a careful treatment of particle flows, anisotropy

and heat flow. A key element irt this model is the assumed size of the anisotropy. While the

model is somewhat complicated it is sufficiently simple that a detailed study of the behavior

of asymptotic solutions is possible. The work done by the stresses is a significant mechanism

for energy dissipation. Up-down asymmetry is another source of transport. This model also
4.

finds energy transport due to heat flows. The system evolves on the time scale _ 50ms, a

time scale comparable to experimental energy confinement times.g
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A. THE FOKKER-PLANCK COLLISION OPERATOR

I now make explicit the form of the collision operator Cab in (1.1) and calculate its mo-

ments. In this section it is convenient to supress the spatial and time dependance of various

quantities. The Fokker-Planck collision operator has the form (see for example [2])

1V i '(D,_bf.)),(A.1) Cab = -V_ . (Aab/a - "_

where the frictional force vector Aab is

ma)V_hb(A.2) Aab= z_r.(1 + _bb '
the diffusion tensor Dab is

(h.3) Dab = z_FaV_V_gb,

aJad

(A.4) ra = 4_rzae4 lnAcout.
-q

Here In Acot,t is the Coulomb logarithm, an approximate quantity related to the introduction

of a cut-off of the Coulomb potential. The operator V_ is the gradient operator in velocity

space. The functions gb and hb are the Rosenbluth potentials defined by

o

(A.5) _ .qb= 2hb

= -4./,,

with the boundary conditions h(_) goes to zero and g(_.)/_.n goes to one as _ goes to
4,

infinity. I first show that this collision operator has the necessary properties of conserving

• mass, momentum and energy of the plasma. I asstlme that the distribution function fa is
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sufficiently smooth and vanishes as _ goes to infinity. Integration by parts gives zero order

moment t q

e

(A.7) / C.b = 0;

hence, particles are conserved in collisions. A simple calculation gives

Thus

(A.9) _ ma J _Cab d_ _-
0,

b

and thetotalmomentum oftheplasmaisconservedby collisions.Likewisethetotalenergy

oftheplasmaisconservedby collisionssince

(A.10) m./(( - ua)2C=bd( = -mb/(_.--Ub)'Cbad(

and +

(A.11) E ma/(_ -- Ua)2Cab d_ = 0. t
b

There are no similar conservation relations for higher order moments. Another important

property of this collision operator is that _ Cab = 0 if and only if fa and fb are uniform

Maxwellians with common velocity and temperature.

In order to complete the thirteen moment equations I need to calculate moments of the

collision terms. I first calculate the thirteen moment approximations for the Rosenbluth

potentials g and h. Using (1.31), a simple calculation shows that

I Pik 02 1 Sj 0 a )fo.
(A.12) f = (1 + 4 p OyjOYk 120pr OyjOykOyk

Since f0 is a function of r = lYl alone this can be written

lp_k, . ...f_), 1 Sj r-_(A.13) f = (i+ _--p--yjykr[r- 120pv _j( (r2f;)')')'

90

!m,.,,,, ,,t,u., I_irpi,, ,i,iPi_iii,,iPP,,llp,IT,e,,+Ipl..... ,IP"lltil..... llIlll'tlI'PI"



where _= y/r amd prime denotes differentiation with respect to r. Symbolically, (A,13)

can be written, f= L[]'o]. This form allows the thirteen moments approximations for g
@

and h to be cMculated a_ h = L[ho] and g = L[go] where

I

(A,14) A_go = 2ho

and

(A.15) _,_o,= -4,_.,'o.

The functions go and h0 are found to be

1

(A.16) 90 = nv((_r r + r)_Cr) +Trl/2ezP,C-r2))

and

.¢(_)(A.17) h0=
1) r

• where ¢(r) is the error function.

In order to make the calculation as explicit as possible I use the following standard

l approximatio n, vMid for fluid velocities much less than the thermal velocity (see for example

[2])

Ao = ---""Tr3/_e=p(-p=r'_)(1- 2_:Pb•(ub-, u,)/vb)
va 3

(A.18) fao _(o)= I

where/_ = vb/v.. Now to _:rfinimize notation let y = Yb.

The integrMs over velocity space are conveniently calculated using spherical coordinates.

The following identities are used for the radial integrals,

(A._9) i__ d, ,"_.-": = -_r('i+-L),-_2 2

t*

(A.;zO) ,,/rrC,(r)e-"'
, _ 2a '

O1

l!' ', ,l,ll_,_l'll' ]111", llilllt"",, _'lllt" _ 'p'' ' _'" IIIIt' 11' It,lh _rr, ' _ Ilrl II I] I, It1'"'11'1' ,ll'_Ill,'rq_l_ 'rr _ll 'P"_ll, ""'q' 'Nl_,,i_P,"'rl ',lr,lllli[If'_l",_' fir, II _' ',, ....v, ' q,_'lIl'llI ,, ll""rlllq_ ,'fill,' GIr _qtI>l ..... II1'11'fir Ir_,_, .... , ,,,,_ , ,,_l, q_l,l,i, ,I,IIL



E

whereF(z)istheusuM gamma function.The calculationoftheintegrMswithrespecttothe

amgularv,_iablesusesthefollowingsimpleidentitiesforthesolidangleintegralofvarious
$

tensorproductsof theunitvector_ withitself

/(A.21) da = 4_,

4

4(A.23) d_ _jYk_t = ..1-gr(6qcq_t+ cSik6jt+ 6it_jk),

where the integration is over the surface of a sphere. The integral of odd tensor products

of _) vanishes. With, above identities the calculation of the moments of the collision term

while complicated is straightforward, As an additional simplification, I will present only

the collision terms linear in the moments us, pa and Sa; quadratic terms are neglected.

I can now simply calculate the first order moment

m_, _ / Ohb ,.

where .la is given by (1.31) and (A.18). Keeping only linear terms one has t

(A.25) Fa = -man (u. - ub) + 3 1 Sa Sb
+ )

where

4 nzbI,,(1 + ma/mb)
(A.26) r51 = 3r1"-']5 (v_ + v_)3/2 '

The time Vahgives the characteristic time scale for momentum transfer from species b to

species a. There is no, momentum transfer in like..species collisions.

The integral for the second order moments is

. e 2

ma, bhb 10gb _f
(A.27) Ta = z '_Fa rn. v_ (2(1 + z--_-b)y_-y + v--_b.O--_ , j a ely.

The resulting linear terms are
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# TQ '_-- '''" m

rob m. + mb r.b (m. + mb)(V.2+ v_
I Pb3m.v_ + 2mbv_- 'mbV_

. (A.28) 45 (mo+  b)CV.2+ '
The integral for the third order moments is

Q. 2 s / m°,,2,. °hb __._hb_= zbI'°m°vb (r2(I 4' _--_b)( Yg_0--_k. Dy "°
,2

2r. Ogb )fo
(A.29) 4,2vb_rhb +-_byk-_--_, dy.

Integration gives the linear terms

Qa = man(Uo- Ub)(3mav 2 "t"3mbVa2 -- 2mbv_)
rsb mo Jrmb

3 S, I I (18mov_ + 6ruby6. + 63mov4v_ + 17mbv,4v_
410 rob(m, + mb) V2 2

" 3Sh v2 I

(A.30) -rb':"(v_+ v_)2(m. + mb)(10mov_ + 4rnbv_- 5m.v_ - 11mbv_).

Theseresultscan be simplifiedusingthatmemi issmall,ltwillbe shown thatforour

purposestheonlytheleadingordertermsareneeded.Theyare:

2i/3.9 m_
(A.31) F_ = -.Fi - -2 I/3 nine (ue - ui) . Se . O( ),

r_e I0 Tere_.

(A.32) T_ = -2"2'/3m"n(Te-T_)I- 3"(l + 2'/3) P-._e+o(.m--_),
3 m_ tee 5 re.e mi

(A.33) "I'_ = 2"21/_m_n(T_'-Ti)I 3pi + o(m__),
3 mi vee 5 rii mi

r,:e tee " mi

$

T, Si ,n_
(A.35) Qi = 189,.-_-,-- + 7.95S_ + O(--).

' "_i tee vii mi
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Figure 1. Tokamak Geometry
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