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Statistical Mechanics and the Past Hypothesis 

By Angela Lee 

 

Abstract: 

 Statistical mechanics is a time invariant explanation of thermodynamic phenomena at a 

microphysical level. However, given that the laws of thermodynamics are not time-reversal 

symmetric, it is unclear whether to introduce the asymmetry through boundary conditions 

(through the past hypothesis) or through the dynamic laws themselves. In this paper, I defend the 

need of a boundary condition for statistical mechanics against two main objections: that there is 

no independent knowledge of the past hypothesis, and that the dynamic laws in statistical 

mechanics should be time-reversal asymmetric. I first introduce core notions of statistical 

mechanics, explain the past hypothesis and its motivation. Then, I bring up the two main 

objections against the past hypothesis and my subsequent defense against them.  
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Statistical Mechanics is a time invariant, microphysical explanation of thermodynamics. 

However, to make correct retroactive predictions (retrodictions) through statistical mechanics, 

the past hypothesis must be included. In this essay, I will defend the past hypothesis and 

statistical mechanics explanation of thermodynamics against two objections: that there is no 

independent knowledge of the past hypothesis, and that time-invariance should be incorporated 

into the laws governing dynamics instead. Over the course of this paper, I will first give an 

overview of statistical mechanics, before motivating the past hypothesis. Then, I will present the 

two objections and answer them. 

 Statistical mechanics is a theory that is supposed to explain thermodynamic laws in 

microphysical terms. At the time, scientists wanted to explain the Second Law of 

Thermodynamics, that the entropy of the universe (as an isolated system) never decreases, in 

terms of the particles that constitute the system. So, they devised statistical mechanics, which can 

be broken down into three components: first, 6N phase space, second, the statistical postulate, 

and third, Boltzmann’s theorem. First, to explain the phenomena that we observe, like, for 

example, ice melting in a cup of water, we need to consider a higher dimensional space that 

encodes all the information of each particle in a system. This space is called phase space, and has 

6N dimensions for N particles. Three dimensions are used to describe the position of the particle 

in the x, y, and z direction, and three dimensions are used to describe the velocity of the particle 

in the x, y, and z direction. In this 6N dimensional space, all the information for each particle can 

be represented. Here, one point in the 6N phase space corresponds to a single combination of all 

position and velocity values for each particle, also known as a microstate. Individual microstates 

can also be grouped together based on the macroscopic properties of the system they define. 

These properties include temperature, pressure, and volume, to name a few. These groupings of 
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microstates are called macrostates and can be expressed in phase space by the volume that the 

number of microstates corresponding to one particular macrostate takes up. This leads to the 

statistical postulate, which states that the volume of a macrostate in phase space corresponds to 

the probability that that macrostate will be observed. Therefore, the bigger the volume of a 

macrostate in phase space, the greater the likelihood that we will observe the system in that state. 

Lastly, Boltzmann’s theorem describes the evolution of a system over time. It states that the vast 

majority of microstates in a given macrostate are going to evolve into a microstate that is a part 

of a macrostate with lower entropy, also represented as a macrostate with a larger volume in 

phase space.  

With this conception of thermodynamics, scientists can make accurate predictions of the 

future. For example, consider an ice cube in a cup of water at room temperature. In this system, 

there are more possible orientations for the water molecules if they were in liquid phase than if 

they were in the solid phase, where they need to be in an ordered structure. Therefore, the 

volume of phase space that corresponds to all the water molecules being in liquid phase is larger 

than the volume of phase space that corresponds to some of the water molecules being in the 

solid phase, or being an ice cube. So, by statistical mechanics, and Boltzmann’s theorem in 

particular, we should see the ice turn into water in the future. This prediction matches our 

observations, where we always see ice melt into water at room temperature.  

Now I will go onto the main problem with statistical mechanics. Here, our microphysical 

explanation of thermodynamics is time-reversal symmetric. This means that, with only statistical 

mechanics, we would predict that if we go back in time, our system would also be in a 

macrostate with higher entropy. This diverges from our knowledge of the past. So, either 

statistical mechanics is wrong, or our knowledge and records of the past are incorrect. So, 
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statistical mechanics gives us bad retrodictions. This argument is called the reversibility 

objection. Because Boltzmann’s theorem is derived from fundamental Newtonian mechanical 

laws, all of which are time-reversal symmetric, Boltzmann’s theorem is also time-reversal 

symmetric. But, the processes we see are not. For example, we do not see a cube of ice in a glass 

of water melt if we were to go back in time. We would see the ice cube grow. But, based on 

statistical mechanics, it is very unlikely for that cube of ice to get bigger, even if we were to go 

back in time, simply because the macrostate that corresponds to a larger ice cube takes up less 

volume in phase space. So, because statistical mechanics cannot make accurate retrodictions, it 

must be an incorrect theory of thermodynamics.  

 Because of this problem, scientists added on the past hypothesis. The past hypothesis 

states that the universe was at a low entropy state at the beginning of time. This effectively acts 

as a boundary condition for statistical mechanics. With the past hypothesis, we can use statistical 

mechanics to make accurate retrodictions. For example, if we were to retroactively predict what 

an ice cube in a glass of water at room temperature would be like at an earlier time with the past 

hypothesis in mind, we would be able to say that it is very likely for the ice cube to have been a 

bigger ice cube in the glass of water. This lines up with our memory of the ice cube in the glass 

of water, and therefore allows statistical mechanics to make accurate retrodictions.  

 There are two objections to the combined theory of statistical mechanics and the past 

hypothesis that I will go over in this paper. The first objection is that there is no independent 

verification or motivation for the past hypothesis. It seems, at least at this point, that the past 

hypothesis is just tacked onto statistical mechanics without any justification. Therefore, in order 

to justify why adding the past hypothesis to statistical mechanics is the right way to correct the 

theory, we need some independent justification of the past hypothesis.  
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 Jill North seems to answer this objection in her paper “Time and Thermodynamics.” 

There, she suggests that there is cosmological evidence that, at the very least, can independently 

support the past hypothesis. This cosmological data indicates that right after the big bang at the 

beginning of time, the universe was uniformly distributed in thermal equilibrium. At this point, 

the universe existed in an extremely low entropy state due to gravity. This cosmological 

evidence provides independent support of the past hypothesis. Therefore, adding on the past 

hypothesis to statistical mechanics creates a correct theory that can accurately explain our 

observations. 

 This response, however, seems to assume that our observations and records of the past 

are correct. In order to take measurements and interpret cosmological data, we rely on the fact 

that our records of those measurements and data are accurate. But, our goal is to prove that the 

conclusion drawn from just the statistical mechanics theory of thermodynamics is wrong. That is 

to say, we are trying to prove that our records of the past are correct. So, assuming that our 

records of the past are correct to make conclusions from the cosmological data is not 

independent verification of the past hypothesis.  

 At this point, it seems like the kind of independent verification that North is trying to give 

in her cosmological data argument is different from the independent verification that the 

objection might be referring to. For North, the cosmological data seems to be answering an 

objector who may want justification for the past hypothesis without using thermodynamic laws 

like statistical mechanics or the second law of thermodynamics. That is to say, we want to show 

that the world exists at low entropy by utilizing physical laws other than thermodynamic laws. 

To this extent, her response seems to hold. However, it cannot answer an objector who is looking 

for independent verification of the past hypothesis such that the assumptions used for justifying 



6 
 

the past hypothesis are not the same as those used in statistical mechanics. So, for this objector, 

another answer is needed. 

 Unfortunately, we cannot answer this objector by providing justification of the past 

hypothesis without using the assumption that our past records are correct. However, there may be 

another reason to believe that the past hypothesis is correct, and in turn, that our records of the 

past are correct. To do science, we need to believe that our perceptive faculties, like memories, 

and our records of them, are correct. The ramifications of our records being wrong extend 

beyond just the status of statistical mechanics and the past hypothesis. If the past was so 

completely different that we cannot trust our records for cosmological support for the past 

hypothesis, it would also mean that we could not trust our records for anything else. Other laws 

that many scientists take to be correct, like Newtonian mechanics, were developed based off data 

and observations, and more importantly, our memories and records of those observations. 

Therefore, believing that our records are flawed would mean that we would not have reliable 

evidence for any of our physics. If we were to reject all our current knowledge of physics by 

saying that our records are inaccurate, then it would make sense that statistical mechanics and the 

past hypothesis should also be rejected. But, if we do not want to reject our current knowledge of 

physics or the way in which we currently conduct science, we must assume that our perceptive 

faculties and the data we gather from these faculties are correct. So, we cannot believe that our 

records are incorrect. Therefore, we should trust the cosmological data that upholds the past 

hypothesis. So, statistical mechanics and past hypothesis theory of thermodynamics is a good 

theory of thermodynamics. 

 Now, I will address the second objection against the statistical mechanics and past 

hypothesis theory of thermodynamics. It seems like statistical mechanics was shown to be a bad 
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theory when it could not make proper retrodictions. Adding the past hypothesis to statistical 

mechanics, however, does not seem like the right way to fix this problem. The problem with 

statistical mechanics may be the fact that the dynamics are time-reversal invariant. After all, 

there is no way for us to use time-reversal invariant dynamic laws to explain a time reversal 

asymmetric process. Another way to say it is this: there is no reason we need to have a time-

reversal symmetric account of thermodynamics, like we do in statistical mechanics. It could be 

the case that the fundamental laws that govern thermodynamics should be time reversal 

asymmetric. Adding asymmetry into statistical mechanics by changing the boundary conditions 

is not the right way to get a good microscopic theory of thermodynamics.  

First, it may be a good idea to go over some possible time-reversal asymmetric theories 

of thermodynamics. I will introduce two leading propositions brought up by North, namely 

ergodic theory and the GRW theory. According to Boltzmann, a system is ergodic if “for almost 

all initial conditions, its trajectory passes through every point in the available phase space” 

(North 26). So, if a system is ergodic, we can use the mathematical theorems from ergodic theory 

to explain the entropy increase through the dynamics. GRW theory, on the other hand, is a 

collapse theory that is used to explain phenomena seen in quantum mechanics. It adds a 

probabilistic collapse law that, along with the Schrödinger equation, explains how wavefunctions 

collapse for particles. This collapse law can be multiplied by a gaussian to give the probability 

that a wavefunction will collapse into other possible wavefunctions. The notable feature about 

the collapse law in GRW theory is that it does not give chances for different past wavefunctions, 

only future possible wavefunctions that a given wavefunction can collapse into. Therefore, it is a 

fundamental, time-reversal asymmetric law. This can be used to explain thermodynamic 
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phenomena because the wavefunction is localized to a certain location in phase space, predicting 

which microstate, and therefore which macrostate, the system collapses to.  

In her paper, North gives some specific replies for the aforementioned time-reversal 

asymmetric theories and for incorporating time asymmetry into the dynamics of 

thermodynamics. First, the two theories mentioned before may not even be true. So far, normal 

systems have not been shown to be ergodic, which means that the theorems derived from ergodic 

theory may not apply. Furthermore, GRW theory may not be the right theory of quantum 

mechanics, as other theories, like Bohm’s theory, are still contenders for explaining quantum 

mechanical phenomena. Second, time-reversal asymmetric theories generally seem to still 

require asymmetric boundary conditions to make correct thermodynamic predictions and 

retrodictions. So, it seems like the theories that do incorporate time-reversal asymmetric laws 

cannot avoid incorporating a boundary condition. 

This answer, however, seems to only address particular instances of time-reversal 

asymmetric theories of thermodynamics. It does not answer why we should accept a 

thermodynamic theory that has time-reversal invariant dynamic laws, or why time-reversal 

invariant dynamic laws should be preferred over time-reversal asymmetric dynamic laws. For 

this, we must consider how thermodynamic laws are derived and what things they govern. 

Thermodynamic laws govern particles that make up a system, which are subject to Newtonian 

mechanics. This means that the laws which govern the individual movement of different particles 

in a system are time-reversal invariant. For the most part, thermodynamic laws that govern the 

evolution of particles over time, like Boltzmann’s theorem, for example, are also derived from 

the individual movements of the particles in the system. Therefore, they must also be time-

reversal invariant. If these laws were time-reversal asymmetric, there would need to be some 
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explanation as to why some laws that govern particle dynamics in a system are time-reversal 

symmetric while other laws, which also seem to govern the same particle dynamics in a system, 

are not. Furthermore, if these time-reversal asymmetric laws were derived from Newtonian 

mechanics, it would be difficult to pinpoint where asymmetry would come into play. Having 

time-reversal invariant laws that govern the movement of particles in our theory of 

thermodynamics avoids this problem, and therefore, should be preferred over time-reversal 

asymmetric laws of thermodynamics.  

In conclusion, the current thermodynamic theory of statistical mechanics paired with the 

past hypothesis seems to hold against two prominent objections that I raise in this paper. But, it 

should be acknowledged that this theory of thermodynamics may not be the most intuitive. This 

unease, however, is likely because the processes we observe are themselves time-reversal 

asymmetric and not because the theory itself is incorrect. Ultimately, statistical mechanics and 

the past hypothesis, considered together, give the best explanation of the thermodynamic 

processes that we observe.  
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