
Economics, Department of

Economics Theses

University of Puget Sound Year 

Optimal Portfolio Selection of Credit

Unions and the Probability of Failure

J. Zack Keim
University of Puget Sound

This paper is posted at Sound Ideas.

http://soundideas.pugetsound.edu/economics theses/74

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sound Ideas

https://core.ac.uk/display/216862145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

 

 

Optimal Portfolio Selection of Credit Unions and the Probability of Failure 

J. Zack Keim 

Fall 2010 

 

 

 

 

 

 

 

 

Senior thesis submitted in partial fulfillment 

of the requirements for a  

Bachelor of Science degree in Economics  

at the University of Puget Sound 



Keim 1 

 

Optimal Portfolio Selection of Credit Unions and the Probability of Failure  

Introduction 

 Credit Unions constitute a significant portion of the financial intermediary sector. As 

such, credit unions have considerable influence on the economy as a whole. Given this influence, 

credit union failures pose a serious risk to the well being of the financial sector as well as the real 

economy. Therefore, knowing the conditions that increase the likelihood of credit union failure is 

essential. Although there is a significant amount of literature devoted to analyzing the probability 

of for-profit financial intermediary failure, both empirically and theoretically, there has yet to be 

any exploration into a theory of credit union failure. Moreover, the existing theoretical 

framework describing credit union behavior fails to take into account the stochastic nature of the 

environment in which credit unions operate. The purpose of this thesis is twofold: first to present 

an adequate theory that can be used to explain the credit union decision making process in an 

uncertain operating environment and second to use that framework to establish what individual 

credit union characteristics will increase the likelihood of failure. 

 Because for-profit enterprises with market power attempt to maximize profits at the 

expense of consumers, markets characterized by such conditions often do not achieve the 

socially optimal outcome. Furthermore, there exists asymmetric information in lending markets, 

in that lenders do not know borrowers’ true willingness to repay. Thus, borrowers can often take 

advantage of lenders by defaulting on loans. The effect this has on the lending market is that 

often lenders will restrict credit to only individuals who can show an almost certain willingness 

and ability to repay. This contract failure results in a non-welfare maximizing outcome, as 
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individuals capable of not defaulting are often barred from accessing credit. As argued in 

Hansmann (1987), non-profit institutions may be best at alleviating these market failures. 

Credit unions have arisen as a way to overcome these market failures. Credit unions are 

cooperative institutions in which members are the owners and users of the credit union’s 

services. By linking the owners and users of services, credit unions are able to remove the 

asymmetries in lending, since the benefactor of default is now the bearer of its cost. The 

alleviation of this contract failure allows credit unions to lend at lower rates, since there is a 

lower likelihood of default, and thus, less needed compensation for risk. This also allows credit 

unions to lend to borrowers who may not have access to credit from traditional for-profit 

institutions. In addition, because credit unions are bound by the non-distribution constraint, they 

cannot retain any profits, which means, all excess revenue is distributed to depositors at the 

credit union or back to borrowers via interest rate refunds. This serves to further lower the rates 

charged on loans, and increases the rates paid on deposits. Furthermore, as pointed out in 

Hansmann (1987), by not having a profit motive, credit unions, and really all non-profit firms for 

that matter, do not seek to “monopolistically exploit (their) patrons”, or in other words, charge a 

price above the social optimum. This also contributes significantly to lower loan rates and higher 

deposit rates.  

The distinct behavior of credit unions results in credit unions acting differently than 

would be expected when presented with various environmental changes than for-profit financial 

intermediaries. For instance, the distinct characteristics of credit unions, like the common bond 

requirement, cause credit unions to have unique structural features. These distinct structural 

characteristics and environmental factors have a direct effect on credit union behavior. In some 

situations, these idiosyncratic characteristics and environmental factors can cause credit unions 
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to make decisions that will increase the probability of them failing. The purpose of this thesis is 

to present a new model for credit union decision making under uncertainty and to determine how 

changes in costs, systematic risk, and degree of competition effect the optimal portfolio 

allocation of credit unions, and how that may increase or decrease the likelihood of failure. The 

presentation will be as follows: i) a review of the literature, ii) derivation of the efficiency 

frontier for credit unions, iii) discussion of the utility function for credit unions and the 

derivation of the unique portfolio iv) effects of various characteristics on the probability of credit 

union failure, and v) conclusions. 

Review of Literature 

Perhaps the most significant work analyzing credit union behavior is that of Smith, 

Cargill, and Meyer (1981), Smith (1984), and Smith (1988). Since Smith (1988), theories on 

credit union decision making have laid dormant. Only Smith (1988) has performed an analysis 

on the likelihood of credit union failure. None of the above literature has analyzed credit union 

decision making from the perspective of modern portfolio theory. However, in contrast to the 

minimal amount of research pertaining to credit union decision making, the literature on for-

profit financial intermediary behavior is rather rich. In regards to these institutions, it has been 

the norm to employ modern portfolio theory as the analytical mechanism to describe behavior, as 

has been done in Blair and Heggestad (1978), Hart and Jaffee (1974), Klein (1971), Koehn and 

Santomero (1980) and Sealey Jr. (1980).   

 Smith, Cargill, and Meyer (1981) and Smith (1984) were among the first to describe 

credit unions not as profit or revenue maximizing institutions, but as benefit maximizers. The 

model laid out in Smith, Cargill, and Meyer (1981) describes credit union behavior in the riskless 
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setting.  Credit unions are viewed as institutions that seek to maximize net benefits derived from 

the use of its lending and depositing services. As is much the tradition in the literature on credit 

unions (see Smith (1984) and Smith (1988)), benefits are described as the difference between the 

market rate and that of the credit unions. This model incorporates the inherent saver versus 

borrower conflict by weighting the respective contributions of loans and savings to benefits. 

Smith (1984) extends this model to an inter-temporal setting, by redefining benefits as the 

present value of all future benefits. 

 However, the riskless setting assumed in Smith, Cargill, and Meyer (1981) and Smith 

(1984) omits the characteristic uncertainty present in the operating environment of credit unions. 

To capture this environmental characteristic, Smith (1988) models the objective function by 

extending Smith (1984) to include an environment in which the returns on investments and loans 

are unknown at the beginning of the period, and then known ex post. To model this randomness, 

Smith subjects the reserve ratio to a chance constraint in which a minimum reserve requirement 

must be meet at the end of each period. To meet this reserve requirement, which may be negative 

as a result of an increase in the number of loan defaults, repayment delinquencies, or negative 

return on capital market investments a credit union will have to increase the amount it borrows in 

financial markets. Although this stylized approach to modeling decisions under uncertainty 

presents detailed descriptions of credit union behavior, and presents intuitively correct 

comparative statics; its ability to describe the portfolio of a credit union and how other factors 

can increase the likelihood that the reserve requirement is not met is limited. 

Extending the model presented in Smith, Cargill, and Meyer (1981), Rahman and McNeil 

(1999) model the behavior of large U.S. credit unions under decisions of uncertainty.  The 

stochastic nature of the operating environment for credit unions is significantly different than 
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that of Smith (1988). In Rahman and McNeil, the levels of deposits are viewed as random, and 

are incorporated via the utility function of the credit union. The goal of the credit union in this 

model is to maximize utility, where utility is a function of income and deposits, subject to a 

balance sheet constraint. The return on loans, securities, the savings rate, reserve ratio, and 

capital reserves are all viewed as exogenous and non stochastic. For one, this model fails to 

describe the uncertainty of returns on loans and securities, which is a fundamentally inherent 

aspect of these variables. Secondly, the utility function gives no consideration to the benefits that 

could be had from lending. Together, these two flaws in the model greatly limit its explanatory 

power. 

 Although the literature pertaining to credit union decision making under uncertainty is 

minimal, the amount of literature regarding for-profit financial intermediaries is quit rich. As 

with the models of credit union behavior there are two ways to describe for-profit financial 

intermediary behavior—portfolio theory and constrained optimization in the riskless 

environment. Given the inherent randomness associated with financial markets, it appears more 

appropriate to use models of behavior that incorporate this aspect. 

Hart and Jaffee use portfolio theory to describe the behavior of financial intermediaries 

by modifying the existing framework of portfolio theory laid out by Markowitz (1952) and 

Merton (1972). Hart and Jaffee’s model alters and applies several assumptions that allow for the 

derivation of the efficiency frontier for financial intermediaries and for comparative static 

analysis of its properties. This model is efficient in providing a minimal framework in which 

further theory can be built upon. Sealey adds further to this model by altering the assumptions 

underlying the model. Sealey assumes that deposit rates are determined by financial institutions, 

and that the supply of deposits are stochastically determined period to period.  
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 In terms of theory that examines the probability of failure of financial intermediaries, 

portfolio theory appears to be the dominant analytical device as has been the case in Blair and 

Heggestad (1978) and Koehn and Santomero (1980). The benefit of portfolio theory in 

examining the probability of failure is that it is easier to decipher what conditions would lead a 

financial intermediary to engage in more risk taking, which would increase the likelihood of 

failure. For example, Blair and Heggestad’s exploration into the effects of regulation and the 

probability of retail bank failure shows that increased risk taking leads to a higher probability of 

failure. The frame work used by Blair and Heggestad was developed by Roy (1952) and Pyle and 

Turnovsky (1970).  Koehn and Santomero proceeded Blair and Heggestad in a similar analysis. 

Both Koehn and Santomero and Blair and Heggestad showed that the portfolio theory when 

applied to financial intermediaries could be altered and modified in order to theoretically analyze 

the effects of regulatory changes in the environment in which these institutions operated, and 

from that the probability of failure could be attained.   

Even though many of theories on the probability of bank failure and decisions under 

uncertainty are robust, their use is inapplicable in an analysis of the probability of credit union 

failure. The reason underlying this is the differences in the objectives of for-profit financial 

institutions and that of credit unions. 

The Model 

 Given the inherent stochastic nature of loan repayment and deposit with-drawl, and the 

decision faced by credit unions of whom to lend to, it seems fitting to apply modern portfolio 

theory to describe credit union behavior. However, credit unions do not behave as for-profit 

depositories do, and, as a result of this, the existing framework of modern portfolio theory must 

be altered in order for it to be applicable to credit unions. Perhaps the most important aspect that 
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must be included in the model is the benefits accrued by members, since the objective of a credit 

union is to maximize these benefits. Another idiosyncratic characteristic that applies solely to 

credit unions, and has not been discussed in the literature on portfolio theory, is the non-

distribution constraint. Including this constraint requires limiting the amount of income that 

credit unions will earn from a portfolio to zero. Finally, credit unions, unlike their for-profit 

depository counter parts, are limited to whom they can do business with by a common bond 

requirement. Thus, credit unions will not have access to the wide array potential borrowers that 

for-profit depositories do. In applying portfolio theory to describe credit union behavior, it is 

clear that these aspects must be considered in full. 

The Efficiency Frontier for Credit Unions 

 To begin the discussion of the efficiency frontier, it is first necessary to define the 

portfolio of a credit union. The portfolio of a credit union in its simplest form consists solely of 

loans and deposits of the credit union. Because of the common bond requirement, the quantity of 

different loans, or individuals in which the credit union can lend, is limited. Likewise, the 

quantity of individuals who can deposit at savings at a credit union is limited. To describe who 

can and cannot do business with a credit union, I define the membership base as all individuals 

that satisfy the common bond requirement. In other words, if n denotes the number of individuals 

who are in the membership base of a credit union, then the credit union will have n distinct 

individuals in which it can lend too. And by that same argument, � individuals in which it can 

take deposits from. Given the � individuals in the membership base, the percentage of the total 

loans of the credit union lent to the ��� individual can be described by ���. Loans, in this model, 

are viewed as positive assets, i.e. ��� 	 0 for all � � 1, 2, … , �. For all � members, the quantity 

of loans and deposits held by all members can be summarized by the 1 � � component vector �. 
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Since all the components of � are percentages of total loans, the sum of all the components in � 

must equal 1. That is, 

1 � ���. 
In order to make portfolio theory applicable in describing credit union behavior the 

quantity of benefits generated from a set of assets and liabilities must be incorporated. There are 

a variety of ways to view and quantify the benefits produced by credit unions. Perhaps the 

simplest, yet still realistic, is to view benefits as the difference between the rates charged on a 

loan and that of the markets. Since the rates charged to borrow money are likely to differ from 

member to member, and the market rates charged are likely to differ as well, there will be a 

difference in the amount of benefits each member can potentially generate. Mathematically, the 

benefit for the i
th

 member from obtaining a loan at a credit union can be expressed as the 

difference between the market rate, ����, and that of the credit unions for that member, ���, where 

���� � ��� 	 0 for all � � 1, 2, 3, … , �. Benefits for all � individuals in the membership base can 

be organized into the vector of size 1 � �, �. 

Total net benefits � generated by the credit union can be quantitatively measured by 

summing all the benefits of each individual member multiplied by the percentage of the total 

assets of the portfolio lent to that individual, that is  

� � ���. 

Due to the stochastic nature inherent in the operation of a depository institution, the rate 

of return on loans is uncertain ex ante any given period, and will only be known ex post. As a 

result of this, the rate credit unions initially charge on loans to any given member, ���, may differ 

significantly from the rate of return they receive on that loan, �̃�. To account for this uncertainty 
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in the model, we let the vector  !, represent all actual rates of return on loans for all � �
1, 2, 3, … , �.  

Although deposits could be incorporated into the model, their inclusion in this analysis is 

complicated by the way benefits are defined. For deposits to be included in the model, some 

form of a reserve requirement would also have to be included. Furthermore, to differentiate 

deposits from loans mathematically, deposits would have to be negative assets within the 

portfolio. Combined with the reserve requirement, the only feasible way to describe deposits is to 

set the total quantity of deposits equal to 1 � "
#, where $ is the ratio of deposits held in reserves. 

Because $ is between zero and one, the total quantity of deposits will then be a negative number 

less than -1. This creates a dilemma when benefits generated from deposits are to be 

incorporated. Since the total sum of deposits is less than -1, the amount of benefits generated 

from one deposit, will be greater than the amount of benefits generated from one loan of the 

same size. This violates the assumption that credit unions are neutral in their preferences to 

borrowers and savers. In addition, since most of the analysis in the proceeding sections focus on 

how loan allocation changes and not necessarily deposits, the addition of deposits in the model is 

to some extent unwarranted. Therefore, for the sake of keeping the model somewhat simple, and 

not violating the assumptions of neutral preferences, deposits have been omitted. 

Given that the actual return on the portfolio of loans will only be known ex post, these 

rates cannot be used. However, the expected rate of return for all assets can be estimated ex ante, 

provided the credit union knows the variance of the return on each loan. Using this, the expected 

rate of return on the portfolio of the credit union %& can be described as  

%& � �� ' 
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where  ' denotes the vector of expected returns on all loans and deposits.  

Because credit unions are non-profit financial intermediaries, they are prohibited by the 

non-distribution constraint from distributing earnings to owners and managers. As a result, credit 

unions will attempt to secure an expected rate of return that is equal to the costs associated with 

operating a credit union (. Therefore, %& ) (. This condition also arises from the assumption 

that credit unions are neutral in their preferences to borrowers and savers. If a credit union 

favored savers to borrowers, then the credit union would attempt to allocate their portfolio such 

that %& * (. This would allow the credit union to transfer excess revenue to depositors. 

Similarly, if a credit union favored borrowers to savers, then %& + (, since credit unions would 

be attempting to lend at lower rates to generate a larger amount of benefits for members who 

borrower. 

The random distribution of returns is given by the variance-covariance matrix Ω, where 

the covariance of the i
th 

and j
th

  loans is denoted -�.. The variance, or idiosyncratic risk, of the ��� 

loan is given by -�/. It is assumed that that Ω is non-singular, which means that no loan can be 

represented as a linear combination of the other loans. As a result of the symmetry and non-

singularity of the variance-covariance matrix, and since -�. * 0 for all �, 0, Ω is positive definite. 

As discussed in Merton (1972), these conditions also imply that the inverse of the variance–

covariance matrix Ω1" will be positive definite as well. Provided this information, the total 

variance of a credit union’s portfolio, -&/, is given by the following quadratic equation  

-&/ � ��Ω�. 
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All possible combinations of portfolios can be constructed using the definitions for total 

net benefits accrued, the expected rate of return on the portfolio, and the variance of the 

portfolio. The frontier of portfolios which are efficient is the locus of portfolios that minimize the 

variance while maximizing the expected rate of return and benefits generated. The efficiency 

frontier will be the end product of solving the following quadratic programming problem 

min5�6
12 ��Ω� 

 7890:;< <=:  � � ���                            ?1@ 

                                                      ( � �� '  1 � ���            
The variable of choice in this minimization problem is �, since we are concerned with how the 

credit union will allocate its resources within the portfolio. To simplify the analytical derivation 

of the solution, ��Ω�  is multiplied by 
"
/. This will have no effect on the actual solution, and is a 

common technique used in the literature to simplify the analytics. To solve (1), we convert the 

problem to an unconstrained one by way of Lagragian multipliers. Doing so produces 

A � 12 ��Ω� B C"?� � ���@ B C/?( � �� '@ B CD?1 � ���@ 

The first order conditions for minimization are 

EA � Ω� � C"� � C/ ' � CD� ) F 

These first order conditions can be manipulated algebraically to solve for the efficiency frontier 

� � C"Ω1"� B C/Ω1" ' B CDΩ1"�.           ?2@ 

Provided the assumption of positive definiteness of Ω1" holds, the solution in (2) represents the 

locus of all portfolios that will minimize the variance of the portfolio and maximize the return 
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and benefits accrued. To obtain a unique portfolio for the credit union, the utility function of the 

benefit maximizing credit union must be described. 

The Utility Function of a Credit Union 

   For given values of �, %&, and -&/ the utility function of a credit union can be specified 

implicitly as  

G � G?�, %&, -&/@. 

where G is assumed to be a continuously differentiable function in terms of �, %&, and -&/. Even 

though the utility function could be specified explicitly in terms of �, %&, and -&/, and various 

risk aversion coefficients could be incorporated in this manner, doing so, only adds additional 

complexity that is unwarranted for this analysis. The utility function is assumed to be additively 

separable in terms of -&/, �, and %&, which implies that cross-effects of the -&/, �, and %& are 

equal to zero. The justification for this is to simplify the mathematics that results in the 

proceeding comparative statics analysis. 

 The utility function is assumed to be strictly convex in �, that is 

GI * 0       GII + 0. 1 

This is as one would expect given that the objective of credit unions is to maximize the benefits 

accrued to members. The traditional assumption of marginal diminishing utility is also assumed. 

This will help to guarantee that the benefit maximizing portfolio is unique.  

                                                           

1
 GI is short hand notation denoting the first partial derivative of G with respect to �, 

JK
JI. 

Likewise, GII is the second partial of G with respect to �, JLK
JIL. 



Keim 13 

 

 In view of the fact that credit unions are benefit maximizers, it seems somewhat counter 

intuitive that the rate of return on the portfolio of the credit union would have any direct effect on 

utility. However, due to the resources of credit unions being finite, and the rate of return being 

stochastic, credit unions will, ceteris paribus, prefer a higher rate of return on their portfolio since 

it will increase the likelihood that costs will be met for a given period. In the event that costs are 

not met, due to a lower rate of return, the credit union will be forced to require borrowers to pay 

a higher rate, and pay a lower rate on deposits, which will lead to decreased benefit production. 

Therefore, utility is increasing in %&. As with �, the utility function is assumed to be strictly 

convex in %&. Thus,  

GMN * 0           GMNMN + 0 

 Credit unions are assumed to be risk averse. Therefore, the utility function will 

consequently be decreasing in terms of the variance of the credit union’s portfolio. Holding all 

else equal, higher variance implies less predictability, which can potentially lead to a shortage of 

funds. As argued above a shortage of funds will mean that costs will not be covered, which in 

turn results in less benefits being accrued to members. In addition, the normal axiom of marginal 

diminishing utility is assumed, but in reverse. That is, as more and more risk is taken on by the 

credit union, the disutility resulting from an addition unit of risk decreases. Mathematically, 

these relations can, as they are above, be expressed via the derivatives of the utility function, i.e. 

GONL + 0          GONLONL * 0. 

 To obtain the unique portfolio for a credit union, we must derive the marginal rates of 

substitution between benefits and portfolio varianceP%QONL,I and the rate of return and the 
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variance of the portfolio P%QONL,MN. The derivation of  P%QONL,I and P%QONL,MN follows from the 

implicit-function rule. Thus, given G,  

P%QONL,I � RS-&/S� T
KUKV, MNUMN'''' ) � GIGONL

.        ?3@ 

Given the assumptions on the utility function, it can be concluded that P%QONL,I * 0. To solve 

for P%QONL,MNwe again employ the implicit-function rule. The marginal rate of substitution 

between the risk and return of the portfolio is  

P%QONL,MN � RS-&/S%&T
KUKV,IUIV

) � GMNGONL
.         ?4@ 

Given the previous assumptions, P%QONL,MN * 0.  

The Unique Portfolio of a Credit Union 

 Since the optimal portfolio that maximizes the utility of a credit union must be one that 

satisfies the marginal rates of substitution between benefits and variance, and return and 

variance. By the definition of Lagragian multipliers, it is possible to substitute (3) and (4) for the 

Lagragian multipliers in (2)  

� GIGONL
� C"       and       � GMNGONL

� C/. 

Substituting these values into (2) produces 

� � � GIGONL
Ω1"� � GMNGONL

Ω1" ' B CDΩ1"�.         ?5@ 
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From (5), it is possible to solve for CD. Pre-multiplying both sides of (5), by �� yields 

��� � � GIGONL
��Ω1"� � GMNGONL

��Ω1" ' B CD��Ω1"�, 

 which can be manipulated algebraically to solve for CD. Thus, 

CD � 1Y Z1 B GIGONL
[ B GMNGONL

\] 

Where: 

  [ � ��Ω1"^                     \ � ��Ω1"_               Y � ��Ω1"� 

Substituting in the solution to CD  into (5), produces 

�` � � GIGONL
Ω1"� � GMNGONL

Ω1" ' B 1Y Z1 B GIGONL
[ B GMNGONL

\] Ω1"�,          ?7@ 

 which is the solution to the unique portfolio for the benefit maximizing credit union. 

Probability of Credit Union Failure 

 Given the solution to the unique portfolio, we can now analyze how various changes in 

the parameters of this model will increase or decrease the probability of credit union failure. 

Credit union failure will occur in the event that costs significantly exceed revenue in a given 

period. As a result of the stochastic environment in which credit unions operate, it is impossible 

to determine precisely when this event may occur. The best that can be done is to estimate the 

likelihood that failure will occur in a single period.  
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 For the purpose of this analysis, the likelihood of failure will be said to increase if the 

probability that revenue will be below costs for a given period increases. To obtain this 

relationship, one would have to either know the exact distribution of the returns on a portfolio, or 

assume a distribution from basic assumptions. Given that the acquisition of the true distribution 

of returns on a credit union’s portfolio is somewhat unfeasible, but that the mean %& and 

variance -&/ are assumed to be known, an appeal to Chebyshev’s inequality can be made in order 

to estimate the upper bound of the probability of failure.  

 Following Blair and Heggestad, Koehn and Santomero, and Roy, provided the 

characteristics of the credit union’s unique portfolio, and letting %b& be a random variable 

denoting the actual return on the portfolio, Chebyshev’s inequality states 

cd%b& � %& * e-&/f g 1e/ . ?8@ 

By letting �1 � %& � e-&/, implies e � MNi"
ON  Thus, (8) can be re-written as 

cd%b& + �1f g -&/?%& B 1@/ � c.   ?9@ 

From (9), it can be inferred that an increase in the probability of failure will occur if, ceteris 

paribus, -&/ increases, or, ceteris paribus, %& decreases. 

 The upper bound of the probability of failure can be depicted in mean-variance space as 

the square of the reciprocal of the slope of the ray k, where the ray’s intercept is -1. This is 

depicted along with the efficiency frontier and highest indifference curve in Figure 1. 

Graphically, the less step k, the higher the probability of failure is.  
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Figure 1. Unique portfolio in mean-variance space. The unique portfolio will be the portfolio in 

which the highest attainable indifference curve is tangent to the efficiency frontier.  

 

Since the purpose of the analysis will be to see how various changes in the parameters 

change the mean and variance of the portfolio, it is first necessary to solve (7) for the variance of 

the portfolio -&/ and the expected rate of return of the portfolio %&. Using the solution to the 

unique portfolio (7) and multiplying it by ��Ω, results in 

��Ω� � � GIGONL
��ΩΩ1"� � GMNGONL

��ΩΩ1" ' B 1Y Z1 B GIGONL
[ B GMNGONL

\] ��ΩΩ1"� 

which simplifies to 
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-&/ � � GIGONL
β � GMNGONL

( B  1Y Z1 B GIGONL
[ B GMNGONL

\].     ?10@ 

Following the same process to solve for %&, requires multiplying (7) by  �, which produces 

 �� � � GIGONL
 �Ω1"� � GMNGONL

 �Ω1" ' B 1Y Z1 B GIGONL
[ B GMNGONL

\]  �Ω1"� 

and simplifies to 

%& � � GIGONL
 �Ω1"� � GMNGONL

 �Ω1" ' B 1Y Z1 B GIGONL
[ B GMNGONL

\]  �Ω1"�.     ?11@ 

Equations (10) and (11) tell us what the mean and variance of the credit union’s unique portfolio 

will be for a given set of parameters. Using (9), (10) and (11), and Figure 1 it is possible to 

acquire what effects non-interest costs, systematic risk, and competition will have on the 

probability of failure via comparative static analysis. 

Effect of Non-Interest Costs on the Probability of Failure 

 Intuitively, one would expect that higher costs will increase the probability of failure, 

since higher costs require that a credit union must garnish a higher rate of return on its portfolio. 

One of the most basic tenets of finance states that a higher rate of return can only come with the 

addition of more risk. Thus, by the definition in this thesis used to define the probability of 

failure, it seems inevitable that an increase in non-interest costs (, will increase the probability 

of failure. However, as will be shown, this does not necessarily have to be the end result.  

The two comparative static terms of interest for this analysis are 
JONLJm  and JMNJm . Signing 

these terms will make it possible to determine whether the upper bound of the probability of 
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failure will increase or decrease as a result of an increase in non-interest costs. Taking the 

derivative of (10) with respect to costs yields,  

n-&/n( � � GMNGONL
. 

Since, � KoNKpNL
* 0, it follows that 

JONLJm * 0. Therefore, an increase in non-interest costs will result 

in the variance of the credit union’s portfolio increasing. Since, %& ) ( as a result of the non-

distribution constraint, 
JMNJm � 1. These results are as would be expected, since the non-

distribution constraint will force the credit union to seek a higher rate of return in the event that 

costs increase, and as a result of the credit union seeking a higher rate of return the variance 

necessarily must increase as well. 

 With reference to Chebyshev’s Inequality, since both %& and -&/ are positively related to 

costs, it cannot be directly determined as to whether or not the probability of failure will increase 

or not, as this will depend on the magnitudes of the two derivatives. Nonetheless, with the 

information provided it is possible to describe what circumstances would give rise to JONLJm * 
JMNJm  

and 
JMNJm * JONLJm . Since 

JMNJm � 1 and 
JONLJm � � KoNKpNL

, in the event that � KoNKpNL
* 1, that is the marginal 

rate of substitution between risk and return in greater than 1, the probability of failure will 

increase. Manipulating the terms in � KoNKpNL
* 1 and taking absolute values, it is apparent that this 

will only occur if qGMNq * qGONLq, that is the marginal utility gained from an additional unit of 

return is greater than the utility lost from an additional unit of risk. Conversely, if qGMNq + qGONLq, 
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then the probability of failure will decline, since the utility lost from taking on addition unit of 

risk is greater the benefit gained from a higher rate return. This will serve to limit the amount of 

risk the credit union is willing to take on, thus resulting in a smaller increase in -&/. 

Effects of Increased Systematic Risk on Credit Union Failure 

 The purpose of this section is to analyze the effects of changes in the systematic risk of a 

credit union’s portfolio on the probability of failure. More specifically, this section seeks to 

derive whether credit unions operating under multiple common bonds have lower probabilities of 

failure than that of credit unions operating under a single common bond. Credit unions that 

operate under a single bond are restricted in their membership bases to specific residential areas, 

specific employers, or a specific association. Because of this, credit unions are held hostage to 

the economic success of their membership base. This implies that the covariance between all 

individuals in the membership base will be higher than that of a credit union operating under 

multiple common bonds. Therefore, it is expected that credit unions operating under the single 

common bond will have a higher probability of failure. 

 To ascertain the effects of the single common bond on the likelihood of failure, we will 

need to determine what effect an increase in the covariance of all members has on Chebyshev’s 

Inequality. Thus, the comparative static terms of interest are 

n-&/nΩ  and n%&nΩ . 
In order to ascertain the effect that increased homogeneity has on the membership base, the 

derivative of -&/ and %& with respect to the covariance matrix would have to be computed 
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tediously via matrix calculus. So, in order to avoid these tedious analytics, qualitative techniques 

will be used.  

 Graphically, the portfolio of a credit union operating under a single common bond can be 

seen in Figure 2, where it is labeled SB. The portfolio for a credit union operating under multiple 

common bonds with a membership base of the same size is also depicted in Figure 2 and is 

labeled MB. As it can be inferred from Figure 2, the shape of the efficiency frontier for the single 

common bond credit union is still quadratic, but the curvature has decreased. This is the result of 

the increased systematic risk in the portfolio for the single common bond credit union. The 

current depiction shows an increase in the probability of failure for credit unions operating under 

the single common bond, since the ray extending from -1 and intersecting the point where the 

unique portfolio is located is flatter for the single bond credit union then the ray for the multiple 

bonds credit union. 

The reason for the outcome in Figure 2 can be attributed to the relative risk aversion of 

the utility function of credit unions. In this case, as a result of more risk, credit unions attempt to 

minimize the effects of increased variance, by accepting a lower expected rate of return on 

assets. However, because all the portfolios on the efficiency frontier for the single common bond 

credit union have higher variances than that of the multiple common bonds credit union, the 

variance of the portfolio must also increase. Therefore, since the expected rate of return is 

decreasing and the variance of the portfolio is increasing, the upper bound on the probability of 

failure increases for the single common bond credit union. 
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           -1                      -&̀/
 -&̀/r

    -&/ 

Figure 2. Unique portfolios for multiple and single common bond credit unions. In this figure the 

expected rate of return is lower, and the variance is higher for the single common bond credit 

union. This implies the probability of failure is higher. 

 

 The second possible case is an increase in both the expected return on the portfolio and 

the variance of the portfolio. This scenario is depicted in Figure 3. Although the expected return 

has increased, the increase in the magnitude of the variance is greater. Therefore, the likelihood 

of failure has increased. Graphically, this information can be inferred from the differences in the 

slopes of the rays, kr and k. Since the slope of kr is less steep than the slope of k, the probability 

of failure is higher for the single bond credit union. Additionally, from Figure 3, it can be seen 
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that the difference in the variance for the single bond credit union’s unique portfolio, -&̀/r, and 

that of the multiple bond, -&̀/,  is larger than the difference in the expected rate of return for the 

single common bond credit union, %&̀r, and that of the multiple, %&̀. This scenario will occur in 

the event that the utility function for credit unions is relatively less risk averse than the utility 

function described in the first scenario.  

         %&      I1     I2 

           MB   SB 

       
%&̀r
%&̀   

 

 

                                       k        k" 

 

 

           -1                      -&̀/
          -&̀/r

   -&/  

Figure 3. Unique portfolios with an increase in expected return for single common bond credit 

union. In this figure the single common bond credit union’s unique portfolio has a higher 

expected rate of return. However, the variance on that portfolio is significantly larger than that of 

the multiple common bonds credit union. 
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 Assuming that all credit unions have identical utility functions, it would be impossible for 

a single common bond credit union to have a higher probability of failure than a multiple 

common bonds credit union. The reason from this is that the efficiency frontier of single 

common bond credit unions will always contain portfolios that for the same expected return as a 

multiple bonds credit unions have a higher variance. Therefore, if the utility functions are the 

same, which implies they both have the same relative risk aversion, single common bond credit 

unions will always allocate their portfolios such that the difference in the variance between their 

portfolio and a multiple bonds one is greater than the difference in the expected rate of return.  

 If the utility functions are not the same, then there is a chance that the probability of 

failure may decrease for the single common bond credit union. For this event to occur it must be 

the case that the multiple common bonds credit union is significantly less risk averse than that of 

a single common bond credit union. By being less risk averse, the multiple bonds credit union 

will hold a portfolio with a large amount of variance and a high expected rate of return. The 

single bond credit union, on the other hand, will hold a portfolio that has a much lower rate of 

return and lower variance, which is the byproduct of being relatively more risk averse. As it can 

be seen in Figure 4, because the differences in variances are greater than the differences in the 

expected rate of return, the probability of failure for the multiple bonds credit union will be 

higher.  

However, for this event to occur, not only does the multiple bonds credit union have to be 

considerably less risk than the single bond credit union, but the differences in systematic risk 

must also be somewhat minimal. If the differences are significantly large, then it would be 

impossible for a single common bond credit union to hold a portfolio that decreased its 

probability of failure relative to that of a multiple common bonds credit union. To prove this, 



Keim 25 

 

note that if the efficiency frontier for the single common bond credit union had higher systematic 

risk than the one depicted in Figure 4, all portfolios along it would be to the right of the ray k. 

Thus, there would not exist an attainable portfolio for the single common bond credit union that 

would allow it to have a lower probability of failure than that of the multiple common bonds 

credit union.    

         %&        I1     I2 

        %&̀          EF1   EF2 

       
%&̀r

  

 

 

                                       k"          k 

 

 

           -1                        -&̀/
          -&̀/r

   -&/ 

Figure 4. A decrease in the probability of failure for a single bond credit union. This figure 

illustrates the only scenario in which the probability of failure will decrease for the single 

common bond credit union.   
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Although differences in the utility functions for credit unions can lead to a decrease in the 

probability of failure, given the number of conditions that must be satisfied for this event to 

occur, it seems somewhat improbable. Furthermore, it is important to note that differences in the 

utility functions between multiple common bonds credit unions and single bond credit unions 

will not necessarily imply that the probability of failure will increase. In fact if single common 

bond credit unions are significantly more risk averse, or multiple common bonds credit unions 

are slightly less risk averse, then probability of failure will be higher for single common bond 

credit unions.  

Effect of Increased Competition on the Probability of Credit Union Failure  

As a result of the growth of the credit union industry over the past fifty years, the 

competition between credit unions and other depository institutions has increased significantly. 

Due to the way benefits are defined in this analysis, the direct effect of increased competition on 

credit unions will be decreased benefits �. The justification for this is that more competition 

should lower the market rate for loans, and since benefits are defined as the difference between 

the market rate and that of the credit union’s rate on loans, a lower market rate will correspond to 

lower benefits, all else equal. Thus, in order to determine what effect increased competition has 

on the probability of credit union failure, we must determine the sign of 
JONLJ�  and JMNJ� . 

 How -&/ changes with respect to a change in the vector � is determined by the direction 

of the gradient of -&/ with respect to the vector �, thus 

n-&/n� � � GIGONL
� B GIGONL

1Y Ω1"�       ?11@ 
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Since � KsKpNL
� is non-negative, while 

KsKpNL
"
t Ω1"� is non-positive, it is impossible to conclusively 

sign the direction of  
JONLJ�  with the given information. However, it is possible to determine the 

circumstances that will cause 
JONLJ�  to be positive or negative. By manipulating (11) algebraically,  

n-&/n� � � GIGONL
u� � 1Y Ω1"�v. 

Thus, it is now possible to see that in order to guarantee 
JONLJ� * F, the magnitude of the portfolio, 

�, must be greater than the magnitude of 
"
t Ω1"�. Unfortunately, the complexity of 

"
t Ω1"� makes 

it difficult to use any economic intuition to determine when this case will occur or not.  

 The sign of 
JMNJ�  can be obtained in a similar fashion, where the gradient of %& is  

n%&n� � � GIGONL
Ω1" B GIGONL

\Y Ω1"�.        ?12@ 

As with 
JONLJ� , 

JMNJ�  cannot be signed conclusively with the information provided by (12), since 

� KsKpNL
Ω1" 	 0 while 

 
KsKpNL

w
t Ω1"� g F.  

 To better see what conditions will guarantee 
JMNJ� * F, a similar process can be followed. 

Manipulating (11) to better understand what situations will give rise to certain signs, yields 
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n%&n� � � GIGONL
Ω1� u � \Y �v. 

Because � KsKpNL
Ω1� 	 Fx,x2, the sign of the direction of 

JMNJ�  will be dependent on whether  

| | z qw
t �q. As with 

JONLJ� , the conditions needed to guarantee 
JMNJ� * F are too complex to analyze 

using any economic intuition. 

 Unfortunately, due to the complexity of JONLJ�  and 
JMNJ�  I am prohibited from using specific 

economic cases to conclusively determine what conditions will increase or decrease the 

probability of failure for a credit union in the face of increased competition. However, given that 

the conditions for when 
JONLJ�  is strictly positive and 

JMNJ�  is strictly negative are known, it is 

possible to discuss what scenarios will lead to a higher probability of failure. Since increased 

competition will cause a decrease in �, the probability of failure will increase if 
JONLJ� + F and 

JMNJ� * F. As it can be seen from above, this occurs only when q"
t Ω1"�q * |�|, and | | * qw

t �q. In 

addition, the probability of failure will also increase in the case that 
JONLJ� + F and 

JMNJ� + F, if 

qJONLJ� q * qJMNJ� q. For this to occur, it must be the case that | | + qw
t �q, which guarantees 

JMNJ� + F.  

Conclusion 

 The theory developed here presents a model to describe the optimal unique portfolio 

allocation for a benefit maximizing credit union by altering the existing framework of modern 

portfolio theory to include benefits produced by the credit union, which are a key factor in the 

                                                           
2
 Fx,x denotes a matrix of size � � � with zeros in every entry. 
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credit union decision making process. Through the specification of a utility function in terms of 

benefits �, expected rate of return on the portfolio %&, and variance of the portfolio -&/, and the 

derivation of an efficiency frontier that included the benefits generated by loans, the unique 

portfolio for an arbitrary credit union was obtained. Using the derivation of the unique portfolio, 

a comparative static analysis was performed in order to ascertain what characteristics pertaining 

to specific credit unions increase or decrease the probability of failure. This analysis used 

Chebyshev’s Inequality in order to determine the upper bound of the probability of failure. Using 

Chebyshev’s Inequality the effects of increased costs, increased systematic risk, and increased 

competition on the probability of failure were analyzed. For increased costs, it was found that 

whether or not the probability of failure increased as costs increased was dependent on whether 

the marginal utility with respect to the rate of return on the portfolio was greater than the utility 

lost from taking on one more unit of risk. With changes in systematic risk, it was determined 

through qualitative analysis that the probability of failure would always be higher for credit 

unions operating under a single common bond, unless multiple bonds credit unions were less risk 

averse than single common bond credit unions, in which case the probability of failure would 

increase. The effects of increased competition on the probability of failure could not be directly 

ascertained using economic theory, since the complexity of solutions were too great for any 

interpretation to be had from them. Nonetheless, the solutions did allow for some conclusions to 

be drawn about when the probability of failure would be greater.  

 The model used in this discussion is, for the most part, unlike any model previously used 

in the literature to describe credit union behavior. As a result of this, there may be potential flaws 

in its design, which may have led to incorrect conclusions. Additionally, the complexity of 

solutions, which is not entirely surprising given the addition of benefits in the model, were 
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difficult to interpret from the stand point of economic inquiry. Ideally, future models that used 

portfolio theory to describe credit union behavior would be able to find ways to alter the model 

in order to obtain solutions that are easier to interpret. Also, future models should be able to 

analytically determine the effects of changes in systematic risk and size of the credit union on the 

location of the unique portfolio. Finally, a major issue with this model is that adding more 

constraints to the model, in order to add more realism or more parameters in which comparative 

statics can be performed, adds an exponentially increasing amount of complexity to the solutions 

of the unique portfolio. This serves to increase the difficulty in interpreting solutions. 

 In conclusion, most of questions raised within this thesis cannot be answered via 

theoretical arguments, since the dependency on changes in the unique portfolio will be on the 

magnitudes of various parameters. Thus, the resolution of these questions becomes an empirical 

issue. Nonetheless, this thesis presents a new model describing credit union behavior from the 

perspective of portfolio theory as a benefit maximizer, in which the effects of various 

environmental and individual characteristics can be analyzed to see how they affect the 

probability of credit union failure.   
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