University of Puget Sound Sound Ideas

Physical Therapy Research Symposium

Physical Therapy, School of

10-2015

Ability to Maintain a 0.22 m/sec Gait Speed as Directed by an Auditory Metronome in Adults

Brady Christoph University of Puget Sound

Stacey McCutchan University of Puget Sound

Samantha McDaniel University of Puget Sound

Follow this and additional works at: http://soundideas.pugetsound.edu/ptsymposium Part of the <u>Physical Therapy Commons</u>

Recommended Citation

Christoph, Brady; McCutchan, Stacey; and McDaniel, Samantha, "Ability to Maintain a 0.22 m/sec Gait Speed as Directed by an Auditory Metronome in Adults" (2015). *Physical Therapy Research Symposium*. 11. http://soundideas.pugetsound.edu/ptsymposium/11

This Poster is brought to you for free and open access by the Physical Therapy, School of at Sound Ideas. It has been accepted for inclusion in Physical Therapy Research Symposium by an authorized administrator of Sound Ideas. For more information, please contact soundideas@pugetsound.edu.

SOUND

Ability to Maintain a 0.22 m/sec Gait Speed as Directed by an Auditory Metronome in Adults

University of Puget Sound – Research Symposium Tacoma, WA October 24, 2015

References

- 1. Rowe DA, Kang M, Sutherland R, Holbrook EA, Barreira TV. Evaluation of inactive adults' ability to maintain a moderateintensity walking pace. J Sci Med Sport. 2013 May;16(3):217-21
- 2. Hall CW, Holmstrup ME, Koloseus J, Anderson D, Kanaley JA. Do overweight and obese individuals select a "moderate intensity" workload when asked to do so? J Obes. 2012;2012:919051.
- 3. Yang JF, Stephens MJ, Vishram R. Infant stepping: a method to study the sensory control of human walking. J Physiol. 1998 Mar 15;
- 4. Lim I, van Wegen E, de Goede C, Deutekom M, Nieuwboer A, Willems A, Jones D, Rochester L, Kwakkel G. Effects of external rhythmical cueing on gait in patients with Parkinson's disease: a systematic review. Clin Rehabil. 2005 Oct;19(7):695-713
- 5. Howe TE, Lövgreen B, Cody FW, Ashton VJ, Oldham JA. Auditory cues can modify the gait of persons with early-stage Parkinson's disease: a method for enhancing parkinsonian walking performance? Clin Rehabil. 2003 Jul;17(4):363-7.
- 6. Roerdink M, Bank P, Peper C, Beek P. Walking to the beat of different drums: Practical implications for the use of acoustic rhythms in gait rehabilitation. Gait and Posture; 2011 April ; 33(4) 690-694.
- 7. Ulrich DA, Lloyd MC, Tiernan CW, Looper JE, Angulo-barroso RM. Effects of intensity of treadmill training on developmental outcomes and stepping in infants with Down syndrome: a randomized trial. Phys Ther, 2008; 88(1):114-22

IRB Approval

This study was granted approval for participation by human volunteers from the Institutional Review Board of the University of Puget Sound on April 3, 2014; Protocol #1314-083.

Contact Information: Julia Looper, PT, PhD jlooper@pugetsound.edu

INTRODUCTION

Available research on altering gait spans a Participants in this study included twenty wide breadth of study questions, ranging students age 18-45 (7 males, 13 females, average from increasing preferred walking cadence age 24.7 years) recruited from the University of for weight management in healthy adult Puget Sound who were able to walk without populations to maintaining and increasing pathology or assistance for 30 minutes, had no recent musculoskeletal injuries, no auditory, walking cadence for enhanced functional ability in both adult and infant diseased balance, or vestibular impairments, and owned a populations.^{1,2,3,4} A common link throughout smartphone. much of this research is the focus on normalizing or increasing cadence and **METHODS** velocity of gait with no mention of the prospect for decreasing gait speed. In fact, at This study utilized a within subject cohort design and was completed over the course of two the time of this study there is no available visits, separated by a 7-day training period. research focused on decreasing an individual' s gait speed or cadence through any form of At visit one (pre-test), participants walked on gait training intervention. This leaves a large a treadmill set to 0.22m/sec and a metronome was set to match each individual's natural cadence at gap in the existing research on gait training with the potential for training a slow gait this slow speed. Subjects then walked along a predetermined path over a Gait-Rite mat, which speed unknown.

Treadmills and auditory cuing have both been used extensively in research focused on without metronome guidance. The training initiating walking, maintaining specific protocol was explained to each subject, which walking speeds, and training regular gait consisted of walking with a smartphone patterns in individuals with Alzheimer's metronome (Pro Metronome application) pre-set disease and Parkinson's disease.⁵ The to his/her cadence for 10 minutes per day over efficacy of both intervention methods has five of the next seven days. A daily training log been supported throughout the literature, was provided for each participant to track days however key benefits of auditory cuing are and minutes spent training over the next week. that it is relatively inexpensive and readily At visit two (post-test), daily logs were accessible to the general population. In fact, collected and participants walked over the same metronome training has produced equivalent path and Gait-Rite mat with and without results to treadmill training in altering metronome guidance. sedentary individuals' gait speeds.¹ Additionally, standard metronome training has been shown to effectively increase gait velocity, stride length, and cadence following an eight-week training protocol.⁶

PURPOSE

The purpose of this study is to determine whether healthy adults can maintain a steady, slowed gait speed after a seven-day training period using an auditory metronome set to his or her natural cadence at 0.22 m/sec.

Stacey McCutchan, SPT¹; Samantha McDaniel, SPT¹; Brady Christoph, SPT¹; Julia Looper, PT, PhD¹

1.Department of Physical Therapy University of Puget Sound - Tacoma, WA, United States of America

SUBJECTS

measured cadence and velocity, both with and

Figure 1. Outlined path (25 ft. x 8 ft. x 32 ft) and Gait-Rite mat used in this study.

ANALYSIS

SPSS software was used to perform a 2 (conditions)x2(visits) repeated measures ANOVA for both cadence and velocity values. Metronome and non-metronome results at preand post-test were compiled to investigate condition and visit effects for cadence and velocity separately. A t-test was performed to determine if the post-test velocity, for nonand metronome conditions metronome separately, was significantly different from the desired 0.22m/s gait speed.

metronome, respectively.

Condition	Pre-Test	Post-Test
Velocity NM	0.25 m/sec (±0.08)	0.23 m/sec (±0.07)
Velocity Metronome	0.27 m/sec (±0.05)	0.27 m/sec (±0.06)
Cadence NM	35.3 steps/min (±10.2)	30.6 steps/min (±7.6)
Cadence Metronome	36.3 steps/min (±5.2)	36.98 steps/min (±5.5)

RESULTS

The average cadence in steps/min at visit one was $35.3(\pm 10.2)$ and $36.3(\pm 5.2)$ and at visit two was $30.6(\pm 7.6)$ and $36.98(\pm 5.5)$, no metronome and metronome, respectively. The average velocity in m/sec at visit one was $0.25(\pm 0.07)$ and $0.27(\pm 0.05)$ and at visit two was $0.23(\pm 0.05)$ 07) and $0.28(\pm 0.06)$, no metronome and

There was no significant difference between pre- and post-test cadence (P=0.41) or velocity (P=0.47). Cadence and velocity were both significantly higher in the metronome condition than in the non-metronome condition (P=0.004 and P=0.001, respectively). An interaction effect showed that cadence did not significantly change between visit one and visit two when using the metronome, however cadence did significantly decrease between visits without the metronome (P=0.02). Lastly, velocity at visit one and two was not significantly different than the desired speed of 0.22 m/sec in the nonmetronome condition (P=0.095, P=0.56), however was significantly different (faster) at visit two in the metronome condition (P=0.001).

Figure 2. Comparison of velocity with no metronome at both pre- and post-test and with metronome at pre- and post- test.

Figure 3. Comparison of cadence with no metronome at both pre- and post-test and with metronome at pre- and post- test

CONCLUSIONS

In conclusion, using an auditory metronome in attempt to slow gait speed is an effective method only after the auditory cue is removed as participants were able to maintain a gait speed not significantly different from 0.22m/s at visit two only in the non-metronome condition. Constant auditory cueing is helpful in maintaining a consistent cadence and velocity, however metronome guidance alone is not effective for producing a single desired slowed gait speed.

RELEVANCE

These results suggest that healthy adults can maintain a slow gait speed after metronome-based training, which has the potential to be applied to pediatric research showing that infants with Down syndrome benefit from gait training at 0.2m/sec.⁷ Auditory cueing may allow parents to assist children in gait training at this speed.

