
University of Puget Sound
Sound Ideas

Summer Research

Summer 2015

Building an Algebraic Representation of the AES in
Sage
Thomas Gagne
tgagne@pugetsound.edu

Follow this and additional works at: http://soundideas.pugetsound.edu/summer_research

Part of the Algebra Commons, and the Computer Security Commons

This Article is brought to you for free and open access by Sound Ideas. It has been accepted for inclusion in Summer Research by an authorized
administrator of Sound Ideas. For more information, please contact soundideas@pugetsound.edu.

Recommended Citation
Gagne, Thomas, "Building an Algebraic Representation of the AES in Sage" (2015). Summer Research. Paper 243.
http://soundideas.pugetsound.edu/summer_research/243

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sound Ideas

https://core.ac.uk/display/216861599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://soundideas.pugetsound.edu?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://soundideas.pugetsound.edu/summer_research?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://soundideas.pugetsound.edu/summer_research?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://soundideas.pugetsound.edu/summer_research/243?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:soundideas@pugetsound.edu

Implementing an Algebraic Representation of the AES in Sage

Thomas Gagne

Department of Mathematics and Computer Science

University of Puget Sound

September 23, 2015

1 Introduction

Since its adoption in 2001 by NIST (National Institute of Standards and Technology) as the U.S. national

standard for encrypting sensitive data, the Advanced Encryption Standard (also known as AES or Rijndael)

cipher has become one of the most popular and widely used encryption ciphers worldwide. While no practically

exploitable weaknesses have yet been shown to exist in the AES, the relatively algebraically simple description

of the algorithm leads some cryptographers to theorize the existence of an algebraic weakness in the cipher.

As a result, experimental algebraic cryptanalysis of the AES has become a topic of great interest in the

cryptography community, as the discovery of an algebraic weakness would be devastating to the cipher’s

security. At the core of this search for potential algebraic weaknesses lies the tool that is an algebraic

representation of the AES. An algebraic representation of the cipher is a system of mathematical equations

which model the cipher’s behavior and therefore can be used by researchers as a tool to study the algebraic

properties of the cipher in a more mathematical environment. Despite being one of the primary tools of

an algebraic cryptanalyst of the AES though, many algebraic representations are impractical by design. In

particular, a fully generalized representation is usually far too cumbersome to work with by hand, while a

more simplified representation is easier to work with but incurs a loss of subtle, yet crucial information about

the algebraic properties of the AES which would otherwise be provided by a fully generalized representation.

The purpose of this project was to develop a tool to solve this challenge and allow researchers to work with

a powerful and descriptive algebraic representation of the AES in a simple environment. This was done by

providing a fully generalized algebraic representation of the AES in the mathematical software system Sage.

Sage is a computational tool used by mathematicians, researchers, and students, and it provides a powerful

environment and collection of tools for working with complex mathematical systems. By implementing a

generalized representation in Sage, I aimed to provide this representation in an environment where users

can utilize the powerful and useful tools provided by Sage as well as bypass the traditional difficulties of

working with a fully generalized representation by allowing Sage to abstract the more challenging aspects of

the representation and perform the more difficult work automatically. This allows researchers of the AES to

maximize the utility of a generalized representation in a concise and efficient manner, making this project a

valuable addition to Sage and to the cryptography community.

1

2 Description of the AES

For readers unfamiliar with the details of the AES, I provide a brief description of the cipher here which covers

the basic details necessary for understanding how we construct a fully generalized algebraic representation

later on. For a complete description of the cipher, I recommend Chapter 3 of [1].

The AES (also known as the Rijndael cipher) is a block cipher operating on matrix blocks with 8-bit

entries of size 4 × Nb, where 4 ≤ Nb ≤ 8 is the block length. It is a symmetric key cipher and requires a

4 × Nk block as a key for encryption and decryption, where 4 ≤ Nk ≤ 8 is the key length. To encrypt and

decrypt data, the AES uses a substitution-permutation network to transform each block by passing each block

through the specially designed AES round function a certain number of times. Depending on the block length

Nb and the key length Nk, the AES determines the number of rounds, Nr, to apply by using the chart below:

Nk

4 5 6 7 8

4 10 11 12 13 14

5 11 11 12 13 14

Nb 6 12 12 12 13 14

7 13 13 13 13 14

8 14 14 14 14 14

Each round of the AES consists of the below four steps, except for the final round which omits the

MixColumns step to make the structure of the encryption algorithm and the decryption algorithm identical:

1. SubBytes
2. ShiftRows
3. MixColumns
4. AddRoundKey

These four steps are known as the round component functions, and all except AddRoundKey operate on

a single input block. To perform its functionality, AddRoundKey additionally requires a 4 × Nb round key

block, one of which is generated for each round from the original key via a separate KeySchedule function.

To maintain consistency in notation though, I will write AddRoundKey(A) to denote the function’s operation

on the arbitrary block A and unless said elsewhere, I will be intentionally ambiguous about which round key

is used as it is typically unimportant.

During encryption, the byte entries of a block are sometimes interpreted as belonging to the finite field:

F =
GF (2)[x]

x8 + x4 + x3 + x+ 1

Each arbitrary byte (b7b6b5b4b3b2b1b0) is described as corresponding to the below element in F :

x7 · b7 + x6 · b6 + x5 · b5 + x4 · b4 + x3 · b3 + x2 · b2 + x1 · b1 + x0 · b0

Because byte strings and the elements of F are easily interchangeable, I will typically represent the elements

of F by their corresponding hex string representations. For example, the byte string 6F corresponds to the

element x6 + x5 + x3 + x2 + x1 + x0 of F and vice versa.

Below I describe the specific details of each of the four round component functions and their inverses:

2

2.1 SubBytes

SubBytes is a non-linear substitution transformation operating on each entry of a block individually. To

transform each entry of a block, SubBytes first takes that element’s inverse in F (mapping the element 0 to

itself), then transforms the result by an affine transformation over GF (2)8. To be exact:

SubBytes(A)i,j =

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

× (Ai,j)

254+

0

1

1

0

0

0

1

1

The inverse transformation SubBytes−1 is represented by the below transformation:

SubBytes−1(A)i,j =

0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 1

1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0

0 0 1 0 0 1 0 1

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

1 0 1 0 0 1 0 0

× Ai,j +

0

0

0

0

0

1

0

1

254

2.2 ShiftRows

ShiftRows operates on a block by cyclically shifting each row of the block a certain number of columns to

the left. Given a block length Nb, the number of columns each row Ri is shifted by is found below:

Nb R0 R1 R2 R3

4 0 1 2 3

5 0 1 2 3

6 0 1 2 3

7 0 1 2 4

8 0 1 3 4

The inverse transformation simply shifts the rows to the right the correct number of columns.

2.3 MixColumns

MixColumns operates on a block by interpreting each column [A0,i, A1,i, A2,i, A3,i] of the block as the poly-

nomial y3 ·A0,i + y2 ·A1,i + y1 ·A2,i + y0 ·A3,i from the polynomial ring F [y], then multiplying the resulting

polynomial by the fixed polynomial c(y) = 03·y3+01·y2+01·y1+02 modulo (y4 + 1).

The inverse transformation MixColumns−1 acts similarly to the normal transformation except that the

transformation instead multiplies polynomials by the fixed polynomial d(y) = 0B·y3+OD·y2+09·y1+0E mod-

ulo (y4 + 1).

3

2.4 AddRoundKey

AddRoundKey is the simple entry-wise XORing of the current block matrix with the round key generated for

the current round. Because the XOR operation is its own inverse, AddRoundKey is also its own inverse.

3 Constructing the Algebraic Representation

When I set out to construct an algebraic representation of the AES, I aimed to be able to build a system of

algebraic equations which behaved analogously to the whole cipher. The system of equations I constructed

to build this algebraic representation follows the below form:

If C is a function operating on blocks which corresponds to the whole cipher function or just a component

of it, then each entry of the output matrix C(A)i,j can be represented as a polynomial over F with variables

being the entries of the generic input block A. Some polynomials of this form will additionally include variables

which are round key entries. Because the KeySchedule generates the round keys from the entries of the

original key block K, it is possible to represent each round key entry as a polynomial over F with variables

being the entries of K. Hence, one possible representation of the whole cipher constructs polynomials equaling

C(A)i,j with variables being the entries of the generic block A and the key block K. However, many forms of

cryptanalysis are based on the assumption that round keys are independent and have no relation to the original

key. To prevent excluding this generalized representation from being used in those forms of cryptanalysis, I

decided to make the key entries of the polynomial C(A)i,j come from the entries of Nr independent round

keys, which are denoted as K(1),K(2), ...,K(Nr).

Using this representation, the whole cipher becomes represented in the form of 4 ·Nb polynomials over F .

In particular, these polynomials belong to the polynomial ring:

F [A0,0, A0,1, ..., A0,Nb
, A1,0, ..., A3,Nb

,K
(0)
0,0 ,K

(0)
0,1 , ...,K

(0)
0,Nk

,K
(0)
1,0 ,K

(r)
3,3]

where A is a generic input block and K
(r)
i,j is the i, jth entry of the rth generic round key.

To be able to construct these 4 ·Nb polynomials corresponding to arbitrary components of the cipher we

must first be able to construct them for each of the four round component functions which make up a single

round. Once we can construct these, we can link these polynomials together in order to build polynomials

corresponding to more complex aspects of the cipher. Below I describe how the algebraic representation for

each round component function was derived:

4 The Algebraic Representations of Round Component Functions

4.1 SubBytes

Let a be the function over F which corresponds to the inversion step of SubBytes and let b be the function

over GF (2)8 which corresponds to the affine transformation step of SubBytes. Building a polynomial

representation of a is trivial, simply being a(A)i,j = (Ai,j)
254, since this maps each element to its inverse

and maps 0 to 0. Building a polynomial representation of b is more difficult however, as we must construct

a polynomial over F which behaves identically under evaluation to an affine transformation over GF (2)8. A

straightforward solution to this is to use Lagrangian interpolation to build this polynomial. Following this

method, if we let F = {x0, x1, ..., x255} be an indexing of the elements of F and let V : F → GF (2)8 be a field

4

isomorphism from F to GF (2)8, then a polynomial p over F which under evaluation behaves identically to b

can be found as such:

p(α) =

255∑
i=0

b(V (xi)) · li(xi),∀α ∈ F

li(α) =

255∏
j=0
j 6=i

α− xj
xi − xj

=
α− x0
xi − x0

...
α− xi−1
xi − xj−1

· α− xi+1

xi − xj+1
...
α− x255
xi − x255

,∀α ∈ F

This method works because each function li has the behavior that:

li(xk) =

1 if i = k

0 if i 6= k

meaning that p(xk) = b(V (x0)) · 0 + ...+ b(V (xk−1)) · 0 + b(V (xk)) · 1 + b(V (xk+1)) · 0 + ...+ 0, making p

the polynomial we are interested in.

However, while researching how to calculate this polynomial I encountered a much more elegant and

efficient method to calculate p, which is important if we ever wish to expand the generalization of this tool

in the future to other ciphers or other forms of the AES. As some preliminaries, this method requires an

understanding of the field trace function and of dual bases of finite fields, which I informally describe here.

For readers interested in a more in-depth discussion of this subject, I recommend Appendix A of [1].

The trace function is defined as Tr : GF (pn) → GF (p), T r(x) =

n−1∑
i=0

xp
i
. It is not difficult to prove that

the trace function is linear over GF (p), that is:

Tr(x+ y) = Tr(x) + Tr(y),∀x, y ∈ GF (pn)

Tr(ax) = aTr(x), ∀a ∈ GF (p), ∀x ∈ GF (pn)

For the second definition, we remind the reader that since GF (pn) ∼= GF (p)n, we can represent the

elements of GF (pn) as n-dimensional vectors over GF (p) and that we can pick a basis of this vector space to

be e = [e0, e1, ..., en−1] where ei ∈ GF (pn), 0 ≤ i ≤ n − 1. Using this basis, we can represent each element a

in GF (pn) as a =

n−1∑
i=0

aiei where ai ∈ GF (p), 0 ≤ i ≤ n− 1 and [a0, a1, ..., an−1] are the coordinates of a as a

vector. Given the basis e, the dual basis of e is defined to be the basis d = [d0, d1, ..., dn−1] such that for all

0 ≤ i, j ≤ n − 1, Tr(diej) = δ(i, j), where δ is the Kronecker delta function. The dual basis’ primary utility

comes from the below expression, which is derived easily since the trace function is linear over GF (p):

Tr(dja) = Tr

(
dj

n−1∑
i=0

aiei

)
=

n−1∑
i=0

aiTr(djei) = aj

Using the dual basis and the trace function we can easily calculate a polynomial p over F which behaves

identically to the affine transformation b. To do this, let M be the 8×8 matrix used in the affine transformation

b. Then, letting b′ = M · α where α ∈ GF (2)8:

5

b′ =
7∑

i=0

b′iei (1)

and

b′i =

7∑
j=0

Mi,jαj

=

 7∑
j=0

Mi,jTr(αdj)

+ c

=

7∑
j=0

Mi,j

7∑
t=0

αptdp
t

j (2)

Substituting (2) into (1), we arrive at:

b′ =

7∑
i=0

7∑
j=0

Mi,j

7∑
t=0

αptdp
t

j ei

=
7∑

t=0

 7∑
i=0

7∑
j=0

Mi,jd
pt

j ei

αpt

which gives the final result:

b =
7∑

t=0

 7∑
i=0

7∑
j=0

Mi,jd
pt

j ei

αpt + c

where c is the added constant of the affine transformation. This method of calculating a polynomial

corresponding to b is not only in some aspects simpler than the method involving Lagrangian interpolation,

but it is also much more efficient, especially when using large fields. Because I hope this project can grow

to involve other ciphers and other forms of AES which may involve much larger fields in the future, it is

important that I provide this efficient method of creating these polynomials in my implementation. For this

reason, I opted to use this algorithm to calculate the polynomial corresponding to the affine transformation

step of SubBytes.

Using this algorithm, I found the polynomial corresponding to the affine transformation step of SubBytes

to be:

p(α) = 05 ·α+ 09 ·α2+ F9 ·α4+25 ·α8+

F4 ·α16+ 01 ·α32+ B5 ·α64 8F ·α128+ 63

Combining this with the inversion step of SubBytes gives:

6

SubBytes(A)i,j = 05 · (Ai,j)
254 + 09 · (Ai,j)

253 + F9 · (Ai,j)
251+

25 · (Ai,j)
247 + F4 · (Ai,j)

239 + 01 · (Ai,j)
223+

B5 · (Ai,j)
191 + 8F · (Ai,j)

127 + 63

I then used the algorithm once more to calculate the polynomial corresponding to SubBytes−1 to be:

SubBytes−1(A)i,j = (05 · (Ai,j) + FE · (Ai,j)
2 + 7F · (Ai,j)

4+

5A · (Ai,j)
8 + 78 · (Ai,j)

16 + 59 · (Ai,j)
32+

DB · (Ai,j)
64 + 8F · (Ai,j)

128 + 05)255

4.2 ShiftRows

Compared to SubBytes, ShiftRows has a far simpler algebraic representation. Recall that the offset each

row is shifted by is determined by the below chart:

Nb R0 R1 R2 R3

4 0 1 2 3

5 0 1 2 3

6 0 1 2 3

7 0 1 2 4

8 0 1 3 4

Using this chart, it is extraordinarily simple to derive the algebraic representation of ShiftRows to be:

ShiftRows(A)i,j = Ai,(j−Ri)modNb

ShiftRows−1(A)i,j = Ai,(j+Ri)modNb

4.3 MixColumns

While the description of MixColumns might already seem to be fairly algebraic in nature, its description does

not properly fit into the form of algebraic representation I decided upon for this implementation. Hence, to

build an algebraic representation of MixColumns I show here how to represent it as a matrix transformation

and then use this matrix to construct the equations in the algebraic representation. Recall that MixColumns

transforms each column [Ai,0, Ai,1, Ai,2, Ai,3] of a block into the column [Bi,0, Bi,1, Bi,2, Bi,3] with the following

transformation over the polynomial ring F [α]:

Bi,0 · α0 +Bi,1 · α1 +Bi,2 · α2 +Bi,3 · α3 =

(Ai,0 · α0 +Ai,1 · α1 +Ai,2 · α2 +Ai,3 · α3) · (02 · α0 + 01 · α1 + 01 · α2 + 03 · α3)(modα4 + 1)

Multiplying this product out and sorting according to the resulting powers of α, this is equivalent to:

7

Bi,0

Bi,1

Bi,2

Bi,3

 =

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

×

Ai,0

Ai,1

Ai,2

Ai,3

Using this matrix, I constructed the algebraic representation of Mixcolumns to be:

MixColumns(A)i,j =

A0,j ·02+A1,j ·03+A2,j ·01+A3,j ·01 if i = 0

A0,j ·01+A1,j ·02+A2,j ·03+A3,j ·01 if i = 1

A0,j ·01+A1,j ·01+A2,j ·02+A3,j ·03 if i = 2

A0,j ·03+A1,j ·01+A2,j ·01+A3,j ·02 if i = 3

4.4 AddRoundKey

Of all the round component functions, AddRoundKey has the simplest algebraic representation. AddRoundKey

is simply the entry-wise XORing of the generic block matrix A and the arbitrary generic round key K(r) and

because XORing is simply addition in F , therefore:

AddRoundKey(A)i,j = Ai,j +K
(r)
i,j

Additionally, F has characteristic 2, making AddRoundKey its own inverse transformation. Hence, the

algebraic representation of AddRoundKey−1 is the same as above.

5 Composing these Algebraic Representations

With the algebraic representations of each of the round component functions constructed, all that remains

is to construct a means of composing these representations. In particular, for any two functions f and g for

which we have algebraic representations for, we must be able to construct an algebraic representation for g◦f .

The algorithm I used to perform this follows as such:

1. Suppose f and g are functions with known algebraic representations and that we wish to find a polyno-

mial equaling g(f(A))i,j for an arbitrary input block A, where 0 ≤ i ≤ Nb and 0 ≤ j ≤ 4.

2. Calculate

g(A)i,j = A0,0 · a0,0 + ...+A0,Nb
· a0,Nb

+A1,0 · a1,0 + ...+A3,Nb
· a3,Nb

+

K
(0)
0,0 · k

(0)
0,0 + ...+K

(Nr)
3,Nb
· k(Nr)

3,Nb

where ai,j , k
(r)
i,j ∈ F for all 1 ≤ i ≤ 4, 1 ≤ j ≤ Nb, and 1 ≤ r ≤ Nr.

3. Replace each Ai,j in the above equation with f(A)i,j , giving the result:

g(f(A))i,j = f(A)0,0 · a0,0 + ...+ f(A)0,Nb
· a0,Nb

+ f(A)1,0 · a1,0 + ...+ f(A)3,Nb
· a3,Nb

+

K
(r)
0,0 · k

(0)
0,0 + ...+K

(Nr)
3,Nb
· k(Nr)

3,Nb

8

Note that because the round key entries are constant in AES, we do not replace the K
(r)
i,j values in the

expression with f(K(r))i,j .

Using this algorithm, we can easily compose the algebraic representations of each of the round component

functions in any order to create an algebraic representation for the whole cipher or for just a component of it.

6 Implementation Details

The second step of this project involves implementing the algorithms which calculate these algebraic represen-

tations into Sage, as well as implementing the algorithm for composing representations and other algorithms

for polynomial evaluation. Sage is built on top of the programming language Python and so to do this I

made a Python class known as RijndaelGF, since my representation is closely related to the more generic

version of AES known as Rijndael-GF. This class embodies all the tools and algorithms necessary for working

with algebraic representations of AES by being constructible as a RijndaelGF object which then provides

various methods for accessing these tools. Additionally, I added the functionality of being able to perform

full encryptions and decryptions with a RijndaelGF object as a demonstration of the implementation’s

correctness.

6.1 RijndaelGF.Round Component Poly Constr

Since for a function f , the algebraic representation of f simply means that we can create a polynomial

equaling f(A)i,j in terms of the entries of A, it makes some sense to implement this functionality as a

method of RijndaelGF. However, there are two issues caused by this. First, this would either force users to

construct their own functions for building algebraic representations corresponding to composed functions, or

the implementation would have to automatically build these functions. The first choice is problematic in that

we are forcing the user to perform an action much better suited for Sage to automatically perform, while the

second is problematic because such a created function reveals no information about its intended purpose and

can be vague and difficult to use. Additionally, we should be able to work with the algebraic representation

of a particular function in the same manner as with the algebraic representations of other functions. This is

impossible to enforce if we implement this functionality as a method, whereas if we construct an object which

embodies an algebraic representation we can enforce this much more easily.

For these reasons, I chose to embody the algebraic representations of functions with my own class

called Round Component Poly Constr. Objects of this class can be used to construct polynomials from

the algebraic representations of a function by invoking the call() method. To be exact, if f is the

Round Component Poly Constr object corresponding to the function f , then we can calculate the polyno-

mial f(A)i,j by simply calling f(i,j). To provide the basics for working with representations of components

of the cipher, I added a Round Component Poly Constr object to the RijndaelGF class for each round

component function. Additionally, this class is not restricted to just the round component functions, despite

the name. As is described in the section below, one can use the compose(f,g) method in order to create new

Round Component Poly Constr objects corresponding to the composition of multiple functions. Alterna-

tively, users can create their own method of the form f poly constr(i,j) which implements the algebraic

representation for some other function f and returns f(A)i,j and pass this method to the class constructor as

Round Component Poly Constr(f poly constr) in order to create a Round Component Poly Constr

corresponding to the function f .

9

6.2 RijndaelGF.compose(f,g)

In order to build Round Component Poly Constr objects corresponding to the composition of multiple

functions, we require a compose(f,g) method. For reasons which will soon become obvious, I decided

to implement the compose(f,g) method to have two distinct functionalities. First, if both f and g

are Round Component Poly Constr objects corresponding to the functions f and g respectively, then

compose(f,g) will return a new Round Component Poly Constr object corresponding to the func-

tion g ◦ f . Second, if the argument f is a Round Component Poly Constr object corresponding to the

function f and the argument g is the polynomial g(A)i,j , then compose(f,g) returns the polynomial

g(f(A))i,j . The reason for these two functionalities is that the first functionality is used for creation of

new Round Component Poly Constr objects while the second functionality is what actually creates the

polynomials for the objects created by the first functionality. It is because these two functionalities are so

tightly linked that I decided to have compose perform both these functionalities rather than creating separate

methods.

My implementation of compose(f,g) is described in the below pseudocode. Note that the first case is

an implementation of the algorithm described in Section 5.

de f compose (f , g) :

i f i s p o l y n o m i a l (g) :

f v a l s = [f (i , j) f o r i in range (4) f o r j in range (Nb)]

r e turn g . e v a l u a t e v a r i a b l e s (f v a l s)

e l s e :

go f = lambda i , j : r e turn compose (f , g (i , j))

r e turn new Round Component Poly Constr (go f)

A particularly useful feature of this implementation of compose is that the actual calculation of polynomi-

als is delayed when creating new Round Component Poly Constr objects. This makes the computational

cost of creating a Round Component Poly Constr object corresponding to many composed functions triv-

ial, as it delays polynomial calculations until the user explicitly requests it.

6.3 Additional Details of the Implementation

Using the provided Round Component Poly Constr objects and the compose method of the RijndaelGF

class, it is now possible to use this implementation to create and interact with a fully generalized algebraic

representation of the entire cipher as well as representations of smaller components of the cipher. While my

primary goal for this project was accomplished at this point, I recognized that the RijndaelGF class required

various other components to be implemented in order to make the constructed algebraic representations easier

to work with and more powerful. I describe some of the more important components here.

Currently, while a user is able to construct algebraic representations corresponding to any imaginable

component of the cipher, a created Round Component Poly Constr object cannot be used outside a purely

theoretical application. In order to allow users to use these objects in a practical manner, I added the method

RijndaelGF.apply poly(state, poly constr). This method accepts two arguments: a block matrix

called state, and a Round Component Poly Constr object called poly constr, and this method returns

a new block matrix where each i, jth entry of the matrix equals the polynomial poly constr(i,j) evaluated

by setting its variables equal to the entries of state. In short, if poly constr corresponds to the function

10

f , then apply poly(state, poly constr) returns f(state). This allows users to construct algebraic

representations corresponding to certain functions, then be able to pass block matrices through these functions

without ever having to explicitly define the function beyond its algebraic representation. In addition, the

argument state can be a generic state matrix, meaning that poly constr(state) returns a matrix of

polynomials which describes the entire algebraic representation. This gives us a succinct way to generate a

complete description of an algebraic representation of a function. Finally, this method makes it easy to add

the functionality of the round component functions to the RijndaelGF class, as is shown in below example:

de f sub bytes (s e l f , s t a t e) :

r e turn s e l f . app ly po ly (s ta te , s e l f . s u b b y t e s p o l y c o n s t r ())

The second addition I added to this implementation deals with key variables. Previously, I pointed out that

because the round key entries are generated from the original key, it is therefore possible to express all round

key entries as polynomials with variables being the entries of the original key. As many forms of cryptanalysis

assume round key entries to be independent however, I decided to have this implementation use independent

round key entries by default. In order to preserve the functionality of representing round key entries in terms of

the original key though, I added an expand key poly(row, col, round) method to the RijndaelGF

class to do this. When called, expand key poly(row, col, round) returns a polynomial composed of

entries of the original key which equals the rowth, colth entry of the roundth round key. Although I have

not described the details of how the KeySchedule generates round keys in this paper, this method simply

backtracks through the KeySchedule algorithm to arrive at the answer.

The final important addition I added to this implementation includes various methods which allow the

user to perform full encryptions and decryptions. This functionality is built through repeated application of

the apply poly method with the built-in Round Component Poly Constr objects for each of the round

component functions. There are two benefits to implementing this functionality: first, we can input the official

AES testing vectors and prove the correctness of this implementation. Second, since apply poly accepts

generic block matrices as input and since the method encrypt is built upon this method, we can simply

call encrypt(generic block, generic key) to get a block matrix whose every entry is a polynomial

representing the application of the entire cipher. While this is likely too computationally intensive to ever

be practically useful, it acts as a practical example of how the structure of this implementation allows us to

perform these powerful operations by reusing other aspects of the implementation.

7 Conclusion

By adding this implementation to Sage, I have successfully completed my goal of providing users the ability

to generate a fully generalized algebraic representation of the whole AES cipher and its subcomponents in

a simple and powerful mathematical computing environment. Additionally, I have allowed room for this

project to grow to include representations of other variants of the AES by making the representation as

generalized as possible as well as allowing this representation’s internal behavior to be modified to fit these

other representations. Furthermore, I have structured this implementation such that it is not only a useful

tool in itself but that it also establishes a framework which can be used as a general model for implementing

the algebraic representations of other ciphers and algorithms in Sage. For these reasons, I believe the result

of this project is both a powerful and useful tool for algebraic cryptanalysts and researchers of the AES as

well as a valuable contribution to Sage and its cryptographic libraries.

11

References

[1] Joan Daemen and Vincent Rijmen, The Design of Rijndael. Springer-Verlag, 2002. ISBN: 3 540 42580 2

[2] Federal Information Processing Standards Publication 197, Announcing the ADVANCED ENCRYPTION

STANDARD (AES). United States National Institute of Standards and Technology (NIST), 2001.

[3] Niels Ferguson, Richard Schroeppel, and Doug Whiting, A simple algebraic representation of Rijndael.

LNCS 2259. Springer Verlag, 2001.

[4] S. Murphy and M.J.B. Robshaw, Essential Algebraic Structure Within the AES. LNCS 2442. ISBN: 3 540

45708 9

12

	University of Puget Sound
	Sound Ideas
	Summer 2015

	Building an Algebraic Representation of the AES in Sage
	Thomas Gagne
	Recommended Citation

	Introduction
	Description of the AES
	SubBytes
	ShiftRows
	MixColumns
	AddRoundKey

	Constructing the Algebraic Representation
	The Algebraic Representations of Round Component Functions
	SubBytes
	ShiftRows
	MixColumns
	AddRoundKey

	Composing these Algebraic Representations
	Implementation Details
	RijndaelGF.Round_Component_Poly_Constr
	RijndaelGF.compose(f,g)
	Additional Details of the Implementation

	Conclusion

