
Honors Program

Honors Program Theses

University of Puget Sound Year 

Insights into the evolution of the Great

Plains grassland ecosystem over the last

5 million years from paleotemperature

and paleovegetation records

Anne Fetrow
University of Puget Sound, afetrow@pugetsound.edu

This paper is posted at Sound Ideas.

http://soundideas.pugetsound.edu/honors program theses/13

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sound Ideas

https://core.ac.uk/display/216860559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


UNIVERSITY OF PUGET SOUND 

Insights into the evolution of the Great Plains 
grassland ecosystem over the last 5 million 

years from paleotemperature and 
paleovegetation records 

 
Anne Fetrow 

 

 
 

Coolidge Otis Chapman Honors Senior Thesis  
 

April 20
th

, 2015 
 

 

 



Fetrow 1 

Table of Contents 

 

 Abstract ………………………………………………………………………………….. 2  

 Introduction ……………………………………………………………….……………... 3 

 Methods and Materials ……………………………………………..……………………. 6 

 Results ………………………………………………………………………………..… 11 

 Discussion ………………………………………………………………...………......... 13 

 Conclusions …………………………………...…………………………………...….... 16 

 Acknowledgements …………………………………………………………..……...…. 17 

 References …………………………………………………………………………...…. 18 

 Appendix I: Figures ……………………………………………………...……….......... 22 

 Appendix II: Summary Table …………………………………………...……….........  29 

 

  



Fetrow 2 

Abstract 

 
Over the last 10 million years, the Great Plains transitioned to the modern C4 grass 

dominated ecosystem. Well-preserved late Miocene to Holocene fossils and paleosols make the 

Meade Basin in southwest Kansas, USA a unique place to determine how paleoenvironmental 

conditions changed during C4 grassland evolution. δ18O values of paleosol carbonates (δ18Ocarb) 

in the Meade Basin decreased from the Miocene to Holocene while δ13C values increased; these 

trends were interpreted as an increase in temperature and/or in aridity coincident with an increase 

of C4 grass biomass on the landscape. Estimating temperature from δ18Ocarb is complicated, 

however, by the role of source water δ18O (δ18Owater) values in δ18Ocarb values. Thus, we used 

carbonate clumped isotope (∆47) thermometry of paleosol carbonate nodules to develop 

independent paleotemperature estimates and estimated δ18Owater by combining temperature and 

δ
18Ocarb values. 

Preliminary temperature estimates (5-1.8 Ma) in the Meade Basin range from 17°C to 

24°C with no systematic change through time, when compared to the modern mean annual 

(14°C) and warm season (24°C) temperatures. In contrast, δ18Owater values increased through 

time. We preliminarily suggest that local/regional temperature change was not the primary factor 

that drove grassland ecosystem evolution in the Meade Basin, while increasing δ18Owater values 

suggest increased aridity may have been a bigger influence on C4 biomass and faunal changes, 

although we cannot rule out atmospheric CO2 (pCO2) changes. In addition, ∆47 temperatures and 

δ
18Owater values may reflect numerous factors besides air temperature and aridity changes, 

respectively, including depositional environment differences, soil type/depth, and source water 

changes. Additional analyses and detailed organic biomarker records currently underway will 

help further constrain the roles of paleoenvironmental factors in C4 grassland expansion. 
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Introduction 

 
Over the last 10 million years (m.y.), the Great Plains ecosystem in North America has 

evolved into the modern grassland ecosystem characterized by an understory dominated by C4 

grasses (Fox et al., 2011a; Edwards et al., 2010; Still et al., 2010; van Fischer et al., 2008; Sage 

et al., 2004; Cerling et al., 1997; Ehleringer et al., 1997; Ehleringer et al., 1991). C4 dominated 

grassland ecosystems are pervasive across the globe and constitute approximately 25% of gross 

primary productivity on Earth today while comprising less than 4% of all terrestrial plant species 

(Edwards et al., 2011; Strӧmberg et al., 2011; Edwards et al., 2010; Cowling et al., 2007; Still et 

al., 2003). In general, modern C4 grass biomass varies latitudinally across the Great Plains, with 

the highest C4 biomass in Texas (>90%) and lowest in North Dakota (<10%). These grassland 

ecosystems have received considerable attention in the past several decades because of their 

important ecological, geochemical, and evolutionary influence on the geologic record, and their 

economic significance today. Determining the reason for the development of a C4 dominated 

grassland ecosystem will provide critical information to better understand environmental 

interactions that occurred over the last 10 m.y. in the Great Plains ecosystem. 

Stable isotope analyses of ungulate tooth enamel, soil carbonates, carbonate cements, 

plant lipids, and phytolith assemblages provide insight into the evolution of the Great Plains 

grasslands. These datasets suggest the region evolved from a C3 grass dominated landscape to an 

ecosystem dominated by C4 grasses along with distinct shifts in mammalian morphology and 

community assemblage (Fox et al., 2011a; McInerney et al., 2011; Passey et al., 2010; Martin et 

al., 2008; Fox and Koch, 2004; Fox and Koch, 2003; Passey et al., 2002; Martin et al., 2000; 

Cerling et al., 1997). For example, the tooth crown height of grazers, such as horses, increased in 

response to C4 forage availability (Passey et al., 2002), and there were distinct episodes of 
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resorting within the small mammal community (Martin et al., 2008). The exact timing of the 

evolution of the C4 photosynthetic pathway remains uncertain in part because of the complex 

evolution of the clade of grasses, Poaceae, of which C4 grasses are a part (Fox et al., 2011a). The 

clade of Poaceae evolved during the Late Cretaceous according to molecular clock (Janssen and 

Bremer, 2004; Bremer, 2002) and fossil phytolith analyzes (Prasad et al., 2005), however, it is 

suggested that the timing of the evolution varied across continents because of differing 

environmental conditions (Fox et al., 2011a). On the North American continent, C4 grasses are 

thought to have evolved during the Oligocene (33.9 – 23 m.y.) (Christin et al., 2008; Tipple and 

Pagani, 2007; Sage, 2004) while the rise in C4 grasses’ ecological dominance did not occur until 

approximately the Miocene (10-8 Ma) (Fox et al., 2011b; Passey et al., 2002).  

The disparity between the timing of the evolution of the C4 photosynthetic pathway and 

its dominance within open, grass-dominated ecosystems raises the perplexing question of why C4 

grasses took approximately 20 million years to become ecologically relevant after evolving. The 

Meade Basin in southwestern Kansas preserves a sequence of fossil-bearing paleosols that 

capture the past 10 million years of grassland evolution. By 9 Ma, the ecosystem of Meade 

County was a mixture of C3 (~80%)  and C4 (~20%) grasses (Fox et al., 2011a). Between 5 m.y. 

and 2.5 m.y., the ecosystem evolved into the modern state with approximately 78% C4 grasses 

biomass (Fox et al., 2011a). Different environmental factors facilitated the C4 grass expansion, 

including global temperature change, changes in atmospheric pCO2, and global and/or local 

aridification (Fox et al., 2011a/b; Beerling and Royer, 2011; Breecker at al., 2010; Tipple et al., 

2010; Cerling et al., 1997; Latorre et al., 1996; Cerling and Quade, 1993). More complete 

paleoenvironmental records are needed to gain a detailed understanding of the dynamics of C4 

grassland evolution at the local scale.   
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In order to begin to answer this large paleoenvironmental question, we have developed 

new paleoclimate records that span the Great Plains C4 grassland evolution over the past 10 

million years. The Meade Basin is a particularly high-quality location to establish this context 

because of its biostratigraphy, geochronology, sedimentology, and stratigraphy that have been 

determined from numerous, well-preserved, and accessible outcrops (Fox et al., 2011a/b; Martin 

et al., 2008; Honey et al., 2005; Martin et al., 2000; Izett and Honey, 1995; Zakrezewski, 1975; 

Hibbard and Taylor, 1960). In this study, we use stable carbon, oxygen, and “clumped” isotope 

analysis of paleosol carbonate nodules to reconstruct paleotemperature, paleohydrology, and 

paleovegetation for the Meade Basin. Within this study, we aim to address the question: do 

variations in the paleotemperature record correlate with changes in paleovegetation and/or 

intervals of small mammal change?  
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Methods and Materials 

Meade Basin Field Location  
 

Field sites for this project are located in the Meade Basin, which is a northeast-southwest 

trending depositional basin located in southwest Kansas in Meade County (Fox et al., 2011a/b;  

Izett and Honey, 1995).  Meade Basin contains late Miocene to Holocene deposits and is 

approximately 50km in length, extending across the Kansas-Oklahoma border (Figure 1).  The 

Cimarron River and its tributaries downcut the Meade Basin and are the primary cause for 

extensive exposure of the Meade Basin sedimentary rocks. Deposits are mostly fluvial silts and 

sands which contain pedogenic carbonate nodules and calcrete zones, small mammal fossils, and 

are interbedded by generally well-preserved paleosols (Figure 2) (Fox et al., 2011a/b; Martin et 

al., 2008; Izett and Honey, 1995). The well-understood mammalian biostratigraphy and the 

presence of the Huckleberry Ridge ash layer (2.06Ma), Cerro Toledo B ashes (1.47-1.23Ma), and 

Lava Creek B ash (0.64Ma) provide well-resolved ages for the Meade Basin strata (Martin et al., 

2003; Fox et al., 2011a).  

Sample Collection 

Carbonates nodule were collected from paleosols throughout seven sections (Figure 1). 

Nodules were taken at vertical intervals that ranged from 3 to 277cm and averaged ~35 ± 4.8cm. 

Each nodule was collected in-situ and the stratigraphic height was measured from the base of the 

section for each. Paleosol sections were trenched using shovels and pick-axes in order to expose 

fresh surfaces from which to collect samples. Some sections overlapped stratigraphically. For 

example, the section NNT1 is located at the same geographic location of Raptor 1 (RP1) and is 

considered to have formed during a portion of the same time period (Figure 2). NNT1 is a thick 

and carbonate-rich section that was sampled more exhaustively at ~10cm intervals in order to 
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provide a higher resolution record to distinguish effects of soil depth on different paleoclimate 

datasets.  

Stable Isotope Geochemistry 

Carbonate Clumped Isotope (∆47) Thermometry  

Carbonate forms naturally in a variety of settings, and is part of many common minerals, 

including calcite, dolomite, aragonite, and siderite. During the precipitation process, ‘clumping” 

of heavy isotopes, 18O-13C, in carbonate ions, becomes more pronounced as the temperature 

decreases during mineral formation (Quade et al., 2013; Huntington et al., 2009; Eiler, 2007; 

Eiler and Ghosh et al., 2006; Schauble, 2004). This preferential ‘clumping’ of the heavier and 

rarer isotopes into the same molecule is thermodynamically favored at cooler temperatures, 

rather than a random distribution of isotopes (Ghosh et al., 2006; Eiler and Schauble, 2004; 

Wang et al., 2004). A measurable form of these isotopologues can be produced by digestion of 

carbonate powder in phosphoric acid to produce CO2 (Swart et al. 1991). The “clumped” 

isotopologue of this evolved CO2 (
18O-13C-16O) has a molecular mass of 47 (Ghosh et al., 2006), 

and is the most abundant of the heavy-substituted isotopologues (Eiler, 2007; Eiler and Schauble, 

2004). The inverse relationship between ‘clumping’ and temperature of carbonate formation is 

described by Ghosh et al. (2006) and can be used as a paleothermometer. The abundance of 

mass-47 is expressed as the ratio of measured mass-47 to measured mass-44 (R47
sample = 

M47
sample/ M

44
sample) compared to the expected R47 value for a stochastic distribution of 13C and 

18O isotopes among CO2 molecules (Eiler, 2007; Eiler and Schauble, 2004): ��� � � ���	
��
�

�����������
� �

1� � 1000 (1).  

Along with ∆47 temperature estimates, carbon (δ13C) and oxygen (δ18O) isotope values 

were determined for each carbonate sample. δ18O of the water (δ18Ow) from which the mineral 
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precipitated was calculated from the ∆47 temperature estimate and the δ18O of the carbonate 

(δ18Oc). Carbon and oxygen stable isotope ratios are reported using delta notation, � �

� ���	
��
��������� � 1� � 1000 where R is the molar ratio of the heavy to light isotope of the sample or 

standard ( � !"#$%
&'(!)  ) and expressed on a permil scale (‰), relative to the Vienna Peedee 

Belemnite standard composition and Standard Mean Ocean Water (SMOW), respectively.  

Sample preparation for isotope analysis 

We cut carbonate nodules along the longest axis using a rock saw and polished the cut 

surfaces using a combination of polishing wheel, sand paper, and polishing glass with varying 

sizes of grit. From these polished faces, we drilled small areas to create a fine powder using a 

dental drill under a binocular microscope to a maximum of 1-2mm in depth. This powder was 

then ground with a mortar and pestle to homogenize the sample. The vast majority for samples 

appeared homogenous, with no evidence for diagenesis, such as secondary mineral precipitation 

or recrystallized sections (e.g. large crystals or veins). We carefully drilled powder only from 

nodule regions with no diagenetic indicators. A selection of samples is shown in figure 7 to 

demonstrate drilling technique, and the range in nodule mineralogy. 

Analytical Procedure 

Approximately 10-12mg of the powdered samples was weighed into silver capsules and 

loaded into a sample carousel fitted to a semi-automated CO2 gas generation and cleaning system 

(Passey et al., 2010; Huntington et al., 2009). In this system, carbonate samples and carbonate 

standards are digested in a bath of phosphoric acid held at 90ӧC, yielding CO2 gas. These CO2 

gases, as well as heated gas standards that are prepared beforehand, are cryogenically purified by 

passing through traps at approximately -60°C to remove water and a poropak-filled gas 

chromatograph column held at -20°C to remove possible contaminants that have the same 
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molecular masses as the CO2 isotopologues of interest (masses 44, 45, 46, 47). Carbonate δ18O 

values (δ18OC) were calculated using the acid digestion fractionation factor of 1.000821 (Swart et 

al., 1991).  Thirteen samples out of 44 show excess mass-48, which is often the result of 

incomplete cleaning of hydrocarbons or halocarbons which produce potential interference with 

the ∆47
 values (Huntington et al., 2009; Ghosh et al., 2006). 

Analytical Error and Temperature Estimations  

 
Each CO2 gas sample was analyzed 5-8 times on the mass spectrometer; each of these 

acquisitions included 7-10 cycles of sample and reference gas peak determinations with 8-second 

peak integration times.  The average isotope ratios from the 5-8 acquisitions were used to 

determine the uncorrected ∆47 values (∆47, unc) and associated δ13C and δ18O values. ∆47, unc values 

were corrected (∆47,corr) for non-linearity effects in the mass spectrometer using a heated gas line 

generated from CO2 gases heated to 1000°C. Changes in the heated gas line were corrected to 

instrument conditions during the determination of the original ∆47-temperature calibration using 

a stretching factor, following the procedure discussed in Huntington et al. (2009) and Passey et 

al. (2010). For individual gas ∆47, unc values analytical precision ranges from 0.0049‰ to 

0.0163‰ (one standard error of the mean (1 s.e.)). Uncertainties for ∆47,corr values in our data set 

range from  0.0077‰ to 0.0284‰, which includes error associated with the heated gas line, in 

addition to the analytical uncertainties of the sample. Heated gases and gases held at 25ӧC 

equilibration with deionized water were used to create a transfer function that converted the “in-

house” ∆47, unc  values to the Absolute Reference Frame (ARF).  Two carbonate standards, CIT 

Carrara marble and TV03, were also analyzed to monitor instrument accuracy and precision 

during analysis. From the converted ∆47 values, temperatures are calculated using the calibration 

from Ghosh et al. (2006). 
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Statistical Analyses 

 
Statistical tests were conducted using JMP® v11 (SAS Institute Inc., 2013). We used 

Levene's test of unequal variance to identify differences in variability of ∆47 temperature 

estimates, δ18O values, and δ13C values between sections.  Both the temperature estimate and 

δ
18O value variances were significantly unequal (p<0.05) so for these factors we used the 

nonparametric Welch’s ANOVA test to analyze differences among sections. The result of the 

Levene’s test for the δ13C values was not significant, indicating variances are equal among 

sections, so we used a parameteric one-way ANOVA to analyze differences in δ13C values 

among sections.  
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Results 

Preliminary Temperature Estimates and Variability 

 
The modern mean annual and warm season temperatures for Meade are 14°C and 24°C, 

respectively (Fox et al., 2011a) (Table 1). Our preliminary temperature estimates for 5 to 1.8 Ma 

in the Meade Basin range from 17°C to 24°C with no systematic change through time. The 

average temperature, using the estimates from all of the sections, is 21°C ± 5°C (Figure 3). The 

Welch’s ANOVA test found no significant difference in ∆47 temperature estimates between 

sections. The Levene’s test showed significantly different variances among sections (F5,36=3.025, 

p=0.0222), however. The standard deviation of the temperature estimates within a section ranged 

from 1.338ӧC to 2.561ӧC.  

δ
18

Owater values   

 
In contrast to the temperatures, δ18Ow values increase through time. δ18Ow values range 

from -9.1‰ to 2.3‰ across sections (Figure 4). Values steadily increase throughout all sections, 

except for a dramatic spike to more positive values at the top of Borcher’s 3 and near the bottom 

of the section Borcher’s 4. The Levene’s test for unequal variances in the δ18Ow values among 

sections (F6, 35= 4.1196, p=0.0031). Both the Welch’s nonparametric test and one-way ANOVA 

(F6, 12.146=25.328, P<0.001) were highly significant and in agreement, so we used the Tukey-

Kramer post-hoc pairwise comparison test to interpret differences in mean δ18Ow values among 

section (Table 1).  

δ
13

C values 

 

Overall, there is a trend towards higher δ13C values through time (Figure 5).  δ13C values 

range between -6.68‰ to 1.97‰ with an average standard error of 0.099‰ (Table 1). The 

Levene’s test for δ13C values across sections was not significant, but the one-way ANOVA was 
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highly significant (F6, 12.2=29.09, P<0.0001). The Tukey-Kramer’s post-hoc pairwise comparison 

separates the Meade Basin sections into three groups of sections. The NNT1 section has the 

highest variation with includes several distinct oscillations. Additionally, δ13C values for the 

Wiens section are all outside the range of values for other sections.  

Percent C4 Calculations 

δ
13C values were used to estimate the percent of the biomass that utilized the C4 

photosynthetic pathway (%C4) using the linear mixing model described by Fox et al. (2011b). 

The percent of C4 biomass on the landscape increased from approximately 28% at ~5 m.y. to 

~60% at 1.7 m.y. (Figure 6). The modern percent C4 values for Meade Basin is 78% ± 10.8% 

(Fox et al., 2011a).  

Weight Percent Carbonate  

Weight percent carbonate (wt%carb) of the samples ranged between 36.1% and 90.9% 

(mean ~72%) (Table 1).  Wt%carb values were plotted against ∆47 temperature estimates, δ13C 

values, and δ18Owater values. No discernible relationships between these paleoenvironmental 

proxies and wt%carb were observed (Figure 7).  
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Discussion 

 

The last 65 million years has been a complex time for the Earth’s climate (Beerling and 

Royer, 2011; Zachos et al., 2001), and high-resolution paleoenvironmental records from sites 

like the Meade Basin provide an unique opportunity to investigate the relative influences of 

local, regional, and global temperature and aridity patterns that are recorded in a well-preserved 

terrestrial record. By quantifying abiotic factors and biotic changes in the same record from the 

Meade Basin, we can gain novel insight into the interactions and dynamics that have shaped the 

development of the modern Great Plains grassland ecosystem. Here we show that ∆47 

temperature estimates do not vary through time, and therefore, suggest that temperature may not 

have been the primary factor responsible for changes in vegetation and fauna between ~5 m.y. 

and ~2.5 m.y. Our results suggest that temperature was decoupled from changes in paleo-

hydrology in the Meade Basin.    

We used weight percent carbonate calculations to help to assess the likelihood that our 

temperature values reflects soil temperature, and not carbonate formed in other settings or after 

soil formation. The majority of the samples analysed have high weight percent carbonate values 

and morphologies consistent with soil carbonate nodules, which indicate that the carbonate 

formed from soil processes (Snell et al., 2013). Our visual assessment of bivariate scatterplots of 

weight percent carbonate values versus δ18Ow and δ13C values found no correlation (Figure 7). 

This suggests that the lower weight percent carbonate samples, which are less reliably derived 

from soil processes than the higher weight percent carbonate samples, were derived from a 

similar fluid source as the more reliable, higher weight percent carbonate samples.  

Samples with ∆48-excess have been plotted separately in order to assess if there is a 

relationship between ∆48-excess and the paleoenvironmental proxies (Figure 7). For all the plots, 
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data with ∆48-excess are consistently the outliers of the general data cluster. This indicates that 

upon further sample and replicate analysis, data with ∆48-excess could potentially be winnowed 

out of the overall data set in an attempt to provide a cleaner signal for δ18Ow, δ13C, and ∆47 

temperature values.  

Although ∆47 temperature estimates do not vary among sections, they do vary within 

sections.  This variability may result from a number of factors. First, temperature estimates 

derived from soil carbonate nodules often show a warm-season bias in formation timing (Hough 

et al., 2014; Quade et al., 2012; Passey et al., 2010; Breecker et al., 2009). Based on these 

studies, we infer that our temperature estimates reflect summer temperatures. Second, clumped 

isotope temperature estimates that are derived from soil carbonate nodules may produce 

temperatures estimates that are higher than mean summer air temperatures, due in part to solar 

heating at the surface when ground cover is low (Hough et al., 2014).  Third, as discussed in 

Quade et al. (2012), the depth of formation may also have a significant impact on the ∆47 

temperature estimates, if samples have been collected from various depths in a soil horizon. At 

deeper depths in the soil profile, temperatures are less affected by seasonal and diurnal cycles, 

and therefore, nodules that form during the summer will be cooler at greater depths in the soil 

profile. Ground surface heating and potential site shading must be considered when examining 

temperature estimates. Much of the variation in temperature estimates is attributed to a 

combination of these phenomena. In section NNT1, we believe that more detailed sampling has 

captured a record that demonstrates the variation in temperature that occurs due to carbonate 

burial depth. There appears to be two distinct soil horizons within NNT1, as shown by two 

obvious oscillations from cooler to warmer temperatures (Figure 3).   
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δ
18Ow values do vary among sections and further analyses and replicates are needed to 

understand in-section trends and potential outliers. The enrichment of δ18Owater values suggests 

increased evaporation, possibly as a product of increased aridity. In addition, an increase in δ18O 

values may reflect the effects of the onset of continental glaciation, which increases δ18O values 

of the starting moisture source (Fox et al., 2011b). 

This study provides an additional data set to examine the evolution of C4 grasses in the 

Meade Basin, complementing previous work conducted by Fox et al. (2011a). Statistical analysis 

finds that δ13C values change through time, which may reflect a change in the percent of C4 

biomass on the landscape. The steady increase in the percent of C4 biomass on the landscape is in 

agreement with previously reported percent C4 estimates by Fox et al (2011a).  Fox et al. (2011a) 

report that the first appearance of an ecosystem like that of the modern Great Plains, in regards to 

the abundance of C4 grasses, occurred between 1.47-1.23 Ma. Variations in section, particularly 

for section Wiens, could reflect local paleoenvironmental differences, such as heterogeneity of 

vegetation or potential diagenesis. We have shown that temperature does not change over time 

and so temperature and temporal changes in paleovegetation do not correlate. 
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Conclusions 

 
The Meade Basin is an ideal example of a Great Plains grassland ecosystem, and the basin 

has also provided well-preserved and well-understood paleoenvironmental records. Using 

“clumped” isotope paleothermometry and stable isotope geochemistry, we have begun to unveil 

the complex interactions between abiotic and biotic factors across this landscape. Throughout the 

5 to 2.5 m.y. record that was analysed for this project, temperature estimates do not vary 

systematically through time, but do have unequal variances within individual sections. δ18Ow 

values increase overtime suggesting that aridification may have played a role in the evolution of 

the Meade Basin ecosystem. δ13C values also increase temporally indicating a steady increase in 

the percent of the biomass on the landscape that is C4 grasses. The results of this study indicate 

that temperature is not likely the driving factor that has caused the rapid expansion of this C4 

dominated ecosystem in the Meade Basin. To further understand the effect of temperature on the 

evolution of the modern Great Plains grassland ecosystem, more samples and replicates need to 

be analysed in order to produce a more comprehensive and robust paleotemperature and 

paleovegetation record.  

Based on our current results, we are unable to attribute this massive ecosystem shift to 

changes in paleotemperature; therefore, other factors must also be examined in order to develop 

a comprehensive picture of this ecosystem through time. Several partner projects are currently 

underway and aim to assess the roles of mean annual precipitation and organic biomarker records 

in the paleoenvironment. As we face rapid climate change across the globe, understanding the 

evolution of the Great Plains ecosystem in greater detail may provide insight into other complex 

ecosystems and future environmental shifts and changes.  
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Appendix I: Figures 

Figure 1: Site map of Meade Basin, Kansa
locations are marked individually. 
have very similar geographic locations and so 
distances between sites have been slightly exaggerated.

  

: Site map of Meade Basin, Kansas modified from Fox et al. (2011a/b). Section 
locations are marked individually. On the north side of the Cimarron River, site locations 
have very similar geographic locations and so in order to distinguish sites visually 

between sites have been slightly exaggerated.  
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. Section 
On the north side of the Cimarron River, site locations 

in order to distinguish sites visually 
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Figure 2. Composite stratigraphic summary of the seven sections analyzed in this study from the 

Meade Basin. Original stratigraphic column has been modified from Fox et al. (2011a).  

NALMA: North American Land Mammal Age.  
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Figure 3: Estimated temperature (ӧC) calculated from ∆47 values of paleosol carbonate nodules. 

The dashed vertical line indicates the average temperature, 21.4°C, and the light grey shaded box 

includes ± 1 standard deviation (5°C). Modern mean annual (MAT, 14ӧC) and mean warm 

season (MWST, 24ӧC) temperatures are indicated with labelled dotted lines. Two ages are 

based upon marker beds; Huckleberry Ridge Ash (2.06 Ma) and CC1 (3.6 Ma), indicated by the 

horizontal, long dashed lines (Fox et al., 2011a; Martin et al., 2003).   
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Figure 4: δ
18O values of water (SMOW) of paleosol carbonate nodules plotted relative to in-

section stratigraphic height. Two ages are based upon marker beds; Huckleberry Ridge Ash (2.06 

Ma) and CC1 (3.6 Ma), indicated by the horizontal, long dashed lines (Fox et al., 2011a; Martin 

et al., 2003).  The estimated modern warm season δ18Owater value (-6.675‰) for precipitation in 

Meade Basin is shown using a vertical dotted line and was calculated using the Online Isotopes 

in Precipitation Calculator (version 7.2008) (Lat: 37.28, Long: 100.339, Alt: 762m, avg. of May-

Aug) (Bowen and Revenaugh, 2003).  
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Figure 5: δ
13C values (VPDB) of paleosol carbonate nodules are plotted relative to in-section 

stratigraphic height. Two ages are based upon marker beds; Huckleberry Ridge Ash (2.06 Ma) 

and CC1 (3.6 Ma), indicated by the horizontal, long dashed lines (Fox et al., 2011a; Martin et al., 

2003).   The modern mean δ13C value ± 1 standard deviation for 20 Holocene paleosol 

carbonates from arid-climate pure-C3 plant ecosystems is 8.0‰ (Fox et al., 2011a). 
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Figure 6: Percent C4 biomass on the landscape calculated from paleosol carbonate nodule δ13C 

values following Fox et al. (2011a).  Dashed line and light grey box indicate mean modern 

abundance of C4 biomass in the Meade Basin region ± 1 standard deviation. Data is plotted 

relative to in-section stratigraphic height. Two ages are based upon marker beds; Huckleberry 

Ridge Ash (2.06 Ma) and CC1 (3.6 Ma), indicated by the horizontal, long dashed lines (Fox et 

al., 2011a; Martin et al., 2003).
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a. ∆48 excess b. ∆48 excess 

c. no ∆48 excess d. no ∆48 excess 

BR3.240.07.CN RP1.115.04.CN 

BR1.265.04.CN NNT1.023.01.CN 

I. II. 

III. IV. 

Figure 7: Weight percent carbonate in paleosol carbonate nodules was calculated in reference to 100% carbonate standards and is shown against I.) 

temperature estimates (ӧC), III.) δ18Owater values, and IV.) δ13C values.  The black diamonds indicate samples that do not have excess mass-48 (∆48 

excess), while small red circles indicate samples that have ∆48 excess, as determined by Caltech inter-lab standards. Quadrant II demonstrates the 

variety of carbonate nodules sampled throughout the sections and each sample letter correlates to the data point in the plots in I, III, and IV. Drill sites 

on each sample demonstrate to what extent and to what depth each sample was drilled.  

Weight Percent Carbonate (%) 
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Appendix II: Tables 
Table 1. Summary of ∆47, temperature estimates, δ18Ow, weight percent carbonate, and percent C4 biomass. Stratigraphic height is measured for each section from the local datum. 

Sections means are given for temperature estimates, δ13C, and δ18O, and statistically-derived group distinctions are indicated with a subscripted letter to demonstrate significant 

differences between sites.  
Sample ID Strat. 

Height 

(cm) 

∆47 

(avg) 

∆47  

 (1 s.e.) 

Section 

Mean 

 T (ᵒC)  

T 

(ᵒC) 

T (ᵒC)  

(1  s.e.) 

Section 

Mean  

δ
13C (‰) 

δ
13Cc 

(‰,PDB) 

δ
13Cc 

(1s.e.) 

Section 

Mean  

δ
18Ow (‰) 

δ
18Ow   

(‰,  

SMOW) 

δ
18Ow 

(1 s.e.) 

Weight 

%Carb 

% 

C4 

Borcher's 4 
              

BR4.070.03.CN 70 0.721 0.001 19.640 22.9 2.4 -2.148A -1.75 0.008 -5.100A, B, C 2.3 0.5 90.2 61.4 

BR4.190.05.CN 190 0.745 NA 
 

18.1 NA 
 

-2.63 Inf 
 

-6.8 NA 73.3 55.5 

BR4.260.07.CN 260 0.743 NA 
 

18.5 NA 
 

-1.83 NA 
 

-7.1 NA NA 60.9 

BR4.280.08.CN 280 0.727 Inf 
 

21.7 Inf 
 

-1.87 NA 
 

-6.5 NA NA 60.6 

BR4.325.10.CN 325 0.751 NA 
 

17 NA 
 

-2.66 NA 
 

-7.4 NA NA 55.3 

Borcher's 3 
              

BR3.025.01.CN 25 0.725 0.022 20.033 22.1 5.4 -3.775A, B -4.5 0.001 -3.350A -4.2 1.1 78.2 41.6 

BR3.025.01.CN 25 0.747 0.003 
 

17.7 2.7 
 

-4.51 0.077 
 

-5.1 0.6 NA 41.5 

BR3.140.04.CN 140 0.738 0.009 
 

19.5 3.2 
 

-3.41 0.004 
 

-5.3 0.7 65.8 48.9 

BR3.200.06.CN 200 0.736 NA 
 

19.9 NA 
 

-3.08 NA 
 

-5.3 NA NA 51.1 

BR3.240.07.CN 240 0.757 NA 
 

15.8 NA 
 

-3.45 NA 
 

-1 NA 52.5 48.7 

BR3.315.10.CN 315 0.71 NA 
 

25.2 NA 
 

-3.7 NA 
 

0.8 NA NA 47.0 

Borcher's 1 
              

BR1.080.10.CN 80 0.727 NA 21.857 21.7 NA -3.567A, B -3.96 NA -4.157A, B -4.2 NA 71.7 45.2 

BR1.080.10.CN 80 0.725 NA 
 

22.1 NA 
 

-3.95 NA 
 

-4.1 NA NA 45.3 

BR1.110.09.CN 110 0.735 NA 
 

20.1 NA 
 

-3.25 NA 
 

-4.3 NA NA 50.0 

BR1.140.08.CN 140 0.75 NA 
 

17.1 NA 
 

-3.38 NA 
 

-5.1 NA NA 49.1 

BR1.265.04.CN 265 0.718 0.019 
 

23.5 4.8 
 

-3.48 0.011 
 

-3.7 1 75.7 48.5 

BR1.295.03.CN 295 0.705 NA 
 

26.2 NA 
 

-3.25 NA 
 

-3.3 NA 90.9 50.0 

BR1.355.01.CN 355 0.724 0.011 
 

22.3 3.4 
 

-3.7 0.008 
 

-4.4 0.7 NA 47.0 

Wiens 1 
              

WI1.000.01.CN 0 0.696 0.025 21.933 28.1 6.2 -5.540B, C -4.17 0.013 -7.500A, B, C -6 1.2 65.3 43.2 

WI1.300.03.CN 300 0.732 NA 
 

20.7 NA 
 

-6.68 NA 
 

-7.8 NA NA 26.3 

WI1.325.05.CN 325 0.751 NA 
 

17 NA 
 

-5.77 NA 
 

-8.7 NA 87.5 32.4 

NNT1 
              

NNT1.023.01.CN 23 0.759 0.004 24.156 15.4 2.9 -3.350A -2.09 0.346 -7.200B, C -7.7 0.6 82.3 57.1 

NNT1.038.03.CN 38 0.709 NA 
 

25.4 NA 
 

-4.05 NA 
 

-6.5 NA NA 44.0 

NNT1.056.05.CN 56 0.692 0.041 
 

29 9.8 
 

-3.93 0.151 
 

-6.5 1.9 69.8 44.8 

NNT1.073.07.CN 73 0.677 NA 
 

32.3 NA 
 

-1.97 NA 
 

-4.7 NA NA 57.9 

NNT1.080.08.CN 80 0.755 NA 
 

16.2 NA 
 

-3.55 Inf 
 

-9 NA 69.8 47.3 

NNT1.097.10.CN 97 0.743 0.013 
 

18.5 3.8 
 

-3.8 0 
 

-8.9 0.8 72.8 45.6 

NNT1.119.12.CN 119 0.727 NA 
 

21.7 NA 
 

-3.39 NA 
 

-8.8 NA NA 48.4 

NNT1.142.14.CN 142 0.698 NA 
 

27.7 NA 
 

-3.41 Inf 
 

-6.7 NA NA 48.3 

NNT1.197.19.CN 197 0.682 NA 
 

31.2 NA 
 

-3.96 NA 
 

-6 NA 81.1 44.6 
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Raptor 1 
              

RP1.000.01.CN 0 0.75 Inf 22.557 17.1 Inf -3.673A, B 0 NA -7.057B, C -9 NA NA 71.1 

RP1.020.02.CN 20 0.677 0.051 
 

32.3 12.5 
 

-3.36 0.004 
 

-4.8 2.4 NA 48.6 

RP1.115.04.CN 115 0.751 0.016 
 

17 4.3 
 

-4.44 0.03 
 

-7.7 0.9 36.1 41.3 

RP1.450.09.CN 450 0.723 0.017 
 

22.5 4.5 
 

-3.67 0.95 
 

-6.9 0.9 78.9 46.5 

RP1.490.13.CN 490 0.725 0.031 
 

22.1 7.2 
 

-4.75 0.003 
 

-7 1.5 79.6 39.3 

RP1.795.16.CN 795 0.71 NA 
 

25.2 NA 
 

-4.79 NA 
 

-6.6 NA NA 39.0 

RP1.840.18.CN 840 0.727 NA 
 

21.7 NA 
 

-4.7 NA 
 

-7.4 NA NA 39.6 

Hibbard's Quarry 
              

HQ1.185.15.CN 185 0.737 NA -5.774 19.7 NA -5.774C -6.4 NA -8.560C -8.7 NA 68.2 28.2 

HQ1.190.16.CN 190 0.732 0.026 
 

20.7 6.1 
 

-5.61 0.011 
 

-8.3 1.3 84.1 33.5 

HQ1.230.20.CN 230 0.719 0.031 
 

23.3 7.3 
 

-5.53 0.03 
 

-7.7 1.5 NA 34.0 

HQ1.240.21.CN 240 0.744 NA 
 

18.3 NA 
 

-5.53 NA 
 

-9.1 NA NA 34.0 

HQ1.270.04.CN 270 0.749 NA 
 

17.3 NA 
 

-5.8 NA 
 

-9 NA NA 32.2 
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