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Implications of the Dirac C P phase upon parametric resonance for sub-GeV neutrinos

Edouard A. Hay and David C. Latimer
Department of Physics, Reed College, Portland, Oregon 97202, USA

(Received 21 June 2012; revised manuscript received 6 August 2012; published 4 September 2012)

We perform an analytic and numerical study of parametric resonance in a three-neutrino framework for sub-GeV
neutrinos which travel through a periodic density profile. Commensurate with the initial level of approximation,
we develop a parametric resonance condition similar to the exact condition for two-neutrino systems. For a
castle-wall density profile, the νe → νμ oscillation probability is enhanced significantly and bounded by cos2 θ23.
The CP phase δ enters into the oscillation probability as a phase shift. For several cases, we examine the interplay
between the characteristics of the castle-wall profile and the CP phase and determine which profiles maximize
the separation between oscillations with δ = 0, ± π

2 , π . We also consider neutrinos which travel along a chord
through the Earth, passing from the mantle to core and back to mantle again. Significant enhancement of the
oscillation probability is seen even in the case in which the neutrino energy is far from the MSW resonant
energies. At 500 GeV, the difference between oscillation probabilities with δ = 0 and δ = π

2 is maximized.

DOI: 10.1103/PhysRevC.86.035501 PACS number(s): 14.60.Pq

I. INTRODUCTION

The phenomenon of neutrino oscillations is a consequence
of the fact that neutrino weak interaction states are super-
positions of the mass eigenstates. Relevant to oscillation
phenomenology are the neutrino mass-squared differences
�jk := m2

j − m2
k and the Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) mixing matrix which we denote as U [1,2]. The
mixing matrix can be parametrized in terms of three real
mixing angles θjk , with j, k = 1, 2, 3 and j < k, and the
Dirac CP phase δ. The overwhelming majority of neutrino
oscillation data fits quite well within this standard three-
neutrino framework; however, when considering a subclass
of the experiments, one can often accurately understand this
restricted data in a two-neutrino framework, requiring only
a single mass-squared difference �m2 and mixing angle θ .
Solar neutrino experiments and long baseline (LBL) reactor
experiments can be approximately parameterized by �21

and θ12, and atmospheric and some accelerator neutrino
experiments likewise can be described with �32 and θ23. The
ability to separate the data as such speaks to the smallness of
the mixing angle θ13 and the ratio of mass-squared differences
|�21/�32|.

Analogies exist between neutrino oscillations and mechan-
ical oscillations, and, in particular, mechanical oscillators
can exhibit large amplitude oscillations when some of the
oscillation parameters change periodically. This parametric
resonance is particularly prominent when the parameters
change at twice the natural frequency of oscillation. Examples
of parametric resonance are pendula with vertically oscillating
supports [3] and Faraday waves, surface instabilities created in
a vertically oscillating container of fluid [4]. The possibility of
parametrically enhanced neutrino oscillations was first noted
in Refs. [5,6]; it was shown that if neutrinos travel through
matter with a particular periodic density profile the oscillation
probability can be considerably enhanced.

As neutrinos travel through matter, the mixing angles and
mass-squared differences are effectively modified as described
by the MSW effect [7,8]. Neutrinos which propagate long
distances through matter of sufficient densities can incur

significant interactions which are diagonal in flavor, as the
interactions are mediated by the charged and neutral currents
of the weak interaction. Neutral current interactions are
democratic among the flavors, leaving the oscillation proba-
bilities unchanged; however, since ordinary matter consists of
electrons, protons, and neutrons, charged current interactions
affect only the electron (anti-)neutrinos, modifying the oscil-
lation probability. The upshot is that the neutrino oscillation
parameters effectively change in a periodic manner if the
neutrinos travel through matter with a periodic density profile,
leading to possibility of parametric enhancement.

Parametric resonance in neutrino oscillations has been
studied extensively through both analytical and numerical
means [5,6,9–22]. Given the small mass-squared differences
of the neutrinos and the available energies from high flux
sources, it is not possible to set up a tabletop experiment
with the appropriate density profile so as to demonstrate
parametric resonant oscillations; however, in Refs. [10,11],
it was realized that the density profile of the Earth’s interior
might provide a suitable laboratory. Indeed, the Earth’s density
may be approximated as piecewise constant with two main
regions—a mantle surrounding a denser core [23]. A periodic
potential consisting of two piecewise constant regions of
differing densities is often referred to as a “castle-wall”
potential. Exact analytic solutions for two-neutrino oscilla-
tions through such castle-wall profiles exist and serve as a
fundamental tool for understanding parametric enhancement
for core-crossing trajectories [6,13,15]. Specific applications
consider atmospheric neutrinos which travel through the Earth
[14,18–22]. Relatively exhaustive semianalytic and numerical
studies for neutrino oscillations in the Earth were done in Refs.
[19,20], where resonance regions are shown to follow from
generalized amplitude and phase conditions. For semianalytic
treatments of three-neutrino oscillations, one typically reduces
the problem to an effective two-neutrino system at varying
levels of approximation. In this manner, one may incorporate
the Dirac CP phase into the analysis, something not possible
in a pure two-neutrino theory. This is what is done in
Refs. [20,21], where the consequences of CP violation to the
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oscillation probability is considered for neutrinos with energies
in excess of 1 GeV traveling through the Earth; particular
attention is paid to the interference between oscillations due
to the �21 and �31 mass-squared differences.

We will examine, herein, the interplay between CP -
violating effects and parametric resonance for sub-GeV neutri-
nos. Using approximations relevant for sub-GeV neutrinos and
mantle/core densities, the three-neutrino system can be cast
into an effective two-neutrino system via the so-called prop-
agation basis [24]. We apply existing work on two-neutrino
parametric resonance to a novel semianalytic study of sub-GeV
neutrinos, including CP violation. At a level of approximation
commensurate with that used to rotate to the propagation
basis, we find a condition for parametric resonance similar
to the two-neutrino case, and, on implementing this condition,
we are able to assess the value of the νe → νμ oscillation
probability at the end of an integer number of periods of the
matter potential. We show thatPeμ is enhanced and bounded by
cos2 θ23 here. Also, we are able to determine the characteristics
of a castle-wall profile that will lead to maximum separation
between Peμ curves employing different values of the CP

phase δ = 0,±π
2 , π . We then turn briefly to the situation in

which neutrinos do not travel through an integer number of
periods as this is relevant for atmospheric neutrinos passing
through the Earth. Again, we focus on parameters which
implement parametric resonance and then look at oscillations
with different values of the CP phase.

Our focus on sub-GeV neutrinos is motivated by previous
work which has shown that for long baselines the νe →
νμ oscillations driven by the solar mass-squared difference
contain relatively sizable terms proportional to sin θ13 which
are CP odd [24–27]. As we enter an era of precision neutrino
experiments, evidence for a nonzero value of θ13 mounts and
with it the possibility of measuring the level of CP violation,
if any, in the neutrino sector. Strict upper bounds on the
magnitude of θ13 were initially established by the CHOOZ
reactor experiment [28]; however, a recent reevaluation of
the reactor neutrino flux [29] has somewhat relaxed this
upper bound. Furthermore, hints of nonzero θ13 come from
joint analyses of solar neutrino and KamLAND data [30–32].
Though statistically less significant, analyses of atmospheric
neutrino experiments also favor a nonzero reactor mixing
angle [33–35]. Accelerator νμ → νe appearance experiments
MINOS [36] and T2K [37] have both detected electron
neutrinos above the expected background, further evidence for
nonzero θ13. A global analysis of this neutrino data, excluding
recent reactor experiments, indicates a value of θ13 differing
from zero by more than 3σ [38]. Perhaps most significant
are the data from two reactor ν̄e disappearance experiments;
both Daya Bay [39] and RENO [40] report nonzero values of
sin2 2θ13 at the 5-σ level.

II. OSCILLATION IN MATTER

The ultrarelativistic limit of the evolution equation for a
neutrino of energy E is

i∂tν = 1

2E
UMU †ν, (1)

where we define the matrix M = diag(0,�21,�31). We
employ the parametrization used in Ref. [24]

U = U1(θ23)DδU2(θ13)U3(θ12), (2)

where Uj (θ ) is a proper rotation by angle θ about the j -th axis
and Dδ = diag(1, 1, eiδ); this differs from, but is equivalent to,
the standard parametrization found in Ref. [41].

When neutrinos travel through matter, the Hamiltonian
accrues an effective potential due to the coherent forward
scattering of the neutrinos on electrons, protons, and neutrons
which comprise the matter [7,8]. We include this effective
potential in the evolution equation

i∂tν =
[

1

2E
UMU † + V(x)

]
ν. (3)

Neglecting the (irrelevant for oscillations) neutral current
interaction, the operator V(x) exclusively acts on the electron
flavor with a magnitude V = √

2GF Ne(x), where GF is the
Fermi coupling constant and Ne is the electron number density.
We note that for antineutrinos, we need to change the algebraic
sign of this potential and the CP phase δ. We shall consider
only neutrinos below.

For sub-GeV neutrinos traversing the Earth, matter effects
are most easily addressed in the propagation basis developed
in Ref. [24]. We will briefly review this derivation. As the
U1(θ23) portion of the mixing matrix commutes with V , we
may rewrite the evolution equation

i∂tν
′ =

[
1

2E
U3(θ12)MU3(θ12)† + U2(θ13)†VU2(θ13)

]
ν ′ (4)

with ν ′ = U2(θ13)†D†
δU1(θ23)†ν.

By conjugating the Hamiltonian in this basis via a locally
defined U2(θ ), this new propagation basis can be approxi-
mately described by a Hamiltonian H̃ which is block diagonal.
This correction to θ13 is given by

tan 2θ = 2 sin 2θ13EV

�31 − s2
12�21 − 2 cos 2θ13EV

, (5)

where we use the shorthand s12 := sin θ12. The density of the
Earth’s interior has an upper bound around 13 g/cm3 [23];
this results in a maximum effective potential V ∼ 5 × 10−13

eV. As �31 ∼ 2.4 × 10−3 eV2, the mass-squared difference
is the dominant term in the denominator of Eq. (5); for E ∼
1 GeV, one has ε := 2EV/�31 < 0.4. For sub-GeV energies,
one may approximate Eq. (5) as

θ � sin 2θ13EV

�31
. (6)

This correction results in a modified mixing angle

θ̃13 = θ13 + θ. (7)

With this additional rotation, we define locally the propagation
basis with ν̃ = U2(θ )†ν ′ and Hamiltonian H̃

H̃ =
(

H 0
0 �31/2E + s2

13V

)
, (8)
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where the block is given by

H = 1

2E

(
s2

12�21 + c2
132EV s12c12�21

s12c12�21 c2
12�21

)
. (9)

Through the definition of ν ′, we directly relate the propagation
basis to the flavor basis via ν̃ = Ũ †ν where

Ũ = U1(θ23)DδU2(θ̃13) (10)

=
⎛
⎝ c̃13 0 s̃13

−s̃13s23e
iδ c23 c̃13s23e

iδ

−s̃13c23e
iδ −s23 c̃13c23e

iδ

⎞
⎠ . (11)

Thus, electron and muon neutrinos can be written in the local
propagation basis as

ν̃e = Ũ †νe =
⎛
⎝ c̃13

0
s̃13

⎞
⎠ , ν̃μ = Ũ †νμ =

⎛
⎝−s̃13s23e

−iδ

c23

c̃13s23e
−iδ

⎞
⎠ .

(12)

As the correction θ depends on the local density, we
must consider its temporal (spatial) derivative in the evolution
equation

∂t ν̃ = ∂t [U2(θ )†]ν ′ + U2(θ )†∂tν
′. (13)

Letting λ2 be the generator of the rotation so U2(θ ) = eiθλ2 ,
we have

∂tU2(θ )† = −iλ2U2(θ )†∂tθ. (14)

Dropping insignificant terms, one may write the evolution
equation in the propagation basis as

i∂t ν̃ = (H̃ + λ2∂tθ )ν̃. (15)

Considering only propagation through matter of constant
density, the term ∂tθ vanishes, and our evolution equation is

i∂t ν̃ = H̃ ν̃. (16)

The block H in this Hamiltonian can be easily diagonalized in
closed form with eigenvalues λ±. Of dynamical relevance is
the difference in these eigenvalues which yields the effective
constant density mass-squared difference,

�m
21 = �21

√
cos2 2θ12(1 − E/ER)2 + sin2 2θ12, (17)

where we have defined the resonance energy to be

ER = �21 cos 2θ12

2V c2
13

. (18)

Fixing the solar mixing angle θ12 = 0.58, we find the res-
onance energy in the mantle of density 4.5 g/cm3 to be
ER ∼ 100 MeV; in the core of density ρ = 11.5 g/cm3, the
value is ER ∼ 40 MeV. The mixing angle which achieves this
diagonalization satisfies

sin 2θm
12 = sin 2θ12√

cos2 2θ12(1 − E/ER)2 + sin2 2θ12

. (19)

At resonant energy, the effective mixing angle in matter, θm
12,

results in maximal mixing for these two neutrino states in
the propagation basis; this is termed the MSW resonance.

Additionally, matter effects require an accommodation to the
other mass-squared difference �m

31 = �31 − 2Eλ−, though
this correction is dominated by the vacuum value of the
mass-squared difference.

In the analytic work that follows, we will be primarily
interested in the oscillatory region for the small mass-squared
difference �21. We will assume that the oscillations due to the
two larger mass-squared differences cannot be resolved at the
baselines of interest L; that is, we will take〈

sin2

(
�31L

4E

)〉
=

〈
sin2

(
�32L

4E

)〉
= 1

2
(20)〈

sin

(
�31L

4E

)〉
=

〈
sin

(
�32L

4E

)〉
= 0. (21)

The upshot is that for sub-GeV neutrinos traveling through
the Earth the propagation basis provides us with a density-
dependent effective two-neutrino framework.

III. TWO FLAVOR PARAMETRIC RESONANCE

We will review parametric resonance within the context of
a pure two-neutrino system, say, νe and νμ, and briefly rehash
known results. This construction can be suitably adapted to
describe parametric resonance in an effective two-neutrino
framework for sub-GeV neutrinos traveling though matter of
terrestrial densities. We will denote the lone mixing angle
as θ and mass-squared difference �. An exact solution for
two neutrinos traveling through a castle-wall potential was
developed in Ref. [6] and expounded on in Ref. [13].

Following Ref. [15], we will review the exact solution
for neutrinos traversing a general periodic potential and then
specify to the castle-wall solution. Without loss of generality,
one may choose the neutrino Hamiltonian to be traceless. If
the two-neutrino Hamiltonian H is not traceless from the
start, one may add to the Hamiltonian with impunity any
multiple of the identity, in particular − 1

2 tr(H )I; on solving
for the time evolution of the system, such multiples result
in an immeasurable overall phase. Thus, we may take the
Hamiltonian to be of the form

H =
[−α(x) β(x)

β(x) α(x)

]
, (22)

where the real functions α(x) and β(x) may depend on position
by virtue of their density dependence. If the Hamiltonian is
expressed in the flavor basis, then these functions are

α(x) = �

4E
cos(2θ ) − 1

2
V (x), β = �

4E
sin(2θ ). (23)

Denoting the period of the Hamiltonian as L, we have H (x) =
H (x + L).

As the Hamiltonian is Hermitian, the evolution of the
system is unitary ν(x) = U(x)ν(0). Given this, we may use
the Pauli matrices to write evolution through one period

U(L) = Y − iσ · X ; (24)

unitarity demands that the real quantities satisfy

Y 2 + |X|2 = 1. (25)
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This can be written in terms of a phase �,

U(L) = exp[−i(σ · X̂)�] (26)

with unit vector X̂ = X/|X| and

cos � = Y, sin � = |X|. (27)

In this last formulation, it is quite easy to see that, after k

periods, the evolution operator can be written as

U(kL) = [U(L)]k = exp[−i(σ · X̂)k�]. (28)

Thus, if the neutrino state is initially ν(0) = νe = (1, 0)T , then
after k periods the state of the system is

ν(kL) =
[

cos(k�) − iX̂3 sin(k�)
(X̂2 − iX̂1) sin(k�)

]
. (29)

As X̂ is a unit vector by definition, we can redefine the terms
which involve X̂1 and X̂2 by introducing a phase γ

X̂1 + iX̂2 = eiγ

√
1 − X̂2

3, (30)

so we may rewrite the neutrino at baseline kL as

ν(kL) =
[

cos(k�) − iX̂3 sin(k�)

−ieiγ

√
1 − X̂2

3 sin(k�)

]
. (31)

In this form, it is clear that a maximum oscillation νe → νμ

can be achieved if X̂3 = 0. This is the condition for parametric
resonance for a general periodic Hamiltonian.

An analytical expression for X̂3 is hard to come by for a
general density profile; however, a tractable solution does exist
for the castle-wall potential [6,13,15]. Explicitly, the castle-
wall potential is defined as the periodic piecewise-constant
function given by

V (x) =
{

VA for 0 � x < LA

VB for LA � x < LB

(32)

with the periodicity condition V (x + L) = V (x), where L =
LA + LB .

Within one of the constant density regions, the effective
mass-squared difference �A,B and mixing angle θA,B in
matter can be determined by diagonalizing the Hamiltonian
as in Eqs. (17) and (19). The evolution operator through one
period is composed of the constant density evolution operators
UA,B(x)

U(L) = UB(LB)UA(LA), (33)

where the constant density operators can be expressed as

UA(LA) =
(

cA + ic2θA
sA −is2θA

sA

−is2θA
sA cA − ic2θA

sA

)
(34)

with the dynamic terms defined to be cA = cos ϕA and sA =
sin ϕA, where ϕA = �ALA/4E. An analogous expression
exists for UB(LB). Using the properties of Pauli matrices, one
can express U(L) in the form of Eq. (24) [6,13] with

Y = cAcB − (s2θA
s2θB

+ c2θA
c2θB

)sAsB (35)

X =
⎛
⎝ sAcBs2θA

+ sBcAs2θB

(s2θB
c2θA

− s2θA
c2θB

)sAsB

−sAcBc2θA
− sBcAc2θB

⎞
⎠ . (36)

0 2L 4L 6L 8L 10L 12L 14L
Baseline (L)

0

0.2

0.4

0.6

0.8

1

P
eμ

FIG. 1. Oscillation probability νe → νμ through a castle-wall
potential using the following input: θ = 0.1, � = 7.6 × 10−5 eV2,
E = 200 MeV, ρA = 0 g/cm3, LA = 3255 km, ρB = 10 g/cm3,
LB = 3212 km.

Thus, the condition for parametric resonance in a castle-wall
potential is

sAcBc2θA
+ sBcAc2θB

= 0. (37)

Parametric resonance can be achieved via the “half-
wavelength condition” in which LA and LB are equal to
an integer plus one-half (local) oscillation wavelengths; this
amounts to cA = 0 = cB . Such a half-wavelength scenario is
pictured in Fig. 1 with a vacuum mixing angle of θ = 0.1.
With this mixing angle, the maximum vacuum oscillation
probability for νμ appearance would be 0.04, yet after four
periods of the castle-wall potential, the probability is unity.
In general, the oscillation does not attain unity at the end of
a period but, rather, at some point in between. For a profile
satisfying the half-wavelength condition, one may determine
from the definition of �, Eq. (27), and the expression for Y ,
Eq. (35), that the oscillation probability will be unity at the
end of the kth period in the event that there exists an integer n

such that

2k|θA − θB | =
(

n + 1

2

)
π. (38)

For the parameters used to generate Fig. 1, it just so happens
that the above is approximately satisfied for k = 4, i.e., 8|θA −
θB | = 3.49 π .

More generally, the condition for parametric resonance can
be satisfied whenever

tan ϕB = −c2θA

c2θB

tan ϕA. (39)

In Fig. 2, we demonstrate such a scenario. Of note in this
example is the fact that the oscillation probability reaches
unity roughly halfway between the fifth and sixth periods of
the matter potential.
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0 2L 4L 6L 8L 10L 12L 14L
Baseline (L)

0

0.2
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0.6
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eμ

FIG. 2. Oscillation probability νe → νμ through a castle-wall
potential using the following input: θ = 0.1, � = 7.6 × 10−5 eV2,
E = 200 MeV, ρA = 0 g/cm3, LA = 4882 km, ρB = 10 g/cm3, and
LB = 4819 km.

IV. THREE FLAVOR PARAMETRIC RESONANCE

Considering all three flavors, we can now study parametric
resonance for sub-GeV neutrinos traveling through a castle-
wall potential for densities less than 15 g/cm3. We saw above
that for sub-GeV neutrinos the relevant oscillations can be
cast, to a good approximation, in the form of two-neutrino
oscillations after rotating to the propagation basis. As the
rotation to the propagation basis is density dependent, we
must use a transition matrix at the boundaries of the regions of
constant density. In our analytic treatment, we will make use
of this and further approximations; however, our numerical
computations will model a full three-neutrino system sans
approximation.

We consider the same castle-wall potential as in Eq. (32).
Using the sub-GeV approximation, the neutrino state after one
period is given by

ν(L) = ŨBe−iH̃BLB U2(θB − θA)e−iH̃ALAŨ
†
Aν(0), (40)

where ŨA,B is evaluated for the constant potential VA,B and
θA,B represent the matter corrections to θ13, Eq. (5), for VA,B .
To leading order in εθ13, the transition matrix between the two
regions is

U2(θB − θA) ≈ I + 2θ13E(VB − VA)

�31
λ2. (41)

The evolution operator in the propagation basis within a
constant density region is

ŨA(x) := e−iH̃Ax =
⎡
⎣ Ũee(x) Ũeμ(x) 0
Ũμe(x) Ũμμ(x) 0

0 0 Ũττ (x)

⎤
⎦ ; (42)

we make an analogous definition for ŨB(x) = e−iH̃Bx . After
one period, the neutrino state is, to leading order,

ν(L) = ŨB Ũ(L)Ũ †
Aν(0) + O(θ13ε), (43)

where the leading-order contribution to the evolution oper-
ator is denoted by Ũ(L) = ŨB(LB)ŨA(LA), consistent with

Eq. (33). This is the dominant contribution to sub-GeV oscil-
lations in the Earth, but we examine the O(εθ13) correction.
Returning to the transition matrix, Eq. (41), we note

ŨB(LB)λ2ŨA(LA) =

⎛
⎜⎜⎝

0 0 ŨB
eeŨA

ττ

0 0 ŨB
μeŨA

ττ

−ŨB
ττ ŨA

ee −ŨB
ττ ŨA

eμ 0

⎞
⎟⎟⎠ , (44)

where ŨA
αβ = ŨA

αβ(LA), and so on. Supposing ν(0) = νe, the
probability of detecting νμ is

Peμ(L) = |s̃13B
s23c̃13A

eiδŨee(L) − c23c̃13A
Ũμe(L)|2

+ s̃2
13A

c̃2
13B

s2
23 + (θB − θA)2c̃2

13B
s2

23c̃
2
13A

|Ũee(L)|2,
(45)

assuming the “atmospheric” oscillations average to zero
〈Ũττ 〉 ∼ 0 and neglecting termsO(θ4

13). The term in the oscilla-
tion probability proportional to (θB − θA)2 is the leading-order
remnant from the transition matrix between the constant
density regions, and its size is order O(θ2

13ε
2). Neglecting

this term will result in a discontinuity in the oscillation
probability across the boundary between regions; however, the
O(ε2) factor suppresses the significance of this discontinuity.
We shall neglect this term in our semianalytic analysis; this
amounts to setting the transition matrix to the identity.

With this simplification, the neutrino system in the propaga-
tion basis effectively consists of two states as the evolution of
the ν̃τ state decouples. The analysis of two-neutrino parametric
resonance can be carried over wholesale with one adjustment
for the effective potential in the propagation basis, namely,
VA,B 
→ c̃2

13A,B
VA,B . Given this, if one begins with an initial

state ν(0) = νe, then the neutrino state in the propagation basis
at x = kL is

ν̃(kL) =

⎛
⎜⎝

c̃13A
[cos(k�) − iX̂3 sin(k�)]

c̃13A
[−ieiγ

√
1 − X̂2

3 sin(k�)]

s̃13A
Ũττ (kL)

⎞
⎟⎠ . (46)

The probability for a νμ detection after k periods is

Peμ(kL) = c̃2
13A

∣∣∣s̃13B
s23[cos(k�) − iX̂3 sin(k�)]

+ iei(γ−δ)c23

√
1 − X̂2

3 sin(k�)
∣∣∣2

+ c̃2
13B

s̃2
13A

s2
23. (47)

This expression for the oscillation probability is con-
siderably more complicated than its purely two-neutrino
analog. In particular, for arbitrary vacuum mixing angles
and mass-squared differences, it is clear that the appearance
oscillation probability νe → νμ cannot generally become unity
via parametric resonance. This is no surprise, given the
additional ντ oscillation channel. Still, the question remains
as to how a particular matter profile might maximally enhance
the oscillation through parametric resonance. To develop a
parametric resonance condition, it is best to examine the
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oscillation probability to leading order in θ13

Peμ(kL)= sin2(k�)c2
23

(
1−X̂2

3

) ⎡
⎣1−2θ13s23 cos(γ−δ)X̂3

c23

√
1 − X̂2

3

⎤
⎦

− 2 sin(k�) cos(k�)θ13s23c23 sin(γ − δ)
√

1 − X̂2
3

+O
(
θ2

13

)
. (48)

Overall, all terms in Eq. (48) are modulated by (at least)
one factor of

√
1 − X̂2

3, so the condition for parametric
resonance will be a perturbation of the purely two-neutrino
condition, X̂3 = 0. In fact, one can show that the value of
X̂3 which maximizes Peμ is of order O(θ13). The term in
Eq. (48) which is linear in X̂3 also has an explicit factor
of θ13. As our approximation is valid only up to O(θ13),
we must, for consistency’s sake, effectively adopt the purely
two-neutrino condition for parametric resonance, X̂3 = 0.
Combining the remaining terms, we find, consistent to our
level of approximation, the oscillation probability to be

Peμ(kL) = c2
23 sin2[k� + ψ] (49)

with ψ = −θ13 tan θ23 sin(γ − δ) when X̂3 = 0. Near the
boundary of an integer number of periods, we see that the
oscillation probability is bounded by c2

23 rather than the unit
bound in the purely two-neutrino framework. Also, terms
linear in θ13 which are CP odd, enter only as a phase shift
in the oscillation probability.

In this three-neutrino system, the bound of c2
23 in Eq. (49)

arises from the projection to the propagation basis which
permitted the use of the two-neutrino analysis. If we work
within the effective two-neutrino picture in the propagation
basis, then the amplitude of the oscillation probability is
sin2 2θ12; as with the two neutrino case, parametric resonance
allows one to saturate the transition probability at unity.
Returning to the flavor basis, we then expect the probability
to saturate at c2

23. It is useful to compare Eq. (49) with the
oscillation probability for sub-GeV neutrinos in matter of
constant density. Referring to Ref. [27], let us only consider
the νe → νμ oscillation probability for the situation in which
CP is maximally violated with δ = π

2 ; for other values of δ,
similar arguments hold. To leading order in θ13, we have

Peμδ= π
2

≈ sin2 2θ12c
2
23 sin2

(
�m

21L

4E
+ φ

)
(50)

with the phase φ ≈ −θ13 tan θ23/ sin 2θ12. Via parametric
resonance we can saturate the sin2 2θ12 bound; sending
sin2 2θ12 
→ 1, we find an expression similar to Eq. (49).

In Fig. 3, we compare the approximate analytic treatment
for neutrinos traveling through a castle-wall potential with
exact numerical results. Realistic values of the mixing angles,
mass-squared differences, and densities have been chosen so as
to satisfy the half-wavelength condition. The parameters which
are germane to our approximations have the values θ13 = 0.15
and ε := 2EVB/�31 = 0.07. In the figure, we plot as the
solid (black) curve the effective two-neutrino approximation
in which we take as the identity the transition matrix between
boundary layers. This curve is superimposed on the results
of an exact three-neutrino computation, plotted as the dashed

0 L 2L 3L 4L 5L 6L
Baseline (L)

0

0.1

0.2

0.3

0.4

0.5

P
eμ

FIG. 3. (Color online) Oscillation probability νe → νμ through
a castle-wall potential using the following parameters: θ12 = 0.58,
θ13 = 0.15, θ23 = 0.785, δ = 0, �21 = 7.6 × 10−5 eV2, �31 = 2.4 ×
10−3 eV2, E = 200 MeV, ρA = 4.5 g/cm3, LA = 3161 km, ρB =
11.5 g/cm3, and LB = 1597 km. The dashed (red) curve uses the exact
three-neutrino framework, averaging over the �31 oscillations. The
solid (black) curve employs the effective two-neutrino approximation
in which the transition matrix between regions A and B is taken to
be the identity. The cross, ×, represents the value of Eq. (49) at
points kL.

(red) curve. For the three-neutrino curve, we average over
the �31 oscillations so as to mimic a detector’s finite energy
resolution; remnants of these oscillations appear as the higher
frequency wiggles in the curve. The effective two-neutrino
approximation accurately captures the oscillations driven by
the �21 mass-squared difference. There is a slight discontinuity
in the solid curve at the boundary between regions A and B;
however, it is not too severe as the product εθ13 is rather small.
Finally, keeping only terms linear in θ13, we were able to
determine the oscillation probability after an integer number
of periods, Eq. (49). In the figure, we plot the value of Eq. (49)
using the cross, ×. This agrees rather well with the other two
curves though it does have a systematically lower value than
the more exact treatments; we trace this to a positive term of
order O(θ2

13) that has been neglected.
In Fig. 4, we implement parametric resonance, X̂3 = 0,

via the half-wavelength condition, a three-neutrino analog to
Fig. 1. For the neutrino oscillation parameters, we use the
best fit values from the global analysis of oscillation data
in Ref. [38], save θ13. In order to accentuate the effects of
this mixing angle, we set θ13 = 0.3 which is roughly 10-σ
larger than its best fit value [38]. For this matter profile,
the oscillation phase for a single period is � = 2.49, and
the half-wavelength condition forces X̂2 = 1 so γ = π

2 . With
maximal mixing for θ23, the phase offset for the oscillations is
ψ = −0.3 cos δ. Despite the fact that this is relatively small,
|ψ | � 0.3, the phase can have a large impact as to where
the (absolute) maximum oscillation probability occurs, since
Eq. (49) is a function of a discrete number of periods kL.
For four different values of δ, we see widely varied traces for
Peμ. The solid (black) curve plots the oscillation probability
for the CP -conserving case of δ = 0. Focusing only on the
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FIG. 4. (Color online) Oscillation probability νe → νμ through
a castle-wall potential using the following common input: θ12 =
0.58, θ13 = 0.3, θ23 = 0.785, �21 = 7.6 × 10−5 eV2, �31 = 2.4 ×
10−3 eV2, E = 200 MeV, ρA = 4.5 g/cm3, LA = 3239 km, ρB =
11.5 g/cm3, and LB = 1707 km. The solid (black) curve has δ = 0;
the dashed (red) curve has δ = π ; the dotted (green) curve has δ = π

2 ;
and the + (blue) curve has δ = 3π

2 . The �31 oscillations are averaged
over.

curves at points kL, this curve attains is maximum value
near x ≈ 2L, as 2� + ψ ≈ 1.5π . As a contrast, the dashed
(red) curve also plots CP -conserving oscillations, but with
δ = π . Relative to the first case, the sign of ψ changes, and we
find the maximum value of Peμ is attained for x ≈ 3L given
that 3� + ψ ≈ 2.5π . We also plot two cases of maximal CP

violation. The dotted (green) curve has δ = π
2 , and the + (blue)

curve has δ = 3π
2 . As ψ = 0 for both of these cases, they both

intersect for integer multiples of the period. Also, at these
points, the oscillation probability takes a value intermediate of
the two CP -conserving cases.

More notable, perhaps, is the separation between the
CP -violating and CP -conserving curves at the end of each
period. For a general matter profile, the difference between the
CP -conserving curves, i.e., δ = 0 and δ = π (or, equivalently,
±θ13) at the point kL is

Peμδ=0 − Peμδ=π
≈ −θ13 sin 2θ23 sin γ sin 2k�. (51)

The maximum separation between the two curves occurs when
k� = nπ

2 + π
4 for some integer n and γ = π

2 , 3π
2

|Peμδ=0 − Peμδ=π
| � |θ13 sin 2θ23|. (52)

These conditions can be trivially satisfied with the half-
wavelength condition. Incidentally, for sub-GeV neutrinos
propagating through a constant density region in the Earth’s
mantle or core, it was shown in Ref. [42] that

|Peμδ=0 − Peμδ=π
| � |θ13 sin 2θ23 sin 4θm

12|. (53)

For a mantle density of ρ = 4.5 g/cm3, the difference between
the oscillation probabilities in constant density matter for ±θ13

is suppressed by a factor of | sin 4θm
12| = 0.75 relative to the

castle-wall profile, whereas for a density of 11.5 g/cm3, the
suppression is a factor of 0.84.

The separation between the maximal CP -violating case
δ = π

2 and the CP -conserving case δ = 0 at the end of the kth
period is

Peμδ=0 − Peμδ= π
2

≈ − 1
2θ13 sin 2θ23(sin γ + cos γ ) sin 2k�.

(54)

The maximum separation between these two curves occurs
whenever k� = nπ

2 + π
4 and γ = π

4 , 5π
4 ; this separation is

∣∣∣Peμδ=0 − Peμδ= π
2

∣∣∣ � 1√
2
|θ13 sin 2θ23|. (55)

Unlike the separation between the δ = 0, π curves, the im-
plementation of these constraints is nontrivial. For k = 1, the
requirement for � implies 1

2 = sin2 � = |X|2. With X̂3 = 0
and the requirement on γ , these constraints translate into
X2

1 = 1
4 = X2

2. For fixed vacuum values of the mixing angle
θ12 and mass-squared difference �21, there are five remaining
free parameters for a general castle-wall profile: the neutrino
energy and the density and length of the two regions in
the castle wall. With the three constraints on the values of
Xj , this leaves two free parameters, say, the two densities;
however, for general values of the two densities, applying
these constraints can result in a complex value for the neutrino
energy. Depending on the value of θ12, the densities ρA and
ρB must sufficiently differ in order for the constraints to result
in a real value for E. In Fig. 5, we show an example of these
constraints which maximizes the separation between the δ = 0
(black) solid and δ = π

2 (green) dotted curves at the end of each
odd period. The parameters which we employ to produce these
curves results in the phase values � = 3π/4 and γ = π/4. If
one knew the values of all the neutrino oscillation parameters,
save the CP phase, this castle wall would could resolve δ = 0
and δ = π

2 , but a degeneracy in the parameter space would
remain if measurements were made only at the boundaries
because the δ = 0, 3π

2 curves intersect as do the δ = π
2 , π

curves.

0 L 2L 3L 4L 5L
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FIG. 5. (Color online) Oscillation probability νe → νμ through
a castle-wall potential using the same oscillation parameters as in
Fig. 4 but with E = 200 MeV, ρA = 3.8 g/cm3, LA = 4024 km, ρB =
11.5 g/cm3, and LB = 924 km. The curves are as in Fig. 4.
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FIG. 6. (Color online) Oscillation probability νe → νμ through
a castle-wall potential using the same parameters as Fig. 4 but with
E = 98.5 MeV, LA = 1749 km, and LB = 2896 km.

As an aside, we comment on one additional case of
parametric resonance which carries the phase condition γ =
0, π ; as in the previous example, this extra condition places
severe restrictions on the baseline and neutrino energies. From
the definition of the phase γ in Eq. (30), it is clear that X̂2

must vanish when γ = 0, π . Thus, along with the condition
for parametric resonance, one requires X̂1 = 1. To satisfy all
of these requirements, in one region, say region A, the width
of the region LA must be an integer number of wavelengths
so that sA = 0. In the other region, the width of the region LB

must be an integer-plus-one-half wavelengths so cB = 0, and
the energy of the neutrinos must be at the MSW resonance in
region B so c2θB

= 0. In spirit, these criteria do not reflect true
parametric resonance; rather, this is essentially a manifestation
of the MSW resonance. Neutrinos which travel an integer

-0.8
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Φ
 (
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FIG. 7. (Color online) We plot (a) X̂3, (b) �, and (c) γ versus
the cosine of the zenith angle for neutrinos traveling along a chord
through the Earth. For the solid (black) curves, the neutrino energy is
200 MeV; for the dashed (red) curves, 400 MeV; for the dotted (blue)
curves, 800 MeV.

number of wavelengths through region A will exit the region
in essentially the same state as they entered the region; then,
in region B, we have explicitly required the energy to be at the
MSW resonant value. Turning to �, the conditions require
� = π

2 , 3π
2 so it is not possible to simultaneously satifsy

γ = 0, π and k� = mπ
2 + π

4 ; thus, the curves for all values
of δ will intersect at the boundary between periods. In Fig. 6,
we implement this scenario. The neutrino energy is chosen to
match the MSW resonance of region A, and LA is one-half
wavelength in size. For the next region, LB is chosen to be
a full wavelength in size. For the different values of the CP

phase, we see that the oscillation probability is the same value
but that the curves are quite distinguishable in the interior of
region B.

V. DISCUSSION

For neutrino energies on the order of �1 GeV, the
wavelength of vacuum neutrino oscillations associated with
the mass-squared difference �21 is 3 × 104 km. Given
this scale, a closed laboratory demonstration of parametric
resonance is not feasible. The only recourse is to use the
Earth’s mantle-core-mantle transition to induce the resonance.
Unfortunately, this means that the neutrinos can only travel
through fewer than two periods of a castle-wall potential;
however, sub-GeV atmospheric neutrinos can still undergo
significant enhancement due to parametric resonance [10–13].

We model the Earth as a constant density core of radius
Rc = 3485 km and density ρc = 11.5 g/cm3 surrounded by
a constant density mantle with ρm = 4.5 g/cm3. The path
of a neutrino, a chord through the Earth’s interior, can be
parametrized via the zenith angle �. Neutrinos which traverse
the entire diameter of the Earth would have � = π and, thus,
cos � = −1. For this trajectory, the amount of the mantle seen
by the neutrino before entering the core is Lm = Re − Rc =
2886 km where the radius of the Earth is Re = 6371 km,
and the neutrino traverses a path through the core of length
Lc = 2Rc = 6970 km. As � decreases, the mantle path length
increases while the core path length decreases; generally, one
has

Lm = −Re cos � −
√

R2
c − (Re sin �)2, (56)

Lc = 2
√

R2
c − (Re sin �)2. (57)

At the zenith angle �crit, the neutrino’s trajectory is tangential
to the core; this occurs when sin �crit = Rc/Re; i.e., �crit =
2.56, or cos �crit = −0.84.

From these path lengths, we can compute the relevant data
for parametric resonance as a function of �. In Fig. 7, we plot
X̂3, �, and γ , respectively, for select neutrino energies from
200 to 800 MeV. From Fig. 7(a), we see that the condition for
parametric resonance is satisfied in this energy range for chords
with zenith angles such that −0.93 � cos � � −0.9; this is
consistent with the neutrino oscillograms in Refs. [20,21]. The
parametric resonance is reflected in the enhancement of the
νe → νμ oscillation probability that would be seen at a detector
located at the end of the chord after the neutrino has traveled
a total distance of 2Lm + Lc. In Fig. 8, this enhancement is
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FIG. 8. (Color online) The oscillation probability Peμ for a
neutrino which has traveled along a chord through the Earth with
zenith angle � for energies (a) 200 MeV and (b) 800 MeV. The solid
(black) curves have δ = 0; the dashed (red) curves have δ = π ; the
dotted (green) curves have δ = π

2 ; the dot-dashed (blue) curves have
δ = 3π

2 .

apparent as we plot, as a function of cos �, the detector value
of Peμ for 200 and 800 MeV neutrinos for various values of
the CP phase δ. The average location of the peak values of
Peμ for the different values of δ corresponds to the zenith
angle at which X̂3 = 0. Though the overall amplitude of the
800 MeV curves are suppressed because the energy is far
from the MSW resonance, it is noteworthy that there is a
large separation between the peak values of the oscillation
probability for different values of δ.

To explore this point further, we plot in Figs. 9 and 10
the νe → νμ oscillation probability for the 200- and 800-MeV
neutrinos for paths along the chords which correspond to para-
metric resonance, cos � = −0.905 and −0.919, respectively.
As the terminus of the neutrino’s path through the Earth is
not an integer number of periods, we cannot use Eq. (49) to
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FIG. 9. (Color online) Oscillation probability νe → νμ for a
chord through the Earth with cos � = −0.905, which corresponds
to Lm = 3576 km and Lc = 4376 km. The various curves correspond
to different values of the CP phase δ as in Fig. 4.
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FIG. 10. (Color online) Oscillation probability νe → νμ for a
chord through the Earth with cos � = −0.919, which corresponds
to Lm = 3438 km and Lc = 4834 km. The various curves correspond
to different values of the CP phase δ as in Fig. 4.

ascertain Peμ here. At best, the previous analysis only informs
our knowledge of the state as the neutrino leaves the core
at L = Lm + Lc; from Eq. (46), the state, in the propagation
basis, is

ν̃(L) ≈
⎛
⎝ cos �

−ieiγ sin �

θ13Ũττ (L)

⎞
⎠ , (58)

where the phases � and γ can be read off of the plots in Fig. 7.
For the remaining bit of the path through the mantle, one can
simply operate on this state with a constant density evolution
operator ŨA(Lm), Eq. (42), to determine the state at the end of
the chord.

Though the curves in Figs. 9 and 10 differ a bit, they can
be understood within the same framework as both systems
approximately satisfy the half-wavelength condition with
sin ϕm = 1 = sin ϕc. A consequence of the half-wavelength
is the fact that the phase γ takes the value ±π

2 . For both
the 200- and 800-MeV trajectories, this phase is actually
γ � −0.4π ; however, we will assume γ = −π/2. Given this,
we deduce from Eq. (36) that sin � = sin(2θc − 2θm). With
this simplification along with the assumption for γ , we find that
for the half-wavelength condition the oscillation probability at
the end of the neutrino’s trajectory is

Peμ(2Lm + Lc) ≈ c2
23 sin2(4θm − 2θc)

+ θ13s23c23cδ sin(8θm − 4θc). (59)

As 800 MeV is roughly 8 times the MSW resonance energy
in the mantle, the overall amplitude of these oscillations
is suppressed relative to the 200-MeV case. So far as the
half-wavelength condition is satisfied, the CP phase only
enters in the second term of the right-hand side of the previous
equation. As it enters only as cos δ, there will be no difference
between curves with δ = π

2 , 3π
2 . The difference between the

CP -conserving and maximally violating cases is given by

Peμδ=0 − Peμδ= π
2

≈ θ13s23c23 sin(8θm − 4θc). (60)
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FIG. 11. (Color online) The oscillation probability Peμ for a
neutrino which has traveled along a chord through the Earth with
zenith angle � averaged over a flat neutrino spectrum from 400 to
600 MeV. The various curves correspond to different values of the
CP phase δ as in Fig. 8.

For a particular matter profile, the size of this difference is
controlled by the factor involving the effective θ12 mixing
angles in the mantle and core. For the 200-MeV case, one
has sin(8θm − 4θc) ≈ 0.31, and for the 800-MeV neutrinos,
this is sin(8θm − 4θc) ≈ −0.81. This accounts for the large
separation between the curves in Fig. 10, relative to the
200-MeV case. In terms of maximizing this difference,
| sin(8θm − 4θc)| = 1 for E = 500 MeV, so, in principle, this
energy would be best to differentiate the CP -conserving or
-violating cases for atmospheric neutrinos traveling through
the Earth along a chord which satisfies the half-wavelength
condition.

In an actual experiment, the finite energy resolution of the
detector must be considered; fortunately, the effects discussed
herein are not washed out by a broad-spectrum neutrino source.
Focusing on the optimal energy to ascertain CP violation,
500 MeV, we consider a neutrino beam with a flat energy
spectrum between 400 and 600 MeV. In Fig. 11, we plot the
beam’s oscillation probability Peμ along a chord through the
Earth parametrized by the zenith angle �. The curves which
have conserved CP symmetry, δ = 0, π , and maximal CP

violation, δ = π
2 , 3π

2 , should be experimentally discernible for
this broadband source.

The bulk of current data on atmospheric neutrinos
comes from the Super-Kamiokande collaboration [43–46].
Unfortunately, these data cannot be used to search for the
effects discussed in this paper because, most crucially,
a water Cerenkov detector cannot distinguish between
neutrino and antineutrino events and, secondarily, the ability
to correctly ascertain the incident neutrino’s zenith angle
from the (detected) charged lepton is poor below 1 GeV. A
proposed detector, the magnetized iron calorimeter (ICAL),
at the India Neutrino Observatory (INO) [47] can distinguish
muon neutrinos from antineutrinos, overcoming the primary
impediment of a water Cerenkov detector. The resolution in
zenith angle for the ICAL is still poor at low energies [48].

If we were to include this additional uncertainty in our
computations, the peaks in Fig. 11 will become smeared out,
but the curves should still be experimentally distinguishable.

VI. CONCLUSION

Using an approximation appropriate for sub-GeV neutrinos
traveling through the Earth, we are able to study in a
three-neutrino framework parametric resonance of neutrino
oscillations for a periodic density profile. Commensurate with
the initial level of approximation, we develop a parametric
resonance condition similar to the exact condition for two-
neutrino systems. For a castle-wall density profile, it is shown
that the νe → νμ oscillation probability at an integer number of
periods is enhanced and bounded by cos2 θ23. The CP phase δ

enters into the oscillation probability at these points via a phase
ψ which is proportional to θ13 and involves the phase γ , a char-
acteristic of the density profile and neutrino energy. This phase
is present in an exact two-neutrino framework of parametric
resonance but is of no measurable consequence in that context.

As expected, in the three-neutrino framework parametric
resonance significantly enhances the oscillation probability.
We examine in detail instances of parametric resonance in
which the phase γ takes on three different values. When
γ = π

2 , the νe → νμ oscillation probabilities achieve maximal
separation at the end the first period for δ = 0 and δ = π ,
provided � = π

4 . When γ = π
4 , this oscillation probability

achieves maximal separation for the δ = 0 and δ = π
2 cases,

given the same condition for �. Though these trajectories
are best for differentiating δ = 0 and δ = π

2 , they also suffer
degeneracies for δ = 0, 3π

2 , and δ = π
2 , π . Finally, whenever

γ = 0 and � = π
2 , thePeμ oscillation probability for all values

of δ is the same an the end of each period.
We also apply this formalism to sub-GeV neutrinos which

travel along a chord through the Earth, using the mantle-core
transition to generate parametric resonance. Significant en-
hancement of the oscillation probability exists even in the case
in which the neutrino energy is far from the MSW resonance.
Though a path through the Earth is not an integer number
of periods, the formalism is useful to determine the state of
the neutrino on leaving the core. As the trajectories through
the Earth nearly satisfy the half-wavelength condition, the
oscillation formulas simplify greatly. Insofar as this condition
is satisfied, we note that energies near 500 GeV will be best
for differentiating the δ = 0 and δ = π

2 cases in the νe → νμ

oscillation channel.
As for a clean experimental confirmation of these resonant

oscillations, two main impediments exist. First, the ability
to differentiate between neutrino and antineutrino events is
crucial. Water Cerenkov detectors like Super-K do not have this
ability, but ICAL at INO could overcome this. The second issue
deals with the ability to accurately assess a neutrino’s incoming
zenith angle �. For sub-GeV neutrinos, the ICAL detector has
poor resolution for the zenith angle, but at 500 GeV, a detector
should still be able to distinguish the cases of δ = 0, π and
δ = π

2 , 3π
2 . Regardless, a semianalytic understanding of the

interplay between parametric resonances and CP violation
for sub-GeV neutrinos provides a useful backdrop for future
data analysis.
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