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“F=m a” optics
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University of Puget Sound, Tacoma, Washington 98416

Mark Rosenquist

Shell Western Exploration & Production, Inc., Rocky Mountain Division, P. O. Box 831,

Houston, Texas 77001

(Received 10 May 1985; accepted for publication 9 October 1985)

Fermat’s principle may be used to derive an equation, of the form F = ma, governing the shape of
a light ray in a medium of varying refractive index. Many interesting problems in gradient-index
optics that ordinarily require considerable computation may therefore be solved very simply by
analogy to familiar mechanical problems. This approach also provides the means of thoroughly
exploring the optical-mechanical analogy at a much more elementary level than is usual.

L. INTRODUCTION

In this paper we present several instances in which expe-
rience and insights developed in mechanics can be used to
solve classic and interesting problems from the geometrical
optics of media with varying index of refraction. This ap-
proach to optics fits very well into a mechanics course at
the level of the books by Marion' and Symon.? Such an
excursion into gradient-index optics can strengthen a me-
chanics course by bolstering the treatment of Hamilton’s
principle with a second example of a variational principle
(Fermat’s), and by showing how methods of solving
F =m a problems can be used in a different context. In
addition, “F = m a” optics produces a great reduction in
the mathematical complexity of many interesting optics
problems and presents the optical-mechanical analogy in a
way that is easily accessible to undergraduates.

II. DEVELOPMENT OF THE FUNDAMENTAL
EQUATION

A, Formulation of a variational principle

We begin our presentation of geometrical optics in me-
dia with varying index of refraction with the statement of a
variational principle. The principle is essentially Fermat’s:
that rays from one point to another are paths of minimum
(or stationary) phase. Although Fermat’s principle is
quite familiar, we briefly recount its justification here: one
of the chief virtues of Fermat’s principle for intermediate-
level mechanics students is that—in contrast to Hamilton’s
principle— it may be justified by a simple physical argu-
ment. To simplify the discussion, we will always assume
that the waves are continuous and of a single frequency.

We regard the wave disturbance as a sum of the contri-
butions propagated along all possible paths from the source
to the receiver. Since neighboring paths traverse nearly the
same ground in the medium, the magnitudes of the distur-
bances arriving along each path must be virtually identical.
However, since we are considering wave motion in the geo-
metrical limit, in which the wavelength is much smaller
than any other feature of the problem, even a slight differ-
ence in paths means that the phase of the wavelets contrib-
uted by neighboring paths will be many cycles different.
(See Fig. 1.) A bundle of neighboring virtual paths from
the source to the receiver will therefore make contributions
with equal magnitudes but with a random assortment of
phases, and will therefore interfere destructively. The only
circumstance in which neighboring paths will not collec-
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tively cancel one another’s contributions occurs when the
phase along the path is stationary, e.g., minimum. In this
single instance, the phases of the contributions along neigh-
boring paths are nearly equal and the wavelets interfere
constructively. We may therefore characterize light trajec-
tories with the following principle:

&(the phase along the path) = 0.

In a medium of varying index of refraction n, the phase
along a path is calculated as the integral of the wave num-
ber times the displacement along the path:

phase=fk]dr]=f-fn(r)|drl. (1
¢

To insist that the phase be stationary, of course, we must
vary the path slightly and require that the variation in the
phase when this is done be zero:

6 phase =36fn(r)ldr| =0,
¢

5J.n(r)|dr| ~o. ' (2)

The typical physics undergraduate encounters only one
variational principle: Hamilton’s principle of least action
in a mechanics course. It is usually presented without justi-
fication. Because of its global nature and unspecified ori-
gins, it often takes on a mystical character. Indeed, Mau-
pertuis himself, the eighteenth-century originator of a
version of the least action principle, was more than a little
mystical in his enthusiasm:

“Qur principle, more consistent with the ideas we ought to
have of things, leaves the world in the continual need of the
power of the Creator, and is a necessary consequence of the
wisest use of this power... . These laws, so beautiful and so
simple, are perhaps the only ones that the Creator and Or-
dainer of things has established in matter to effect all the
phenomena of this visible world.”*

By contrast, the principle of stationary phase in geomet-

10,000, 184.3 cycles
Areceiver

source |0.0(2?é(')£o. 0

Fig. 1. Random phase relation between neighboring virtual paths.
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rical optics can be obtained by simple arguments based
solely on the concepts of the wave and interference. If we
expose students to a second instance of a variational princi-
ple in physics, and support this principle with physical rea-
soning, perhaps Hamilton’s principle will seem less esoter-
ic.

B. Differential equation for the ray

In order to find ray shapes in various media, we derive a
differential equation from the variational principle. This
calculation parallels the derivation of the Euler~Lagrange
equations of motion from Hamilton’s principle, and its
main steps will therefore be familiar.

We specify the position along a path in three dimensions
as a function of a single variable a that we call the stepping
parameter. As the variable @ increases, the point specified
by r(a) moves smoothly along the path;

r = [x(a), y(a), z(a)].

The variational principle [Eq. (2)] can be expressed in
terms of an ordinary integral with respect to the stepping
parameter a:

dr

S —d

The integral is varied by integrating along a slightly differ-
ent path. The second path differs from the first by a vari-
ation function e(a), which is small because the paths are
neighboring. (See Fig. 2.) Thus, in performing the vari-
ation, we make the substitution

r—r 4 e. 4)

Moreover, e(a) vanishes at the end points, because the dis-
turbances must still orginate from the source and be ob-
served at the receiver.

The variation indicated in Eq. (3) may be expressed in
terms of a variation in # and a variation in |dr/da|:

ﬂ(an) ar +n(6 dr )]da:O. )
da a

The index of refraction is a function only of r and thus, to
the first order in e, the variation in # is

én = (grad n)-e. (6)

=0. (3)

voried path

receiver

true path

source

Tlar+e (a) /\
r (a)

origin of
coordinates

Fig. 2. Variation of the path of integration.
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We now calculate the variation in |dr/da|:

slar| _|dr+e)| |dr
da da da
S| a e de)
da da da da
(e de) /| o
“\da da dal’

correct to the first order in e.

We now introduce the prime to denote differentiation
with respect to the stepping parameter a: r'==dr/da. Thus
we have

dr r e
S|—| =——. 7
da || ™
Substitution of Egs. (6) and (7) into Eq. (5) gives
J(gradn-elr’[ + ”’| Ie )da— (8)
l' .

Just as in mechanics, we perform a partial integration of
the second term in Eq. (8). The integrated term vanishes
because the variation e is zero at the source and the receiv-
er. We obtain

f[(grad mr'| — _d% (%)] eda=0.

Since we require the integral to be zero for all neighboring
paths, i.e., for any infinitesimal e, the term in brackets must
be identically zero. This gives us a differential equation for
the rays:

(grad n)|r'| =—d—<—nl-) 9)
da \|r|

The usual form of this equation, derived from the eikonal

equation in geometrical optics,* takes the stepping param-

eter to be the arc length 5. Then dr/ds is a unit vector along

the path and |dr/ds| = 1. The differential equation [Eq.

(9)] becomes:

grad n = :id; ( %), (s = arc length)
or
dr dr d%r
ad n = [ dn) —|—— .
gr (grad n)- Az~ "

This equation is unfortunately nonlinear and, furthermore,
the various components of r(a) are coupled. A far greater
simplification of Eq. (9) results if we choose the stepping
parameter to be something other than the arc length. If we
choose the stepping parameter a such that |r'| = n, the
equation for the ray [Eq. (9)] becomes

ngradn=r", (‘ir_ = n)
da
or
n2
grad (—) =r", (10)
2 .
The physics student has no older friend than this equa-
tion, which has exactly the same form as F = m a. The
familiarity of this equation allows the student to call on all

of his experience at problem solving in mechanics in the
new domain of optics.
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IT1. A TABLE OF ANALOGIES

The optical-mechanical analogy has been discussed of-
ten and from several different perspectives.” The analogy
continues to provide a useful point of departure for investi-
gations of mechanical and optical systems.® The sophistica-
tion of most of these treatments places them well beyond
the reach of the typical undergraduate. A principal goal of
the present paper is to offer an approach to the optical-
mechanical analogy that is simple enough and useful
enough to be included in an undergraduate mechanics or
optics course. At the deepest level, the physical significance
of the optical-mechanical analogy rests on the common
wavelike properties of light and material particles. Light is,
however, not “just like particles,” and one must refrain
from pushing the analogy too far in an excess of enthu-
siasm. For example, the motions of particles and light
pulses, even in corresponding potentials, are not entirely
the same—a point that will be illustrated below.” In our
short course on gradient-index optics we do not stress,
therefore, the physical analogy. Rather, we exploit the for-
mal similarity between equations to permit the rapid solu-
tion of optical problems cast into the same form as familiar
mechanical problems.

It is convenient formally to identify several mechanical
quantities with the analogous quantities in “F = m a” op-
tics. (Refer to Table I.) The mechanical quantities—posi-
tion, velocity, and so on—are presumed to be associated
with a traveling material point particle. The corresponding
optical quantities are associated with a moving pulse of
light. Our derivation of the variational principle depended
on neighboring rays interfering destructively. In order that
this interference take place, disturbances emitted at differ-
ent times must meet at the receiver. The “pulse” of light
must therefore consist of many cycles. Also, the derivation
was based on the assumption that the disturbance was of a
single frequency. If there is little dispersion, all frequencies
will follow nearly the same path but significant dispersion,
as always, will cause a finite pulse to spread.

The position of the light pulse corresponds to the posi-
tion of the material particle. But where the latter is general-
ly regarded as a function of time, we treat the position of the
light pulse as a function of the stepping parameter a. (See
TableI1.)

Thus the role of the time ¢ is played in the optical formal-
ism by the stepping parameter a. The side condition |dr/
da| = n allows one to pass over to a description in terms of
the time, if necessary. A second form of the side condition

Table I. Corresponding quantities in mechanics and F = m a optics.

Quantity Mechanics Optics
Position r(t) r(a)
“Time” t a
“Velocity” ﬂ,=_—|- ir-zr’
dt da "
“Potential energy” U(r) — n2 (r)
“Mass” m 1
2 2
“Kinetic energy” _m|d& 14
2 2dt 2 da 2 2
m|dr 1]|dr n
“Total energy” —|= 1= - =0
& T 2 dal 72
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is obtained by the following simple manipulation:
dr
da

dr| dr
dti da

€ dt

n da’

And thus

(11)

n—=

da =< dt. (12)
n
This second form of the side condition will frequently be
useful.

Corresponding to dr/dt, the velocity of the material par-
ticle, we have the optical quantity dr/da. (We will denote
derivatives with respect to time by a dot, and derivatives
with respect to the stepping parameter a by a prime. Thus
f=dr/dt and r'=dr/da.) Although r’ plays the role of a
velocity in the optical formalism, it is not really a velocity.
The stepping parameter @ has dimensions of length, not
time, so r' is actually dimensionless.

From Eq. (10), the optical equivalent of Newton’s sec-
ond law, mf = — grad U, we may identify the analog of
the potential energy as — n°/2, and the analog of the mass
as the dimensionless number 1.

The analog of the kinetic energy may be constructed by
combining the quantities analogous to f and m. T = ym|¥|?
passes over to 3|r'|>.

The analog of the total energy is

E=T+U
=P~y
But the side condition [Eq. (11)] requires that |¢'| = n.
Hence

E=0.

Thus F = m a optics is analogous to mechanics at zero en-
ergy. This result follows from the fact that there are fewer
initial conditions to be specified in the optical system than
in the corresponding mechanical case. Imagine that we re-
lease a material particle in a mechanical potential. We are
free to choose the particle’s initial position, its initial speed
and the initial direction of its motion. With these quantities
specified, the potential function and Newton’s second law
determine the particle’s future motion. The corresponding
optical situation is this: imagine a region of varying index of
refraction. Imagine turning on a flashlight briefly. The tra-
jectory of the light pulse corresponds to the trajectory of
the material particle. We are free to choose the initial posi-
tion of the light pulse, (i.e., we may place the flashlight
wherever we please). We may also choose the initial direc-
tion of the motion of the light pulse (by aiming the flash-
light as we please). We may not, however, arbitrarily
choose the initial speed of the light pulse, for that is deter-
mined by the index of refraction, which is itself presumed
to be a function of the position alone. Thus, in the optical
situation, the position of the light pulse determines not only
its potential, but also its kinetic “energy.” In the case that
we choose U = — n?/2, with no additive constant, the “ki-
netic energy”” turns out to be the negative of the “potential
energy,” so that the “total energy” is always zero. The opti-
cal situation is therefore somewhat more restrictive than

J. Evans and M. Rosenquist 878



the mechanical one. A given mechanical problem may ad-
mit of several solutions, corresponding to different ener-
gies. The analogous optical problem will in general have
but a single solution—the one corresponding to zero “ener-
gy.”
The prescription E = 0 results from the identification of
— n?/2 with the potential energy, i.e., with no additive
constant. In most situations this convention leads to opti-
cal results which parallel familiar mechanical results. In a
few cases, however, this convention for the “optical poten-
tial energy” differs from the convention normally followed
in the corresponding mechanical situation. An example of
such a difference will be found in our treatment of the opti-
cal analog of the harmonic oscillator in Sec. V F below.

IV. SOLVING PROBLEMS WITH “F = m a”
OPTICS

In this and the following section, we will give several
examples of optical problems that can be solved using the
methods and intuitions of mechanics. We will begin with a
simple derivation of Snell’s law and progress to some of the
classic problems of gradient-index optics. The last few of
these are normal fare in a graduate level optics course and
usually involve considerable computation. In “F =m a”
optics, however, these problems are well within the reach
of undergraduates. ‘

A. Snell’s law

Consider two regions (called 1 and 2), separated by a
plane boundary, as in Fig. 3. Let the index of refraction in
these two regions be 1, and n,, respectively. Choose coordi-
nate axes as shown, with the x axis lying along the bound-
ary.

As the index of refraction does not vary in the x direc-
tion, our fundamental equation [Eq. (10)] requires

d’x

da?
so that

=0,

o constant.
da

That is, dx/da is the same in the two media. The problem is
somewhat analogous to a free-fall problem in mechanics:

Fig. 3. Derivation of Snell’s law.
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the x component of the “velocity” is constant, while the y
component of the “velocity” and total “speed” are not.
Applying the equality (dx/da), = (dx/da),toFig. 3 gives

dr

—| sin @, = |—| siné,.
da | dal;
The side condition [Eq. (11)] then yields
dr dr
—! =pn, and |—/| =n,
da |1 da |,

Thus we have Snell’s Law:
n,sin 8, = n, sin 6,,

as a consequence of the constancy of the x component of
dr/da across the boundary.®

B. Road surface mirage

For a less trivial example we consider a linearly varying
index of refraction. This might be a reasonable first approx-
imation to the optical properties of the air above a road
surface on a sunny day, when the air next to the road is less
dense than the air higher up. Such variation in the density
of the air leads to the familiar road surface mirage in which
a dry road appears to be wet. To solve this problem, we let
n = n, + ay, where y is the vertical distance above the road
surface, and where n, and a are constants. Our “equations
of motion” [r” = grad(n?/2)] are then

d?x
=0,
da*
d?
12 =a(n, + ay).

This corresponds to uniform motion in the x direction
and exponential motion in the y direction. Integration of
the x equation yields

x =Aa + B.

where A and B are constants of integration. The solution of
the differential equation for y(a) is a hyperbolic sine or
cosine plus a particular integral:

y = Ccosh(aa) + Dsinh(aa) — (ny/a).

The constants 4, B, C, and D are to be determined by appli-
cation of the “initial conditions.”

Choose coordinate axes as in Fig. 4 with the y axis pass-
ing through the lowest point of the ray, which is a distance

_ h above the road surface. Further, let ¢ =0 when x = 0.

(This corresponds to defining the moment ¢ = 0 in a me-
chanics problem.) The.x and p positions at a = 0 are then

Xa=0 =0’ Ya=0 =h.

__/

—
.

road surface X

Fig. 4. Refraction of light above a warm road surface.
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These conditions require
B=0, C=h+2
a

The analog of the velocity is dr/da. The magnitude of this
quantity is equal to n. At x = 0, the “velocity” is horizon-
tal, i.e., wholly in the x direction. Thus,

dx dy

— = nh N —_ .

da a=0 da a=0
where n, stands for ny + ah, the index of refraction at
height 2 above the road surface. Application of these condi-
tions to our solution gives

D=0.

Thus the parametric equations for the ray are

:0,

A=n,,

x = (ny + ah)a,

y= (—'59 + A )cosh(aa _ o
a a

Eliminating a yields

n
y=h+ —h[cosh(ﬂ) — l].
a n,
The ray is thus a catenary: the ray hangs in the warm air
just as a chain hangs under its own weight.®

V. CENTRAL-FIELD MOTION

The formalism for dealing with light trajectories in me-
dia with spherical symmetry is a standard part of graduate-
level optics texts.'®'2 We treat the optical central-field for-
malism here because it runs exactly parallel to the
corresponding formalism in mechanics but is unlikely to be
familiar to those who are not opticians. Again, our goal is
to formulate the analogy in simpler terms than usually en-
countered and to illustrate its applications to interesting
problems which are nevertheless easy enough for under-
graduates.

A. “Angular momentum”

Consider a spherically symmetric ball or cloud of gas
(planetary or stellar atmospheres provide a mental picture
of such a situation). In such a case the index of refraction is
a function only of r, the radial distance from the center of
symmetry. The “force” is then a central “force;” each light
orbit lies in a plane containing the “force center;” more-
over, the analog of the angular momentum is a constant of
the motion. Expressed in terms of plane polar coordinates
(r,0), the angular momentum of a material particle of mass
mis L = mr* d@ /dt. The corresponding optical quantity is

L=r% _po. (13)
da

This expression for the “optical angular momentum™
may be cast into an alternative and frequently useful form.
Refer to Fig. 5(a). Draw the radius vector from the “force”
center O to an arbitrary point P on the curvilinear ray. De-
fine @ as the angle between the radius vector and the tan-
gent to the ray. At point P the instantaneous “velocity” is
dr/da, and the component of the “velocity” transverse to
the radius vector is |dr/da|sin @, as shown in Fig. 5(b).
Now, the magnitude of this “transverse velocity” is also
just 78, in analogy with the familiar 76 of mechanics. Thus,

880 Am. J. Phys., Vol. 54, No. 10, October 1986

(b)

0

Fig. 5. Illustrating the formula of Bouguer.

Eqg. (13) may be written

L=r dr sin @,

or by use of the side condition [Eq. (11)],
L = r n sin @ = constant, (14)

a relation sometimes known as the formula of Bouguer.
This form of the “angular momentum’ is useful whenever
one wishes to avoid any explicit use of the stepping param-
eter and to express L solely in terms of ordinary optical
quantities.

B. Circular orbits

We seek the form of () that will permit circular orbits
centered on the symmetry center. By analogy to the me-
chanical case, we may write down the condition for uni-

form circular motion ( — mv*/r = — dU /dr):
_A|dr|?_1an?
r | da 2 dr
dn
C=n—=.
dr

Upon substitution of the side condition |dr/da| = n, we
obtain
_dr_dn
roon’
which may be integrated to yield
n=k/r

The “potential energy” is then U= — k?/2r. And the
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“forcelaw”is F = — dU /dr = — k?/r. Thus, in the opti-
cal case, circular orbits are possible only for the =3 “force
law.”"?

This result requires a comment. In mechanics, any at-
tractive central-force law will permit circular orbits, which
may or may not be stable. The condition for the existence of
the orbit, mv>/r = F(r), can be met simply by starting the
particle at the correct speed for the radius of the chosen
orbit. In the case of optics, the speed is already determined
by the index of refraction, which is itself a function of r
alone. Thus it develops that only in' the case of the ™3
“force” can the condition for circular orbits be satisfied.

As a point of interest, we now calculate the orbital period
associated with the circular orbits for the n = k /r situa-
tion. The speed of light is v = ¢/n = cr/k. The circumfer-
ence of the orbit is 2777. The orbital period is thus

_ 2k

c 3
independent of the radius of the orbit. Here we can see
Fermat’s principle directly—if smaller circles took less
time, the light rays would dive inward to minimize the time
of flight. A circular light orbit can only exist when the
orbital period is stationary with respect to a change in the
radius. If circular orbits are to be possible at all radii, then
the period can have no variation with radius. (Note that in
the mechanical case, in the ~ force field, the period of
circular orbits is proportional to the square of the radius.)

C. General orbit for n = k/r

As the n = k /r case is of some interest, we calculate the
most general orbit allowed. The calculation runs parallel to
that for central-force motion for material particles. The
analog of the energy is

2
E=}|r']~ =0,
where, as always, the prime denotes differentiation with

respect to the stepping parameter a. Writing |r'|? out in
plane polar coordinates, we have

rr+re%—n*=0. (15)
Another constant of the motion is the “angular momen-
tum,” obtained above:

L=r0"

Using L to eliminate 6’ in Eq. (15) yields:

_ 2___[i)l/Z
(L)

Then, writingr’ = (dr/d¢9) (d6 /da)

do =
f J.rz(n 2/;2)”2’

in close analogy with a familiar mechanical result.
Now we suppose that n = k /7, the case at hand. Then

r Ldr
n r(k?—L?)'?

Upon integration, and putting 6, = 0 so that & = 0 when
¥ = r,, we have
2 _ gy 2y1/2
y = ro CXP(L#__ 0 >,

an exponential spiral, a familiar result from mechanics. It
remains to reexpress L in terms of k£ and the launching

= 0'dr/d6, we obtain

(16)
0=

+ 00.

(17)
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Fig. 6. Geometrical quantities involved in the central-force formalism.

angle 8 defined in Fig. 6. By the formula of Bouguer [Eq.
(1),

L = ron() Sin ¢70
= roNg cO8 B,

where n, denotes the index of refraction at the point of
release, where the radius is 7,. For thecaseathand n = k /7,
so that L = k cos B. The formula [Eq. (17)] for the expo-
nential spiral then becomes, with a little manipulation,

r = ry exp{6 tan B).

Note that if 3 = 0, r = r, and we recover the circular orbit
derived above. If 0 <8 < 7/2, tan 3 is positive and the tra-
jectory is an expanding spiral. If — 7/2 < <0, tan B is
negative and the trajectory is a collapsing spiral. The circu-
lar orbit is therefore not stable, but lies between the expand-
ing and collapsing spirals.

D. Light orbits in the r ~? “force field”

The case of the 7~ “force law” is instructive because of
the analogy to planetary motion. We have then

n= 2k/r)'?

so that U= — n?/2 becomes U= — k /r, as required.
From the general result of Eq. (16) we have
Ldr
0=f p & L~ + const.
(T B 7)

This familiar integral is easily handled with the substitu-
tion ¥ = 1/r. (See any intermediate-level treatment of
planetary orbits.) The result is

LZ
_k(l+cosé’)'

The orbit of the light is thus a parabola with its focus at the
origin. The -constant of integration has been chosen to
make » minimum at 8 = 0.

In the mechanical problem, all the conic sections are
obtained—hyperbolas and ellipses as well as parabolas.
The unbound hyperbolic orbits correspond to positive total
energy; the bound elliptical orbits to negative energy (us-
ing the convention in which the potential energy vanishes
atinfinity). In the optical problem, only the zero-“energy”
parabolic orbits are allowed, which confirms a statement
made above.

E. A remark on similarities and differences

That the optical and the zero-energy mechanical orbits
must have the same form for the same “force law” follows
immediately from the fact that in seeking 7 as a function of
6, we eliminate the stepping parameter from the problem.
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As the optical formalism differs from the mechanical only
by the substitution of a for ¢, once the stepping parameter is
eliminated it matters not at all whether this parameter was
aort.

The case is different, however, when we seek the position
as a function of time. Here we see that the light pulse moves
along its trajectory at a different rate than does the parti-
cle—although the trajectories are identical in form. For an
illustration, take the central-field problem. In the case of a
material particle the motion is governed by Kepler’s sec-
ond law or, equivalently, by the conservation of angular
momentum:

%rzé = areal velocity = constant, (mechanics)

the constant being L /2m. For the optical case, the constant
of the motion corresponding to the angular momentum is
L = 70'. But we want to know how @ varies with ¢ and not
with a. Using the side condition [Eq. (12)] to pass over
from d6 /da to d@ /dt in the expressions for the “angular
momentum” gives
. LC .
1= Py (optics)
so the areal velocity is not constant if » varies with r.
In the case of the r—3 “force” (n = k /r), the conserva-
tion of “angular momentum” results in

9 = £ = const,
k2

so that the light pulse moves on its trajectory at constant
angular speed, a result far different from constant areal
velocity. In the r—2 “force field,” the transverse velocity 76
is constant.

F. Luneberg lens

The Luneberg lens is a sphere of radius 7, having an
index of refraction that is 1 at the edge and increases to-
ward the center according to the formula
n = (2 —r*/r2)"/2. As first shown by Luneberg'* in 1944,
this lens has the property of focusing all parallel rays at the
same point—there is no spherical aberration. Since the in-
dex of refraction depends only on the radius, this medium
corresponds to a central force, and in fact the “force,”
n grad n, is

ngradn = — 1 r.
0
In “F = m a” optics, the Luneberg Lens is evidently the
analog of a harmonic oscillator, with “force constant”
1/73. As usual, the “mass” is the dimensionless number 1.
In cartesian coordinates, the general solution for a ray tra-
jectory is thus

x(a)=A4 sin(—a— + a),
ro

y(a) =Bsin(1 +ﬂ>,
Yo

where the “amplitudes of vibration” 4 and B and the
phases a and 8 must be determined by matching initial
conditions.

We consider a ray incident parallel to the x axis and a
distance b from it, as shown in Fig. 7. We set a = 0 as the
light enters the lens. The initial conditions for the y motion
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Fig. 7. Luneberg lens.

are
dy
— =0, y,.o =5,
da a=0 ¢ 0
from which follow
B=mw/2, B=hb.
The initial condition for the x “velocity” is
oy
da a=0
which yields

ro=Acosa.

Our solution is thus,

x=A sin(—q—+a) with r, =4 cos o, (18)
7o

y=>b cos(i). (19)
ro

We now ask where the ray crosses the x axis—what is x
when y = 0? From Eq. (19) we find that y = 0 when the
stepping parameter a =7ry/2. Then x=Asin(n/
2 + a) = A cos a, which the initial conditions have told us
is ;. Thus the ray crosses the x axis at the edge of the
sphere, independent of how far the ray was from the x axis
when it entered the lens. All parallel rays thus converge to
the same point at the back edge of the lens."

VI. TRIAL BY COMBAT

One of the authors taught this material recently in an
junior-level mechanics class for which the text was the well
known book by Marion. The “F = m a” optics was intro-
duced following the textbook chapters on the calculus of
variations, Lagrangian dynamics, and central-force mo-
tion. Some of the problems above were presented in class
and others were assigned for homework. As we have
shown, many problems involving ray optics can be ren-
dered formally quite similar to very familiar problems in
classical dynamics. A very small investment in new mathe-
maticals tools therefore extends the student’s powers from
material particles to light rays—a fact that all but the slee-
piest students seem to appreciate. The resolution of famil-
iar problems in an unfamiliar context proved to be an inter-
esting exercise.

'J. B. Marion, Classical Dynamics of Particles and Systems, 2nd ed. (Aca-
demic, New York, 1970).
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ZK. R. Symon, Mechanics, 3rd ed. (Addison-Wesley, Reading, MA,
1971).

3Pierre Louis Moreau de Maupertuis, Essai de Cosmologie, 1759, quoted
by W. Yourgrau and S. Mandelstam in Variational Principles in Dynam-
ics and Quantum Mechanics, 3rd ed. (Dover, New York, 1968), p. 20.

*See, for example, Max Born and Emil Wolf, Principles of Optics, 6th ed.
(Pergamon, Oxford, 1980), pp. 101-132.

SBorn and Wolf (Ref. 4), pp. 738-746, provide a standard treatment
from the optical point of view. A standard treatment on the mechanical
side is that of H. Goldstein, Classical Mechanics, 2nd ed. (Addison-
Wesley, Reading, MA, 1980), pp. 484-492. See also Yourgrau and Man-
delstam (Ref. 3), pp. 58-64.

Three recent examples are provided by the following. R. J. Black and A.
Ankiewicz, “Fiber-optic analogies with mechanics,” Am. J. Phys. 53,
554-563 (1985). J. W. Blaker and M. A. Tavel, “The application of
Noether’s theorem to optical systems,” Am. J. Phys. 42, 857-861
(1974). W. B. Joyce, “Classical particle description of photons and
phonons,” Phys. Rev. D 9, 3234-3256 (1974).

"This point has also been stressed by J. A. Arnaud, “Analogy between
optical rays and nonrelativistic particle trajectories: A comment,” Am.
J. Phys. 44, 1067-1069 (1976).
8We have derived Snell’s law using the constancy of the component of dr/
da parallel to the boundary, i.e., we have used (dx/da), = (dx/da),. It
is worth remembering that, although these quantities play the roles of
velocities, they are not really velocities. The actual x component of the
velocity isv, = (dx/da)(da/dt) = (¢/n*)dx/da. The constancy of dx/
da across the boundary therefore implies v,, n? = v, n2, so that the hori-
zontal velocities are definitely not the same in the two media.
°In this problem we have supposed the index of refraction to vary linearly
with the height above the road; as shown, the ray is a catenary. Alterna-
tively, one may take the speed of light to vary linearly with the height.
The results then are that the ray is a circular arc, with the center located
at the height, where the speed of light goes to zero. (Our thanks to F.
Danes for pointing this out.) This alternative problem is most easily
solved by starting from the conservation of “energy,” i.e., the equation

that is the last entry in Table 1.

1°Born and Wolf (Ref. 4).

'"M. V. Klein, Oprics (Wiley, New York, 1970).

12E, W. Marchand, Gradient Index Optics ( Academic, New York, 1978).

3The question we have posed is, more strictly, this: For what function
n(r) will there exist a circular orbit centered on the origin for every r.
The condition we obtained, rdn = — ndr, is satisfied for all 7 only by the
function # = k /r. Only in this particular case, then, do such circular
orbits exist for all radii. There are, however, an infinity of possible func-
tions #(r) for which the condition rdn = — ndr is satisfied at one or
more particular values for r. In such a case, a circular orbit centered on
the orgin will be possible, but only at particular, isolated radii. An exam-
ple of such a case is provided by the Maxwell “fish-eye,” i.e., by the
function n(7) = ny[1 + (r/b)*]7'. Asis well known, the general light
orbit in this system is a circle whose center is displaced from the origin.
The off-centeredness of the circular orbit depends upon nyand b, as well as
upon theinitial conditions. [ Bornand Wolf (Ref.4), pp. 147-149.] How-
ever, for the one particular case r = b, the off-centeredness vanishes. In-
deed, it may be verified by direct calculation that for the Maxwell fish-eye,
dn/dr= —n/ronlyatr=>».

1“R. P. Luneberg, Mathematical Theory of Optics, Brown University
mimeographed notes, 1944 (University of California, Berkely, CA,
1964).

!5This problem provides an instance in which the optical “potential ener-
gy,” — n*/2, does not correspond to the usual choice in mechanics. We
have U=r*/(2r3) — 1 in the optical case, while the usual choice in
mechanics is k7/2. This constant shift in the scale of the “potential
energy”’ does not, of course, alter the trajectories. However, our usual
convention of taking — »n”/2 as the analog of the potential energy re-
sults, as usual, in a “total energy” of zero, thus producing a paradox—
how can there be motion in the case of the harmonic oscillator if the
“total energy” is zero? The resolution of the paradox simply involves the
choice of the zero of “potential energy.” If the optical “potential ener-
gy” were defined exactly as is customary in the mechanical case, the
“total energy” would be 1.

Probability theory in quantum mechanics

L. E. Ballentine

Department of Physics Simon Fraser University, Burnaby, British Columbia, Canada V54 156

(Received 12 August 1985; accepted for publication 27 September 1985)

The abstract theory of probability and its interpretation are briefly reviewed, and it is explicitly
demonstrated that the formalism of quantum mechanics satisfies the axioms of probability
theory. This refutes the suggestions which have occasionally been made that “classical”
probability theory does not apply to quantum mechanics. Several erroneous applications of
probability theory to quantum mechanics are examined, and the nature of the errors are exposed.
It is urged that more attention be given to probability theory in the physics curriculum.

L. INTRODUCTION

It is generally agreed that probability must be employed
at a fundamental level in the interpretation of quantum
mechanics. Yet the concept and theory of probability are
usually treated very loosely and superficially. I have not
seen any textbook which demonstrates just how the axioms
of probability theory are satisfied by the formalism of quan-
tum mechanics. The first objective of this paper is to rem-
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edy that shortcoming, and in order to do so I first give a
brief outline of the theory of probability, and those aspects
of its interpretation that are relevant to this task.

It has occasionally been claimed that “classical”’proba-
bility theory does not apply to quantum mechanics. Those
claims are sometimes based on misinterpretations of quan-
tum mechanics, but more often on misinterpretations of
probability theory. Some of those erroneous claims are ex-
amined in the latter part of this paper.
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