
University of Puget Sound
Sound Ideas

All Faculty Scholarship Faculty Scholarship

12-1-2009

Sage (version 3.4); The Princeton Companion To
Mathematics
Robert A. Beezer
University of Puget Sound, beezer@pugetsound.edu

Follow this and additional works at: http://soundideas.pugetsound.edu/faculty_pubs

This Article is brought to you for free and open access by the Faculty Scholarship at Sound Ideas. It has been accepted for inclusion in All Faculty
Scholarship by an authorized administrator of Sound Ideas. For more information, please contact soundideas@pugetsound.edu.

Citation
Beezer, Robert A. 2009. "Sage (Version 3.4); The Princeton Companion to Mathematics." Siam Review 51(4): 785-790.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sound Ideas

https://core.ac.uk/display/216856791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://soundideas.pugetsound.edu?utm_source=soundideas.pugetsound.edu%2Ffaculty_pubs%2F2280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://soundideas.pugetsound.edu/faculty_pubs?utm_source=soundideas.pugetsound.edu%2Ffaculty_pubs%2F2280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://soundideas.pugetsound.edu/faculty_research?utm_source=soundideas.pugetsound.edu%2Ffaculty_pubs%2F2280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://soundideas.pugetsound.edu/faculty_pubs?utm_source=soundideas.pugetsound.edu%2Ffaculty_pubs%2F2280&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:soundideas@pugetsound.edu

SIAM REVIEW @ 2009 Society for Industrial and Applied Mathematics
Vol. 51. No. 4, pp. 785-807

Book Reviews

Edited by Robert E. O'Malley, Jr.

Featured Reviews: Sage (Version 3.4); The Princeton Companion to Mathemat-
ics.

Sage. Version 3.4. www.sagemath.org. Free, with GNU Public License (GPL).

Sage is software for mathematics. To the uninitiated, this statement might sound
unimpressive, or even obvious, but the readers of SIAM Review will clearly recognize
the challenges of representing the infinite and the continuous in a machine that is
finite and discrete. For example, consider just the vagaries of floating-point arith-
metic. A better description, which concisely captures the essence of Sage, comes from
the project's mission: "Creating a viable free open-source alternative to Magma,
Maple, Mathematica and Matlab." While Sage continues to improve and expand at
a dramatic pace, it has come a long way toward meeting its goals. Stable and fast
algorithms are provided for much of the mathematical universe, including symbolic,
exact, numerical, and graphical capabilities. A notebook interface runs in a web
browser and provides a convenient and productive environment for using all of Sage's
features. The user and developer communities have also expanded dramatically. All
of this is based on open-source software, open standards, and an open development
process.

Borne of his frustration with proprietary programs providing similar functionality,
William Stein founded Sage in 2005 and continues to lead the project. He wondered
how one could rely on software for research in mathematics with little or no knowledge
of the algorithms and code producing those results. He believed rapid progress in
scientific research had always been predicated on an open exchange of ideas, and so
should it be with software for mathematics. Since 2005 the project has attracted a
very large user community, as measured by these recent monthly statistics provided
by Harald Schilly, the Sage web site and forum manager: 2,000 forum posts generated
and viewed by the 2,000 forum members, 6,000 downloads of the program, and 60,000
visits to the web site. Contributors to the code are an international group numbering
150, while at any one time roughly 40 of these developers are working assiduously on
projects or improvements. Major funding sources are the University of Washington,
the University of California San Diego, the National Science Foundation, Coogle,
Microsoft, Sun, and the U.S. Department of Defense.

The genius of Sage is its leveraging of other open-source software projects. There
are many mature and stable software projects devoted to relatively narrow areas of
mathematics whose authors have released the source code under open licenses, such
as the statistics package R and the scientific computing package SciPy. Since Sage is
made available with a compatible license, it is allowed to integrate this functionality.
This brings open, well-tested, and very fast algorithms into the project at the cost of

Publishers are invited to send books for review to Book Reviews Editor, SIAM, 3600 Market St.,
6*'' Floor, Philadelphia, PA 19104-2688.

785

786 BOOK REVIEWS

simply providing an interface between Sage and the added code. This also allows the
vast majority of development work to focus on adding new features and algorithms to
the current 300,000 lines of new code, rather than duplicating existing work. Often
this work is done by specialists providing tools for their own research and teaching
("scratching their own itch" in open-source parlance). Sage provides the infrastruc-
ture, in terms of both a work environment and common basic mathematical functions,
that allows specialists to concentrate on algorithms and new features.

Sage's approach has been to add functionality wherever possible through existing
packages, and then provide new code where no open-source package exists or speed
improvements are possible. An early slogan was, "Building the car, not reinventing
the wheel." An early choice of the Sage project was to use Python as the principal
language of the project. Many system administrators like to use Python as "glue
code" to cobble together different programs and commands into a single script that
automates maintenance tasks. Sage exemplifies this philosophy to an extreme. It has
been a good choice because many smaller projects, for both mathematics and the
associated infrastructure of a large program, have been written in Python, ported to
Python, or provide interfaces to C/C++ code via Python. Two examples are the
SciPy and NumPy packages, which are used heavily in Sage. NumPy provides critical
high-dimension array manipulations, and SciPy builds on NumPy to provide a variety
of mathematical tools such as numerical integration, differential equation solvers, and
linear algebra routines. While SciPy is an open-source project, it is sponsored by a
commercial company, Enthought, which in turn specializes in providing clients with
scientific applications based on Python software.

Sage is created and maintained by a world-wide pool of developers, but actual
changes are coordinated by a release manager. Much of Sage's stability is due to
Michael Abshoff's tenure as sole release manager from January 2008 to May 2009,
while more typically the duties rotate through developers such as William Stein, Carl
Witty, Martin Albrecht, Robert Miller, Mike Hansen, Craig Citro, Nick Alexander,
Tom Boothby, and Minh Van Nguyen. Part of that stability comes from requiring
that every change receives a positive review from another Sage developer before being
added, not unlike the review of a journal article by a referee. Similar to the Linux
kernel development process, all approved changes are then integrated into the offi-
cial version by a release manager. There is an automated test system for catching
unintended effects in other areas, providing more safeguards for the high quality of
the code as tests are performed after making changes and interested volunteers test
preliminary versions on a variety of hardware. It is important to realize that Sage
contains everything you need to use all of its features. You can install it anywhere
you like—your desktop, a laptop, a USB thumb drive, or personal space on a shared
server. It has no dependencies and does not require administrative privileges to install
or run. The included packages are up-to-date and tested to work with each other.
Sage is very serious about compiling, installing, and running easily on a wide variety
of hardware. Binary distributions are available for eight popular Linux distributions
(32- and 64-bit), Mac OSX (Intel and PowerPC), Windows, plus more exotic config-
urations such as Sun Solaris, the Intel Atom chip for netbooks, and the Itanium chip.
At the time of writing, the best way to run on Windows is within a virtual machine,
and therefore the reviewed version is distributed as a VMware image for the freely
available player. A native Windows port is an ongoing project. With a relatively
current compiler installed (as provided by most Linux distributions and Mac OSX),
it is almost as easy to compile all of Sage from source since it takes just a few simple
commands to initiate the compilation. But be prepared to wait several hours: Sage

BOOK REVIEWS 787

is big. In one extreme example that illustrates the robustness of Sage's build system,
Carl Witty, a Sage developer, downloaded the Sage source code to his Google Android
Gl cell phone, and after a total of 15 days of compile time and 3 days of automated
testing, he eventually had a working command line version.

Sage can be run from its own command line, which is useful for batch processes.
However, for a new user or a student, the notebook interface is one of the strongest
features. With Sage running in server mode, either on the same computer or remotely,
a user may execute Sage commands via a web page. You can experiment with Sage
and this interface by quickly creating an account on the free public server located
at sagenb.org, logging in, and working through the tutorial [1]. The notebook is a
collection of web pages, which are known as worksheets. Each worksheet is a sequence
of input and output cells. An input cell is a sequence of Sage commands which can
be evaluated as a group, with the object on the final line being displayed. Print com-
mands can be used to output intermediate calculations. As Python is an interpreted
language, the results are immediate, encouraging exploration and experimentation.
With tab-completion it is easy to see exactly which commands are available for an
object. The statement A.determinant? will bring up brief but helpful documenta-
tion for the determinant of the matrix A, while A.determincoit?? will bring up the
source code for this command.

Because Sage is written in Python, it is most natural to construct programs calling
Sage routines in Python, though it is not necessary to know any Python to use Sage
effectively. A full working copy of Python is included in the distribution, and from the
command line or the notebook there is no overhead to immediately writing routines
in Python. It is even possible that a user will learn some Python syntax without even
realizing it. This is in contrast to the proprietary or one-off languages used by similar
programs. Sage contains a Fortran compiler, which can be activated with a single line
of code, and Fortran routines can be called from Python code with the included f2py
utility. A spin-off of Sage is the Gython project, which builds on work of the Pyrex
project. This project defines additional syntax for Python that in turn enables the
generation of compiled C code and interfaces to G routines. Many new routines in
Sage begin as interpreted Python and once stable are modified easily and quickly to
Gython for the resultant speed improvement. Sage also includes interfaces to Axiom,
Maple, Mathem.atica, MATLAB, MuPad, and Octave, provided you have legitimate
licenses for those programs that are proprietary. So you can gain the benefits of the
Sage notebook without orphaning any existing code.

Every mathematical object in Sage can be output in the typesetting language
Î T^X and the notebook includes the open-source software jsMath for displaying WT^^
properly in a web page via Javascript commands. So it is possible to automatically (via
one checkbox) have high-quality output. Or you can output the raw WT^ output to
paste into another document. Additionally, Sage makes available through Javascript
the open-source TinyMGE mini-word processor so that it is possible to annotate a
worksheet. Entering small snippets of WT^ in the word processor will cause jsMath
to render the mathematics properly upon exiting TinyMGE. Three-dimensional plots
are rendered in an open-source Java applet, JMOL, originally built for chemists to
visualize molecules, but adapted by Sage to render, rotate, and zoom surfaces, data, or
curves in space. Worksheets are designed to be published at publicly accessible URLs
or shared among a small group of collaborators. There is simple-to-use infrastructure
to create sliders, input fields, and checkboxes in the output of a cell, such that the
output responds to changes in the inputs. So, for example, a slider might control the
degree of a Taylor polynomial and the output would include a plot of both the original

788 BOOK REVIEWS

function and the approximation (see examples at [2]). Such a demonstration could be
accompanied by notes written in the word processor. The worksheet is a comfortable
place to learn Sage (and Python and M^iX) with obvious applications in education.
For the researcher it is a comfortable place to test new applications before scaling up
to production runs via the command line.

Sage is a big and fast-moving target. Not surprisingly in a young open-source
project, documentation tends to lag. However, right in the source code for a command
there is almost always a fairly complete explanation of input options and an expla-
nation of the output, along with a collection of examples. Extending this coverage to
100% is one of the current priorities. One can construct an object (e.g., a function, ma-
trix, or ring) and use tab-completion to see just the functions possible for this object,
and this is often a qnick and easy way to start experimenting with a new area within
Sage. Even better are the very active online forums, including sage-support for help
with routine questions, sage-edu for discussions of educational applications, and sage-
devel for technical and design discussions, in addition to specialized forums for number
theory and combinatorics and active Internet Relay Chat (IRC) channels for both sup-
port and development. Developers, including William Stein and the release managers,
frequent the support areas and are quick to offer assistance or recognize bugs that
need attention. It is a civil, enthusiastic, and helpful community, with flame wars dis-
tinguished mostly by their extreme rarity. Well-formed questions are often handled
quickly and accurately. Suggestions for new packages or functionality are welcome.

Sage is big and ambitious. What parts are of most interest to readers of SIAM
Review? First, Sage does not have an easily discernible bias among symbolic, exact,
and numerical arenas. Symbolic manipulation is provided by a variety of different
packages and some of the more notoriously difficult areas are a current focus of Sage
development. With research in number theory as an early motivation, support for
exact mathematics is impressive. Sage strives to represent mathematics as a math-
ematician views it. For example, in Mathematica the command NullSpace [A] will
return a list of basis vectors for the null space of the matrix A, rather than a vector
space. In Sage, the command W = A.kernel() will return a vector space W, which
is a variable that can be further inspected with commands appropriate to a vector
space, such as W.basis() which returns a list of basis vectors. It is a subtle, but very
important distinction. Similarly, in Sage you are allowed, or required (depending on
your perspective), to specify the base ring or field you are working over. For example,
the syntax R. <x> = ZZ [] defines the ring R of polynomials in x over the integers,
while R.<x> = QQ[] defines R over the rationals, and R.<x> = CC[] defines iî over
the complex numbers. Now define a polynomial in x by p = 2*x~3+x~2+2*x+l. De-
pending on the definition of iî, the command p.factorO will return (2a; + l)(a;^-f 1)
over the integers, 2(x + |)(x^ + 1) over the rationals, and 2{x + i)(x — i){x + i)
over the complexes. This can be a source of confusion for the novice. However, it
accurately mirrors actual practice in mathematics, and in the long run the necessary
precision and clarity make it possible for Sage to more directly and easily provide
correct answers in more complicated situations.

Arbitrary-precision computations are equally at home in Sage. For example, a
matrix could be simply specified over a "field" of real numbers with 200 bits of pre-
cision as C = matrix(RealField(200), [[1,2] , [3,4]]). Consistent with Sage's
approach, this field employs the routines of the open-source MPFR package for mul-
tiprecision fioating-point numbers with correct rounding. For a random 1000 x 1000
matrix of double-precision reals (the field RDF in Sage syntax), a determinant is
computed via the SciPy, NumPy, and BLAS packages in about 0.1 seconds on $500

BOOK REVIEWS 789

hardware. When the ring is changed to the integers, the open-source IML library for
integer matrix computations is employed instead. Then the roughly 3,000 digits of
the determinant of a random 1000 x 1000 matrix are computed exactly, though the
computation time grows to about 12 seconds.

A few examples of useful open-source packages for applied mathematicians that
are integrated into Sage are SciPy and NumPy for numerical and scientific computing
with Python that captures much of the functionality of MATLAB; the complete R
program for statistical analysis; CVXOPT for linear programming and similar op-
timization problems; the GNU Scientific Library (GSL) for fast Fourier transforms
and numerical differential equations; ATLAS, BLAS, LAPACK, Linbox, M4RI, and
NumPy all for linear algebra.

One particular example might highlight the application of Sage in an area of
applied mathematics. Ahmed Fasih is a Ph.D. student at Ohio State University in the
Department of Electrical and Computer Engineering studying radar signal processing
algorithms and automatic signal analysis. His current work involves tracking moving
vehicles with synthetic aperture radar data, specifically computing bounds for the
minimum covariance of estimators of position, velocity, and complex amplitude of an
electromagnetic scatterer in radar. In the course of this work, integrating functions
with maximums of e~^'^^^ or smaller became impossible to compute in MATLAB.
Then he found Sage and the included open-source Mpmath package, providing the
necessary support for both arbitrary-precision arithmetic and quadrature integration.
Mpmath is another example of a specialized project that is an important component
of Sage, and a recent NSF-funded joint project has strengthened this relationship.
Converting his MATLAB routines for Sage, Ahmed employed native Sage support
for parallelizing the integrations on subintervals to submit 128 simultaneous jobs on
4-core nodes without any license infringements, cutting his runtime by a factor of 500.

In this way, Ahmed obtained more accurate results and better insights into his
research application. He also reports the advantage of Sage containing all the bits
he needed, packaged together to work together, and the freedom from the limits
and hassles of licensing restrictions and the need for administrative privileges on
target machines. There is even a popular open-source distributed version-control
system. Mercurial, that is packaged with Sage, which was useful for his research
group. He reports that the roughest patch was initially understanding all the data
type conversions for numbers and vectors among Sage, Python, and Mpmath, but
in the spirit of open-source development, he plans to use his experience to help the
author of Mpmath simplify the situation for others. Presently, for a course in parallel
computing architectures, he is experimenting with the PyCUDA package from within
Sage, which is a Python interface to the CUDA C framework. This is an initiative
to employ NVIDIA graphics cards as computational engines for intensive parallel
computations (instead of just computer games).

I resolved at the start of the 2008-2009 academic year to learn Sage by using it
every reasonable chance I got, abandoning a 20-year investment in Mathematica. The
straightforward interface to the open-source package GAP (Groups, Algorithms, and
Programming) was uncomplicated enough to allow me to integrate a computational
approach to group theory into my introductory course for the first time. The exact
linear algebra routines are useful as I extend my linear algebra textbook, especially
the ability to simply cut and paste the W£]¡^ output from Sage to the book. In mul-
tivariable calculus the three-dimensional plots have been invaluable, such as a plot of
the degree-16 two-variable Taylor polynomial approximating f{x,y) = sin(x) cos(j/)
on [—7r,7r] x [—7r,7r], with Sage computing the 154 necessary partial derivatives sym-

790 BOOK REVIEWS

bolically. I've been trading similar worksheets for this course with Jason Crout at
Iowa State University and Robert Mafik at Mendel University in the Czech Republic,
often by publishing worksheets off the Sage public server. Sage will see significant
action as I finish an integral calculus course this term with infinite series and Taylor
polynomials. Preparing an upcoming presentation will give me an excuse to learn
more about Sage's graph theory routines.

Sage is big, and there is much to explore and to use in your professional activities
as a mathematician. It is an impressive concentration and unification of mathematical
knowledge. The reliance on mature open-source packages and open standards provides
a measure of confidence and future-proofing. There are a few rough edges as the
project matures, but this also provides the opportunity to get involved and influence
development. But see for yourself by experimenting at the public server (sagenb.org)
along with the over 5,000 others who have accounts there, or simply install your own
copy on your favorite hardware. Either way, it's free.

Acknowledgments. This review has benefited greatly from the help of the Sage com-
munity, specifically Michael Abshoff, Robert Bradshaw, Craig Citro, Ahmed Fasih,
Jason Crout, Mike Hansen, David Joyner, Josh Kantor, Nancy Neudauer, Harald
Schilly, and William Stein. Their assistance is greatly appreciated.

REFERENCES

[1] Sage Tatorial, http://sagemath.org/doc/tutorial/index.html.
[2] Sage Wiki Interactions, http://wiki.sagemath.org/interact.

ROBERT A. BEEZER

University ofPuget Sound

The Princeton Companion to Mathematics. Edited by Timothy Gowers, with june Barrow-
Green and Imre Leader. Princeton University Press, Princeton, NJ, 2008. $99.00. xxi i+
1034 pp., hardcover. ISBN 978-0-691-11880-2.

Tim Cowers was a 1998 Fields medalist for his marvelous resolution of long-standing
problems in Banach space theory—such as whether it is possible for a Banach space to
have no isomorphic hyperplane (it is)—and in combinatorics; and while he continues
such work, in exemplary fashion he has also found time for various more didactic
and expository projects such as Mathematics: A Very Short Introduction (2002) and
the book under review, activity with various media, and much else. Both associate
editors, June Barrow-Creen (Deputy Director for the Centre and Research Fellow in
History of Mathematics at the Open University) and the combinatorist Imre Leader
(Professor at Trinity College, Cambridge), have distinguished records.

This work, which I shall refer to below, as Cowers does, as " The Companion,^^ is
a fine validation of the well-known proposition that if you want a job done right you
should ask a busy person to do it. In this case many very busy people have performed
an invaluable job very, very well. This handsome, hefty, and attractively priced vol-
ume received Honorable Mention for the 2008 PROSE Award for Professional and
Scholarly Excellence for Single Volume Reference/Science, Association of American
Publishers. In his excellent preface Cowers describes the painstaking six-year process
which led to this work and writes that "the central focus of this book is modem, pure
mathematics," both highlighted terms being lucidly discussed. Since this review is

Copyright of SIAM Review is the property of Society for Industrial and Applied Mathematics and its content

may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express

written permission. However, users may print, download, or email articles for individual use.

	University of Puget Sound
	Sound Ideas
	12-1-2009

	Sage (version 3.4); The Princeton Companion To Mathematics
	Robert A. Beezer
	Citation

