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The classical limit of quantum mechanics may be obtained, in a much simpler fashion than usual,
by applying the de Broglie relation to Fermat’s principle.

Consider a wave disturbance in an isotropic medium.
Assume a time-independent situation, so that the wave-
number k for a particular frequency depends only upon the
position r. In the “geometrical optics limit,” when the
wavelength is much shorter than any other significant dis-
tance, the disturbance may be considered to propagate
along well-defined rays. In this situation, the principle of
stationary phase may be used to derive a differential equa-
tion governing the rays.

Refer to Fig. 1. A wave disturbance originates at a source
and propagates eventually to a receiver along a path we
shall call the “true path »” The phase difference between the
source and the receiver is

fk(r)|dr|,

where |dr| is an element of length along the path and where
the integration is carried out from the source to the receiv-
er. The principle of stationary phase then requires that this
integral be stationary against small variations in the shape
of the path,

5fk(r)|dr| =0. (1)

Physically, this condition originates from the requirement
that there be constructive interference among a bundle of
virtual paths closely neighboring the true path. In accor-
dance with contemporary usage, we shall refer to Eq. (1)
as Fermat’s principle, although Fermat certainly would
not have recognized it in this form.'

Equation (1) applies quite generally to all wave phe-
nomena obeying the superposition principle, and thus must
apply to the matter waves of quantum mechanics. That is,
if we pass to the short-wavelength limit of quantum me-
chanics, the trajectory of a material particle (analogous to
an optical ray) is determined by Eq. (1). The general equa-
tion can be applied specifically to matter waves by the use
of the de Broglie relation, '

p=mv=H#k. . 2)

Asusual, pdenotes the momentum of the classical particle,
m the mass, and v the speed, while #is Planck’s quantum of
action divided by 27. Thus we have, by substitution,

6J.v(r)|dr| —o. (3)

The variational principle of Eq. (3) is known as Mauper-
tuis’ principle and represents the first historical statement
of a least-action principle.” Maupertuis’ principle can be
used in classical mechanics for determining the trajectory
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of a particle whose speed is a function of position only. In
other words, Eq. (3), applies to time-independent situa-
tions in which the force is derivable from a potential and in
which the principle of conservation of energy therefore
holds. Maupertuis’ principle is, of course, neither the most
familiar nor the most useful expression of the laws of me-
chanjcs. However, the transition to this formulation of me-
chanics is accomplished in a single step. Moreover, it is
immediately clear that this variational principle of classical
mechanics rests upon the underlying wavelike nature of
material particles.

" A more familiar formulation of mechanics can be ob-
tained by carrying out the variational calculation of Eq.
(1). To do this, we imagine the position of the wave distur-
bance along the true path to be a function of the time . As ¢
increases, the point specified by r(¢) moves smoothly along
the path. (See Fig. 1.) The integral is varied by integrating
along a slightly different path. For each value of 7, the var-
ied path differs from the true path by an infinitesimal vari-
ation e(#). Thus Eq. (1) becomes

5fk|r'|dt=o,

where the prime denotes differentiation with respect to t.
Carrymg out the variation on both factors of the mtegrand
we have

[ 1601 + keeirp1de =0, (4)
Now, to the first order in the variation,
8k = Vkre, ' : (5
Varied path

Receiver

True path

Origin of
coordinates

Fig. 1. Variation of the path of integration.
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and
|r'| = |r" + €| — |r'|
~r'e'/|r|. (6)
Upon substituting (5) and (6) into (4), we obtain

f [|r'|Vkee + (kr'/|r' )-e’];z’t =0.

When the expression involving ¢’ is integrated by parts, the
integrated term vanishes because the variation e is zero at
the source and the receiver. We have then

f [lr’le - % ('fr’—')]e dt =0,

Since this equation holds for any infinitesimal e, the expres-
sion in square brackets must itself be identically zero. This
gives us a differential equation governing the motion of the
disturbance along the ray’:

|r'|v1c=i<£). %
dt \|r'|

As before, the transition from a general statement about
wave phenomena in the short wavelength limit to a state-
ment about matter waves is accomplished by applying the
de Broglie relation (2). Thus if in Eq. (7) we replace &
bymuv/#, we obtain

V(imv2)=m—dl. (8)
2 dt

Since we have supposed & to be a function of position alone,
the speed v is similarly a function of position alone. We may
then write émv2 = E — U(r), where E is the total energy
and U is the potential energy. Equation (8) then assumes
the form

av

dt

Thus Newton'’s law of motion results from the application
of the de Broglie relation to the equation (7) governing the
ray in the short wavelength limit.

It is worth pointing out that the relativistic form of New-
ton’s law of motion is obtained if, instead of Eq. (2), we use
the relativistic form of the de Broglie relation,

#ik = mvy, (10)
where m is the rest mass and ¥ = (1 — v®/c?) ~'/2, with ¢

being the speed of light in vacuum. Use of this expression
for kin Eq. (7) gives

= —VU. 9

va(vy):%(mvy). (11)

Now,
vV(uy) = Vy +uy Vo
= Vy+ (¥ = A)Vy + vy W,

but the last two terms on the right-hand side of this equa-
tion cancel identically, so we have

vV(vy) =c*Vy.
Use of this result in Eq. (11) gives
V(mc?y) =§; (mvy), (12)
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the relativistic form of Eq. (8). The expression in parenthe-
ses on the left side of Eq. (12) is the kinetic energy plus rest
mass energy of the particle. As the kinetic energy is sup-
posed to be a function of position alone, the total energy E
is conserved and the expression in parentheses may be re-
placed by E — U(r). Thus Eq. (12) becomes

4 (mvy) = — VU, (13)
dt

the relativistic form of Newton’s law of motion.

This approach to the short-wavelength limit of quantum
mechanics has several advantages for undergraduate in-
struction. It does not involve a rarely used formulation of
classical mechanics such as the Hamiltonian-Jacobi for-
mulation, nor does it involve higher level quantum con-
cepts such as the probability current density.* Instead, it
relies only on the short-wavelength behavior of waves in
general and the simple physics of the de Broglie relation.
Because Fermat’s principle does not depend upon the par-
ticular form of the wave equation, it yields the relativistic
form of classical mechanics as readily as the Newtonian.
This approach has, moreover, a certain historical legiti-
macy. The analogy between the principles of Fermat and
Maupertuis played an important part in de Broglie’s
thought as he worked toward the momentum-wavelength
relation.’

'If we suppose that the speed of light depends only upon position and
restrict ourselves to a single frequency (or to a nondispersive medium), a
simple manipulation reduces Eq. (1) to 8f¢™ 'n(r)|dr| = 0, where c is
the speed of light in vacuum and # is the index of refraction; i.e., a state-
ment that the time of travel is stationary against small variations in the
shape of the path. In this form, the variational principle is somewhat
closer to the principle of least time enunciated by Fermat.

*For a discussion of Maupertuis® principle and its elaboration by Euler
and Lagrange, see W. Yourgrau and S. Mandelstam, Variation Principles
in Dynamics and Quantum Theory (Dover, New York, 1979), 3rd ed.,
pp. 19-32.

*Equation (7) may be generalized somewhat: The four differentiations
with respect to ¢ may be replaced by differentiations with respect to any
other parameter (e.g., the arc length) that increases smoothly as one
moves along the path of integration. The more general form of (7) results
from the adoption of some variable other than ¢ as the variable of integra-
tion in Eq. (4).

As will be shown, the application of Eq. (7) to the matter waves of
quantum mechanics results in Newton’s law of motion. But Eq. (7) ap-
plies quite generally to any linear wave phenomenon in the short-wave-
length limit: Eq. (7) may also be applied, for instance, to ordinary light
optics to obtain the shape of the optical ray in a region of varying index of
refraction. If the independent variable is chosen appropriately, the differ-
ential equation governing the shape of the light ray may also be cast into
the form of Newton’s law of motion. See J. Evans and M. Rosenquist,
Am. J. Phys. 54, 876 (1986).

“For a typical demonstration of the classical limit of quantum mechanics
making use of the Hamilton-Jacobi equation, see L. 1. Schiff, Quantum
Mechanics (McGraw-Hill, New York, 1968), 3rd ed., pp. 269-270. For
a typical demonstration based on Ehrenfest’s theorem and using the
probability current density, see E. Merzbacher, Quantum Mechanics
(Wiley, New York, 1962), pp. 41-42.

L. de Broglie, Recherches sur la théorie des quanta [ The thesis of 1924)
(Masson, Paris, 1963), pp. 32—49. Summaries of de Broglie’s use of the
principles of Fermat and Maupertuis are given in the following two
works: Ref. 2, pp. 116118 and T.-Y. Wu, Quantum Mechanics (World
Scientific, Singapore, 1986), pp. 131-135.
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