View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Sound Ideas

University of Puget Sound
Sound Ideas

All Faculty Scholarship Faculty Scholarship

11-1-1994

Entropy of Measurement and Erasure: Szilard’s
Membrane Model Revisited

Harvey S. Leff
Physics Department, California State Polytechnic University, Pomona, 3801 West Temple Avenue, Pomona, California 91768

Andrew F Rex
University of Puget Sound, rex@pugetsound.edu

Follow this and additional works at: http://soundideas.pugetsound.edu/faculty pubs

Citation

Leff, Hs, and Andrew F. Rex. 1994. "Entropy of Measurement and Erasure - Szilards Membrane Model Revisited." American Journal
Of Physics 62(11): 994-1000.

This Article is brought to you for free and open access by the Faculty Scholarship at Sound Ideas. It has been accepted for inclusion in All Faculty

Scholarship by an authorized administrator of Sound Ideas. For more information, please contact soundideas@pugetsound.edu.


https://core.ac.uk/display/216856672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://soundideas.pugetsound.edu?utm_source=soundideas.pugetsound.edu%2Ffaculty_pubs%2F2782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://soundideas.pugetsound.edu/faculty_pubs?utm_source=soundideas.pugetsound.edu%2Ffaculty_pubs%2F2782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://soundideas.pugetsound.edu/faculty_research?utm_source=soundideas.pugetsound.edu%2Ffaculty_pubs%2F2782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://soundideas.pugetsound.edu/faculty_pubs?utm_source=soundideas.pugetsound.edu%2Ffaculty_pubs%2F2782&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:soundideas@pugetsound.edu

AMERICAN

OURNAL
ﬁ;(srmnl (}J!. PHYS]CS
 ———— e T

Entropy of measurement and erasure: Szilard’s membrane model revisited
Harvey S. Leff and Andrew F. Rex

Citation: American Journal of Physics 62, 994 (1994); doi: 10.1119/1.17749

View online: http://dx.doi.org/10.1119/1.17749

View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/62/11?ver=pdfcov
Published by the American Association of Physics Teachers

Articles you may be interested in
Szilard’s Engine: Measurement, Information, and Maxwell's Demon
AIP Conf. Proc. 643, 279 (2002); 10.1063/1.1523817

Goldhaber provided Szilard’s isotopes
Phys. Today 54, 14 (2001); 10.1063/1.1420539

The Szilard engine revisited: Entropy, macroscopic randomness, and symmetry breaking phase transitions
Chaos 11, 725 (2001); 10.1063/1.1388006

Szilard's inventions patently halted
Phys. Today 54, 102 (2001); 10.1063/1.1366083

course
:‘.:weaver

Power to Create * Power to Learn

== New from CourseWeaver

Homework Simply The Most Advanced

System Physics & Math Engine

Designed by Teachers, for Teachers



http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/671039607/x01/AIP/CourseWeaver_TPTCovAd_1640banner_08_13thru_08_19_2014/CourseWeaver1640x440.jpg/4f6b43656e314e392f6534414369774f?x
http://scitation.aip.org/search?value1=Harvey+S.+Leff&option1=author
http://scitation.aip.org/search?value1=Andrew+F.+Rex&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.17749
http://scitation.aip.org/content/aapt/journal/ajp/62/11?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1523817?ver=pdfcov
http://scitation.aip.org/content/aip/magazine/physicstoday/article/54/10/10.1063/1.1420539?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/11/3/10.1063/1.1388006?ver=pdfcov
http://scitation.aip.org/content/aip/magazine/physicstoday/article/54/3/10.1063/1.1366083?ver=pdfcov

Entropy of measurement and erasure: Szilard’s membrane model revisited
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Physics Department, University of Puget Sound, Tacoma, Washington 98416

(Received 16 February 1994; accepted 18 May 1994)

It is widely believed that measurement is accompanied by irreversible entropy increase. This
conventional wisdom is based in part on Szilard’s 1929 study of entropy decrease in a
thermodynamic system by intelligent intervention (i.e., a Maxwell’s demon) and Brillouin’s
association of entropy with information. Bennett subsequently argued that information acquisition
is not necessarily irreversible, but information erasure must be dissipative (Landauer’s principle).
Inspired by the ensuing debate, we revisit the membrane model introduced by Szilard and find that
it can illustrate and clarify (1) reversible measurement, (2) information storage, (3) decoupling of
the memory from the system being measured, and (4) entropy increase associated with memory

erasure and resetting.
1. INTRODUCTION

In his Theory of Heat, Maxwell proposed a thought ex-
periment designed to illustrate that the second law of ther-
modynamics is statistical.' The chief character in that idea
became known as Maxwell’s demon.>* For approximately
120 years the puzzle of whether a Maxwell’s demon can or
cannot violate the second law has been studied and debated.*
This rich history inspired a resource letter on Maxwell’s de-
mon in this journal.” A resolution based largely on the work
of Szilard® and Brillouin’® gained wide acceptance: A demon
must gather information in order to operate, and information
acquisition is sufficiently dissipative to “save” the second
law. Following the widespread acceptance of this reasoning,
it appeared that Maxwell’s demon was ““dead.”

Thirty-one years after Brillouin’s work a very different
solution to the Maxwell’s demon puzzle was proposed by
Bennett.® Asserting that information acquisition is not neces-
sarily dissipative, Bennett found Brillouin’s resolution to be
incomplete. Drawing upon the seminal work of Landauer on
energy limits in the computational process,® he proposed an
alternative resolution of the puzzle using the notion that a
demon requires a memory and must clear that memory peri-
odically. According to Bennett the second law is saved by the
fact that erasing and resetting a memory is a dissipative op-
eration.

The importance of memory had been discussed in 1929 by
Szilard.® He introduced the idea of measuring a system pa-
rameter x and recording the measurement’s result via a cor-
responding value y in a memory register. He wrote, “Then
let x and y be uncoupled after the measurement, so that x can
change, while y retains its value for some time. Such mea-
surements are not harmless interventions. A system in which
such measurements occur shows a sort of memory faculty, in
the sense that one can recognize by the state parameter y
what value another state parameter x had at an earlier mo-
ment, and we shall see that simply because of such a
memory the second law would be violated, if the measure-
ment could take place without compensation.”

Szilard identified both “intervention” and “memory” as
key ingredients, providing seeds for Brillouin’s and Ben-
nett’s subsequent work. One of Szilard’s three examples,
which involved a heat engine with a one-molecule working
fluid, became quite popular and was examined further by a
variety of researchers. Expounding on that model in his book
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Foundations of Statistical Mechanics, Penrose!! noted that
memory erasure is dissipative. He wrote, “The large number
of distinct observational states that the Maxwell demon must
have in order to make significant entropy reductions possible
may be thought of as a large memory capacity in which the
demon stores the information about the system which he
acquires as he works reducing its entropy. As soon as the
demon’s memory is completely filled, however, ... he can
achieve no further reduction of the Boltzmann entropy. He
gains nothing, for example, by deliberately forgetting or
erasing some of his stored information in order to make more
memory capacity available; for the erasure, being a setting
process, itself increases the entropy by an amount at least as
great as the entropy decrease made possible by the newly
available memory capacity.”

Bennett’s subsequent ideas regarding irreversible memory
erasure and also the possibility of reversible information ac-
quisition were developed independently, and have received
enthusiastic support.'** Unfortunately, a difficulty with
Bennett’s thesis is that relatively few known thermodynami-
cal models clearly illustrate nondissipative information ac-
quisition. Identification of unambiguous examples would
help resolve criticisms* of the subtle points involved.

Our purpose here is to re-examine a simple, tractable
membrane model introduced by Szilard in 1929 along with
his one-molecule gas model. In contrast with the latter
model, which has been discussed widely, the membrane
model has received little attention. We show that a simple
modification of his analysis can shed light on the issue of
information acquisition and erasure. The modified membrane
model is related to the Maxwell’s demon puzzle in the sense
that it takes a working fluid through a cyclic process during
which: (a) physical measurements (which are reversible in
this case) are made, (b) the results are stored in a memory
register, (c) the memory is then decoupled from the working
fluid, and (d) the memory register is erased and reset irre-
versibly.

Szilard’s membrane model differs from the Maxwell’s de-
mon problem in that it does not involve conversion of heat to
work. Although it is too specialized to allow general conclu-
sions, it clearly illustrates the central points that link the
efforts of Szilard, Landauer, and Bennett. In Secs. II and III
the original form of the model is revisited, and two question-
able parts of Szilard’s analysis are scrutinized. In Sec. IV we
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introduce a simplified variant of Szilard’s model that suc-
cinctly illustrates information acquisition, storage, and era-
sure. Section V contains a discussion of our main results.

II. SZILARD’S MEMBRANE MODEL

The Szilard membrane model® consists of an N-molecule
dilute gas contained in a volume V. This system is in thermal
contact with an energy reservoir at temperature 7. The gas
molecules can exist in either of two forms, labeled “1” and
“2,” and transitions 12 can be induced over relatively long
time intervals (relative to typical observation times) via in-
teractions with neighboring gas molecules. A real physical
example is provided by molecular hydrogen, which can exist
as ortho-hydrogen, with total nuclear spin=1 (and z compo-
nents —1, 0, +1) or as para-hydrogen, with total nuclear
spin=0. Equilibration times for hydrogen are on the order of
years. This example was mentioned in Ehrenbersg’s 1967 Sci-
entific American article on Maxwell’s demon.

Interactions between species 1 and 2 are assumed to be
sufficiently weak that the fluid behaves as a mixture of two
ideal gases. The internal energy of the gas can be written

Ugas= UI(T) + Uz(T), ' (la)
where each term is of the form,
U(T)=N;,e(T) for i=1,2. (1b)

e;(T) is the average energy per molecule for species i, N; is
the molecule number for this species, and N;+N,=N. In
thermodynamic equilibrium the average species fractions are
w(T) and w,(T), with w (T)+w,(T)=1, and 0<w(T)<1
fori=1, 2, i.e.,

N,=N(T)=wy(T)N (2
for i=1, 2.
The gas entropy is ‘
Sgas=sl+52’ (3)

where each single-component entropy has the ideal gas
form!®

SizNik ln[f,(T)V/N,] for i= 1,2. (4)

f1 and f, can differ from one another (as can e; and e,) but
they are functions only of 7, and the argument of the loga-
rithm is dimensionless. Szilard did not write down Egs. (1),
(2), and (4) explicitly, but they are very useful. In what fol-
lows we adopt the shorthand notation w,=w(T) and
Wy = W2( T) .

The container is assumed to have two telescoping sections,
AA' and B'B as illustrated in Fig. 1. Initially, the sections
are telescoped together [Fig. 1(a)] giving the (minimum pos-
sible) volume V, the gas is in thermal equilibrium, and
N;=wN fori=1, 2. End piece A’ of section AA’ is a semi-
permeable membrane that passes only species 1 molecules;
and end piece B’ of B'B is permeable only to species 2
molecules. Although real semipermeable membranes are not
perfect sorters, Szilard assumed ideal membranes that are.
We retain this assumption throughout this article. Szilard
prescribed a four-step cyclic process that entails information
acquisition, storage of information in a memory register, de-
coupling of the system and memory register, and erasure of
the information. In Sec. III we describe his steps, provide
some details omitted from his paper, and suggest two modi-
fications to make his analysis more useful.
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(a)
B' —B
®) 1+2 1
A A'
—B
(c) 1
A A'

Fig. 1. (a) Gas species 1 and 2 before step 2. (b) Two containers telescoping
outward during step 2, with membrane B' permeable only to species 2 and
membrane A’ permeable only to species 1. (c) The configuration upon
completion of step 2, which separates species 1 and 2.

III. SZILARD’S CYCLIC PROCESS

A. Step 1: Measurement

Each molecule of type 1 is assigned an x value of 1, and
each one of type 2 is assigned an x value of 2. Szilard envi-
sioned “intervention” by an intelligent being, who measures
the x values of each molecule at some initial time, and as-
signs the value y =1 to all molecules with x=1 and the value
y=2 to all molecules with x=2. The set {y} is remembered
by the intelligent being, and does not change even if a mol-
ecule is later transformed by interactions with other mol-
ecules and/or with the container walls, from type 1 to type 2
or vice versa. In such events the molecule’s x value changes
but its y value does not. The main point is: Each molecule’s
y value represents its initial species type.

It is assumed that these measurements of the y variables
do not change the thermodynamic state of the gas; i.c., the
entropy change of the gas is

[Asgas]step 1= 0. (53)

On the other hand, Szilard proposed that the intervention
needed to determine the set {y} generates a positive entropy
change,

[AS intervention] step 1 >0. (Sb)

Szilard did not discuss the mechanism for this entropy in-
crease, but assumed that there were no other entropy changes
in the environment (the parts of the universe other than the
gas and intervention mechanism); i.e.,

[Asenv]step 1=0. (5¢)

Given Eqs. (5a) and (5c), evidently the intervention entropy
in Eq. (5b) must be an entropy increase of the intervening
intelligent being itself.
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B. Step 2: Separation

After the measurement intervention, the two container sec-
tions are telescoped outward, leading from the configuration
in Fig. 1(a) to that in Fig. 1(c). The total volume increases
from V to 2V. We assume this is done slowly enough to keep
the process quasistatic, but fast enough that N, and N, are
unchanged. Because of the semipermeable membranes A and
B, all type-1 molecules are moved into the resulting right
chamber and all type-2 molecules go into the left chamber
[Fig. 1(c)]. The ideal membranes are assumed to sort per-
fectly and to do zero work on the species they transmit. Zero
net external work is done on both species because A and A’
do equal and opposite work on species 2 and B’ and B do
equal and opposite work on species 1.

The internal energy of each component is unchanged be-
cause U;=w;Ne,(T) for i=1, 2; the temperature T does not
vary; and during the time interval of step 2, neither do N,
and N,. Thus, there is zero net heat transfer between the gas
and reservoir. Telescoping is a reversible process, so inward
telescoping will recover the original thermodynamic state as
long as N, and N, do not vary. It follows from Egs. (3) and
(4) that

[AS gas] step 27 0. (6a)

Szilard regarded both the intervention mechanism and the
environment as having no thermodynamic involvement dur-
ing separation, i.e.,

[ AS intervention] step 27 0, (6b)
and

[Asenv]step 2=0, (6¢)
though he did not show all these entropy changes explicitly.

C. Step 3: Equilibration

After separation, neither of the gases in the two storage
chambers is in thermal equilibrium. That is, the {x} set in
each chamber changes over time while the {y} set remains
fixed. Specifically, just after separation, Ny=wN and N,=0
in the right chamber, and N,=w,N and N,=0 in
the left chamber. After a sufficiently long time
interval, (N l)ﬁgm—w%N and _(Npen—w,owi N, while
(N Dies—w1w,N and (N,)s—w3N. This equilibration con-
stitutes the third step of the cycle.

Szilard assumed that equilibration occurs at constant tem-
perature, and thus the internal energy per molecule is un-
changed for each species. Further, because the overall mo-
lecular fractions of the species do not change during
equilibration, neither do U, and U, even though the energy
in each chamber changes (if ¢, # e,). Therefore after equili-
bration, (Vo= Dieti+ NV )rign— W1 woN + wiN=w,N,
VD otar= Vit H NV Drign—wiN + wiwoN=w,N, and
U;=w;Ne,(T) for i=1, 2. Equation (4) implies that during
equilibration the entropy change in the left chamber is
ASiety equu=wW2Nk[w,In(f1/f>)—wi lnw—w, Inw,];  the
entropy change in the right chamber is ASpg equi
=w,Nk[—w, In(f,/f,;) —w; In w;—w, In w,). Adding these
gives

[ASgus)siep 3= —Nk{wy In wi+w; In w,}>0. (7a)
Because the intervention mechanism is not involved,
[AS intervemion] step 3 0. (7b)
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Szilard wrote, “If we allow this equilibrium to be
achieved in both containers independently and at constant
volume and temperature, then the entropy of the system cer-
tainly has increased.” He went on to say, “If we accomplish
the equilibrium distribution in both containers in a reversible
fashion then the entropy of the rest of the world will decrease
by the same amount.” Accordingly, he found an entropy de-
crease for the environment of

[ASenv]step 3= [Asgas]step 3
=Nk{w, In w;+w, In w,}<0. (7c)

Szilard wrote down an equation equivalent to Eq. (7c), but
his assumption of reversibility is curious, for it is difficult to
envision reversal of the equilibration process. We return to
this point later.

D. Step 4: Cycle completion

Seeking a zero-work process to remix the gases in a single
volume V, Szilard specified that in step 4, membranes A’ and
B’ are to be replaced with ones permeable only to molecules
with y=1 and y =2, respectively. This is an interesting con-
cept, for it requires an ability to sort molecules based upon
remembrance of a previous physical state. It transcends the
abilities of real membranes, which sort on the basis of the
present molecular states. One might interpret the required
Szilard membranes to be collections of gates that are oper-
ated by the intervener of step 1, who remembers the y value
for each molecule. With this view we cautiously follow
Szilard’s lead.

With the y-selector membranes in place, the sections are
telescoped inward, reducing the total volume from 2V to V
isothermally, doing zero work (as before) in the process.
Equation (2) implies zero internal energy change for the gas
because N; and N, do not change, and T is constant. Equa-
tions (3) and (4) imply the entropy change

[ASgas]step 4= +Nk{w1 In W1+W2 In W2}<0 (83)

Because the intervention mechanism is used here, it appears
that

[ASintervention]step 4> -‘Nk{wl In w1+w2 In w2}- (8b)

If, as implied by Szilard’s discussion, the entropy of the en-
vironment is unaltered,

[AScn] step 4 0. (8¢c)

Szilard expounded on what step 4 accomplishes: “The dis-
tribution of the y-coordinate ... now has become statistically
independent of the x-values and besides we are able to rees-
tablish the original distribution ... (of the y values). Thus we
would have gone through a complete cycle. The only change
that we have to register is the resulting decrease of entropy ...
[given by Eq. (8a)].” Szilard seemed to be acknowledging
two things: a cyclic process for the working fluid and
memory erasure—namely, re-establishment of the original y
distribution.

E. Implications of the whole cycle

Szilard utilized the fact that for the gas cycle,
[ASgi)eyie=0, and the net entropy change of the environ-
ment is the sum of Egs. (5¢), (6¢), (7¢), and (8c):

[AS env]eyae=Nk{w; In wy+w; In wy}<0. (9a)

H. S. Leff and A. F. Rex 996



0 In(2) 2 3 4 As,

Fig. 2. A graphical depiction of  relation (12),
exp(— Asy/k)+exp(— As,/k)=<1. For any As,, the value of As; must lie
above the solid curve, in the shaded region.

Recalling that Szilard did not account for intervention in step
4, Egs. (5b), (6b), (7b), and (9a) along with the second law
imply the total entropy change,

[ AS intervention] step 1 + [ A Senv] cycle

= [ASintervention] step 1 +Nk{w1 In witw; In Wz}B O(Qb)

This is his first major result for the membrane model.
Szilard then assumed that the intervention entropy could
be written

[ASintervention]step 1 =JVIASI +N2A52 ’ (10)

where As;, the entropy change associated with the measure-
ment of a species i molecule, is independent of the probabili-
ties w, and w,. Combining Egs. (9b) and (10),

w1As +wyAs,+k{w; In w;+w, In wy}=0. (11

Minimizing the left-hand side with respect to w,(=1—w,)
for constant As, and As, gives!’

exp(—Asq/k)+exp(—As, /k)<1, (12)

which is Szilard’s second major result. The inequality (12)
means that the intervention entropy pairs (As;,As,) must lie
in the shaded region of Fig. 2.

The above description of Szilard’s membrane model sug-
gests two places where the analysis can be improved. The
first is in step 3, where Szilard used the thermodynamic re-
versibility condition AS,,+AS,,,=0. There is no compel-
ling reason to impose this reversibility condition because the
irreversible equilibration does not require any entropy
change in the environment. The analysis can be improved by
replacing the reversibility assumption (7c) by the condition,

[Asenv]step 3=0- (13)

Second, Szilard’s omission of the intervention device in
step 4 is questionable. The gas mixtures in the right and left
chambers must be combined into the final volume V, incur-
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ring the negative entropy change for the gas given by Eq.
(8a), which was not shown in Szilard’s paper. To satisfy the
second law a compensating entropy increase must exist
somewhere. This cannot be in the environment because: N
and N, are unaltered, the process is isothermal, there is zero
change in the internal energies U, and U,, zero work is done
on the gas, and thus the first law of thermodynamics implies
zero heat transfer to the environment; i.e., Eq. (8¢) holds.
Evidently step 4 cannot be accomplished without an entropy
increase associated with intervention, as given in Eq. (8b).

For completeness, we observe that one might imagine at-
tempting the inward telescoping in step 4 using membranes
A’ and B’ that are one-way filters, which allow molecules to
cross membrane B’ from left to right only and membrane A’
from right to left only. However, these would presumably
be subject to thermal fluctuations associated with
Smoluchowski-type trapdoors, enabling molecules to actu-
ally move in both directions.!®!® This again supports the
conclusion that the use of the intervener’s memory is un-
avoidable for Szilard’s step 4, and that the entropy increase
in Eq. (8b) is unavoidable.

Incorporating our two improvements, we replace Eq. (7c)
with Eq. (13), add the entropy changes in parts (a), (b), and
(c) of Egs. (5)-(8), and apply the second law to get

[AS intervention] step 1 + [Asintervention] step 4
>—Nk{w; In w;+w, In w,}. (14)

The entropy increase in steps 1 and 4 can be understood as
follows. In step 1, molecules are examined by the Maxwell’s
demon and their y values are recorded in a memory. In step
4, as molecules approach the set of gates described earlier,
the Maxwell’s demon must again examine each molecule
and check against its memory to see if its y variable is 1 or 2.
This again entails recording results in a memory, even if only
temporarily.

These acts increase the entropy of the demon’s memory as
its memory addresses take on values other than their initial
standardized values (say all zeros). In essence the memory
goes from all zeros to a mixture of zeros and ones. If we
repeat this experiment with many such similar systems and
memories, the resulting ensemble of memories will have a
nonzero statistical entropy. Presumably, this entropy in-
creases with the number of measurements made until the
memories are full and information must be erased in order to
continue. We conclude that the results of the cyclic process
are: (i) an environment with a lowered entropy, and (ii) a
(jumbled) demon’s memory whose entropy is higher than it
was initially. Erasure of this memory would reduce its en-
tropy to zero (in its standard state) but would send a com-
pensating entropy to the environment in accordance with
Landauer’s principle.'®

Our two modifications of Szilard’s cycle are intended to
clarify how that cycle can be interpreted in terms of our
current understanding of measurement, memory, and
memory erasure. In Sec. IV, we consider a variant of
Szilard’s membrane model that illustrates these same fea-
tures in an even simpler and more direct way.

IV. VARIATION ON SZILARD’S THEME

Reflection on the Szilard cycle described above suggests
the use of an even simpler cycle that clearly illustrates four
important elements: reversible measurement, storage in a
memory, decoupling of the memory from the system, and
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Fig. 3. Modified Szilard membrane cycle, which consists of; separation and
measurement (step 2'), equilibration (and decoupling, step 3'), and erasure
+resetting (step 4'). Note that after separation the total number of molecules
in the left and right chambers are different if w,#w,.

entropy increase associated with memory erasure and reset-
ting. We describe this variant in terms of the modified steps
1',2',3', and 4, as illustrated in Fig. 3.

A. Step 1': Nothing

This is no step at all because we omit intervention by the
intelligent being that is specified in Szilard’s step 1. This
omission is possible because measurement is accomplished
in step 2'.

B. Step 2’: Separation and measurement

This is the same as Szilard’s step 2, namely a slow out-
ward telescoping of the containers. However we now inter-
pret the membrane actions as constituting “‘measurements”
of the x values of the molecules. That is, if the ith molecule
passes through A’, it has x;=1, and if the jth molecule
passes through B’, it has x;=2. The separation process stores
molecules with initial values of x=1 and 2 in separate cham-
bers. Together, these chambers can be regarded as a memory
register that stores information about the original x variable
for each molecule. In essence the separation process results
in the measurement of (x;,%;,...,xy) and the correspon-
dence: (x1,X5,...,XN)=>(¥1,Y2,...,¥5) during the separation
process: If molecule i is in the right (or left) chamber, then
y;=1 (or 2). Of course

[Asgas]step 2= [Asenv]step 2! =0. (15)

C. Step 3': Equilibration

Equilibration of the species is irreversible, and work can
be done by neighboring molecules on one another to induce
changes, say, in nuclear spin states. We assume however that
zero net work is done on the gas by the container walls
during equilibration. The entropy change of the gas in step 3’
is identical with Eq. (7a):

[Asgas]step 3,=—Nk{w1 In W1+W2 In W2}>0. (163)
Constancy of the internal energy and zero net external work
imply zero net heat transfer and zero entropy change for the

environment. Therefore, Eq. (7c) must be replaced by the
equivalent of Eq. (13),

[ASenv]step 3’ =0. (16b)
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D. Step 4': Memory erasure and resetting

It is not possible to use a real membrane to bring both
gases into the single volume V with a zero external work
process. Therefore we define step 4’ to consist of two parts:
first, removal of the central partitions A’ and B’, so that the
gases mix in volume 2V; and second, reversible, isothermal
compression of the mixed gas from volume 2V to volume V.
In the first part there is no internal energy change, but there
is an entropy change,

[AS gaslerasure=Nk[w; In w;+w), In wy+1In 2],  (17a)

which is positive if w;#w, and zero if w;=w,. Equation
(17a) is the entropy of erasure, which can be given a useful
interpretation based upon Landauer’s®™ view of erasure: the
separate phase spaces of the gases in chambers 1 and 2 “dif-
fuse into one another” irreversibly (unless w; =w,, in which
case partition removal gives zero entropy change and parti-
tion replacement recovers the original state). During the era-
sure there is zero entropy change in the environment:

[Asenv] erasure 0. (17b)

Resetting the memory by a reversible isothermal compres-
sion requires an external work W>0 on the gas and a con-
comitant heat transfer Q<0 (f0 the gas). The first law of
thermodynamics demands that AU=0+W=0, or Q=—-W
=NkT In2, and the corresponding entropy change of the
constant-temperature environment is

[AS env]resetting= —[AS gas]resetting=N kln2. (17¢)

Adding Eqs. (17a) and (17c) gives the overall entropy
change for the gas during step 4',

[Asgas]step 4I=Nk[W1 In W1+W2 In W2]<0. (17d)

Adding the entropy changes in Egs. (17b)-(17d), the total
entropy change for the erasure/resetting combination is seen
to be

[AS gas + env]erasureresetting

=[AS gaslsiep 4' T [ASenylsiep 42

=Nk[w; In w;+w, In wy+ Nk In 2]=0, (18)
The evident non-negativity of Eq. (18) is consistent with the
second law.
E. Implications of the whole cycle

The foregoing enables verification that [AS g, ]y =0 (as
it must) and

[ASenv]cycle=Nk In 2. 19)
If we make the association
[Asenv]cycleEN[wlAsl + WZASZJ =Nk In 2’ (20)

it is clear that if As;=As,=As, then As=k In 2, indepen-
dent of the values of w; and w,. Here As, and As, should be
viewed as the entropies of erasure (per molecule) rather than
entropies of measurement. Further if we adopt Szilard’s as-
sumption that As, and As, are in fact independent of w; and
w5, then the only possible entropies of erasure are those for
which As;=As,=kIn2 because in Eq. (20),
wiAsy+wyAs,=w; (As;— As,)+ As, must equal £ In 2 in-
dependent of w,. Thus the strict equality in Eq. (12) holds:
exp(—As /k)+exp(— As,/k)=1. Evidently this means that
the erasure of each y value is accompanied by an entropy
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increase k In 2’ in the environment. This can be associated
with the loss of information available about the (binary) y
values.

V. DISCUSSION

In Sec. IV we have simplified Szilard’s membrane model
by omitting use of an intelligent being to make measure-
ments, recognizing that the action of the semipermeable
membranes effects both reversible measurement and memory
storage, and observing that memory erasure and resetting
requires work by an external agent. Prior to the erasure step,
there exists a record of the initial y variables—namely, the
numbers of molecules in the left and right chambers. After
erasure no record of the initial y distribution remains.

An important characteristic of the membrane model is the
irreversible equilibration that occurs after separation of the
two species. This process destroys the correlation between
the sets {x} and {y}.?! We can verify this by examining the
joint probability P(x,y) of finding a molecule in species
state x and with the memory value y, where x and y can take
the values 1 or 2. We do this both before and after the equili-
bration following the separation step. Just after separation
and before equilibration, there is perfect correlation between
the x and y variables on both sides. In the left side,
Preslx,y) = 6,,0,, and on the right side, P (x,y) = 8,1,
where &, is the Kronecker delta, which=1 for x=y, and 0
for x#y. Information entropies associated with these distri-
butions can be defined via I,= — k3,5 P (x,y)In P(x,y),
where g=left or right. Because of the perfect x—y correla-
tion and the restriction that x=y=(1,2) on the (right, left)
prior to equilibration, it follows that I,=0 for g=left and
right just after separation. This means t‘ixere is zero missing
information. The species type of each molecule is fixed, and
also known from the chamber (left or right) in which it re-
sides.

After equilibration is complete, the joint probabilities
are Pig(x,y)=w,8,, and P (x,y)=w,d,;. The corre-
sponding  information entropies are leg=lon
=—k[w, In w; +w, In w,]. This can be interpreted as the en-
tropy per molecule associated with the x and y variables
after equilibration. The information entropy differences for
step 3 are Al q=Al;n=—k[w;Inw;+w,Inw,]. Notice
that Aljq and Al are not quite the same as AS)g equy and
AS ight equit in the discussion preceding Eq. (7a) for two rea-
sons. First, Al does not include temperature-dependent ef-
fects, but is restricted to configurational changes and second,
Al is a per-molecule information entropy change. Because
the fraction of molecules on the left is w, and that on the
right is w,, we may write the total information entropy
change associated with the x and y variables as

Al y equitibration™NW1AlL gy + Nwo Al g
= ~Nk[w; In w;+w; In w,], 21)

which is identical with Eqgs. (7a) and (16a). This equivalence
shows that the irreversible equilibration process generates
entropy solely because of the destruction of the cor-elations
between the x and y variables. In other words, decoupling
the memory from the system is an entropy-producing process
that brings uncertainty about the species type of each mol-
ecule.

In our discussion of Szilard’s original cycle, we observed
that the memory gains entropy when information is recorded
within it. A similar entropy increase occurs in the memory of
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a Maxwell’s demon as it gathers information. Such entropy
increases are best viewed in an ensemble sense: If many
similar demons measure many similar systems, the resulting
ensemble of memories has an entropy that is greater than the
zero initial entropy when each ensemble member’s memory
was in a known reference state. The modified membrane
model is very different because every species 1 (or 2) mol-
ecule is in the right (or left) chamber after the measurement
and separation step. Separation yields no uncertainties other
than those associated with fluctuations in the fractions w
and w,. Indeed we showed above that the entropy change of
the gas and environment were both zero during separation.

Although there is something troubling about filling a
memory without generating a concomitant entropy change,
this situation is only temporary. During the slow process of
species equilibration, entropy is generated as the memory
variables {y} become decoupled from the gas variables {x}.
Of course the memory remains intact while this happens. The
entropy of decoupling, Eq. (16a), plays the role of an “en-
tropy of memory” in that it results from the dual process of
recording measurements of certain system variables in a
memory and then decoupling that memory from those vari-
ables. It is certainly not an entropy of acquisition because it
is generated long after the measurement step. The final reset-
ting process transfers both the entropy of decoupling, Eq.
(16a), and the entropy of erasure, Eq. (17a), to the environ-
ment. In essence the cycle transfers energy from one part of
the environment (work source) to another part (constant-
temperature reservoir). Its value lies not in what it accom-
plishes as a physical device, but in how it can help us learn
about information acquisition, storage, and erasure.

We close with a remark about Leo Szilard. It is a tribute to
his ingenuity that after 65 years, the clever models he in-
vented are still providing food for thought and tools for un-
derstanding.
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The resistance between two adjacent nodes on an infinite square grid of equal resistors can easily be
found by superposition. This paper addresses the corresponding problem for two arbitrary nodes. A
solution is found by exploiting the symmetry of the grid and using the method of superposition. The
mathematical problem involves the solution of an infinite set of linear, inhomogeneous difference
equations which are solved by the method of separation of variables.

L. INTRODUCTION

A recently published general physics textbook’ presents a
problem in which the student is asked to find the resistance
between two adjacent nodes in an infinite plane grid of iden-
tical resistors. As a follow-up question, the student is then
asked to find the resistance between two nodes which are an
arbitrary distance apart. From the statement of the problem,
it is apparent that the author of the problem assumed that the
second question could be answered as easily as the first. In a
private communication with the writer of this article, the
author of the problem confirmed that he had made that
assumption.2 The second problem turns out to be consider-
ably more complicated than the first. It requires the applica-
tion of mathematical techniques which are beyond the reach
of the average general physics student, but would make it a
good problem to use in a mathematical physics class to show
an application of two-dimensional difference equations, a
topic that is often neglected.

II. DESCRIPTION OF THE PROBLEM

The physical situation is illustrated in Fig. 1. An infinite
number of identical resistors of resistance R are connected to
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form a square grid. The problem is to find the resistance that
would be measured between two arbitrarily spaced nodes.
The basic approach used here is the same as that used by
Paul® to treat the case of adjacent nodes. For this reason, the
problem of adjacent nodes will be discussed first.

1. ADJACENT RESISTORS

Following Paul or Purcell,® for instance, let a current I
enter the grid at a node P and let it come out of the grid at a
distant point. If the return point is removed to infinity, the
problem is invariant under 90° rotations, so the current flow-
ing through each of the four resistors connected to node P
will be equal. Thus each of the four resistors carries a current
equal to I/4. The resulting voltage drop between node P and
an adjacent node Q will be equal to (//4)R, the product of
the resistance of the resistor and the current passing through
it.

Now consider the problem of a current / entering the grid
at a distant point and exiting at the adjacent node, Q. In this
case, the current pattern at Q will be symmetric and the
current flowing from P to Q will be I/4, and the voltage drop
from P to Q will again be given by (I/4)R.
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