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This paper examines the feasibility of operating Demand Responsive Tran-
sit (DRT) as the primary mode of mass transit in Tacoma, WA. With the
promise of door-to-door service anywhere within a region, DRT has the poten-
tial to attract new discretionary mass transit riders while serving demand more
efficiently than fixed-route systems. We present an algorithm for generating
realistic datasets of riders based on employment and demographic data at the
census tract level, which are fed through a simulated dynamic DRT system in
Tacoma (TacDRT). The TacDRT service is considered feasible if it can serve
the same volume of demand that the extant local fixed-route system serves
while remaining cost-comparable. Although the simulation results suggest that
TacDRT is not feasible, other findings indicate that a) the cost or operating
DRT significantly decreases as the system scales up, and b) the geographical
distribution of demand significantly affects the efficiency of DRT.
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1 Introduction

The increasing prevalence of mobile geographic technology in the hands of consumers and
organizations alike is rapidly changing the urban transportation industry. In the pub-
lic sector, buses and trains equipped with Automatic Vehicle Location (AVL) allow their
movements to be tracked in real time. These data can be pushed to riders’ smartphones
in the form of real time vehicle location and arrival time estimates. But even with these
changes, transit agencies continue to operate fundamentally inefficient fixed-route bus sys-
tems, and riders must still plan their schedules around inherently inflexible timetables and
routes. Fixed-route systems are not able to meet transit demand dynamically. At a partic-
ular time, vehicles might waste resources visiting stops which don’t have any riders, or they
might miss stops that do have demand. To remedy this, public transit agencies should look
to transit startups such as Uber, Lyft and Sidecar, which provide urban demand-driven
taxi and shared-ride services.

This paper examines the feasibility of operating a public, citywide Demand Responsive
Transit (DRT) service, which has several potential benefits over fixed-route systems. DRT
vehicles do not operate according to a fixed route or a fixed schedule. Instead, passengers
explicitly request trips between any two locations in the service area, and vehicles are
dynamically routed to meet those requests. In this way, agency resources are only spent
when and where there is explicit demand. In addition, one DRT vehicle is sufficient to serve
any trip request anywhere within the service area. Therefore, DRT provides door-to-door
service with no transfers, characteristics which have the potential to attract many new
discretionary riders to mass transit.

To maximize the number of trips that a DRT system can serve, it must efficiently assign
trips to vehicles. Determining the best allocation of n riders to m vehicles is referred to
as the Dial-A-Ride-Problem (DARP) [3]. The static DARP assumes all trip requests are
known to the agency when service hours begin, while the dynamic DARP allows for the
modification of vehicle schedules as trip requests are made across the day. The general
case of DARP is NP-Hard, and cannot be solved optimally on any system of reasonable
size. The DRT service investigated here is a large-scale, dynamic system and is simulated
in Tacoma, WA. We will thus refer to our service as Tacoma Demand Responsive Transit
(TacDRT).

The rest of this paper is organized as follows. In Section 2, we review work related to
DARP and large-scale DRT services. Section 3 defines the problem and Section 4 outlines
the simulation we designed to address the problem. Section 5 discusses the results of the
simulation, and is followed by conclusions in Section 6.

2 Related Work

2.1 DARP Scheduling Algorithms

DARP is NP-Hard, so finding the optimal scheduling solution for TacDRT is not possible.
Instead, we use a heuristic procedure.

DARP scheduling algorithms generally fall into one of several meta-heuristic categories
including tabu searches, fuzzy logic algorithms, branch-and-cut algorithms and insertion
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algorithms. TacDRT implements an insertion algorithm for scheduling, so we’ll focus our
review on those.

Jaw et al. present ADARTW, one of the first static multi-vehicle insertion algorithms.
When making a request, riders specify a time window on either their origin or destination
stop. ADARTW then imposes a maximal travel time constraint which is a linear function
of the minimum driving time of the trip. Trips are considered and scheduled sequentially,
and once a trip is inserted into a schedule it cannot be moved to another [7]. Madsen
et al. build on this work, generalizing the algorithm to the dynamic case to schedule a
small-scale real world DRT service in Copenhagen [9]. They propose REBUS, a two-step
insertion algorithm. The feasibility of a particular trip insertion is evaluated first, to ensure
that no hard constraints regarding quality of service (e.g. passenger wait time) or regarding
the vehicle (e.g. capacity) are violated. If the insertion is deemed feasible, a heuristic cost
is calculated and the scheduling with the lowest heuristic cost is chosen. If no feasible
insertions are found, the trip is rejected.

For a more comprehensive review of DARP scheduling algorithms, consult Cordeau and
Laporte [3].

2.2 DRT

Although there has been substantial research into DARP scheduling algorithms, research
into the feasibility of large-scale DRT systems is less robust. ADARTW and REBUS, for
example, are developed and tested on simulations not exceeding 350 passengers.

Hyytid et al. examine a large-scale DRT system, with an average of 72,000 trips and
500 vehicles [6]. They find that insertion algorithms perform well in comparison to route
enumeration on systems of this size. Noda et al. compare the performance of DRT and
fixed-route bus service in a simulated city [10]. They find that the usability of DRT
increases along with the demand frequency, suggesting that DRT might work best in denser
service areas.

Diana examines how several factors influence the quality of service and rejection rates
in a DRT system [4]. He concludes that as the rejection rate of a system approaches 0%,
the cost to serve the remaining trips becomes increasingly expensive. He also finds that
increasing the DRT fleet size reduces rejection rates, but doesn’t affect quality of service
in the system.

Lastly, Jokinen et al. create an abstract DRT model, compare its usability to that of
taxis and private vehicles, and conclude that large-scale DRT is the missing ingredient in
urban transportation [8].

3 Problem Formulation

Tacoma is a city of 202,010 residents covering 49.72 square miles, and was chosen as the

case study due to its population density and for the author’s convenience [13]. It was

our hypothesis that Tacoma’s medium population density would allow for enough rider

aggregation to make the DRT system efficient, but doesn’t provide enough aggregation to

necessitate the regular, high-capacity fixed-route service that is currently in operation.
Before formulating the problem, several terms should be defined:
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e A trip’s call-in time represents the time that the rider makes the request known to
TacDRT

e A trip’s request time represents the time that the rider desires to get picked up
e Service time represents the time that a TacDRT vehicle actually picks up a trip

Each TacDRT rider specifies a start and end point anywhere within Tacoma, as well as a
request time. Trip requests can be made before service hours begin (static) or while service
is running (dynamic). We assume that the majority of riders know when and where they
will be traveling before service hours begin for a particular day. We settled on a ratio of
90% static trips and 10% dynamic trips, which falls within the range of ratios examined
by Fu and Xu [5].

TacDRT must determine the best allocation of trips to vehicles. We impose several hard
constraints on service scheduling to address the fact that riders have limited patience and
that TacDRT vehicles have a finite capacity. In particular, we impose the following for
each trip t:

e The excess ride time constraint, which ensures that the total ride time for a job
will not exceed that job’s direct driving time multiplied by a scalar, where direct
driving time is the time required to drive directly from a trip’s origin to a trip’s
destination. This is adapted from ADARTW [7]. The scalar A is bound at 3.5.

TRT, < DDT, + A

e The pickup deviation constraint, which ensures that the service time for a par-
ticular trip will occur between that trip’s request time, and the request time plus a
constant. Several DARP scheduling algorithms allow the rider to specify the max-
imum pickup deviation, however TacDRT will impose this constraint equally on all
riders [7, 9]. The constant B is 45 minutes.

RT, < ST, <RT; + B

And we impose the following for each stop 1.

e The vehicle capacity constraint, which ensures that the vehicle load at every stop
will not exceed its capacity. The capacity is set at 20 riders.

Ve > L;

Binding these hard constraints to values requires balancing the efficiency of the system
against the convenience of the rider. For example, a large excess ride time scalar would
allow the system to more flexibly schedule trips at the expense of the riders, who might be
stuck riding very indirect routes. The values that we chose find the middle ground as much
as possible, guaranteeing a decent minimal quality of service for riders while maintaining
some flexibility in how the system can serve demand.

For TacDRT to be considered feasible, it must maintain the integrity of these hard
constraints on each trip throughout the day and must also satisfy two criteria. First, it
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for all Trip t do
t.age < age weighted according to transit rider age distribution table
t.purpose < purpose weighted according to trip purpose distribution table
t.direction < inbound or outbound, randomly chosen
t.tractl < census tract weighted according to age of rider
switch t.purpose
case shopping/dining
t.iract2 < census tract weighted according to Retail and Service employment
case shopping/dining
t.tract2 < census tract weighted according to Retail and Service employment
case medical /dental
t.tract2 < census tract weighted according to Service and Government employment

case commaute

t.tract2 < census tract weighted according to total employment level
case social

t.tract2 < census tract weighted according to age of rider
case school

t.tract2 < census tract weighted according to Education employment

case other or personal Business
t.tract2 < random census tract
t.endpointl < random address within t.tractl
t.endpoint2 < random address within t.tract2
t.pickupTime < time weighted according to daily demand distribution
end for

Figure 1: The trip generation algorithm. The rider age and trip purpose distribution tables
come from APTA transit rider surveys [1]. Daily trip distribution is derived from
a transportation model run by PSRC [12]

must serve the same volume of trips as the extant local fixed-route system operated by
Pierce Transit (PT). That system serves 21,793 fixed-route trips within Tacoma each day.
Secondly, TacDRT must be cost-comparable to the existing system. Estimating the cost
of TacDRT is difficult, considering there are no similar large-scale public DRT services
in operation for comparison. Instead, we base the cost off of the SHUTTLE paratransit
service, which is PT’s ADA accessible complement to their fixed-route service. Using the
cost per service hour of SHUTTLE as an estimate, and pinning the total cost of TacDRT
to that of PT’s fixed-route system, allows us to operate 1496.5 service hours per day.

Lastly, the computational time required to schedule the trips will not be considered.
Hyytia et all have shown that entire large scale DRT systems can be scheduled in minutes,
and it is assumed that any transit agency implementing a DRT service would have access
to sufficiently powerful computers to accomplish this [6].

4 Model Design

The TacDRT model consists of two main components. The first component is the trip
generator, which creates realistic data sets of trips within Tacoma. These trips are fed to
the second component, the service simulator, which assigns these trips to vehicles.
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4.1 Trip Generator

Most DRT studies evaluate service in square or disk-shaped regions with a perfect street
grid and trip requests evenly distributed across the day [6, 8, 10]. In reality, transit
demand varies throughout a service area according to housing and employment density,
and request rates vary across the day in accordance with peak and non-peak periods.
Therefore, evaluating DRT in a real city like Tacoma will require a more sophisticated trip
generation methodology.

We have devised an algorithm that models ridership patterns within Tacoma at the
census tract level but is generalizable to any service area where appropriate data can be
gathered. The algorithm is outlined in Figure 1.

Each rider is assigned an age and
a trip purpose, based on transit rider

characteristics compiled by the Amer- | Period | % Daily | % Hourly
ican Public Transportation Associa- | AM Peak (6AM - 8:59AM) 29% 9.66%
tion (APTA) [1]. APTA recognizes | Midday (9AM - 2:59PM) 28% 4.66%
7 trip purposes: medical/dental, com- | PM Peak (3PM - 5:59PM) 29% 9.66%

mute, social, school, personal business | Lvening (6PM - 9PM) 14% 4.66%

and other. The age and purpose of the
trip inform where that rider will travel
within Tacoma. One of the trip’s end-
points is anchored in a census tract
weighted according the population of
the age group of the rider. The second endpoint in anchored in a census tract weighted
according to the employment level of sectors related to the trip purpose. For example, the
second tract of a school trip will be chosen according to the number of people employed
in Education in the tract. If the trip is inbound, it will run from a random address in the
first census tract to a random address in the second census tract. If the trip is outbound,
it will run the converse route. All trips have a minimum driving time of at least 5 minutes.

The request time of each trip is generated according to the daily trip distributions spec-
ified in Figure 2. The daily service window is broken down into four periods: AM peak,
midday, PM peak and evening. Demand during peak periods is almost double that of
non-peak periods. These daily breakdowns are derived from a transportation model run
by the Puget Sound Regional Council [12].

Lastly, each trip is assigned a call-in time which is the time that the rider makes the
request known to the agency. Static requests are effectively assigned a call-in time of 0:00.
Dynamic requests are assigned a call-in time between the beginning of the service window
and the request time of the trip.

Figure 2: Daily trip distribution, derived from a
transportation model run by PSRC [12].

4.2 Service Simulator

TacDRT implements an event-based simulation to model service, where each event is a trip
request. A schematic of the design is presented in Figure 3.

Dispatch batches trip requests by call-in time, and releases those batches to the scheduler.
In this way, the scheduler receives and schedules the static batch before service hours begin,
while the dynamic requests are scheduled as they trickle in across the day. The assignment
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DRTSimulation (Dispatch)

I

Rebus (Scheduler)

Arc Table -«

A

ScheduleTask ScheduleTask ScheduleTask

Figure 3: Service simulator design

of trips to vehicles in the scheduler is accomplished with a modified version of the REBUS
algorithm developed by Madsen et al [9]. For details on the algorithm, we refer the reader
to the publication. Here, it will suffice to discuss the modifications made for TacDRT.

REBUS queues trips according to a difficulty cost, and schedules them sequentially. To
this end, three cost functions are summed to compute the trip’s difficulty. We only use
the Mazimal travel time cost, which assigns a value based on the trip’s expected duration.
The others functions are not applicable for our purposes, as their value would be constant
for each trip in our system.

REBUS consumes the request queue, and each trip is scheduled sequentially. The trip
must be evaluated in every vehicle to determine the best insertion of that trip in the system.
This is executed in parallel by worker threads (ScheduleTask), each of which is responsible
for evaluating the trip in one vehicle schedule.

The quality of a particular trip insertion is determined by assigning the resulting schedule
a heuristic value. REBUS proposes four heuristic functions, which are summed across every
stop in the schedule. Preliminary tests of TacDRT with these insertion heuristic functions
resulted in excessively high trip request rejection rates. This was potentially caused by
the large difference in per-passenger resources between TacDRT and the system REBUS
was developed and tested on (CFFS). To fully satisfy demand, each vehicle in the CFFS
system must serve 12.5 people. TacDRT vehicles must serve roughly 234 people per day
(this will be shown below). The greater flexibility of the CFFS system allows for the
REBUS heuristics to weigh quality of service more heavily than possible with the limited
resources of TacDRT. Recognizing the difficulties of fitting such a large quantity of trips
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into a vehicle schedule, TacDRT employs only the following function:

Let d be driving time between last job [ and current job j
Let s be total number of jobs in the schedule
Let § be a non-negative constant

Then the cost for a given job is computed as follows:

od
C) = 5
This function penalizes schedules with longer driving times between stops, with the in-
tention that minimizing driving times between stops will allow more trips to fit into a
schedule.

To find driving times between points, which is necessary for the above equation, the
scheduler relies on an arc table. The arc table contains driving times between every pair
of points that the scheduler might need. With 21,793 trips, each with 2 endpoints, the arc
table has dimensions of 43,586 x 43,586. Each entry in the table contains a single byte
of data, representing the driving time in minutes between a pair of points. To maximize
thread safety and simulation speed, this table is precomputed and loaded into memory
before the simulation begins.

After all the worker threads have finished evaluating a particular trip in their assigned
vehicle, the scheduler examines the results. If at least one feasible insertion was found,
the scheduler picks the insertion with the best heuristic cost and commits that trip to the
vehicle. If no feasible insertions were found, the trip is rejected and will not be served.

To efficiently meet peak and off-peak demand, the TacDRT fleet consists of all-day and
peak vehicles. All-day vehicles are in service for the entirety of the service window, while
peak vehicles are only in service during peak periods (see Figure 2). We must also factor
in slack time to account for any trips that a vehicle might have to drop off as it’s going out
of service (peak vehicles go out of service twice each day). Experimentation indicates that
each all-day vehicle requires 1 hour of slack time and each peak vehicle requires 3 hours of
slack time. Therefore, each all-day vehicle is in service for 16 hours and each peak vehicle
is in service for 9 hours. Depending on the allocation of service hours between all-day and
peak vehicles, each TacDRT vehicle must serve roughly 234 trips to fully satisfy demand.

5 Results

Results were obtained by running simulations on three trip datasets. A dataset includes
information regarding each trip (as specified in Section 4.1) as well as the fully computed
arc table, and requires three days to compute. With a given dataset, each simulation
required roughly ten hours to complete. All computation was carried out on several Dell
Optiplex 790s, each with 8GB of memory and 8 processors at 3.4GHz.

The best allocation of service hours between all-day and peak vehicles is not known a
priori. Therefore, 6 simulation rounds were executed with different service hour allocations
between the vehicle types. Most of the results discussed below are situated against these
simulation rounds, where each round is measured by the percent of service hours allocated
to all-day vehicles.
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Figure 5: System efficiency by service hour allocation, where efficiency is measured by pas-
sengers per service hour

5.1 Rejection Rate and Efficiency

For TacDRT to be deemed feasible as an alternative to the fixed-route system, it must
serve the vast majority of trip requests. The rejection rate across different allocations of
service hours is shown in Figure 4. The lowest systemwide rejection rate that TacDRT
achieved was 9.49%, when 74.8% of service hours were allocated to all-day vehicles.

The rejection rates also indicate that dynamic requests were harder to serve than static
requests. More than 25% of dynamic requests were rejected across all service hour al-
locations, while the rejection rate of static trips stayed below 10%. Further, the static
and dynamic rejection rates trended in opposite directions. As the static rejection rate
decreased, the dynamic rate increased. That is, the increasing number of trips successfully
scheduled in the static batch before service hours began led to less room in the schedules
for the dynamic trips which are revealed later in the day. These findings confirm Fu and
Xu’s observation that dynamic requests are harder to serve than static requests [5].

System efficiency across different service hour allocations is shown in Figure 5. System
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Point Defiance

Figure 6: Endpoints of all rejected trips

efficiency is inversely proportional to rejection rate. As more passengers are served using
the same number of service hours, rejection rates decrease while system efficiency increases.
Therefore the service hour allocation that led to the lowest rejection rate also led to the
highest efficiency of 13.14 passengers/service hour. In comparison, PT’s fixed-route system
averages 22.7 passengers/service hour [11]. However, the operational cost per service hour
of TacDRT is less than that of PT fixed-route. So although PT fixed-route is 57% more
efficient than TacDRT according to the passengers/service hour metric, it is only 10.7% less
expensive than TacDRT. PT fixed-route spends $5.03 on each passenger, while TacDRT
spends $5.57 [11].

5.2 Rejected Trips

It is worth examining the characteristics of rejected trips to determine if any policy changes
might further reduce the rejection rate. We’ve already established that dynamic trips are
rejected at a much higher rate than static trips.

The endpoints of all rejected trips are shown in Figure 6. In general, TacDRT had
trouble serving the periphery of Tacoma. Northeast Tacoma contained the highest density
of rejected endpoints. This is likely due to its isolation from the rest of the city. Any trip
with either a destination or origin in Northeast Tacoma must pass through Tacoma harbor
on SR 509, or around the harbor on Interstate 5. The lack of transit demand in and around
the harbor limits the ability of TacDRT to effectively aggregate demand as its vehicles are
passing through. Routes between downtown and Northeast Tacoma essentially constitute
wasted time.

There were also high concentrations of rejections towards Lakewood at the southern end
of the city and Point Defiance in the northwest corner of the city. Although these regions
aren’t isolated from the city like Northeast Tacoma, the nature of the periphery makes
these regions more difficult to serve. Vehicles have less flexibility when they near the edge
of the service area.

10
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Downtown Tacoma also featured a higher concentration of rejected trips. Downtown
has the highest density of residences and employment in the city, so the concentration of
rejections is most likely due to the volume of trips with an origin or destination in the area.

5.3 New Vehicle on Rejection

The best allocation of service hours caused a 9.49% rejection rate. It’s worth examining
then how many additional resources TacDRT would require to serve every trip request.
This can be achieved by adding a new vehicle to the fleet every time a trip is rejected, and
then re-attempting to schedule the rejected trip. These new vehicles remain in the fleet,
ready to serve other trips for the rest of the day.

The results of this modification are

shown in Figure 7. Reducing the re-

jection rate to 0%, which means serv- Simulation Rejection Service Hours
ing 2,046 more trips, required 537 extra Rate

service hours spread across 39 vehicles. Standard 9.49% 1500.9

This amounts to a rate of 3.81 passen- New Vehicle | 0% 2042
gers/service hour for the last 9.49% of on Rejection

trips, whereas the first 90.51% of trips

were served at a rate of 13.14 passen-
gers/service hour. These findings con-
firm Diana’s observation that as the re-
jection rate of a DRT service approaches
0%, the remaining trips become increas-
ingly expensive to serve [4].

Figure 7: A comparison of the standard simula-
tion and the modified simulation which
adds a mew vehicle to the fleet every
time a trip is rejected

5.4 Quality of Service

Quality of service was measured with two metrics: average pickup deviation and average
excess ride time.

Average pickup deviation represents the average difference between service times and
request times across all served trips t.

n
APD=Y" (STt - RTt> /n
t=1
For the simulation round with the lowest rejection rate, average pickup deviation was 21.6
minutes.
Average excess ride time represents, on average, the total time each trip ¢ took from

pickup to dropoff (total ride time), minus that trip’s direct driving time. Direct driving
time is the time required to drive directly from a trip’s origin to a trip’s destination.

AERT = Zn: <TRTt - DDTt> /n
t=1

For the simulation round with the lowest rejection rate, this was 34.9 minutes.

11
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Figure 8: Rejection rates of differently scaled systems

5.5 System Scaling

To address our hypothesis that Tacoma’s medium population density would lend itself well
to DRT, we ran several simulations with systems of reduced scale. That is, transit demand
and service hours were scaled down proportionally, while the geography and size of the
service area remained constant. The results of these simulations are presented in Figure 8,
where each line represents a differently scaled system.

The results indicate that the DRT system becomes less efficient as the density of demand
decreases along with the service hours. The system with 10,000 trip requests and 686.7
service hours experienced a rejection above 20% across all simulation rounds. The rejection
rate for the system with 15,000 trip requests and 1030 service hours remained above 14%.
The full scale model with 21,793 trip requests, discussed in Section 5.2, had rejection rates
below 12%.

6 Conclusion

This study set out to evaluate whether a citywide, public DRT system could serve the same
volume of trips as fixed-route at a comparable cost. The results of the simulations suggest
that such a system would not be a feasible replacement for fixed-route, largely due to the
9.49% rejection rate. Although determining an acceptable rejection threshold is arbitrary
and would vary between DRT implementations, it is clear that 9.49% is too high. Public
transit must be capable of serving those who are dependent, and TacDRT does not provide
service with a high enough degree of reliability.

Although TacDRT was not capable of serving all riders, it was able to efficiently serve
the vast majority of riders (90.51%) with a high quality of service. TacDRT spent $5.57
on each passenger that was served, while PT fixed route spends $5.03 per passenger [11].
This is an important finding, and calls into question the commonly held assumption that
DRT is necessarily expensive to operate. The real issue with DRT then is not its cost in
general, but its cost in serving the final minority of demand. In our case, the cost per
passenger of the final 9.49% of demand was almost 3.5 times more expensive than that of

12
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the first 90.51%. These findings confirm those of Diana [4].

The riders that were served experienced a high quality of service. Pickup deviations
averaged 21.6 minutes. In a fixed-route system, this time could easily be equivalent to
walking to an origin bus stop, waiting for the bus, and walking from the destination stop.
Average excess travel time, which was 34.9 minutes, also appears reasonable, considering
that riders of DRT never need to transfer vehicles, nor wait for transfers.

Our results also indicate that the characteristics of the service area strongly affect the
effectiveness of DRT. Northeast Tacoma experienced the highest concentration of rejected
endpoints, largely due to the harbor separating the neighborhood from the rest of the city.
This finding emphasizes the importance of a service area’s geography and its distribution
of transit demand, both of which are not addressed in the majority of DRT literature. For
DRT to work efficiently, vehicles must be able to aggregate demand anywhere they travel
within the service area. Vehicles passing through portions of the service area with minimal
transit demand, such as the harbor, are unable to accomplish this.

Lastly, we hypothesized that Tacoma’s medium population density would lend itself well
to DRT. However, the results of scaling the TacDRT system indicate that DRT functions
more efficiently as it scales up. As the density of trips requests increase with a proportionate
increase in service hours, the system experiences a lower rejection rate. The full size
simulation experienced rejection rates below 12% across all rounds, while the smallest
system with 10,000 trips experienced a rejection rate above 20% across all rounds. If this
trend continues as the system scales up past our full-size simulation, and there’s no reason
to believe it shouldn’t, then perhaps DRT would work better in areas with denser transit
demand.

The results from this study point to several policy changes that could be evaluated in
future work.

e The higher rejection rate of dynamic trips suggests that DRT services should incen-
tivize static trips. Perhaps this could be accomplished by offering a reduced fare
for riders who request trips before service hours begin, or by loosening the hard
constraints on dynamic trips.

e TacDRT was unable to efficiently serve the periphery of the service area. This could
be potentially remedied by maintaining fixed-route feeder lines that would transport
riders in and out of a more confined DRT service area. However, this would create
a hybrid system that would lose some of the benefits of pure DRT, such as the
introduction of transfers.

e DRT might be better able to aggregate demand if instead of offering door-to-door
service, it offered service between any pair of pre-designated locations. Existing bus
stops are a natural choice. This way, if trip endpoints are in a sufficiently close
proximity, a vehicle could satisfy them all with one stop. Although removing the
door-to-door aspect would reduce the service’s appeal, walking times could still be
limited with a decent spread of the pre-designated locations.

If the main problem with DRT is its failure to efficiently serve the final minority of
demand, then perhaps large-scale, urban DRT would function better as a private service.

13
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Such a system would not have the same obligation to serve all demand, and could com-
plement existing modes of transit by providing a cheaper alternative to taxis and a more
flexible alternative to fixed-route transit. Kutsuplus, a DRT service with these qualities,
was recently launched in the Helsinki city center, and has received largely positive feedback
[2]. It will be interesting to see how well the service develops, and if similar concepts can
be applied to other cities.
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