Symmetry Methods and Self-Similar Solutions to Curve Shortening

Peter Geertz-Larson
pgeertzlarson@pugetsound.edu

Follow this and additional works at: http:// soundideas.pugetsound.edu/summer_research
Part of the Partial Differential Equations Commons

Recommended Citation

Geertz-Larson, Peter, "Symmetry Methods and Self-Similar Solutions to Curve Shortening" (2011). Summer Research. Paper 142.
http://soundideas.pugetsound.edu/summer_research/142

Symmetry Methods and Self-Similar Solutions to Curve Shortening

Peter Geertz-Larson

Mathematics and Computer Science, University of Puget Sound
pgeertzlarson@pugetsound.edu

Abstrac

Curve shortening is a geometric process that continually evolves a curve based on its curva ure. Self-similar solutions to the curve shortening equation maintain their form throughout the process, though they can be scaled, translated, or rotated. These sell-simiar solution tions.

1. Symmetry methods

- Symmetry methods are a technique for solving differential equations.
- A symmetry for a differential equation maps solutions to solutions, for example by scaling or translating
- The goal is to use a symmetry to turn the differential equation into a form that is easier to solve by normal methods (e.g., separation of variables)
- Symmetries exist in one-parameter families that produce flows where solutions are con tinuously mapped to solutions (as the value of the parameter changes).
- Example [3]: The scaling transformation $(\hat{x}, \hat{y})=\left(e^{\epsilon} x, e^{-2 \epsilon} y\right)$ is a symmetry flow for th differential equation $\frac{d y}{d x}=x y^{2}-\frac{2 y}{x}-\frac{1}{x^{3}}$.

The green flow lines show the change in the blue solutions as ϵ changes.

$$
\begin{aligned}
& \text { Two invariant solutions are shown in red } \\
& \text { invariant solution to a differential equation is one that is } \mathrm{m}
\end{aligned}
$$

a differential equation is one that is mapped to itself in the sym
dinates. Converting analyze and if we're lucky, solve.

- Once a solution is found for the transformed equation, we can easily transform back to the original coordinates using the definitions for our canonical coordinates

2. Symmetry Generators

- Symmetries can be expressed in one of two ways
-as (\hat{x}, \hat{y}) given as functions of the old coordinates (x, y) and a parameter ϵ as a symmetry generator $X=\xi \partial_{x}+\eta \partial_{y}$ where ξ and η are functions of x and y defined by

$$
\xi=\left.\frac{d \hat{x}}{d \epsilon}\right|_{\epsilon=0} \quad \eta=\left.\frac{d \hat{y}}{d \epsilon}\right|_{\epsilon=0}
$$

- All symmetries for a differential equation, $\frac{d y}{d x}=\omega(x, y)$ must satisfy what is known as the symmetry condition
-The full symmetry condition is used with functions \hat{x} and $\hat{y}: \frac{d \hat{y}}{d x}=\omega(\hat{x}, \hat{y})$
-For symmetry generators, we linearize this condition around $\epsilon=0$.
- In order to find symmetries, we use the linearized condition because the linear equation that result are typically easier to solve

3. Curve Shortening

Curve shortening is a geometric evolution that when given a curve, the curve continually Curve shortening is a geometric evo.
eved on the curvature [2].

Velocity vectors for the curve shortening flow.

- This process is defined by assigning a velocity, equal to the curvature k, to each point on the curve \vec{r} in the direction of the normal vector \vec{N}. Mathematically this is expressed as $\frac{\frac{\partial r}{\partial t}}{\partial t}=k N$
For the curve shortening equation, the invariant solutions are the self similar solutions, the curves that maintain their form as they go through the process.
We analyzed (Section 4) and second by looking at the evolution of the curvature (Section 5).

4. Curve Shortening for the Graph of a Function

As shown in [1], the first option of looking directly at the curve as the graph of a function $u(x)$ results in the differential equation $u_{t}=\frac{u_{x x}}{1+u_{x}^{2}}$.

An example of curve shortening for the graph of a function.

- Building off of Chou and Li's work, we looked for the invariant solutions for the symmetry generator $X=x \partial x+2 t \partial t+u \partial u$
This resulted in the canonical coordinates $r=x / \sqrt{ } t$ and $F(r)=u / \sqrt{t}$ in terms of which invariant solutions are determined by the differential equation
$2 F^{\prime \prime}=\left(1+F^{\prime 2}\right)\left(F-r F^{\prime}\right)$.
Solutions to this dififerential equation are not immediately apparent, so we broke it into a first-order system using the quantities $F^{\prime}=B$ and $A=F-r B$ to ge

$$
\begin{aligned}
& A^{\prime}=-\frac{r}{2}(F-r B)\left(1+B^{2}\right)=-\frac{r}{2} A\left(1+B^{2}\right) \\
& B^{\prime}=\frac{1}{2}(F-r B)\left(1+B^{2}\right)=\frac{1}{2} A\left(1+B^{2}\right)
\end{aligned}
$$

Again, solutions aren't immediately apparent, but we can find upper bounds on A and B to describe the evolution of F since $F=A+r B$

- Upper bounds on A and B are given by

$$
A \leq \tilde{A}=A_{0} e^{\frac{-\left(1+B_{0}^{2}\right)}{4} r^{2}} \quad \text { and } \quad B \leq \tilde{B}=\tan \left(\frac{A_{0} \sqrt{\pi}}{2 \sqrt{1+B_{0}^{2}}} \operatorname{erf}\left(\frac{r}{2} \sqrt{1+B_{0}^{2}}\right)+\tan ^{-1}\left(B_{0}\right)\right)
$$

A (red) and the bound \tilde{A} (blue)

B (red) and the bound \tilde{B} (blue) - Also of note is that at low values of A_{0}, the bounds become remarkably close to their Because the limit as r goes to infinity of \tilde{A} is 0 , the only term that has any effect on the limit of F is $r B$. Since B limits to a constant, F will be asymptotically linear.

5. Curve Shortening Applied to the Curvatur

For the curve shortening system, our independent variables are time t and the arbitrary parameter p. The dependent variables are the curvature k and $v=\left|\frac{\partial \vec{r}}{\partial p}\right|$ where \vec{r} is th vector valued function for the curve
The symmetry generator takes the form $X=\xi \partial_{p}+\tau \partial_{t}+\chi \partial_{k}+\eta \partial_{v}$

- We are able to deduce the following system of differential equations from the original curve shortening equation

From the linearized symmetry condition, we get a system of 31 determining equations. From this system, we are able to deduce

$$
\xi=C(p), \quad \tau=-2 c_{1} t+c_{2}, \quad \chi=c_{1} k, \quad \text { and } \quad \eta=-v\left(C^{\prime}(p)+c_{1}\right)
$$

where c_{1} and c_{2} are constants and C is any differentiable function.
-The above generator describes all possible symmetries for our system, so the next step was to find invariant solutions for particular generators. The generator that we analyzed was $X=p \partial p+2 t \partial t-k \partial k$

- This generator results in the canonical coordinates $r=\frac{p}{\sqrt{t}}, G(r)=v$, and $H(r)=k \sqrt{t}$

Once completely converted to canonical coordinates, the system turns into the following

$$
G^{\prime}=\frac{2 H^{2} G}{r} \quad H^{\prime \prime}=\frac{-G^{2}}{2}\left(r H^{\prime}+H-2 H^{3}\right)+\frac{2 H^{2} H^{\prime}}{r}
$$

Though made difficult with the factor of r^{-1}, the next step would be to analyze these equations. However, this was beyond the scope of this project for the summe.

References

IK.S. Chou and G.X. Li. Optimal systems and invariant solutions for the curve shortening problem. Communications in Analysis and Geometry, 10:241-274, 2002
[2] M.E. Gage and R.S. Hamiton. The heat equation shrinking convex plane curves. Journa of Differential Geometry, 23:69-96. 1986
[3] Peter E. Hydon. Symmetry Methods for Differential Equations, Cambridge University Press, New York, 2000

