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Symmetry Methods and Self-Similar Solutions to Curve Shortening
Peter Geertz-Larson

Mathematics and Computer Science, University of Puget Sound
pgeertzlarson@pugetsound.edu

Abstract

Curve shortening is a geometric process that continually evolves a curve based on its curva-
ture. Self-similar solutions to the curve shortening equation maintain their form throughout
the process, though they can be scaled, translated, or rotated. These self-similar solutions
correspond to the invariant solutions of the symmetry method for solving differential equa-
tions.

1. Symmetry methods

• Symmetry methods are a technique for solving differential equations.
• A symmetry for a differential equation maps solutions to solutions, for example by scaling

or translating.
• The goal is to use a symmetry to turn the differential equation into a form that is easier to

solve by normal methods (e.g., separation of variables)
• Symmetries exist in one-parameter families that produce flows where solutions are con-

tinuously mapped to solutions (as the value of the parameter changes).
• Example [3]: The scaling transformation (x̂, ŷ) = (eεx, e−2εy) is a symmetry flow for the

differential equation
dy

dx
= xy2 − 2y

x
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The green flow lines show the change in the blue solutions as ε changes.
Two invariant solutions are shown in red.

• An invariant solution to a differential equation is one that is mapped to itself in the sym-
metry, i.e., it is invariant in the symmetry.
• In order to find invariant solutions to a symmetry, we use what are called canonical coor-

dinates. Converting to canonical coordinates results in an equation that is much easier
analyze and if we’re lucky, solve.
•Once a solution is found for the transformed equation, we can easily transform back to the

original coordinates using the definitions for our canonical coordinates.

2. Symmetry Generators

• Symmetries can be expressed in one of two ways
– as (x̂, ŷ) given as functions of the old coordinates (x, y) and a parameter ε
– as a symmetry generator X = ξ∂x + η∂y where ξ and η are functions of x and y defined

by

ξ =
dx̂

dε

∣∣∣
ε=0

η =
dŷ

dε

∣∣∣
ε=0

• All symmetries for a differential equation, dydx = ω(x, y) must satisfy what is known as the
symmetry condition

– The full symmetry condition is used with functions x̂ and ŷ :dŷdx̂ = ω(x̂, ŷ).
– For symmetry generators, we linearize this condition around ε = 0.
• In order to find symmetries, we use the linearized condition because the linear equations

that result are typically easier to solve.

3. Curve Shortening

•Curve shortening is a geometric evolution that when given a curve, the curve continually
evolves based on the curvature [2].

m
iss

in
g 

lic
en

se
, c

an
no

t f
in

d 
= 

/U
se

rs
/m

ar
tin

j/D
es

kt
op

/J
av

aV
ie

w/
Ja

va
/rs

rc
/jv

-li
c.

lic
re

gi
st

er
 a

t w
ww

.ja
va

vie
w.

de

Velocity vectors for the curve shortening flow.
• This process is defined by assigning a velocity, equal to the curvature k, to each point on

the curve ~r in the direction of the normal vector ~N . Mathematically this is expressed as
∂~r
∂t = k ~N .
• For the curve shortening equation, the invariant solutions are the self similar solutions,

the curves that maintain their form as they go through the process.
•We analyzed the curve shortening equation in two ways, first by looking directly at the

case on the curve as the graph of a function (Section 4) and second by looking at the
evolution of the curvature (Section 5).

4. Curve Shortening for the Graph of a Function

• As shown in [1], the first option of looking directly at the curve as the graph of a function
u(x) results in the differential equation ut =

uxx
1 + u2x

.
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An example of curve shortening for the graph of a function.
• Building off of Chou and Li’s work, we looked for the invariant solutions for the symmetry

generator X = x∂x + 2t∂t + u∂u

• This resulted in the canonical coordinates r = x/
√
t and F (r) = u/

√
t in terms of which

invariant solutions are determined by the differential equation

2F ′′ = (1 + F ′2)(F − rF ′).

• Solutions to this differential equation are not immediately apparent, so we broke it into a
first-order system using the quantities F ′ = B and A = F − rB to get

A′ = −r
2
(F − rB)(1 +B2) = −r

2
A(1 +B2)

B′ =
1

2
(F − rB)(1 +B2) =

1

2
A(1 +B2)

• Again, solutions aren’t immediately apparent, but we can find upper bounds on A and B
to describe the evolution of F since F = A + rB

•Upper bounds on A and B are given by

A ≤ Ã = A0e
−(1+B2

0)

4 r2 and B ≤ B̃ = tan

 A0
√
π

2
√
1 +B2

0

erf

(
r

2

√
1 +B2

0

)
+ tan−1(B0)

 .
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• Also of note is that at low values of A0, the bounds become remarkably close to their

respective functions
• Because the limit as r goes to infinity of Ã is 0, the only term that has any effect on the

limit of F is rB. Since B limits to a constant, F will be asymptotically linear.

5. Curve Shortening Applied to the Curvature

• For the curve shortening system, our independent variables are time t and the arbitrary
parameter p. The dependent variables are the curvature k and v = |∂~r∂p| where ~r is the
vector valued function for the curve.
• The symmetry generator takes the form X = ξ∂p + τ∂t + χ∂k + η∂v

•We are able to deduce the following system of differential equations from the original curve
shortening equation.

∂k

∂t
=

1

v2
∂2k

∂p2
− 1

v3
∂v

∂p

∂k

∂p
+ k3

∂v

∂t
= −k2v

• From the linearized symmetry condition, we get a system of 31 determining equations.
From this system, we are able to deduce

ξ = C(p), τ = −2c1t + c2, χ = c1k, and η = −v(C ′(p) + c1)

where c1 and c2 are constants and C is any differentiable function.
• The above generator describes all possible symmetries for our system, so the next step

was to find invariant solutions for particular generators. The generator that we analyzed
was X = p∂p + 2t∂t− k∂k.
• This generator results in the canonical coordinates r = p√

t
, G(r) = v, and H(r) = k

√
t

•Once completely converted to canonical coordinates, the system turns into the following:

G′ =
2H2G

r
H ′′ =

−G2

2
(rH ′ +H − 2H3) +

2H2H ′

r

• Though made difficult with the factor of r−1, the next step would be to analyze these
equations. However, this was beyond the scope of this project for the summer.
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