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A Foundation for Arithmetic1

Kevin Halasz

Throughout the course of the last century, the mathematical community has come

to accept set theory, more specifically the formal system known as Zermelo-Fraenkel

set theory, as the discipline’s conventional base; the system upon which the field’s

multifarious complex structures are built. However, more than twenty years be-

fore Zermelo began to fomalize his set theory, a German mathematician/philosopher

named Gottlob Frege developed a brilliant theoretical basis for arithmetic, upon which

all of mathematics could eventually be constructed, in his seminal work Die Grund-

lagen der Arithmetik. Unfortunately, Frege’s system is generally ignored by math-

ematicians today, largely because Frege failed to successfully complete his intended

program. Frege’s motivations in writing the Grundlagen were largely philosophical.

In the late 19th century, many within the European intellectual community held the

belief, developed by Immanuel Kant, that the truths of arithmetic were synthetic, i.e.

governed ‘by laws of a special science.’2 Frege, on the other hand, believed that all

of mathematics was analytic, or derivable from general logical laws.

After sketching how the numbers could be built purely from logical principles in

the Grundlagen, Frege was on the verge of completing a formalization of his system

in the second volume of his two part Grundgesetze der Arithmetik when he recieved

a letter from Bertrand Russell informing him that his work has inconsistent. Frege’s

work in the Grundlagen and the first volume of the Grundgesetze employed a com-

prehension principle, specifically labeled ‘Basic Law V’ in the later work, that was

shown to be inconsistent by the notorious ‘Russell’s paradox.’3 Frege threw together

1This paper was written using LATEX
2(Frege, 1968) 4
3for explanation of Russell’s paradox and how it applies to Frege see (Boolos 1998) 149-150
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a hasty repair job for the appendix of the Grundgesetze’s second volume, but this

still failed to rectify the problem.4

Because of this noted inconsistency, Frege’s system was largely forgotten by math-

meticians and philosophers alike for much of the 20th century. Other foundations for

arithmetic were built, and the mathematicians moved on. But Frege’s work in the

philosophy of language kept him relevant in the philosophical community, and in the

1980s, Frege’s mathematical program was brought back into the western intellectual

consciousness, thanks largely to the work of George Boolos. Boolos discovered, among

other things, that Frege only employed his faulty comprehension principle in the proof

of one proposition. Boolos termed this proposition ‘Hume’s Principle’ (HP) because,

in the Grundlagen, Frege credited David Hume with its initial conception. If Hume’s

Principle was taken as axiomatic, then Frege had indeed axiomiatized arithmetic with

only one axiom. Calling the adjunction of HP with second-order logic ‘Fregean Arith-

metic’ (FA), Boolos showed the consistency of a modified Fregean program with a

proof that FA could be used to construct the widely accepted axioms of Peano Arith-

metic (PA), terming the result ‘Frege’s Theorem.’ The axioms of Peano Arithmetic

are as follows:5

Peano Axioms6

1. 0 is a natural number

2. 0 is not the successor of any number

3. The successor relation is one-one

4(Boolos 1998) 177
5The logical notation employed here is that of FA, to be explained below. At this point, it is not

necessary to understand it, as the axioms are all given in plain language as well
6(Zalta, 2010)
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4. Every natural number has a successor, thus the series of natural numbers is

infinite

5. If 0 has some property, and if whenever a given number has that property then

its successor does, then all natural numbers have that property

Like any logical proposition, Frege’s Theorem can be proven in myriad ways. As

simplicity and brevity are the quintessence of mathematical aestheticism, Boolos’

proof, though brilliant, can be improved upon by reaching the conclusion in fewer

steps; employing fewer lemmas. This paper will provide a novel, particularly succicnt,

proof of Frege’s Theorem.

We will start by going over the basics of the Fregean mathematical program.

It is in sections 62-83 of the Grundlagen that Frege defines and develops the non-

logical symbols of FA. In the preceding sections of the work, Frege determined that

the natural numbers are to be defined by the concepts that they can be used to

describe. This is because statements of number are fundamentally statements about

concepts. ‘The earth has one moon’ asserts essentially that there is one object falling

under the concept ‘moon of earth.’ Such considerations are consistent with Frege’s

overall philosophical tendency to define objects by their application; the most common

application of the natural numbers is their use in counting.

In §62, Frege contends that we will be able to define the numbers once we have

come up with a criterion of identity for them. A criterion of identity for a given

object, a, is a property of a such that, for any object b, b is equivalent to a if and

only if b has this property. Criteria of identity define equivalence classes: sets of

objects which share a common fundamental property (in this case the criterion of

identity). In §63-67, Frege provides a comprehensive argument that a criterion of

identity can give us the numbers by analogy to the manner with which the direction
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of a line is defined. For a given line l, it is only by abstracting from the equivalence

class of all lines parallel to l that we can truly discern its direction; through the

notion of ‘being parallel,’ a criterion of identity, we are given the concept of direction,

and can partition all the lines of a given direction into an equivalence class. Frege

then, in §68, introduces ‘equinumerosity’ as his criterion of identity for numbers,

while not yet actually designating the defining property behind this word until §70-

71. Thus, although he has not yet fully definied equinumerosity, Frege, motivated by

his discussion of direction and parallelism, states as a quasi-definition: ‘the number

which belongs to the concept F is the extension of the concept “equinumerous to the

concept F.”’ In effect, this is an equivalence class of concepts.

The mathematical work of the current paper will employ formal notation, rather

than simply plain language descriptions. We will use all of the traditional notation

of second-order logic,7 along with several specifically Fregean non-logical symbols, to

be introduced at the point where they first are relevant to our discussion. Now, let us

begin defining the non-logical symbols. For a given object a, to say a is a number we

will use the notation Na. We will represent concepts using formulas with a single free

variable, φ(x), where [x : φ(x)] means ‘all x such that φ(x).’ Finally, we will use the

symbol N to represent the function from a given concept to the number belonging to

it. Thus, the number belonging to the concept F is represented as N [x : Fx].

Having motivated and clearly presented his basic definition of number in §62-69,

Frege goes on to derive what he calls ‘well known properties of numbers’ in §70-83.

In §72 Frege clarifies his definition of number by establishing that the expression ‘n

is a number’ is equivalent to the expression ‘there exists a concept such that n is the

number which belongs to it’ (Nn ↔ ∃F N [x : Fx] = n). Later in this section, he

finally provides a rigorous definition for the concept of equinumerosity. Frege defines

7for explanation of these symbols see (Boolos and Jeffrey, 1989) pages 97-111 and 197-206
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two concepts as equinumerous (between arbitrary concepts F ,G: F eq G) iff there is

some relation φ that correlates them one-one. Thus, for example, because the concepts

‘hill in Rome’ and ‘book in the Harry Potter series’ can be correlated one-one by a

relation that maps the first book to the Aventine, then maps each successive book in

chronological order to each successive hill in alphabetical order, these two concepts

are equinumerous. With equinumerosity thus defined, Frege has a distinct criterion of

identity for numbers, and is therefore justified in picking out each individual number

as a distinct object.

It is in §73 that Frege presents the infamous Hume’s Principle. While he has

already stated equinumerosity to be a criterion of identity for numbers, he has not

yet proven this claim. That equinumerosity is indeed a property capable of picking out

the individual numbers is captured by Hume’s Principle: N [x : Fx] = N [x : Gx] ↔

FeqG, or in Frege’s words, ‘the number which belongs to the concept F is identical

to the number which belongs to the concept G if[f] the concept F is equinumerous to

the concept G.’8 As was stated above, the proof sketch that Frege presented next in

this section turned out to be based upon a faulty comprehension principle, and thus

has no value to the work of this paper. Thus, we will ignore this proof, and take HP

as axiomatic so as to form the Fregean mathematical program which we prove to be

fruitful below.

It is in §74 that Frege finally begins discussing the individual numbers themselves,

rather than simply considering general properties. He starts by defining zero as the

number belonging to the concept ‘not identical to itself’: 0 = N [x : x 6= x]. Because

nothing fails to be identical to itself, nothing falls under this concept, and thus it seems

to be an acceptable definition for the number zero. In §75 Frege puts his definition

to the test. He asserts, quite rightly, that it must be possible, at this point, to show

8(Frege, 1968) 85
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N [x : Fx] = 0 ↔ ¬∃zFz. Frege provides a sketch of a proof of this proposition in

§75. However, because this proposition will turn out to be so important to the proof

of Frege’s Theorem below, we will here provide a novel proof.

Proof: We will first prove the right side of the biconditional. Assume N [x :
Fx] = 0. Now, let G = N [x : x 6= x]. By definition, N [x : Gx] = 0. By the
transitivity of identity, N [x : Fx] = N [x : Gx]. This implies, by HP, FeqG. By
the definition of equinumerosity, this is equivalent to saying that there exists some
relation φ that correlates F and G one-one. φ’s one-one status allows us to further
assert that ∀x(Fx → ∃!y(Gy&xφy)). Suppose, for the sake of contradiction, ∃bFb.
Then, ∃!y(Gy& bφy). This, however, entails the much simpler ∃yGy. If we instanti-
ate y, then Gy, and by the definition of G, y 6= y. Because it is a truth of logic that
everything is identical to itself, this is a contradiction. Having reached contradiction,
we can now reject our supposition above, and are justified in asserting ¬∃zFz. We
have thus proven the right side of the biconditional, and will now prove the left.
Assume ¬∃zFz. Let G = [x : x 6= x]. By definition, N [x : Gx] = 0. Suppose,
for conditional proof, that for an arbitrary x, Fx. This contradicts the definition of
F , so we have therefore reached contradiction. Because anything can be entailed by
logical contradiction, we are now justified in asserting ∃!y(Gy&xφy). We have com-
pleted our conditional proof, and because x was arbitrary, ∀x(Fx → ∃!y(Gy&xφy).
Now, for another conditional proof, suppose, for an arbitrary y, Gy. This means
that y 6= y, which, by logic explained above, is a logical contradiction. Once again
employing the fact that contradiction implies anything, we are justified in asserting
∃!x(Fx&xφy). Our conditional proof is thus completed, and, because y was arbitrary,
we have ∀y(Gy → ∃!x(Fx&xφy). Combining the results of our two conditional proofs
and generalzing on φ we get ∃φ∀x(Fx→ ∃!y(Gy&xφy) &∀y(Gy → ∃!x(Fx&xφy))).
This means that there is a φ that correlates F and G one-one. This, by definition,
means that F eq G. By HP, this is equivalent to saying N [x : Fx] = N [x : Gx]. By
the transitivity of identity, this entails N [x : Fx] = 0. We now have both sides of the
biconditional, and are therefore justified in asserting N [x : Fx] = 0 ↔ ¬∃zFz.

�

Having defined zero, and proven the worth of his definition, Frege is now in position

to build the rest of the numbers. He will do this using the successor relation, which

he defines in §76. He defines the statement ‘n follows in the natural series of numbers

directly after m’ (in our formal notation mPn, as in m preceds n) as being equivalent

to ∃F∃y(Fy&N [x : Fx&x 6= y] = m&N [x : Fx] = n). Frege specifically refrains
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from saying that n is the number that follows after m because he has yet to prove

that the sucessor relation is one-one, and use of the definite article requires proof of

uniqueness.

With the successor relation in hand, Frege is now capable of building the natural

numbers one by one, each as the successor of the previous. Indeed, he carries out

the first step this process in §77, defining the number 1 as 0’s successor. He does

so by considering the concept [x : x = 0]. 0 falls under this concept, but under the

concept [x : x = 0 &x 6= 0], obviously, falls nothing. By the biconditional proved in

§75, this means that N [x : x = 0 &x 6= 0] = 0. Frege defines 1 = N [x : x = 0], and

because, letting F = [x : x = 0], F0 &N [x : x = 0 &x 6= 0] = 0 &N [x : x = 0] = 1,

∃F∃y(Fy&N [x : Fx&x 6= y] = 0 &N [x : Fx] = 1), which is equivalent to 0P1.

Frege has thus shown that 1 follows in the natural series of numbers after 0.

In §78 Frege gives a list of several propositions about numbers that he, correctly,

believes can be easily proved using the definitions and theorems proven so far. These

propositions are:

1. 0Pa→ a = 1

2. N [x : Fx] = 1 → ∃xFx

3. N [x : Fx] = 1 → (Fx&Fy → x = y)

4. Fx& (Fx&Fy → x = y) → N [x : Fx] = 1

5. aPc& bPd→ (a = b↔ c = d) (the P relation is one-one)

6. ∀x(Nx&x 6= 0 → ∃y yPx)

Proof of each of these propositions allows at least some sort of insight into the

inner workings of the Fregean mathematical system. However, providing proofs here
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would lead us too far astray of our ultimate goal, which is to provide a proof of

Frege’s Theorem. The fifth proposition, however, serves an exceedingly important

role in this program, as it is the third axiom of Peano Arithmetic. As such, we will

provide explicit proof of just this fifth proposition here.

Proof: Assume, for conditional proof, aPc& bPd. We will unload these assump-
tions before proving the biconditional that is the consequent of our ultimate goal.
aPc, by definition, implies ∃F∃y(Fy&N [x : Fy&x 6= y] = a&N [x : Fx] = c),
while bPd similarly implies ∃G∃z(Gz&N [x : Gx&x 6= z] = b&N [x : Gx] = d). We
can instantiate these quantified claims to get Fy&N [x : Fy&x 6= y] = a&N [x :
Fx] = c&Gz&N [x : Gx&x 6= z] = b&N [x : Gx] = d. We will start by
proving the right side of the biconditional that is the consequent of our ultimate
goal. As such, we will further assume that a = b. By the transitivity of identity,
this means that N [x : Fx&x 6= y] = N [x : Gx&x 6= z]. By HP, this means
[x : Fx&x 6= y]eq[x : Gx&x 6= z]. By the definition of equinumerosity, this entails
that there exists a relation φ that correlates [x : Fx&x 6= y] and [x : Gx&x 6= z]
one-one. Let ψ be a relation with all the same mappings as φ, but also maps x to
z. ψ is then a relation that maps the F s to the Gs in one-one fashion. Its existence
implies F eq G. By HP, this entails N [x : Fx] = N [x : Gx]. By the transitivity
of identity, this implies that c = d. We have therefore proven the right side of the
biconditional. Now for the left. Assume c = d. This implies N [x : Fx] = N [x : Gx].
By HP, this means that F eq G. By definition, this implies that there exists a rela-
tion φ that relates the F s and the Gs one-one. Thus, we know ∃!uxφu and ∃! v vφz.
Now, either u = z& v = x or u 6= z& v 6= x. We will examine each case sepa-
rately. If u = z& v = x, then φ correlates [x : Fx&x 6= y] and [x : Gx&x 6= z]
one-one, implying [x : Fx&x 6= y] eq [x : Gx&x 6= z]. We will now look at the
other case, supposing u 6= z& v 6= x. We will consider a relation ψ that has all of
the same mappings as φ except two: where xφu& vφz, xψz& vψu. As φ is one-one,
and this swap does nothing that would negate that status, ψ is also one-one. Fur-
thermore, it relates [x : Fx&x 6= y] and [x : Gx&x 6= z] one-one, which entails
[x : Fx&x 6= y] eq [x : Gx&x 6= z]. In either possible case, [x : Fx&x 6= y] eq
[x : Gx&x 6= z], thus we are justified in holding this proposition to be true. By
HP, we then know that N [x : Fx&x 6= y] = N [x : Gx&x 6= z]. By the transitivity
of identity, this implies that a = b. We thus have both halves of our biconditional,
and are justified in asserting a = b ↔ c = d. We have completed our conditional
proof, and therefore can combine this conclusion with the originial assumption to get
aPc& bPd→ (a = b↔ c = d).

�
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In §79 Frege introduces the ancestral, a type of relation invented by Frege in his

monograph on mathematical logic, Begriggsschrift. The ancestral is based upon the

idea that for any binary relation φ, there is a chain, known as the φ-series, formed

between the various objects for which the relation holds, i.e. if aφb and bφc, then

there is a chain formed by φ that looks like: aφbφc. The ancestral, for a given relation

φ, which we will formally denote φ∗, is the relation held between any two elements

in the φ-series; in our example aφ∗c. While this explanation gives a good picture

of what is meant by both the ancestral and following in a φ-series, Frege’s rigorous

definition is crafted rather differently. Frege’s definition of the ancestral, like the rest

of his basic definitions in this work, is based upon concepts. Frege’s major statement

of §79 is

xP ∗y ↔def ∀F (∀a(xPa→ Fa) &∀d∀a(Fd& dPa→ Fa) → Fy)

Frege’s natural series of numbers is defined by building the ancestral of P (the

successor relation). Though Frege himself makes no mention of it, it can easily be

noted that for cardinal numbers the ancestral of the successor relation, P ∗, is identical

to the less than relation, <.

After commenting on several philosophical properties of the ancestral in §80, Frege

gives us the final definition we need to prove Frege’s Theorem in §81: the weak

ancestral. In this section Frege asserts that the statement ‘y is a member of the

φ-series beginning with x’ is equivalent to xφ∗y∨x = y. Though Frege doesn’t call it

such, this relation between two objects, x and y, has come by modern logicians to be

called the weak ancestral, as it is essentially a weakening of the ancestral relation so as

to make it reflexive. Formally, we will use the notation xφ∗=y to mean xφ∗y ∨ x = y.

In §82-83 Frege presents his grand (flawed) proof that every number has a succes-
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sor, thus proving the infinitude of the natural numbers. With this proof, Frege has

completed his presentation of all the mathematical work relevant to Frege’s Theorem

(he includes two more sections of mathematical work in which he discusses infinite

numbers). It should be noted here that Frege never talks about or proves Frege’s

Theorem. What he does in the Grundlagen is provide a sketch of how he would build

arithmetic from general logical laws. Though it is almost certain that when writing

the Grundlagen he had been exposed to PA in some form in or another,9 Frege never

mentions PA or FA in his writings. It should be kept in mind that, at the time he was

writing the Grundlagen, the term FA would be nonsensical to Frege, as he believed

arithmetic to be analytic, and therefore necessarily true, needing no system or axioms

to built it up.

We have thus presented Frege’s mathematical program as he laid it out in the

Grundlagen, and are therefore now in position to go on and prove Frege’s Theorem.

The first three axioms follow fairly directly from Frege’s definitions and preliminary

proofs found in §62-83. We will quickly prove these before going on to prove the fifth

axiom, an axiom whose use will be invariably important in our proof of the fourth,

most theoretically loaded, axiom. Now, for the proofs.

Axiom 1: 0 is a natural number (N0)

Proof: What we have come to call ‘the natural numbers’ were called ‘the finite
numbers’ by Frege.10 In §83 Frege defines the finite numbers as the members of the
natural sequence of numbers beginning with 0. Thus, Nx ↔ 0P ∗=x. It is a logical
truth that 0 = 0, so we are then justified in asserting 0 = 0 ∨ 0P0. The weak
ancestral is defined by this disjunction, thus we may say 0P ∗=0, which implies N0 by
the biconditional definition of the natural numbers given above.

�
9(Zalta, 2010)

10(Smiley, 1988)
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Axiom 2: 0 is not the successor of any number (¬∃x xP0)

Proof: Suppose, for the sake of reductio, that there exists some a such that aP0.
By Frege’s definition of the successor relation, this means ∃F∃y(Fy&N [x : Fx] =
0 &N [x : Fx&x 6= y] = a). If we instantiate F and y we are in possession of three
propositions: Fy, N [x : Fx] = 0, N [x : Fx&x 6= y] = a. The central theorem
of §75 tells us that N [x : Fx] = 0 ↔ ¬∃z Fz. Thus, we have sufficient evidence
to assert ¬∃z Fz. However, we above asserted Fy, which can be generalized to get
the proposition ∃z Fz. We have thus reached a contradiction, and as such must now
reject our original supposition, and accept its negation: ¬∃x xP0.

�

Axiom 3: The successor relation (P ) is one-one.

Proof: This is literally the fourth of the six propositions Frege lays out to be
proven in §78, a proposition whose proof is given above (page 8).

�

Thus, the first three Peano have been proven quite directly using Frege’s defini-

tions. The meat of Frege’s theorem, however, lies in proof of the final two. Indeed,

the fourth axiom, asserting the infinitude of the natural numbers, is the only axiom

in whose proof HP is employed; and thus is the only axiom whose proof requires the

full force of Fregean Arithmetic. The induction axiom, crucial to any axiomatization

of arithmetic, will be explored first, as possession of such a principle will prove to be

imperative in our quest to prove the fourth axiom; the axiom that Frege notoriously

failed to provide a consistent proof of in §82-83 of the Grundlagen.

Axiom 5: The Induction Axiom:

∀F (F0 &∀a∀b(aPb&Fa→ Fb)) → ∀x(0P ∗=x→ Fx)).

Proof: Assume, for an arbitrary F, that F0 and ∀a∀b(aPb&Fa → Fb). Now
suppose, for conditional proof, that, for an arbitrary x, xP ∗=0. By the definition of the
weak ancestral, this means that 0 = x∨0P ∗x. We will therefore proceed with a proof
by cases. First, suppose that 0 = x. Because our first premise was F0, we are then

11



justified, by the indiscernability of identicals, in asserting Fx. Thus, we have reached
the desired result in the first case. In the second case, we will begin by supposing that
0P ∗x. Per Frege’s definition of the ancestral in §79, this tells us that ∀F (∀a(0Pa →
Fa) &∀d∀a(Fd& dPa → Fa) → Fx). Now, for conditional proof, suppose, for an
arbitrary a, 0Pa. While the first premise tells us that F0, the second premise tells
us that 0Pa&F0 entails Fa. Thus, because a was arbitrary, ∀a(0Pa → Fa). The
conjunction of this result with our second premise is the antecedent of the quantified
conditional with which Frege defines the ancestral. Thus, we are justified in asserting
the conseuqent: Fx. We have therefore reached the desired result in both possible
cases. Because the x we considered was arbtirary, ∀x(0P ∗x→ Fx). Conditionalizing
this result with our original assumptions, we obtain the desired induction axiom:
∀F (F0 &∀a∀b(aPb&Fa→ Fb)) → ∀x(0P ∗=x→ Fx)).

�

Our presentation of the induction axiom deserves a quick divergence. Many ax-

iomatizations of arithmetic contain induction axioms in which the consequent is not

conditionalized; instead of ∀x(0P ∗=x → Fx) they simply say ∀xFx. Such an in-

duction axiom, however, is false in a language containing the non-logical symbols of

Fregean Arithmetic. This is because the ‘Number of” function, the function from

concepts to objects employed by Frege on the left-hand side of Hume’s Principle,

necessitates the existence of an infinite number. If there is a number belonging to

each concept that is capable of being equinumerous with another, it follows that there

will be a number belonging to the concept [x : Nx]11; an infinite number which Frege

chooses to call ∞1. Thus, there are certain concepts that meet the conditions of the

axiom’s antecedent, but do not apply to all of the objects in the domain. For exam-

ple, it can easily be shown that the concept F = [x : ¬xP ∗x] meets the conditions

of the antecedent,12 and thus applies to all of the natural numbers, but, as Frege

asserts in §84, ∞1 follows itself in the natural series of numbers: ∞1P
∗∞1. Most

11That such a concept does in fact have infinitely many objects falling under it is yet to be proven,
but, while it harms the rigor of this informal divergence, it will be assumed to make the point at
hand.

12for proof of this statement see (Boolos, 1998) 322
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axiomatizations of arithmetic are intended to be modeled in domains that contain

only the natural numbers.13 Frege never intended to create a system that could be

modeled with just the natural numbers. Because Frege was trying to prove arith-

metic to be analytic, he was trying to show that the numbers existed in any domain,

even those that included horses, trees, and human beings. Induction axioms with

un-conditionalized consequents actually express the same idea that ours does, and

a conditionalization of the consequent would add unnecessary complications. With

this discrepancy thus explained, we have answered the question that motivated our

divergence.

We now have one axiom left to prove: that each natural number has a successor. A

proof of this axiom, following much less directly from Frege’s definitions, constitutes

the bulk of the mathematical work required in a proof of Frege’s Theorem. As was

asserted in the introduction, Frege’s own outline of this proof in the Grundlagen

turned out to be inconsistent. Frege himself recognized this by the time he wrote

the Grundgesetze, providing a similar, but refined proof. The proof provided below

does not closely follow Frege’s strategy in either book. While we will indeed use

induction, which seems to be the only proof method capable of yielding the desired

result, our inductive step will turn out to be much more succinct than Frege’s; while

in the Grundlagen Frege completes this step by proving three grand lemmas about

the numbers,14 the proof of each of which requires proof of at least one sub-lemma

about the nature of the ancestral, we will do so with the assistance of just one small

lemma about the ancestral. We will now prove this basic, logical lemma.

13Axiomatizations of Arithmetic, such as PA, can have models containing objects other than the
natural numbers, known as nonstandard models. See (Boolos and Jeffrey, 1989) 191-196. However,
these models are crafted to specifically fit the axioms, so, although the domain may have some rather
extraordinary properties, the problem here discussed with FA obviously does not arise.

14His Grundgesetze proof only includes two of these lemmas. Even so, our proof, which contains
no such grand lemmas, will nonetheless contain noticeably fewer intermediate steps.
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Lemma ∀y∀x(∃z(zPy&xP ∗=z) ↔ xP ∗y)15

Proof: Consider arbitrary x, y. We will start by proving the right side of the
biconditional. Suppose ∃z(zPy&xP ∗=z). By the primitive property of the ancestral,
xP ∗=zPy implies xP ∗y. This is the right side of the biconditional: ∃z(zPy&xP ∗=z) →
xP ∗y). Now for the left side. Suppose xP ∗y. Consider the F such that Fc ↔
∃b(bPc&xP ∗=b). We will now use the definition of the ancestral –∀F (∀a(xPa →
Fa) &∀d∀a(dPa&Fd → Fa) → Fy)– to prove Fy. First, suppose for conditional
proof that, for an arbitrary a, xPa. x = x, a logical truth, implies x = x ∨ xPx,
which defines the weak ancestral, meaning xP ∗=x. xPa&xP ∗=x. This can be gen-
eralized as ∃b(bPa&xP ∗=b), which implies Fa by definition. Thus, ∀a(xPa → Fa).
Now, suppose for conditional proof that for arbitrary d, a, dPa&Fd. By the def-
inition of F , Fd tells us that ∃b(bPd&xP ∗=b). Instantiating, we have xP ∗=bPd,
which, by the primitive property of the ancestral, tells us that xP ∗d. We therefore
have dPa&xP ∗=d, which can be generalized as ∃b(bPa&xP ∗=b). This, by defini-
tion, is equivalent to Fa. Thus, ∀d∀a(dPa&Fd → Fa). We are now in possession
of the antecedent of the conditional contained within Frege’s definition of the an-
cestral: ∀a(xPa → Fa) &∀d∀a(dPa&Fd → Fa). Therefore, Fy, which is equiva-
lent to ∃z(zPy&xP ∗=z). We have thus shown the second half of the biconditional,
xP ∗y → ∃z(zPy&xP ∗=z). Having proven both sides of the biconditional for arbi-
trary x, y, we have thus proven ∀y∀x(∃z(zPy&xP ∗=z) ↔ xP ∗y).

�

With the lemma proven, we are in possession of everything we need to complete

our proof of Frege’s theorem via a proof of the fourth Peano Axiom. Without further

digression or preparation, here is the proof.

Axiom 4: Every natural number has a successor (∀n(0P ∗=n→ nPN [x : xP ∗=n])

Proof: This will be a proof by induction, where the induction axiom proved
above (Axiom 5) will both guide and justify our logical process. We will be doing
this induction on the concept F = [x : 0P ∗=x → xPN [y : yP ∗=x]]. First, we will
prove the base case: F0. Assume 0P ∗=0. Now suppose, for conditional sub-proof,

15After completing an informal sketch of this proof, I discovered that my lemma is essentially a
more complicated version of the Lemma used by Boolos and Heck in (1998): they used just the
left side of the given biconditional. As it turns out, the simpler lemma used by Boolos and Heck
provides all that is needed to complete the proof. However, as proof of the superfluous side of the
biconditional takes no more than a few, simple steps, there is little advantage in using the simpler
lemma, and we will therefore employ the novel lemma.
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that, for an arbitrary u, uP ∗=0. This is definitionally equivalent to uP ∗0 ∨ u = 0.
However, consider a scenario in which uP ∗0. By our lemma, this is equivalent to
saying ∃z(zP0 &uP ∗=z). Axiom 2, however, tells us ¬∃z(zP0), contradicting the
previous proposition. As uP ∗0 is equivalent to a statement that directly contradicts
one of our axioms, it cannot be the case. Looking back at our disjunction, uP ∗0∨u =
0, if it is impossible for uP ∗0, then we must conclude that u=0. Thus, ∀u(uP ∗=0 →
u = 0). Let Hx ↔ xP ∗=0 &x 6= 0. Suppose, for a quick reductio, that ∃zHz.
By definition, for this z, zP ∗=0 & z 6= 0. Combining the first conjunct with the
universalized conditional proved above, we get z = 0, which directly contradicts
the second conjunct. Having reached a contradiction from our supposition, we can
conclude that ¬∃xHx. By the central theorem of §75, this entails N [x : Hx] = 0.
Let Gx ↔ xP ∗=0, and let b = N [x : xP ∗=0]. Then, G0 &N [x : Gx] = b&N [x :
Gx&x 6= 0] = 0. Generalizing, ∃G∃y(Gy&N [x : Gx] = b&N [x : Gx&x 6= y] =
0). By definition, this means that 0Pb, i.e. 0PN [x : xP ∗=0]. Thus, 0P ∗=0 →
0PN [x : xP ∗=0], and therefore, by definition, F0. Now for the inductive step, we
will show that ∀d∀c(dPc&Fd → Fc). Start by assuming dPc and Fd. Fd tells us
that 0P ∗=d → dPN [x : xP ∗=d]. Suppose, for conditional proof, 0P ∗=c. dPc, and
¬∃z zP0, so c 6= 0. Thus, 0P ∗c. By the lemma, this is equivalent to ∃z(zPc& 0P ∗=z).
Because P is one-one, dPc& zPc implies d = z. By the indiscernability of identicals,
0P ∗=z ⇒ 0P ∗=d. Combining this with the assumption that Fd, we then get dPN [x :
xP ∗=d]. Because P is one-one, we therefore know further that c = N [x : xP ∗=d].
Let Gc ↔ xP ∗=c, Hx ↔ (xP ∗=c&x 6= 0), b = N [x : xP ∗=c], Qx ↔ xP ∗=d. It can
easily be seen that the P relation correlates one-one the objects falling under H with
those falling under Q: under H falls 1, ...d, c, under Q falls 0, ..., d, and P , which has
been shown above (Axiom 3) to be one-one, relates 0P1, ..., dPc. Because there is a
relation which relates the objects falling under H with those falling under Q one-one,
by the definition of equinumerosity, HeqQ. By Hume’s Principle, this entails N [x :
Hx] = N [x : Qx]. Substituting the definitions for H,Q back in, N [x : xP ∗=c&x 6=
0] = N [x : xP ∗=d] = c. Thus, N [x : Gx&x 6= 0] = c and, because 0P ∗=c, G0.
Thus, G0 & c = N [x : Gx&x 6= 0] & b = N [x : Gx], which can be generalized as
∃G∃y(Gy& c = N [x : Gx&x 6= y] & b = N [x : Gx]. This, by definition, entails
cPb. By the indiscernability of identicals, this implies that cPN [x : xP ∗=c]. We
have thus completed the conditional proof, and are justified in asserting 0P ∗=c →
cPN [x : xP ∗=c], which is definitionally equivalent to Fc. Thus, we have completed
the inductive step: ∀d∀c(dPc&Fd → Fc). We therefore are justified in asserting
F0 &∀d∀c(dPc&Fd→ Fc), which, when combined with the induction axiom, gives
us ∀n(0P ∗=n → Fn). Thus, ∀n(0P ∗=n → 0P ∗=n → nPN [x : xP ∗=n], which can be
simplified to the logically equivalent ∀n(0P ∗=n→ nPN [x : xP ∗=n].

�

Frege failed to reach his intended goal of proving arithmetic to be analytic. But a
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system that he essentially built, with a little help from Boolos, has just been shown to

axiomatize arithmetic with just one non-logical axiom. This in itself is a significant

mathematical accomplishment, and one that should earn Frege more respect within

the mathematical community than he currently is given. In the community where he

actually does garner respect, however, Frege’s work is still as relevant as ever. The

debate rages on as to whether Hume’s Principle itself can be taken as analytic, thereby

making Frege’s underlying claim about the analyticity of mathematics possibly true

after all. With his system proving to be fruitful to multiple fields of study over one

hundred years after its inception, it is sad, and indeed a bit perplexing that Frege is

not as renowned as, say, Russell or Godel within general Western society.
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