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In 1935, Einstein, along with Boris Podolsky and Nathan Rosen, introduced the 

EPR paradox which stated that either quantum mechanics is incomplete with some 

sort of hidden variable present but unknown, or it violates the fundamental 

relationship of causality. Despite Einstein’s best efforts, this paradox never 

particularly tore down the foundations of quantum mechanics, but it did remain 

unresolved for many years until John Bell’s 1964 introduction of “Bell’s Inequality.” 

Bell proposed an experiment involving pairs of entangled particles emitted from a 

single source and showed that the correlation between measurements on each 

independent particle (particle spin, polarity, etc.) is different using the quantum 

mechanical interpretation as compared to any “hidden variable theory.” In 2001, 

Dietrich Dehlinger and Morgan Mitchell performed a thorough test feasible on the 

undergraduate scale for this advanced inequality, and for the purposes of our 

research, we used this as a basic model for our experimental set-up. To put the 

debate to rest and witness the rarely seen effects of quantum mechanics first-hand, 

my research here at the University of Puget Sound used the polarity of entangled 

photon pairs produced by spontaneous parametric down conversion to demonstrate 

Bell’s inequality and the legitimacy of quantum mechanics. 

To understand Bell’s Inequality, one must first understand the specific context 

of our experiment. Initially, 402 nm photons just within the visible blue range are 

produced by a diode laser. To ensure uniform polarization and wavelength, the beam 

passes through a polarizer and a blue filter. A pair of lenses collimates the beam into 

one single point and a rotatable quartz plate introduces a phase shift to the incoming 

light. Finally, the photons pass through a pair of birefringent beta barium borate 

crystals to undergo what is known as spontaneous parametric down conversion. In 

this process, the input or “pump” photon is converted into two separate photons, 

the “signal” and “idler” photons. Coming from a single parent photon, certain 

characteristics are interrelated and these photons are considered “entangled.” For 

instance, the energies of the two downconverted photons must add up to that of the 

pump photon and the signal and idler photon polarizations are identical. 

Experimental Set-up 

In this experiment, we only consider the case of signal and idler photons of half 

the energy of the input (804 nm wavelengths) and output polarizations perpendicular 

to that of the pump photons. In accordance with the conservation of momentum, our 

downconverted photons veer off at an angle of ±3° with relation to the original 

beam. At the end of these paths, photons are passed through red filters and focused 

onto two avalanche photo diodes (APD) to detect coincidences in these photons to 

ensure the consideration of only downconverted light. The output of the APDs is then 

passed through a wire delay and sent to a time-to-amplitude converter (TAC). A 

multichannel analyzer interprets the output of the TAC and finally displays a graph 

showing registered photon detections versus the time delay between the two 

detections. Whatever is located at the time of our wire delay is therefore 

downconverted pairs. To measure the correlation between the two entangled 

photons, rotatable linear polarizers are placed in front of the detectors and the 

variance of the coincidence counts based on the individual polarizer angles is 

interpreted mathematically in the following manner. 

Figure  #1: Theoretical diagram of experimental set-up. (LP=Laser Polarizer, 
BF=Blue Filter, CL=Collimating Lenses, QP=Quartz Plate, BBO=BBO Crystal, 
RF=Red Filter, DP=Detector Polarizer, ID=Iris Diaphragm, FL=Focusing Lens, 
APD=Avalanche Photodiode, TAC=Time-to-Amplitude Converter, 
MCA=Multichannel Analyzer) 

Figure  #2: Actual Experimental Set-up 
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Theory 
In the “hidden variable” interpretation, the polarization of a photon is at some 

specific angle φ, and when the photon meets a polarizer set to an angle ω, it 

registers as vertical with respect to that polarizer simply if it is closer to ω rather than 

perpendicular, making the probability of vertical detection as follows. 

So, in our context, the probability of detecting a pair of downconverted 

photons would ignore any previous actions involving polarization or phase shift and 

simply be the product of the two probabilities of vertical detection through the 

individual polarizer angles on each leg, α and β respectively. This eliminates the 

photon polarization term and leaves us with the linear expression as shown here, 

dependent only on the difference between α and β. 

However, from the quantum mechanical viewpoint, the polarization of a 

photon is seen as a combination of vertically and horizontally polarized quantum 

states. Passing through the initial laser polarizer set at an angle  and birefringent 

quartz plate with a phase shift of , the pump photons can be described in the 

quantum state 

As mentioned in the experimental set-up, after passing through the BBO 

crystal, our Type-I down conversion produces signal and idler photons with 

polarizations perpendicular to the pump photon polarization. Due to the 

birefringence of the BBO crystal (different indices of refraction for different 

polarizations), another phase shift is taken into account with the total denoted as Φ, 

producing the following quantum state. 

In the same general fashion of the laser polarizer, the detector polarizers, set at 

angles α and β respectively, pass photons in the quantum states 

Therefore, by projecting the downconverted quantum state onto these 

polarizer quantum states, we can calculate the quantum mechanical probability of 

coincidence detection by multiplying this projection with its complex conjugate. 

This equation simplifies when the total phase shift, Φ, is normalized to zero 

and the laser polarizer angle, , is set to 45 degrees to equalize the horizontal and 

vertical quantum states, producing a final probability of 

Figure  #3: Graph of Detection 
Probability for both interpretations 
varying the angle difference. 

As you can see in Figure #3, both 

interpretations follow the same general 

pattern, partially explaining why there 

has been such difficulty in discerning 

which one is valid, but noticeable 

differences can be seen at certain 

angles, specifically 22.5° and 67.5°. 

What Bell’s Inequality seeks to do is to 

exploit these small but noticeable 

differences in numerical form and 

experimentally show whether nature prefers one theory or the other. This is done 

through a type of correlation measurement of detection on the two detectors by 

adding the probability of detection agreement (HH or VV) and subtracting the 

probability of disagreement (HV or VH). 

Experimentally, this statistic is calculated by taking coincidence counts using 

α and β as well as the angles perpendicular to them for horizontal detection in the 

following manner. 

Finally, using four different polarizer angles, four of these E factors are added 

together to produce                   The inequality 

implies that any hidden variable theory can only produce a value of S less than 2, 

whereas the quantum mechanical theory can produce values up to           using 

angles separated by the optimal 22.5° and 67.5°. 

From this logic, a result bearing a value higher than two would prove the 

quantum mechanical interpretation to be legitimate whereas a value lower than 

two would be inconclusive to either interpretation. 

Data and Results 

Figure  #3: Sample MCA Output Graph 

To optimize the S value for conclusive results, our experiment used polarizer 

angles of  to collect coincidence counts. After extensive experimentation and 

calculation, our final Bell Inequality came out to be 

This result violates Bell’s Inequality by more than thirty standard deviations, 

conclusively establishing the quantum mechanical interpretation as a legitimate 

description of polarity. Rather than having some predetermined polarity that we 

are unable to measure currently, photons have probabilities for certain polarities 

and only decide which polarity exactly when we consciously measure them. This 

probabilistic notion goes against many deterministic philosophies over thousands 

of years and could change the way we view the world. Subject to approval from 

the university, further research on this subject will be carried out in a thesis course 

next semester, for much more is left to be learned in this strange field of research. 
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