
University of Puget Sound
Sound Ideas

Summer Research

2010

Chimeric aneuploids and their role in the evolution
of early generation synthesized Arabidopsis
allopolyploids
Starr C. Matsushita
University of Puget Sound

Follow this and additional works at: http://soundideas.pugetsound.edu/summer_research

This Presentation is brought to you for free and open access by Sound Ideas. It has been accepted for inclusion in Summer Research by an authorized
administrator of Sound Ideas. For more information, please contact soundideas@pugetsound.edu.

Recommended Citation
Matsushita, Starr C., "Chimeric aneuploids and their role in the evolution of early generation synthesized Arabidopsis allopolyploids"
(2010). Summer Research. Paper 21.
http://soundideas.pugetsound.edu/summer_research/21

http://soundideas.pugetsound.edu?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://soundideas.pugetsound.edu/summer_research?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://soundideas.pugetsound.edu/summer_research?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://soundideas.pugetsound.edu/summer_research/21?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:soundideas@pugetsound.edu


0

5

10

15

20

25

30

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
o

u
n

t 

Chromsome number 

At

Aa

0

1

2

3

4

5

6

7

8

9

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
o

u
n

t 

Chromosome number 

At

Aa

0

2

4

6

8

10

12

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
o

u
n

t 

Chromosome number 

At

Aa

0

5

10

15

20

25

30

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
o

u
n

t 

Chromosome number 

At

Aa

0

5

10

15

20

25

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
o

u
n

t 

Chromosome number 

At

Aa

0

5

10

15

20

25

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
o

u
n

t 

Chromosome number 

At

Aa

CONCLUSION 

ACKNOWLEDGMENTS 

OBJECTIVES 
 

MATERIALS and METHODS 
 

Starr C. Matsushita1, Kirsten Wright1, J. Chris Pires2, Andreas Madlung1 

1Email contact: smatsushita@ups.edu, amadlung@ups.edu, Department of Biological Sciences,  
University of Puget Sound, Tacoma, WA 98416  

2Division of Biological Sciences, University of Missouri, Columbia, MO 65211 
 

Chimeric aneuploids and their role in the evolution of 
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Fluorescence in-situ hybridization (FISH):  
A. thaliana centromeric repeats (180bp) were labeled with 
Fluorescein-dUTP (GREEN), A. arenosa centromeric repeats (200bp) 
were labeled with Texas Red-dCTP (RED). The labeled cells of many 
individuals of the six sibling lines were analyzed using fluorescent 
microscopy at F3, F6 and F7 generations (10-50 cells from each plant).  

Morphological assays: 
Pollen viability and morphological parameters were measured for 
each individual. 
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• Compare chromosome composition 
between 6 sibling lines of a newly formed 
population of allohexaploid (derived from a 
cross between 2x A. thaliana X 4x A. suecica, 
which itself is an allotetraploid of 2x A. 
thaliana and 2x A. arenosa) to determine the 
karyotypic divergence in the population.  
• Correlate abnormal phenotypes (flower 
size, leaf morphology, flowering time, etc.) 
with levels of aneuploidy in each plant.   
• Compare fertility levels between siblings 
and parental species. 
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Figure 1. Pedigree of the 
Arabidopsis allohexaploid.   

Parent 1 – A. thaliana Parent 2 – A. suecica 

Figure 2. Chromosome composition of the Arabidopsis allohexaploid parents: A. thaliana 
(10 AT chromosomes) and A. suecica (10 AT chromosomes, 16 AA chromosomes).      
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• F3 gen. siblings, although healthy, were genomically unstable 
(>96% deviation from expected chromosome number).  
• Pollen of the F7 gen. was considerably less viable than either 
parent species. Seed production also decreased.  
• The degree of chromosomal loss does not seem to correlate 
directly with the degree of pollen inviability. 
• Aneuploidy can arise both from loss or gain of either parent 
species’ chromosomes, but A. arenosa chromosomes were 
inherited more faithfully than A. thaliana (Figure 3).  
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Although distinct chromosomal and 
phenotypic differences between siblings 
indicate the possibility of emerging 
speciation, our data suggest that only some 
of the lines may retain a chromosomal 
composition that is consistent with long-
term survival through the polyploidization 
bottleneck and eventual speciation.  

Figure 4. The polyploidization bottleneck. Varying chromosome numbers may 
lead to changes in phenotype between siblings. However, long term survival and 
speciation are limited by the degree of chromosomal variation and 
environmental factors (the bottleneck). 

More than 90% of extant angiosperms show evidence of 
polyploidization (whole genome duplication) events in their 
evolutionary history. Polyploidization leads to stochastic 
disturbances in genomic structure, gene regulation, and 
chromosome maintenance and, thus, introduces diversity into a 
population of neopolyploids and promotes evolutionary change. To 
understand the basic mechanisms of polyploid-induced variation, 
we investigated chromosomal changes in sibling lines of 
synthetically formed Arabidopsis allopolyploids. Centromeric 
fluorescence in-situ hybridization (FISH) probes were then applied 
to chromosome spreads to track cases of aneuploidy (loss/gain of 
chromosomes).   
We hypothesized that variations in the degree of aneuploidy 
between sibling lines of neoallopolyploids could produce enough 
genetic diversity to induce speciation. Our data indicate that 
allopolyploidization has lead to rapid karyotypic changes, 
phenotypic variations, and variable viability between the sibling 
lines.  

ABSTRACT 

INTRODUCTION 
Biodiversity has become an increasingly important field of study, as it is key to 
the maintenance and survival of any population, ecosystem, or biosphere. 
Genetic variability within a population can lead to evolutionary change and is 
vital to the future of all biological systems (Groom et al., 2006). It is one thing 
to know that variation exists, but another to understand its scientific origins; 
therefore, it is in our interest to study the mechanisms that lead to genetic and 
thus potential evolutionary diversity. To that end, our lab uses allopolyploids 
of Arabidopsis to study molecular, genetic, and cytogenetic mechanisms that 
lead to variation within an allopolyploid population to better understand the 
evolutionary forces behind polyploid induced speciation.  

Figure 3. Allohexaploids from the F6 and F7 generations showing varying degrees of chimeric 

aneuploidy/euploidy and abnormal phenotypes. Chromosomes were labeled with species-

specific centromeric FISH probes. Corresponding graphs to the right of each FISH picture 

show the frequency of each chromosome number per cell (        represents the modal At and 

Aa chromosome number). (A) F6 5-1-1-1 aneuploid cell with 17 A. thaliana (At) and 16 A. 

arenosa (Aa) chromosomes. The modal chromosome number of this plant was 17 and 16, At 

and Aa chromosomes, respectively (N=50). (B) F7 6-1-2-3 supernumerary aneuploid cell with 

22 At and 16 Aa chromosomes. Mode: 21 At and 16 Aa chromosomes (N=21). (C) F7 6-1-8-4 

with 23 At and 16 Aa chromosomes. Mode: 20 At and 16 Aa (N=28). (D) F7 12-19-1-1 cell with 

20 At and 16 Aa. Mode: 18 At and 16 Aa (N=33). (E) F7 14-4-4-1 aneuploid cell with 16 At and 

15 Aa, representing the modal chromosome number (N=25). (F) 19-1-10-1 cell with 22 and 16 

At and Aa chromosomes.  Mode: 20 At and 16 Aa chromosomes (N=40). 
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