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Abstract 

One of the most important parts of Data Analysis is Data Visualization [15]. The easy thing about 

Data Visualization is that there are hundreds of ways to do it, one better than the other. Ironically, 

however, it is difficult to choose the right tool for the job. This can be a concern because it is really 

important to know which tool is best depending on the resources we have. This thesis tries to 

answer that question – to an extent. 

In this thesis, I have tried to compare three Data Visualization tools: Gephi, Pajek and NodeXL. I 

have mainly discussed what each tool can do, what each tool is best at, and when to and when not 

to use each tool. 

Therefore, using the right tool can not only save us a lot of time by making the task easy and get 

the work done using a minimal number of resources, but also help to get the best results.  

The comparison is based on what Visualization features each tool has, how each tool computes 

different graph features, and how Compatible and Scalable each tool is.  

In the process, I used different Network datasets and tried to calculate certain features of the graph 

and wrote the findings. The end report discusses which tool can be best to use given the size of 

dataset, the problem we are trying to solve, the resources we have and the time we can spend.  
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Introduction 

Between the dawn of civilization and 2003, we only created five billion gigabytes of data; now 

we're creating that amount every two days. By 2020, that figure is predicted to sit at 53 zettabytes 

(53 trillion gigabytes) - an increase of 50 times [1]. This is a staggering amount of data, which is 

a wonderful thing. However, data is only as good as the information we can extract from it, that’s 

where data science comes into play. Data science is a way of making sense of data sets, finding 

patterns and making the best out of them – by solving real problems and asking more questions 

[13, 14, 15].  For instance; weather data from the past 100 years can be used to make weather 

predictions in the future, social media data can help present ads to targeted customers based on 

their likes, following patters and other activities on that particular platform. Protein to protein 

interaction analysis can help us study which proteins are most important (for a certain problem set) 

and help us bring closer to knowing more about diseases- such as cancer- and maybe even help 

cure them. Data science can be used anywhere to study things in depth, find new patterns, solve 

new problems and make the world a better place to live in [14, 17, 18]. 

Data Science is a broad field, but to summarize, it basically involves six steps 

1. Raw data collection: Raw Data Collection, as the name itself suggests, is collecting data in 

raw form. This data needs some extraction, organization and sometimes even analysis 

before it can be made of some use. For example: as a researcher, if we need data tuples 



 

 

 
2 

(age, gender, disease history and smoking habit) of people aged 50-60, who visit a hospital 

on a monthly basis. While collecting data, it is very rare we get exactly the data we need. 

For example, the hospital might only keep records of their name, address and social 

security number. The data gathered from the hospital may not be the specific data 

researchers were looking for, this is the raw data. Raw data will go on to be “cleaned” and 

only the useful and relevant data kept. 

  

2. Data cleaning and munging: Once the data is collected, it is then cleaned and only the 

useful data is kept.  For example: if we have more data than relevant, we filter it out. 

Furthermore, if it’s not in the right file format, we extract the data and convert it. For 

example, mined data from the internet usually comes in the Json form, but if we need data 

in spreadsheet form, we clean and munge it into the Excel.  

3. Data visualization and Analysis: Once the selected data is saved in a desired file format, it 

is analyzed and visualized; usually both done in parallel.  

4. Building models and algorithms based on problems we need to solve: Once the data is 

analyzed, models are build based on the questions we have.  

5. Extracting the solution: The built models can then be used to extract questions to our 

specific answers.  

Since Data Science itself is a very big field, because of the time limitations of the thesis, I have 

decided to focus my work on just Data Visualization part.  



 

 

 
3 

Importance of Visualization 

Data Visualization is a very important aspect of Data Science. If the data is of very complex type, 

visualizing it can help understand it with a glance. One does not need to go through each data 

entity (which, in our case could be millions), but just a quick glance and some study can be enough 

to make sense out of the particular data. For example: Corporations might look at a graph to verify 

that marketing and sales are communicating, urban planners to monitor the interconnectedness, or 

isolation of neighborhoods, biologists to discover interactions between genes, and network 

analysts to monitor security [2].  

Data Visualization is not just about the looks, even though the visualizations can be stunning to 

look at, readability is always the prime concern. A quick look at a picture can give a lot more 

information than manually going through the data and analyzing it.  

For example, the following network shows the friendship network of a German boys’ school class 

from 1880/1881 [13]. The node size signifies the number of connections; the bigger the node, the 

higher the connections each student has. 
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Figure 1: German School Boys’ Friendship Network 

A quick glance is enough to know what these data is trying to convey and that’s the power of 
Visualization. This is really important when we are deadline enormous amounts of data. 

 Data is ubiquitous. Hence, it is a natural thing that it comes in all shapes, sizes and types. With 

computing storage getting cheaper than ever [9], it’s no surprise that we can (and we should) save 

all data. Every second, we are creating new data. For example: we perform 40,000 search queries 

every second (on Google alone), which makes 3.5 searched per day and trillion searches per year 

[3].  

Also, since there is so much data being produced, it’s not possible to work on all kinds of data. 

And because of the time limits of thesis, I have decided to focus on Large-Scale Network Data. 
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Network Data and Terminologies 

A network is a representation of entities (nodes represented by V) and that are linked via lines 

(edges, represented by E) or arrows (arcs) in cases of directed graphs [16]. The nodes and edges 

may represent a weight and/or a label. The entities can be anything (people, protein, companies, 

animals etc.) and the relationships might include anything. Edges are directed when the relation 

between two nodes u and v is not same as the relation between v and u. Edges are undirected when 

the relation between u and v is same as v and u.  

Network (Graph) Terminologies 

Node	Degree	– The degree of a node is simply how many edges are connected to it. Degree 

distribution is the probability of these degrees over the whole network as a whole 

Out Degree – The total number of edges leaving a vertex is known as Out Degree.  

In Degree – The number of edges entering a vertex is known as In Degree.  

Size	– The total number of edges in a graph is defined as its size.  

Weight	– A weighted graph associates a label (weight) with every edge in the graph. Weights are 

usually real numbers. The weight of an edge is often referred to as the "cost" of the edge. In 
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applications, the weight may be a measure of the length of a route, the capacity of a line, the energy 

required to move between locations along a route etc.  

Network	Features	

• Average Degree -  The average number of links per node is called Average Degree 

• Average Weighted Degree – The average of sum of weights of the edges of nodes is 

called the average weighted degree. 

• Distance - The distance between two nodes is defined as the number of edges along the 

shortest path connecting them. 

• Average Distance – The average of distance between all pairs of nodes is called the 

average distance.  

• Network Diameter - The network diameter is the longest shortest path in a graph. 

• Modularity – Modularity is a way to measure the strength of division of a network into 

modules (also referred as groups, clusters or communities). Networks with high modularity 

have dense connections between the nodes within modules but sparse connections between 

nodes in different modules. 

• Connected Components - a connected component (or just component) of an undirected 

graph is a subgraph in which any two vertices are connected to each other by paths, and 

which is connected to no additional vertices in the supergraph. 
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Node	Features	

• Clustering Coefficient - A clustering coefficient is a measure of the degree to which nodes 

in a graph tend to cluster together. 

• Centrality - centrality refers to indicators which identify the most important vertices 

within a graph. Applications include identifying the most influential person(s) in a social 

network, key infrastructure nodes in the Internet or urban networks, and super spreaders of 

disease. 

o Closeness Centrality - In connected graphs there is a natural distance metric 

between all pairs of nodes, defined by the length of their shortest paths. The far ness 

of a node is defined as the sum of its distances to all other nodes, and its closeness 

is defined as the reciprocal of the farness. Thus, the more central a node is the lower 

its total distance to all other nodes. 

o Betweenness Centrality - Betweenness is a centrality measure of a vertex within a 

graph (there is also edge Betweenness, which is not discussed here). Betweenness 

centrality quantifies the number of times a node acts as a bridge along the shortest 

path between two other nodes. 

o Eigenvector Centrality - Eigenvector centrality is a measure of the influence of a 

node in a network. It assigns relative scores to all nodes in the network based on 

the concept that connections to high-scoring nodes contribute more to the score of 

the node in question than equal connections to low-scoring nodes. 
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Edge	Features	

Average Path Length - Average path length is defined as the average number of steps 

along the shortest paths for all possible pairs of network nodes. It is a measure of the 

efficiency of information or mass transport on a network.  
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Data Visualization Tools 

Network data is intuitive and many people know about it. However, what people do not know is 

how important it can be in so many areas. Examples include:  

Network data is something that the most people know about, but they do not know about the 

analysis, which is important in many areas. Examples of networks include: Biologists who study 

the formation of protein interactions of a network, Criminologists and law enforcement agencies 

analyze crime networks, Epidemiologists study the relationships between individuals, Zoologists 

study the animal behaviors in the network and researchers of telecommunications analyze contact 

networks. Social network analysis is an attempt to answer some questions such as: Which entities 

or people are leaders and which of them are followers? What are the influential elements? Are 

there any groups and how they are formed? Which elements are important in a group? Which 

elements are the outliers? Which relationships are important? When these networks are small, the 

manual analysis will be easy but impossible with large networks, so when the network is large and 

complex, the social network analysis software can be used [13, 14, 15, 16, 17, 18]. 

To analyze and mine the desired information from these gigantic Network datasets, graph based 

mining tools are available on the internet. Each one of the tools has its own benefits and core 

features.  Choosing the right tools for a particular task can not only save time, but can give best 

results. So, it is really important to know what tools to use depending on the type and size of the 

dataset, the problem we are trying to solve, the computational resources we have and the time we 
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can spend.   

Since there are so many Data Visualization tools in the market and the time to write this thesis was 

limited, it was really important for me to choose a handful of tools. For this thesis, I have decided 

to choose three Network Analysis Tools, namely:  

1. Pajek 

2. Gephi 

3. NodeXL 

Gephi 

Gephi is an open-source software for network visualization and analysis. It helps data analysts to 

intuitively reveal patterns and trends, highlight outliers and tells stories with their data. It uses a 

3D render engine to display large graphs in real-time and to speed up the exploration. Gephi 

combines built-in functionalities and flexible architecture to explore and analyze the dataset, 

spatialize and filter necessary information, manipulate the colors, shapes, structures to reveal the 

hidden properties [4].  
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Figure 2: Gephi in action 

Gephi has a very intuitive layout. The visualization occurs in the middle and the filters and analysis 

can be done on the left and right panels. It’s easier to see what’s happening when calculation and 

filtering go in parallel.  

NodeXL 

NodeXL is the MS Paint of Networks. A free, open-source template for Microsoft® Excel® that 

makes it easy to explore network graphs, NodeXL, can enter a network edge list in a worksheet, 

where you can easily get accustomed with the environment of Excel [6]. Mostly used for Graph 

Metric Calculations, Vertex Grouping and Dynamic Filtering, NodeXL has Flexible Import and 
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Export function, Direct Connection to Social Network, Flexible Layout and Task Automation 

features, which makes it a very robust and powerful Data Visualization Tool [6]. 

 

Figure 3: NodeXL in action 

Pajek 

Pajek is a very popular software for drawing networks and has been a great choice for many to 

compute block-model, identifying structural holes and compute centrality measures [5]. 
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Figure 4: Initial Pajek Welcome Window 

 

Figure 5: Pajek in Action 

One of the things that can be noticed is Pajek is setup differently than most of the network tools. 

At first, it can be a little confusing to work with, given its welcome screen layout, which is not 

intuitive when you look at. Unlike Gephi and NodeXL, Pajek’s layout looks very dull and 

unimaginative, given that it’s a visualization tool. Nevertheless, Pajek is one of the most powerful 

Network Analysis tools out there[12]. 
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Basis of Comparison:  

Since there are so many things each tool can do, it was really important to choose particular 

characteristics that I needed to base my comparison on. In this thesis, I have used following 

matrices to compare the tools. Since this thesis mainly focuses on the Visualization, that was the 

most important feature to delve into. Following are the bases of comparison I used for this this 

thesis.  

1. Visualization 

a. Graph Layouts 

b. Groups and Cluster Visualization 

c. Overall Visualization Strength and flexibility 

2. Graph Features Calculation 

3. Scalability 

4. Compatibility 
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Visualization 

 

In the Visualization comparison, it has been divided into following three bases:  

1. Graph Layouts 

2. Groups and Cluster Visualization 

3. Overall Visualization quality 

One of the most important aspects of Visualization is Graph Layout. Graph Layout is setting up 

the shape of the graph. Each Layout option has a defined way of handling edges and vertices in a 

graph. Layouts can help in readability, usability, symmetricity and other aesthetics. Using the right 

layout can save time and memory, and can help find the right solutions in minimal time. Therefore, 

it’s much important to know about Layouts in a tool before doing anything else.  

In the Visualization analysis of the tools below, I have first shown the data in different Layouts 

and then tried to show how each tool visualizes data in different approaches.  

After discussing Layouts, I have focused on how groups and clusters are visualized in each tool 

and finally written an analysis on the overall visualization properties.  

a. Gephi 

Gephi is very strong in terms of Graph Layout and overall visualization. There are not only 

inbuilt tools, but also external plugins that can be downloaded for free just for the Layout 
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part. For this paper, we are going to discuss few Layouts that are most popular and useful 

when it comes to Data analysis and Visualization. For the Visualization part, I started with 

a dataset that was in the rawest form in terms of shape. Eventually, I visualized data 

emphasizing other graph features.  

Dataset1 

Dataset Name Les Misérables 

Vertices 77 

Edges 254 

Edge Weight Positive Weights 

Direction Type Undirected 

Loops 0 

Information: This undirected network dataset contains co-occurrences in Victor Hugo’s novel 'Les 

Misérables'. Each vertex represents a character and an edge signifies that these two particular 

characters occurred on the same page of the book. The weight link indicates how often such co-

appearance occurred.  

Table 1: Dataset 1 (Les Misérables) 
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1. Layouts in Gephi 

Initial Layout immediately after loading the file. 

 

Figure 6: Raw Layout Les Misérables 

 

The visualization was done solely by Gephi itself (without any filters), and we can see that all 

nodes are of same size. The edges, however have different thickness. We will see changes to all 
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that once we start applying filters and effects. One of the most popular layouts, Fruchterman 

Reingold Layout tries to minimize the energy within the system. The nodes connected strongly get 

closer and the nodes that do not have connection are send farther away. It is slower than other 

Layouts, however it is a good way to just get an overview of how nodes are behaving in a certain 

Network data. 
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Figure 7: Fruchterman Reingold Les Misérables 

Apart from this, Gephi has numerous other Layouts such as Force Atlas, Noverlap, OpenOrd, 

Random Layout, Yifan Hu, Yifan Hu proportional etc. These Layouts can help you get started 

with data Visualization with a single click, without much hassle.  

2. Groups and Clusters Visualization in Gephi 

As we can see the figure below, the more degree centrality the node has, the bigger it is. 

The node on the farthest right has the most degree centrality and is the most important 

node in the Network. It can be also seen that the nodes with same color have almost the 

same degree centrality. This is a way good way to figure out which nodes are the most 
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important and which ones are least, depending on what we are trying to look for. 

 

Figure 8: Les Misérables Groups and Clusters 

 

3. Overall Visualization properties of Gephi: 

The overall visualization characteristic of Gephi are quite amazing. We have numerous 

inbuilt plugins and other several plug ins that can be downloaded externally. If the goal is 

to visualize data, then choosing Gephi is definitely the way to go.  
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b. NodeXL 

NodeXL seems almost as strong as Gephi in terms of Layouts, because it also has almost the same 

options as Gephi. However, there is another advantage of using NodeXL – you can extract data 

based on a keyword (or hashtag) from Facebook, Twitter and other social networking sites. This 

saves a lot of time, because data collection and filtering becomes no longer a problem 

Although mining data on NodeXL from these social networking websites is easy, you can only 

extract 2000 vertices, which can be a significant disadvantage, since we are dealing with big data 

here, 2000 vertices definitely seem negligent. Another thing that sets behind NodeXL from Gephi 

and Pajek is that since it is an extension to the Windows Excel tool, it does have a few limitations 

of how much data it can handle, because Excel itself isn’t the best tool when it comes to handling 

big data. Therefore, there are limitations to NodeXL when it comes to size.  

To show Visualization characteristics and capabilities of NodeXL, I have used the inbuilt tool 

“Import from Twitter Search Network”.   

Dataset 2 Name 
Twitter query “mardigras” 

Vertices 
1019 

Edges 2141 
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Edge Weight 
Positive Weights 

Direction Type 
Undirected 

Loops 
394 

Information: Vertices are unique Twitter users who either tweeted “mardigras”, or were replied 
to in of those tweets, or were mentioned in of those tweets.  
 
If a tweet was a reply to someone else, NodeXL creates an edge from tweeter to the replied-to 
user and gives it a “Relationship” value of “Replies-to”. There can be only one such Replies-to 
for each tweet.  

If a tweet mentioned someone else, NodeXL creates an edge from the tweeter to the mentioned 
user and gives it a “Relationship” value of “Mentions”. There can be multiple Mentions edges 
for each tweet. (Note that a “Replies-to” is NOT also a “Mentions.”) 

If a tweet neither replied to nor mentioned anyone else, NodeXL creates a self-loop edge from 
the tweeter to herself and gives it a “Relationship” value of “Tweet.” 

Table 2: Dataset 2 (People who tweeted “mardi gras”) 

1. Layouts in NodeXL 

For the following visualization, I used Fruchterman-Reingold Layout. This layout tries to 

minimize the energy in the system (basically making edges non-overlap). Apart from this, 

we can also use other Layouts such as Harel-Koren Fast Multiscale (brings most highly 

connected nodes together and send least highly connected nodes further), Circle, Spiral, 

Horizontal Sine Wave, Vertical Sine Wave, Grid, Polar, Polar Absolute, Sugiyama, and 

Random. 
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Figure 9: NodeXL Fruchterman Reingold 

 

 

2. Visualizing Groups and Clusters in NodeXL 

Visualization based on grouping and clustering in NodeXL are quite robust. We can group by 

Vertex Attribute (Node degree, Betweenness Centrality etc.), Connected Component (connected 

set of vertices), Cluster and Motifs. Following are few examples from the same dataset.  
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Grouped on the basis of degree, the following graph highlights the vertices with in degree between 

50-100. (For this network, maximum in degree = 224, and lowest = 0) 

 

Figure 10 NodeXL Clusters and Groups 

 

In the following visualization, the vertices are first grouped by Connected Component and each 

group is presented in a box. With this visualization, it is much easier to see data as groups and 

definitely even easier to analyze it.  
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Figure 11: NodeXL groups in a box 

 

The clusters in the picture are based on nodes with similar range of in degree. The particular one 

selected in red had the range in degree of 50- 100.  

3. Other features and Overall Visualization 
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In compared to Pajek, the overall aesthetics of the visualization is great with NodeXL. However, 

it does lack that extra sharpness and stunning images that Gephi can produce. NodeXL is paint, 

while Gephi is Photoshop for network visualization [8, 10].  

 

c. Pajek 

Pajek is a little weaker in terms of Layout flexibility. We don’t have a lot of options and that overall 

aesthetic quality doesn’t look as appealing as Gephi and Pajek. That being said, it definitely isn’t 

your go to tool when it comes to making good looking visualizations. However, Pajek is very 

robust and comes as a winner when it has to handle big amount of data. If the computer has enough 

amount of RAM and processing power, Pajek can handle more than a million edges and can be 

used to handle most of the big data. Following are the features that Pajek can do when it comes to 

Visualization.  

1. Layouts in NodeXL  

The layout features that Pajek has are Circular (Original, using Permutation and Random), Kamada 

Kawai and Fruchterman Reingold. The latter two try to minimize the energy in the system. As it 

can be seen that Pajek is not particularly as rich as NodeXL and Gephi in terms of Layouts.   

Following visualization is based on Fruchterman Reingold Layout.  
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Figure 12: Fruchterman Reingold Pajek 
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Although Fruchterman Reingold minimizes the energy in the system and tried to un overlap the 

nodes, this looks rather crowded for this particular layout. The image isn’t that sharp and default 

color selective doesn’t look creative.  

2. Visualizing Groups and Clusters in Pajek 

Pajek computes absolute values for degree centrality only; for other centrality measures, it 

performs relative centrality. In the following visualization, I used Fruchterman Reingold 

Layout. and set the size of the nodes according to their Betweenness Centrality.  
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Figure 13: Clusters and groups in Pajek 

The nodes that are the biggest have the most Betweenness Centrality and the ones that are smallest 

have the least.  

3. Other features and overall Visualization 

Since Pajek itself it a little unintuitive to work with; its visual properties are hard to set. The 

overall visualization of a graph can be made better, but it could be a lot of work, since all the 

things that need to be done need to be done through drop down properties. Unlike Gephi and 

NodeXL, where there are sliders and filtering data is much easy.  
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Graph Analysis Features 

Apart from Visualization, the other most important characteristics of a tool is Data Analysis. I used 

tools to calculate all the major Network Properties and wrote my experience using them. 

Dataset3 

Dataset Name Yeast 

Vertices 2361 

Edges 7182 

Direction Type Undirected 

Loops 536 

Information: Protein-Protein Interaction network in budding yeast. Nodes are proteins and 

Edges shows the interaction relationship 

Table 3: Dataset 3 Yeast PPI interaction 
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Gephi: All the network characteristics are one click away in Gephi.  Not to forget the fact that 

every time Gephi analyses a data, it produces a very informative graph with it. Following were the 

statistics calculated with Gephi in the above Data.  

Average Degree  6.084 

Avg. Weighted Degree 6.084 

Network Diameter 11 

Graph Density 0.003 

Modularity 0.59 

Connected Components 101 

Average Clustering Coefficient 0.271 

Table 4: Yeast Graph features calculated- by Gephi 

In addition to calculating the features, Gephi also automatically produces graphs of the 
calculations, as shown below: 
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NodeXL: Like Gephi, NodeXL can compute all the major Graph features with one click.  

Following were the results, when the same dataset 2 was used for analysis.  

Average Degree  1.052 

Avg. Weighted Degree 1.052 

Network Diameter 6 

Graph Density 0.000758 

Modularity 0.4516 

Connected Components 306 

Average Clustering Coefficient 0.036 

Table 5: Twitter data graph feature calculated by NodeXl 

NodeXL creates graphs and analysis reports as well, as shown below: 
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As we can see that NodeXL not only calculates, but also creates graphs for us. Hence Data Analysis 

with is much simpler and easier with NodeXL, because everything gets calculated in a single click. 

 

Pajek: With Pajek, it’s a little harder to perform Data Analysis, but most of the things can be 

calculated with it. As opposed to Gephi and NodeXL, where all the calculations are one click away, 

with Pajek you need to calculate each metric individually. This can be rather frustrating if you 

have a lot of metrics to calculate. However, Pajek can easily handle more than a million vertices 

(given that you have enough computing resources). Therefore, Pajek should be the choice when it 

comes to analyzing and visualizing big data.  

 

As we can see below, if we need to get all the data metrics, we need to get all the calculations 

separately. This can be very time consuming. In the following figures, I have shown how data is 

represented in Pajek (Betweenness Centralization, Clustering Coefficients and Diameter) 
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Figure 14: Betweenness Centrality calculated by Pajek 

 

 

Figure 15 Clustering Coefficient Calculated by Pajek 

 

Figure 16: Diameter calculated by NodeXL 
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Compatibility   

When we are talking about software, compatibility is a significant factor to consider. If it works in 

one system and doesn’t work in another, there could be problems. In the following comparison, I 

have shown compatibility of the tools based on Operating Systems and File Format ( Input and 

Output). 

Based on Operating Systems 

Operating System 
Gephi Pajek NodeXL 

Windows 
Ö Ö  Ö 

Mac 
Ö Ö (Using Wine stable) X 

Linux 
Ö Ö(Using Wine stable) X 

Table 6: Compatibility based on Operating System 

As we can see, Gephi is the only one that is compatible with all the Operating System. This is a 

big plus factor for Gephi. Pajek is built for Windows Operating System; however, using a software 

called Wine stable, it can be run on Mac OS and Linux. On the other hand, NodeXL is only 

compatible on Windows Operating System. This can be a significant problem for someone who 

doesn’t have access to Windows Operating System. The only way Mac/Linux users can use 
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NodeXL is by installing a copy of Windows Operating System in a Virtual Box, which can be a 

hassle in terms of memory use, and extra time and money spent in just setting up the environment 

alone.  

Data Types Supported 

Input data types 

Gephi 
Pajek NodeXL 

GraphViz(.dot), 

Graphlet(.gml), 

GUESS(.gdf), LEDA(.gml), 

NetworkX(.graphml, .net), 

NodeXL(.graphml, .net), 

Pajek(.net, .gml), 

Sonivis(.graphml), Tulip(.tlp, 

.dot), UCINET(.dl), 

yEd(.gml), Gephi (.gexf), 

Edge list(.csv), databases  

 Convert text file into excel, 

 The format pajek ، 

UCINet(dl) GED,  

Ore-graph, 

p- graph, 

 

 

GraphML, Pajek, 

UCINet, and matrix 

formats.  

 

Table 7: Input Data types supported by Tools 



 

 

 
41 

Output Data Types 

Gephi 
Pajek NodeXL 

CSV, SVG, GDF 

GEXF, GraphML  

Pajek NET, Spreadsheet 

 

.SVG, 

 .SVG.GZ  

 .HTML files 

 

GraphML, Pajek, 

UCINet, and matrix 

formats 

 

Table 8: Output Data types supported by Tools 

Gephi is most flexible when it comes to data types and that’s what makes it very flexible to use. 

Generally, what happens is even though you have a dataset, it’s not in the right format, and if it 

contains thousands of vertices, manually converting to the right format can take days. With Pajek 

and NodeXL, that’s usually what happens unfortunately. It’s rare that you will find a dataset that’s 

in the native form. But since Gephi is compatible with so many datasets, it’s much easier to get 

started with Gephi. Thus, Gephi is a true winner when it comes to Compatibility.  
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Scalability: 

With data science, the main concern is always the data size. It’s a very crucial aspect of a tool to 

be able to handle data with thousands of vertices and edges. Following are the details about how 

much each tool can handle.  

Gephi: The maximum number of nodes and edges that Gephi can handle is 100k and 1000k 

respectively [7]. Although Gephi can create stunning images with its Visualization tools, it isn’t 

the tool one should look for when the data is really big. If the data has more than a million vertices, 

using Gephi is out of the equation.  

NodeXL The maximum number of edges NodeXL can handle is 200k. [8]. Therefore, NodeXL 

isn’t an ideal tool when it comes to analysis and visualization of very large datasets. There is a 

feature where one can slice up the data into parts and analyze it, but it can be time consuming and 

there is a limit to that as well.  

Pajek  If there is enough RAM (~ 152 GB), Pajek can handle more than 10 billion vertices [12]. 

This is where Pajek wins over NodeXL and Gephi. Not a great tool for visualization, but Pajek 

definitely can handle really enormous datasets. And this is the main reason why Pajek still thrives 

in the market of Data Analysis.  

When it comes to scalability, Pajek is the true winner. 
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Conclusion (End Report) 

To conclude, we can say that when visualization is more important than Analysis, and the data 

size is small – Gephi is the way to go. With its so many options for Layouts to start with, and 

then the way it produces sharp and stunning visualization with the minimal amount of work, 

Gephi is the true winner.  

If our analysis and visualization is based on Social Networks and the data size is small. NodeXL 

lets us readily important data from Twitter, Facebook and other networking websites. This saves 

us a lot of time in data collection and filtering, and help us get started with Visualization and 

Analysis without other hassles. NodeXL is a winner when it comes to collecting data from the 

Social Networking sites.  

If the data size is gigantic and the main focus is more on Analyzing than Aisualizing, then Pajek 

is the way to go. If we have enough RAM, Pajek can handle more than 10 billion sets of nodes, 

which neither NodeXL or Gephi can do. Therefore, when it comes to Big Data Analysis, Pajek is 

the true winner.  One disadvantage could be getting data in the right form. If the data is not in the 

right form and too big, it might take a lot of time just to get it into right file format, which is often 

why Pajek gets criticized.  
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