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ABSTRACT 

 Due to its ease of use, low cost, and essentially limitless number of unique codes, PIT 

tagging has become the favored technique for tagging individuals in biological studies. However, 

studies employing PIT tagging generally assume that stress due to the implantation and presence 

of a PIT tag has no influence on the experimental results. This study investigated the effects of 

PIT tagging on levels of the stress hormone cortisol in the Gulf Killifish, Fundulus grandis, an 

estuarine fish of the Gulf of Mexico that is prone to daily or seasonal environmental stressors.  

Cortisol was measured non-invasively by extracting and assaying cortisol excreted by individual 

fish into their aquarium water. This technique was optimized by acidifying water cortisol 

samples and processing them by Oasis HLB 1cc solid phase extraction columns. Measurements 

of cortisol were taken from water samples prior to, immediately after, and over four weeks after 

PIT tagging. Overall, there was no significant effect of PIT tagging on cortisol release by fish. 

There was, however, a significant increase in cortisol release by control non-tagged, as well as 

PIT tagged fish, immediately after handling, suggesting a stress effect of capture, brief emersion 

from water, or anesthesia. Cortisol release returned to control levels within one week of the 

procedure, suggesting that fish be allowed to recover one week after handling prior to other 

experimental manipulations. Future work will measure cortisol release by uniquely PIT tagged 

fish exposed to natural and anthropogenic stressors. 
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INTRODUCTION 

 Passive integrated transponder (PIT) tagging is a method of identifying and monitoring 

individuals in biological studies. It entails implanting an individual of interest with an electronic 

microchip containing an alphanumeric code that is ascertainable by a PIT tag scanner (Gibbons 

and Andrews, 2004). Although other tagging methods are available, such as the use of leg bands, 

dart tags, or painted marks, the majority are external in nature and thus susceptible to factors that 

may affect the legibility of their designated codes (Smith and Nebel, 2013). On the contrary, as 

an internal method of marking, PIT tagging prevents codes from being lost or becoming 

indecipherable, making it suitable for application in both short-term (Hooley-Underwood et al., 

2017) and long-term (Hua et al., 2015) studies. Additionally, PIT tagging has been shown to 

yield high retention rates and survivorship (Brewer et al., 2016; Gries and Letcher, 2002; Simard 

et al., 2017), favoring their application in studies at both the individual (Baras et al., 2000) and 

population (Sloat et al., 2012) scale.  

 PIT tagging has been used in studies ranging across all classes of vertebrates, including 

amphibians (Antwis et al., 2015), birds (Carver et al., 1999), mammals (Walter et al., 2012), 

reptiles (Buhlmann and Tuberville, 1998), and––of interest to the present study––fish 

(Musselman, et al., 2017). Among its many areas of application, PIT tagging has often been 

employed in studies relating to fish physiology and behavior, such as measuring metabolism 

(Norin and Malte, 2011) and swimming performance (Ficke et al., 2012), respectively. However, 

such studies assume that the implantation and presence of a PIT tag does not influence 

measurements of the variable at question. For example, in studies concerning metabolism, it is 

assumed that PIT tagging does not compromise the oxygen consumption rate (MO2), or, 

regarding swimming performance, the critical swimming velocity (Ucrit). Since the act of tagging 
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may be considered a physical stressor––a stimulus affecting hormone production, leading to 

changes in animal performance––the degree to which fish become stressed by tagging must be 

accounted for in studies using PIT tags (Clark, 2016). This is more critical for studies on smaller 

fish, for which higher rates of mortality due to PIT tagging have been reported (Dare, 2003). 

 When exposed to a chemical, physical, or perceived stressor, fish respond by producing 

and releasing catecholamines and corticosteroids, due to activity of the hypothalamic-pituitary-

interrenal (HPI) axis (Figure 1). The hypothalamus of the brain triggers the production of 

corticotropin-releasing hormone (CRH), followed by that of adrenocorticotropin hormone 

(ACTH) by the anterior lobe of the pituitary gland. The ACTH then enters the bloodstream, 

stimulating the production of corticosteroids by interrenal cells in the kidney (Barton, 2002). 

Once in circulation, the corticosteroid is distributed to target cells that promote adaptive 

mechanisms to stress, such as the regulation of osmolality, metabolism, and immune responses 

(Kijewska et al., 2016). One of many corticosteroids produced through the HPI axis, cortisol is 

considered a principal biomarker of stress in fish (Mommsen et al., 1999) (Figure 2). Though 

catecholamines (e.g., noradrenaline and adrenaline) may also be indices of stress, cortisol is the 

most commonly assessed owing to its slow and sustained release by fish, allowing for 

measurements that are easily and clearly detectable pre-stress and post-stress (Gesto et al., 2015).  

 Cortisol measurements are frequently obtained by sampling blood plasma (Benfey and 

Biron, 2000; Clements et al., 2002; Sadler et al., 2000). However, the invasive nature of blood 

sampling may elicit confounding stress in fish, in addition to that resulting from necessary 

netting and air exposure (Aerts et al., 2015). For smaller fish, blood sampling is likely to be 

terminal, allowing for only one measurement of cortisol per individual. Alternatively, Scott et al. 

(2001) developed a non-invasive method of measuring cortisol by sampling water rather than 
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blood plasma. This method is based on the principle that fish excrete free steroids into water via 

the gills and conjugated (i.e., glucuronidated and sulfated) steroids via feces and urine (Felix et 

al., 2013). In the interest of studying the immediate and extended impact of PIT tagging on 

cortisol levels in fish, a notable advantage of utilizing this method is that fish remain relatively 

undisturbed during sampling, allowing for water samples to be collected from the same 

individual for a desired period of time (Lower et al., 2005). 

 Therefore, the present study aims to investigate the effects of PIT tagging on cortisol 

release by the Gulf Killifish, Fundulus grandis. Native to estuarine habitats prone to variation in 

salinity, oxygen, temperature, among other abiotic variables, the teleost fish F. grandis was used 

for this study due to its tolerance of environmental stressors, as well as its abundance throughout 

the Gulf of Mexico coast (Burnett et al., 2007). Cortisol was obtained, extracted, and assayed 

from water samples of both PIT tagged and non-tagged F. grandis one day before, immediately 

after, and over four weeks following PIT tagging. These measurements were used to assess the 

effects of PIT tagging on the stress response by these fish. 

 

MATERIALS AND METHODS 

HUSBANDRY 

 Male F. grandis (n = 12) were purchased from Joe’s Landing Marina in Barataria, LA, 

transported to the University of New Orleans, and randomly distributed in 40 l aquaria 

containing aerated, dechlorinated, and filtered tap water. Synthetic sea salt (Instant Ocean Sea 

Salt, Instant Ocean, U.S.) was added to produce 1/3 strength sea water (1/3 SW). Water oxygen, 

salinity, and temperature were monitored daily using an oxygen-salinity-temperature probe (YSI 

Pro2023, Yellow Springs Instruments Co., Inc., U.S.), where dissolved oxygen was maintained 
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at c. 7 mg l-1, salinity at c. 12 ppt, and temperature at c. 25°C. Fish were maintained at a 

photoperiod of 14L:10D and treated with parasite medication (General Cure Powder, API, U.S.) 

as instructed by the manufacturer. Fish were fed dried flake food (TetraMin Tropical Flakes, 

Tetra, U.S.) amounting to c. 1% of their body mass daily and fasted 24 hrs prior to water 

sampling. All maintenance and experimental protocols complied with national animal welfare 

regulations and were approved by the University of New Orleans Institutional Animal Care and 

Use Committee (Protocol 17-004). 

 After a two-month acclimation period, fish were transferred from the 40 l aquaria to their 

own 2.5 l chambers. Each chamber was connected to an 80 l sump of 1/3 SW, forming a 

recirculation system (Figure 3). Water was aerated, filtered, and temperature-regulated such that 

dissolved oxygen was maintained at 6.96 mg l- (range = 6.52-7.44 mg l-), salinity at 11.3 ppt 

(range = 9.7-12.4 ppt), and temperature at 24°C (range = 21.6-26.3). 

 

TAGGING PROCEDURE 

 Fish (10.0 ± 4.7 g; range = 6.7-20.5 g) were maintained in individual chambers for two-

weeks prior to PIT tagging. All fish were anesthetized by immersion in tricaine 

methanesulphonate (MS-222) (0.1 g l-1) until loss of equilibrium (LOE) was reached. LOE, 

characterized by the inability of fish to right themselves, was reached within 8 to 9 min. Fish 

were randomized between those that would be PIT tagged and those that would not. Those PIT 

tagged were injected with an 8.4 mm, 134.2 kHz tag (Biomark MiniHPT8, Biomark, Inc., U.S.) 

along the ventral side of the intraperitoneal cavity, with the aid of a needle (Biomark N165, 

Biomark, Inc., U.S.) and implanter (Biomark MK165, Biomark, Inc., U.S.) (Figure 4). Fish that 

were not PIT tagged were held out of water on moistened paper towels for an equal length of 
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time (1-2 min). After either procedure, fish were transferred to recovery containers for 2 to 3 min 

and subsequently returned to their respective chambers. 

 

WATER SAMPLING 

 Water samples (50 ml) were taken from the 2.5 l chambers via a 60 ml syringe and 

collected in 50 ml plastic tubes. Sampling occurred at six time points before or after PIT tagging: 

24 hrs before, immediately after, one week after, two weeks after, three weeks after, and four 

weeks after. At each time point, water circulation to a specific holding chamber was stopped, and 

a water sample was taken immediately. A second water sample was taken 2 hrs later, after which 

water circulation was resumed. All samples were stored in -20 °C until processed. 

 

WATER PROCESSING 

 An experiment was performed to determine the effects of acidification of water samples 

and the best solid phase extraction matrix. Four 2.5 l aquaria were filled with 1/3 SW that was 

taken from the sump of the recirculation system. Two 50 ml water samples were taken, after 

which cortisol was added to the tanks to achieve the following concentrations: 1.64 pg ml-1; 3.28 

pg ml-1; 8.20 pg ml-1; 16.4 pg ml-1. Additional 50 ml water samples were taken after 2 hrs. All 

samples were frozen at -20°C until processed. 

 Pairs of water samples were thawed, and one of each pair was acidified to pH 1.6-1.9 by 

the addition of 1 ml of 2 M hydrochloric acid (HCl) (final concentration: 0.04 M) to release any 

cortisol bound to proteins in the 1/3 SW or the plastic sampling tube. Cortisol was extracted from 

water based upon a procedure described by Ellis et al. (2004). Water cortisol samples were 

centrifuged at 3,200 rcf for 5 min to remove any particulates. In the control recovery experiment, 
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four solid phase extraction matrices were tested: Sep-Pak C18 1cc, Sep-Pak C18 Plus, Oasis 

HLB 1cc, and Oasis HLB Plus (all from Waters Corp., U.S.). Solid phase extraction matrices 

were conditioned with 1 ml methanol and 2 ml water, after which 50 ml water samples were 

applied. Columns were washed with 1 ml deionized water, after which 1 ml ethyl acetate was 

used to elute cortisol into a clean glass tube. A peristaltic pump (Polystaltic Pump, Haake 

Buchler Instruments, Inc., U.S.) was utilized to control all flow rates at approximately 1 ml min-

1. The control experiment showed higher recoveries from acidified water samples and among the 

highest recovery using Oasis HLB 1cc columns. Therefore, water samples from fish were 

processed as described above using this format. 

 

CORTISOL DETERMINATION 

 Following elution from the solid phase extraction matrix, cortisol samples were kept at -

20 °C until assayed by competitive ELISA. Briefly, ethyl acetate was evaporated overnight at 55 

°C, the residue was reconstituted in 500 µl of ELISA buffer (Cayman Chemical Co., U.S.), and 

the solution was mixed by vortexing. All samples were assayed in parallel with cortisol standards 

as described by the manufacturer. A 96-well microplate spectrophotometer (VersaMax Tunable 

Microplate Reader, Molecular Devices, LLC, U.S.) was utilized for data acquisition and analysis. 

 

CALCULATIONS AND STATISTICAL ANALYSES 

 Total cortisol release (in pg) by fish was the difference between the amount of cortisol in 

an initial water sample and one taken 2 hrs later. Cortisol release rate (in ng g-1 hr-1) was 

calculated by dividing total cortisol release by the fish biomass and the 2 hr interval. A two-way 

repeated measures analysis of variance (ANOVA) was performed to assess the effects of PIT 
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tagging and time of sampling on cortisol release. Post-hoc comparisons on cortisol release of all 

fish between different time points were done using a Tukey's multiple comparisons test. All 

statistical analyses were conducted with GraphPad Prism 7 (Graphpad Software, Inc., U.S.), with 

statistical significance accepted at P < 0.05. 

 

RESULTS 

 The ability of each solid phase extraction matrix to recover cortisol from water was 

compared by assaying cortisol concentrations of water samples taken from aquaria with known 

amounts of cortisol added. In addition, the effects of acidifying water samples were evaluated. 

The amount of cortisol recovered as a function of cortisol added is shown when cortisol was 

extracted by liquid chromatography using Sep-Pak C18 1cc columns (Figure 5A), Sep-Pak C18 

Plus cartridges (Figure 5B), Oasis HLB 1cc columns (Figure 5C), and Oasis HLB Plus cartridges 

(Figure 5D) with and without prior acidification. Across all formats, acidification of samples 

increased recoveries 1.4-fold to 2.4-fold higher (compare closed to open symbols on Figure 5), 

as judged from the slopes of lines fit to recovery data (Table 1). Extraction by Oasis HLB 1cc 

and Sep-Pak C18 Plus provided the highest cortisol recoveries among the tested matrices, since 

these matrices generated lines with slopes closest to a slope of 1, which represents 100% cortisol 

recovery. 

 Cortisol release by fish was assessed in terms of total cortisol released by fish into 

aquaria (Table 2). Total cortisol release due to PIT tagging was not statistically significant at any 

time point (two-way repeated measures ANOVA; P > 0.05). However, regardless of whether or 

not fish were PIT tagged, there was a significant increase in total cortisol release by fish 

immediately after they were anesthetized and handled (i.e., on Day 0) in comparison to every 
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other time point (Figure 6A) (Tukey's multiple comparisons test; P < 0.05), suggesting that 

anesthetizing and handling were sufficient to generate a significant stress-response in fish.  

 Since smaller fish were expected to release smaller amounts of cortisol than larger fish, 

cortisol release by fish due to PIT tagging was also assessed in terms of the rate of cortisol 

release (Table 3), in order to objectively compare cortisol release between fish differing in mass. 

There was no statistically significant difference between cortisol release rates by non-tagged and 

PIT tagged fish (two-way repeated measures ANOVA; P > 0.05). As was observed in total 

cortisol release analyses, significant variation in cortisol release rates was observed between Day 

0 and all other time points regardless of whether or not fish were PIT tagged (Figure 6B) 

(Tukey's multiple comparisons test; P < 0.05). Thus, all post-hoc analyses on cortisol release 

were completed without regard to whether or not fish were PIT tagged, linking any observances 

of significant changes in cortisol release to anesthetizing and handling. Cortisol release by fish 

returned to its basal conditions after a week of being anesthetized and handled and remained low 

for the duration of the experiment. 

 

DISCUSSION 

CORTISOL RECOVERY 

 Although the sampling of water cortisol has been repeated with up to 95% recovery 

(Zuberi et al., 2011), most studies that have employed this method have measured free cortisol 

and not that which may have adhered to steroid-binding elements. Scott and Ellis (2007) 

question the need to measure bound cortisol on the basis that only free cortisol is excreted 

through the gills, whereas bound cortisol is presented in a conjugated form in the urine and feces. 

Indeed, Vermeirssen and Scott (1996) showed that, when the anterior and exterior regions of the 
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rainbow trout Oncorhynchus mykiss are separated by a specialized tank, free steroids are released 

through the gills in the anterior region, whereas glucuronidated and sulfated steroids are released 

through bile and urine in the posterior region, respectively. Since the release and conjugation of 

bound cortisol has been shown to be delayed by rates of defecation and urination (Scott and 

Sorensen, 1994), this may suggest that sampling only free cortisol is sufficient to accurately 

determine how much cortisol is in plasma at any desired time point. However, this conclusion 

does not take into account the possibility that free cortisol, after its released by fish, becomes 

bound to constituents in the tank water (e.g., exuded proteins, mucous, uneaten food, microbes) 

or the walls of the sampling vessel. 

 Therefore, in the present study, neutral and acidified water samples with known 

concentrations of cortisol were processed through four solid phase extraction matrices to 

determine if the addition of acid disassociates bound cortisol, as well as to compare how much 

cortisol may be recovered using each format. As expected, all formats provided positive 

correlations between amount of cortisol introduced and recovered. However, between formats, 

water samples that were acidified and processed by Sep-Pak C18 Plus and Oasis HLB 1cc 

produced the highest recovery of cortisol at 80% and 79%, respectively. Indeed, the Sep-Pak 

C18 Plus format has also been one of the most commonly utilized cortisol extraction formats in 

related studies (Diamandis and D'Costa, 1988; Newman et al., 2015; Wong et al., 2008), which 

may perhaps be on account of such successes in analyte recoveries. However, the Oasis HLB 1cc 

format was preferred in this experiment because it was less expensive and easier to implement, 

having been designed to recover analyte in the event of the stationary phase medium 

experiencing dryness. Regardless of the format, higher cortisol recoveries were yielded for 

samples that were acidified. Therefore, in the interest of maximizing cortisol recovery, it is 
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advised that water cortisol samples be acidified whenever this method of cortisol sampling is 

employed, or at least when similar solid phase extraction matrices are used. 

 

EFFECTS OF TAGGING 

 Cortisol release due to stressors has been analyzed on a number of different species of 

fish (Scott and Ellis, 2007), including the European sea bass Dicentrarchus labrax (Fanouraki et 

al., 2008), the rainbow trout Oncorhynchus mykiss (Ellis et al., 2005), and the Atlantic salmon 

Salmo salar (Kittilsen et al., 2009). However, few studies have assessed cortisol release by fish 

due to PIT tagging. Though Jørgensen et al. (2017) evaluated the effects of PIT tagging on 

swimming, hematocrit, and tag retention on the sandeel Ammodytes tobianus, cortisol release 

was not assessed in this study. Likewise, Lower et al. (2005) examined the effects of PIT tagging 

on cortisol release by carp Cyprinus carpio and roach Rutilus rutilus, but only measured free 

cortisol and not that which may have become bound to particulates in water or the sampling 

vessel. Thus, little is known about the effects of PIT tagging on cortisol release by fish––or, 

specifically, by F. grandis. 

 Prior to PIT tagging, there was no difference in the amount of cortisol released between 

fish that would be PIT tagged and those that would not. Surprisingly, there was a minimal impact 

of PIT tagging on cortisol release by fish across all time points. This is in contrast to what Lower 

et al. (2005) observed in a study on carp and roach, where there was an immediate increase in 

cortisol release by both species of fish just 1-2 h following the PIT tagging procedure. This 

difference in response might be attributed to differing methods of PIT tag implantation. In Lower 

et al. (2005), PIT tags were inserted by means of a c. 10 mm surgical incision, whereas in the 

present study, PIT tags were inserted by injection with a syringe needle. The incision may have 
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contributed to the increase in cortisol release that was reported by Lower et al. (2005). 

Interestingly, Baras et al. (2011) compared these two implantation procedures on the juvenile 

Nile Tilapia Oreochromis niloticus, and discovered that surgically implanted fish had 

significantly higher survival rates than injected fish after 49 d. Thus, while PIT tagging by 

injection may minimize stress levels, the trade-off of using this method is that it may also result 

in lower survival rates in some species of fish. 

 

EFFECTS OF ANESTHESIA AND HANDLING 

 As surprising was that cortisol release nearly doubled immediately after fish were 

anesthetized and handled, resulting in dramatic differences in cortisol release between this 

moment and all other time points. Accordingly, this indicates that while PIT tagging did not 

significantly affect cortisol release in fish, the very process of handling and anesthetizing did. 

However, given that anesthetics are administered to reduce the stress that fish may experience 

during handling and other experimental operations, cortisol levels observed immediately after 

anesthetizing and handling are likely a fraction of what they would've been had fish not been 

anesthetized. 

 Though this hypothesis was not tested in the present study, a study on the three spot 

gourami Trichogaster trichopterus determined that plasma cortisol levels were much lower in 

fish that were anesthetized and handled in comparison to control groups that were handled 

without anesthesia (Crosby et al., 2006). Another study by Thomas and Robertson (1991) treated 

the red drum Sciaenops ocellatus with two minutes of air exposure and observed pronounced 

elevations in plasma cortisol in fish that were not administered anesthetics beforehand. These 
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studies provide support in favor of applying anesthetics to minimize stress experienced by fish 

during experimental procedures.  

 Interestingly, both studies tested the effects of using different anesthetics on plasma 

cortisol and concluded that some anesthetics were more effective in reducing stress than others. 

Thomas and Robertson (1991) also observed an increase in plasma cortisol in fish anesthetized in 

80 mg l-1 MS-222 versus 10 mg l-1 MS-222, suggesting that there is a dose-related effect of 

anesthesia on stress. In light of this, the degree to which anesthesia impacts cortisol release while 

handling fish may depend on a number of factors, such as the type of anesthetic used and the 

dosage of the anesthetic, in addition to the species, size, and maturity of fish (Popovic et al., 

2012). These data suggest that repeated measurements of a variable in studies on F. grandis 

should not resume until after one week of anesthetizing and handling, at which cortisol levels are 

likely to have returned to basal conditions.  

 

CONCLUSION 

 Cortisol water sampling provided a non-invasive alternative to blood plasma sampling 

toward assessing stress in F. grandis due to PIT tagging that was neither terminal nor poor in 

recovery. The acidification of water cortisol samples further improved the amount of cortisol 

recovered, reinforcing the importance of ensuring that both free and bound cortisol be measured 

in studies investigating cortisol release. Though the injection and presence of a PIT tag did not 

have an effect on cortisol release in F. grandis, cortisol release markedly increased due to 

anesthetizing and handling. Cortisol release returned to basal conditions a week after fish were 

anesthetized and handled, suggesting that fish be allowed to recover from anesthetizing and 

handling for a week prior to commencing experimental procedures. 
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TABLE 1: Equations of lines and R2 values of solid phase extraction formats with and without 

the addition of HCl. 

Matrix Format Without HCl With HCl 

Sep-Pak C18 1cc y = 0.51x - 80.2 (R2 = 0.91) y = 0.70x - 54.7 (R2 = 0.98) 

Sep-Pak C18 Plus y = 0.34x - 16.0 (R2 = 0.99) y = 0.80x - 37.0 (R2 = 0.99) 

Oasis HLB 1cc y = 0.42x - 18.1 (R2 = 0.95) y = 0.79x - 51.1 (R2 = 0.99) 

Oasis HLB Plus y = 0.40x + 23.8 (R2 = 0.99) y = 0.64x + 12.4 (R2 = 0.96) 
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TABLE 2: Results of a repeated measures ANOVA of total cortisol release by F. grandis. 

Sources of Variation df F P 

PIT Tagging 1, 10 0.113 0.7432 

Time Point 5, 50 7.214 < 0.0001 

Interaction 5, 50 1.596 0.1785 

Subjects 10, 50` 1.715 0.1033 
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TABLE 3: Results of a repeated measures ANOVA of cortisol release rate of F. grandis. 

Sources of Variation df F P 

PIT Tagging 1, 10 0.027 0.8719 

Time Point 5, 50 9.019 < 0.0001 

Interaction 5, 50 1.365 0.2532 

Subjects 10, 50` 1.769 0.0912 
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FIGURE 1: The activity of the hypothalamic-pituitary-interrenal axis in evoking primary, 

secondary, and tertiary adaptive responses to stressors perceived by fish  

(Schreck and Tort, 2016). 
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FIGURE 2: The molecular structure of the stress hormone cortisol.  
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FIGURE 3: The recirculation system in which water was exchanged between the 2.5-l chambers 

where fish were held and an 80-liter sump of water, where water was aerated, filtered, and 

temperature controlled (24°C). 
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FIGURE 4: The length of an 8.4 mm PIT tag relative to that of adult F. grandis. 

 

 

 

 

 



   

	

27 

 

 

 

FIGURE 5: The recovery of known amounts of cortisol using Sep-Pak C18 1cc (A), Sep-Pak 

C18 Plus (B), Oasis HLB 1cc (C), and Oasis HLB Plus (D), with (––●––) and without (- - ○ - -) 

the addition of HCl. Points on A, B, and D represent the mean of replicate readings of a single 

recovery experiment. Points on C represent the mean of readings from two replicate experiments. 

Error bars on C represent a range of values. Cortisol recoveries using the matrices in A, B, C, 

and D were 1.37-fold, 2.35-fold, 1.89-fold, and 1.60-fold higher, respectively, as a result of 

adding HCl to water. 
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FIGURE 6: The effects of PIT tagging on mean ± 95% c.i. total cortisol released (A) and cortisol 

release rates (B) by non-tagged (n = 6) (––○––) and PIT tagged (n = 6) (––●––) F. grandis. 

Asterisks represents significant differences between the cortisol release by all fish on Day 0 and 

at every other time point (Tukey's multiple comparisons test; P < 0.05). 
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APPENDIX 1: Cortisol recovery data. 

Assay 

Date 

Time (hr) +/- HCl Format Average 

Result (pg) 

Actual (pg) 

(2 hr - 0 hr) 

Expected 

(pg) 

Percent 

Recovery 

1/12/17 0 - Oasis 1cc 22.05    

1/12/17 0 - Oasis Plus 22.66    

1/12/17 0 - SP 1cc 0.99    

1/12/17 0 - SP Plus 49.32    

1/12/17 0 + Oasis 1cc 73.23    

1/12/17 0 + Oasis Plus 41.08    

1/12/17 0 + SP 1cc 1.64    

1/12/17 0 + SP Plus 0.00    

1/12/17 2 - Oasis 1cc 95.35 71.59 164.80 43.44 

1/12/17 2 - Oasis 1cc 161.33 137.57 329.60 41.74 

1/12/17 2 - Oasis 1cc 598.87 575.11 824.00 69.79 

1/12/17 2 - Oasis 1cc 765.06 741.30 1648.00 44.98 

1/12/17 2 - Oasis Plus 136.38 112.62 164.80 68.33 

1/12/17 2 - Oasis Plus 182.57 158.81 329.60 48.18 

1/12/17 2 - Oasis Plus 330.39 306.63 824.00 37.21 

1/12/17 2 - Oasis Plus 726.69 702.93 1648.00 42.65 

1/12/17 2 - SP 1cc 120.38 96.62 164.80 58.63 

1/12/17 2 - SP 1cc 91.06 67.30 329.60 20.42 

1/12/17 2 - SP 1cc 224.19 200.43 824.00 24.32 

1/12/17 2 - SP 1cc 841.59 817.83 1648.00 49.63 
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1/12/17 2 - SP Plus 41.95 18.19 164.80 11.04 

1/12/17 2 - SP Plus 157.73 133.97 329.60 40.65 

1/12/17 2 - SP Plus 270.52 246.76 824.00 29.95 

1/12/17 2 - SP Plus 576.44 552.68 1648.00 33.54 

1/12/17 2 + Oasis 1cc 166.11 137.12 164.80 83.21 

1/12/17 2 + Oasis 1cc 299.66 270.67 329.60 82.12 

1/12/17 2 + Oasis 1cc 533.65 504.66 824.00 61.24 

1/12/17 2 + Oasis 1cc 1416.41 1387.42 1648.00 84.19 

1/12/17 2 + Oasis Plus 139.31 110.32 164.80 66.94 

1/12/17 2 + Oasis Plus 181.72 152.73 329.60 46.34 

1/12/17 2 + Oasis Plus 697.00 668.01 824.00 81.07 

1/12/17 2 + Oasis Plus 1049.06 1020.07 1648.00 61.90 

1/12/17 2 + SP 1cc 156.21 127.22 164.80 77.20 

1/12/17 2 + SP 1cc 189.50 160.51 329.60 48.70 

1/12/17 2 + SP 1cc 448.57 419.58 824.00 50.92 

1/12/17 2 + SP 1cc 1165.75 1136.76 1648.00 68.98 

1/12/17 2 + SP Plus 134.44 105.45 164.80 63.99 

1/12/17 2 + SP Plus 234.16 205.17 329.60 62.25 

1/12/17 2 + SP Plus 663.22 634.23 824.00 76.97 

1/12/17 2 + SP Plus 1303.19 1274.20 1648.00 77.32 

3/15/18 0 - Oasis 1cc 52.25    

3/15/18 0 - Oasis 1cc 45.71    

3/15/18 0 + Oasis 1cc 32.67    
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3/15/18 0 + Oasis 1cc 40.67    

3/15/18 2 - Oasis 1cc 59.07 10.09 164.80 6.12 

3/15/18 2 - Oasis 1cc 57.65 8.67 329.60 2.63 

3/15/18 2 - Oasis 1cc 326.87 277.89 824.00 33.72 

3/15/18 2 - Oasis 1cc 589.96 540.98 1648.00 32.83 

3/15/18 2 + Oasis 1cc 86.07 49.40 164.80 29.97 

3/15/18 2 + Oasis 1cc 199.24 162.57 329.60 49.32 

3/15/18 2 + Oasis 1cc 654.46 617.79 824.00 74.97 

3/15/18 2 + Oasis 1cc 1180.43 1143.76 1648.00 69.40 
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APPENDIX 2: Cortisol from PIT tagging data. 

Fish Number Tagged? Sample Time 

Fish Mass 

(g) 

Total Cortisol  

Release (ng) 

Cortisol 

Release Rate 

(ng g-1 h-1) 

1 No Day -1 7.38 0.79 0.05 

1 No Day 0 7.38 2.52 0.17 

1 No Week +1 7.23 0.61 0.04 

1 No Week +2 7.56 0.28 0.02 

1 No Week +3 7.13 1.74 0.12 

1 No Week +4 7.01 0.05 0.00 

2 No Day -1 12.33 1.23 0.05 

2 No Day 0 12.33 6.89 0.28 

2 No Week +1 12.73 0.99 0.04 

2 No Week +2 13.03 0.40 0.02 

2 No Week +3 13.11 1.25 0.05 

2 No Week +4 13.95 1.42 0.05 

3 Yes Day -1 9.29 0.13 0.01 

3 Yes Day 0 9.29 11.06 0.60 

3 Yes Week +1 9.96 0.41 0.02 

3 Yes Week +2 9.96 2.38 0.12 

3 Yes Week +3 9.71 1.08 0.06 

3 Yes Week +4 10.21 2.04 0.10 

4 Yes Day -1 9.78 1.47 0.08 
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4 Yes Day 0 9.78 7.04 0.36 

4 Yes Week +1 9.41 1.50 0.08 

4 Yes Week +2 8.83 3.45 0.20 

4 Yes Week +3 7.78 0.03 0.00 

4 Yes Week +4 7.34 9.59 0.65 

5 Yes Day -1 6.77 0.07 0.01 

5 Yes Day 0 6.77 4.56 0.34 

5 Yes Week +1 6.81 0.26 0.02 

5 Yes Week +2 6.96 0.75 0.05 

5 Yes Week +3 7.31 0.72 0.05 

5 Yes Week +4 7.10 1.34 0.09 

6 Yes Day -1 11.41 0.00 0.00 

6 Yes Day 0 11.41 17.80 0.78 

6 Yes Week +1 11.78 0.00 0.00 

6 Yes Week +2 12.81 0.19 0.01 

6 Yes Week +3 13.06 0.04 0.00 

6 Yes Week +4 13.54 0.89 0.03 

7 No Day -1 6.83 3.98 0.29 

7 No Day 0 6.83 10.19 0.75 

7 No Week +1 6.81 2.60 0.19 

7 No Week +2 7.19 0.68 0.05 

7 No Week +3 7.26 3.33 0.23 

7 No Week +4 7.53 0.16 0.01 



   

	

34 

8 No Day -1 12.51 1.09 0.04 

8 No Day 0 12.51 1.88 0.08 

8 No Week +1 12.9 0.62 0.02 

8 No Week +2 13.51 1.72 0.06 

8 No Week +3 13.67 2.24 0.08 

8 No Week +4 14.73 3.93 0.13 

9 Yes Day -1 9.28 3.55 0.19 

9 Yes Day 0 9.28 5.09 0.27 

9 Yes Week +1 9.54 0.00 0.00 

9 Yes Week +2 9.30 0.26 0.01 

9 Yes Week +3 9.13 0.00 0.00 

9 Yes Week +4 9.28 0.10 0.01 

10 No Day -1 20.52 0.09 0.00 

10 No Day 0 20.52 5.90 0.14 

10 No Week +1 20.74 1.22 0.03 

10 No Week +2 21.46 0.52 0.01 

10 No Week +3 23.73 11.24 0.24 

10 No Week +4 26.03 15.82 0.30 

11 No Day -1 6.69 2.24 0.17 

11 No Day 0 6.69 2.66 0.20 

11 No Week +1 6.89 0.00 0.00 

11 No Week +2 7.52 0.75 0.05 

11 No Week +3 7.72 0.23 0.01 
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11 No Week +4 8.24 0.42 0.03 

12 Yes Day -1 19.51 0.00 0.00 

12 Yes Day 0 19.51 4.45 0.11 

12 Yes Week +1 19.68 0.37 0.01 

12 Yes Week +2 19.65 0.07 0.00 

12 Yes Week +3 19.90 0.11 0.00 

12 Yes Week +4 20.97 0.00 0.00 
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