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Abstract

ANOVA analysis is a classic tool for multiple comparisons and has been widely used in

numerous disciplines due to its simplicity and convenience. The ANOVA procedure is

designed to test if a number of different populations are all different. This is followed

by usual multiple comparison tests to rank the populations. However, the probability of

selecting the best population via ANOVA procedure does not guarantee the probability

to be larger than some desired prespecified level. This lack of desirability of the ANOVA

procedure was overcome by researchers in early 1950’s by designing experiments with the

goal of selecting the best population. In this dissertation, a single-stage procedure is in-

troduced to partition k treatments into “good” and “bad” groups with respect to a control

population assuming some key parameters are known. Next, the proposed partition proce-

dure is genaralized for the case when the parameters are unknown and a purely-sequential

procedure and a two-stage procedure are derived. Theoretical asymptotic properties, such

as first order and second order properties, of the proposed procedures are derived to doc-

ument the efficiency of the proposed procedures. These theoretical properties are studied

via Monte Carlo simulations to document the performance of the procedures for small

and moderate sample sizes.

Key words: Two-parameter Exponential Distribution; Sequential Procedure;

Probability of Correct Decision; Indifference Zone;

Monte Carlo Simulation
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1

Introduction

1.1 Introduction of Exponential Distribution

How long will a piece of machinery work without breaking down? How much time will

elapse before an earthquake occurs in a given region? How long do we need to wait before

a customer enters a shop? How long will it take before a call center receives the next

phone call? All these questions above concern the time we need to wait before a given

event occurs. If this waiting time is unknown, it is often appropriate to think it of as

a random variable having an exponential distribution. The time we need to wait before

a certain event occurs follows exponential distribution if the probability that the event

occurs during a certain time interval is proportional of the length of that time interval.

The probability density function (PDF) of an exponential distribution is

f(x;λ) =

 λe−λx x ≥ 0,

0 x < 0.
(1.1)

The parameter λ is called rate parameter. It is the inverse of the expected duration

µ. A random variable X has this distribution can be expressed as X ∼ Exp(λ). The
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cumulative distribution function (CDF) of an exponential distribution is given as

F (x;λ) =

 1− λe−λx x ≥ 0

0 x < 0.
(1.2)

Alternatively, this can be defined using the Heaviside step function H(x) as

F (x;λ) = (1− e−λx)H(x). (1.3)

The cumulative density function (CDF) can be written as the probability of the lifetime

being less than some value x, which is given as

P (X ≤ x) = 1− e−λx. (1.4)

A commonly used alternative parametrization is to define the probability density func-

tion (pdf) of an exponential distribution as

f(x; β) =


1
β
e−

x
β x ≥ 0,

0 x < 0.
(1.5)

where β > 0 is mean, standard deviation, and is also known as the scale parameter of the

distribution, the reciprocal of the rate parameter, λ, defined above. In this specification,

β is a survival parameter in the sense that if a random variable X is the duration of time

that a given biological or mechanical system manages to survive and X ∼ Exp(β) then

E[X] = β. That is to say, the expected duration of survival of the system is β units of

time. The parametrization involving the ”rate” parameter arises in the context of events

arriving at a rate λ, when the time between events (which might be modeled using an

exponential distribution) has a mean of β = λ−1.
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The alternative specification is sometimes more convenient than the one given above,

and some authors will use it as a standard definition. This alternative specification is not

used in this chapter.

The expected value of an exponential variable X is :

E[X] =
1

λ
.

The variance of an exponential variable X is :

V ar[X] =
1

λ2
,

so one properties of the exponential distribution is that the standard deviation and the

mean of the distribution are equal. The moments of X, for n = 1, 2, ..., are given by

E [Xn] =
n!

λn
.

The median of X is given by

m[X] =
ln(2)

λ
< E[X],

where ln refers to the natural logarithm. Thus the absolute difference between the mean

and median is

|E[X]−m[X]| = 1− ln(2)

λ
<

1

λ
= standard deviation,

in accordance with the median-mean inequality.
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An exponentially distributed random variable T obeys the relation

P (T > s+ t|T > s) = P (T > t), ∀s, t ≥ 0.

When T is interpreted as the waiting time for an event to occur relative to some initial

time, this relation implies that, if T is conditioned on a failure to observe the event over

some initial period of time s, the distribution of the remaining waiting time is the same as

the original unconditional distribution. For example, if an machine has not broken after

10 years, the conditional probability that fail will take place after at least 10 more years

is equal to the unconditional probability of observing the fail after more than 10 years

relative to the initial time.

The exponential distribution and the geometric distribution are the only memoryless

probability distributions. The exponential distribution is consequently also necessarily

the only continuous probability distribution that has a constant failure rate. That’s why

the exponential distribution the very commonly used in reliability engineering.

The mathematics associated with the exponential distribution is often of a simple na-

ture, and so it is possible to obtain explicit formulas in terms of elementary functions,

without to obtain troublesome quadrature. For this reason models constructed from ex-

ponential variables are sometimes used as an approximate representation of other models

that are more appropriate for a particular application. Currently among the most promi-

nent applications are in the field of life-testing. The lifetime(or life characteristic, as it is

often called) can be usefully represented by an exponential random variable, with a rel-

atively simple associated theory. Sometimes the representation is not adequate; in such

cases a modification of the exponential distribution (often a Weibull distribution) is used.

Another application is producing usable approximate solutions to difficult distribu-

tional problems. An ingenious application of the exponential distribution to approximate

4



a sequential procedure is due to Ray (1957). He wished to calculate the distribution of

the smallest n for which
∑n

i=1 U
2
i < Kn, where U1, U2, . . . are independent unit normal

variables and K1, K2, . . . are specified positive constants. By replacing this by the dis-

tribution of the smallest even n, he obtained a problem in which the sums
∑n

i=1 U
2
i are

replaced by sums of independent exponential variables(actually χ2,s with two degrees of

freedom each).

1.2 Parameter Estimation

Before 1959 a considerable amount of work had been done on inference procedures for

the exponential distribution with both censored and uncensored data. It was realized, in

the 1960s and 1970s, that although the exponential distribution can be handled rather

easily, the consequent analysis is often poorly robust [see Zelen and Dannemiller (1961)].

Nevertheless, the study of properties of this distribution, and especially construction of

estimation and testing procedures has continued steadily, during the last 30 years, with

some emphasis on Bayesian analysis and order statistics methodology, and an explosion

and results on characterizations.

Maximum likelihood estimation is one of the most useful technique which derives

estimates of the unknown parameters by maximizing a likelihood function constructed

through the available data. Suppose, a given variable X is exponentially distributed and

the rate parameter λ is to be estimated. Then, the likelihood function, given by an

independent and identically distributed sample X = (x1, · · · , xn), is given by

L(λ) =
∏n

i=1 λe
−xiλ = λne−λ

∑n
i=1 xi

= λne−λnx̄,

where x̄ = 1
n

∑n
i=1 xi is the sample mean.

5



The first derivative of the likelihood function’s logarithm is:

d
dλ
ln(L(λ)) = d

dλ
(nln(λ)− λnx̄)

= n
λ
− nx̄


> 0 if 0 < λ < 1

x̄
,

= 0 if λ = x̄,

< 0 if λ > 1
x̄
.

The second derivative is easily obtained as

d2

dλ2
ln(L(λ)) = − 1

λ2
< 0.

Consequently the maximum likelihood estimate for the rate parameter is

λ̂ =
1

x̄
.

Another classic method of parameter estimation is Moment generation method, which

uses the moments of the distribution to estimate the parameter. Since the density function

of exponential distribution only contains one single parameter λ, only first moment is

needed.

E[x] =

∫ ∞
0

xf(x)dx =

∫ ∞
0

xλe−λxdx

= −
∫ ∞

0

xde−λx

= [−xe−λx]∞0 +

∫ ∞
0

e−λxdx

=
[
− 1

λ
e−λx

]∞
0

= 0 +
1

λ
=

1

λ
.

Then let E[x] = x̄, we have

1

λ
= x̃.

6



So the moment generating estimator for the rate parameter is

x̃ =
1

x̄
.

1.3 Bayesian Inference

In Bayesian probability theory, if the posterior distribution p(θ|x) and the prior prob-

ability distribution p(θ) are in the same family, then the posterior and prior are called

conjugate distribution, and the prior is called a conjugate prior for the likelihood func-

tion. For instance, the Gaussian family is self-conjugate to Gaussian likelihood function

if the likelihood function is Gaussian. In order to have the posterior distribution to be

Gaussian, one needs to choose a Gaussian prior over the mean. This means that Gaussian

distribution is a conjugate prior for its likelihood function which is also Gaussian. Sim-

ilarly, the conjugate prior for the exponential distribution is the gamma distribution(of

which the exponential distribution is a special case). The following parametrization of

the gamma probability density function is useful:

Gamma(λ;α, β) =
βα

Γ(α)
λα−1 exp(−λβ). (1.6)

The posterior distribution p can then be expressed in terms of the likelihood function

defined above and a gamma prior:

p(λ) ∝ L(λ)×Gamma(λ;α, β)

= λn exp (−λnx)× βα

Γ(α)
λα−1 exp(−λβ)

∝ λ(α+n)−1 exp(−λ (β + nx)).

Now the posterior density p has been specified up to a missing normalizing constant.
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Since it has the form of a gamma pdf, this can easily be filled in, and one obtains:

p(λ) = Gamma(λ;α + n, β + nx).

Here the hyperparameter α can be interpreted as the number of prior observations,

and as the sum of the prior observations. The posterior mean here is:

α + n

β + nx
.

1.4 Two-parameter Exponential Distribution

One commonly used generalization of the exponential distribution is the two-parameter

exponential distribution. The density function is given as:

fX(x) = σ−1exp{−(x− θ)/σ}I(x > θ), (1.7)

where σ is the scale parameter, which is equal to 1
λ

shown in preview sections. And

θ is the location parameter.For variables following two-parameter exponential density

function, the possible values varies from θ to ∞. θ can be considered equal to 0 respect

to one-parameter exponential distribution.

Similar to the properties with classic one-parameter exponential distributions, some

useful results are shown as below; The expected value of a two-parameter exponential

variable X is :

E[X] = θ + σ.

The variance of an exponential variable X is :

V ar[X] = σ2.
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So the standard deviation of the distribution is equal to σ. And the maximum likelihood

estimator and moment generating estimator of σ is 1
n

∑n
i=1(xi − θ). If X1, X2, . . . , Xn

are independent random variables each following two-parameter exponential distribution,

then the maximum likelihood estimators of θ and σ are

θ̂ = min(X1, X2, . . . , Xn),

σ̂ =
1

n

n∑
i=1

(Xi − θ̂) = X̄ − θ̂.

If θ is known, the maximum likelihood estimator of σ is (X̄ − θ). Even with σ known,

θ̂ above is still the maximum likelihood estimator of θ. The probability density function

of θ̂ is

fθ̂(x) = (n/θ)exp{−n(x− θ)/σ}I(x > θ),

which is of the same form as (1.7) but with σ replaced by σ/n. The variance of θ̂ is

therefore σ2/n2, and its expected value is θ + σ/n. It is interesting to note that the

variance is proportional to n−2 and not to n−1. The expected value of σ̂[= X̄ − θ̂] is

σ(1− n−1), and its variance is σ2[n−1 + n−2 − 2n−3]. And the expected value of (X̄ − θ)

is σ and its variance is σ2n−1.

Moment estimators (θ̃, σ̃) of (θ, σ) can be obtained by equating sample and population

values of the mean and variance. They are

θ̃ = X̄ − σ̃,

σ̃2 =
1

n

n∑
i=1

X2
i .

Cohen and Helm (1973) discuss modified moment estimators obtained by replacing

the second equation above by an equation that puts the first-order statistic X ′1 equal to

9



its expected value. This gives

θ̃∗ + n−1σ̃∗ = X ′1,

which leads to

θ̃∗ =
nX ′1 − X̄
n− 1

,

σ̃∗ =
n(X̄ −X ′1)

n− 1
.

They show that these are minimum variance unbiased estimators (and a fortiori BLUEs).

Also

V ar(θ̃∗) =
σ2

n(n− 1)
, (1.8)

V ar(σ̃∗) =
σ2

n− 1
, (1.9)

Cov(θ̃∗, σ̃∗) =
σ2

n(n− 1)
, (1.10)

so that Corr(θ̃∗, σ̃∗) = 1/
√
n. Further, since σ̃∗ is distributed as 1

2
(n − 1)−1χ2

2(n−1), a

100(1− α)% confidence interval for σ is

( 2(n− 1)

χ2
2(n−1),1−α

2

σ̃∗,
2(n− 1)

χ2
2(n−1),α

2

σ̃∗
)
. (1.11)

Two-parameter exponential distribution has been used extensively in many reliability

and life testing experiments for describing the failure rates of complex equipment, vacuum

tubes and so on. It has also been recommended as a statistical model in clinical trials,

such as the studies of behavior of tumor systems in animals and analysis of survival data

in cancel research. The relative applications can be found in Johnson and Kotz (1994),

Bain and Engelhardt (1991), Lawless and Singhal (1980), Zelen (1966).
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1.5 Ranking and Partition Problems

In everyday life, one decides on the best medicine, best machine, best strategy or the

best route for a destination, among a number of available options. In the statistical

literature, such selections have been routinely carried out under the area of multiple

comparisons. A commonly used statistical tool called Analysis of Variance (ANOVA)

has been used extensively by practitioners to test whether or not the given treatments

under consideration are all same or not. Generally, the ANOVA test is followed by some

multiple comparisons tests, such as, LSD, Tukey Method, Scheffe Method to name a

few, to decide which treatments are different from one another. However, those methods

perform shortage in reality when implementation.

For example in clinical trials, a usual concern is comparing efficacy of the several

essentially different varieties of drugs. A conclusion that whether those different drugs

have the same efficacy or not can be easily obtained by setting that as the null hypotheses

using above methods, which is meaningless. One main reason is that those different

varieties of drugs tend to perform differently in most cases. But that is far away from

enough to make any market value. Because rather than detecting the difference of the

efficacy among those varieties of drugs, the experimenters are more willing to explore the

one or several drugs that show better efficacy. So detecting the best or worst drugs is the

need, which helps with business strategy making, which ANOVA and those comparison

tests can not help achieve.

Thus, the experimenter’s problem should not be only testing the equality of efficacy of

these drugs, but rather to select the best one. The definition of the best would vary from

situation to situation and it is generally for the experts in the area to dictate what best

means in a given situation. For example, in some clinical trials. Sometimes, practitioners

have even incorrectly used the ANOVA tests to even select the best treatment based on
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the ranking of the means without realizing that the ANOVA test is designed to test if the

given treatments are all same or not. The ANOVA test is not designed to select the best

treatment and one cannot associate a probability statement with the selected treatment

as being the best via the ANOVA approach.

In a pioneer work, Bechhofer (1954) introduced the concept of indifference-zone formu-

lation and formulated some methodologies for the problem of selecting the best treatment

from a set of several treatments. The formulation by Bechhofer had the desired property

of selecting the best treatment with the pre-specified probability of correct selection. The

formulation proposed by Bechhofer (1954) is referred to as the indifference-zone formu-

lation in the statistical literature. Around the same time, Gupta (1956) formulated a

strategy which controls the probability of correct selection in the whole parameter space,

as opposed to the preferencezone which was the case under Bechhofers approach. The

formulation of Gupta (1956), selects a subset of random size which includes the best treat-

ment with some pre-specified probability. The formulation proposed by Gupta (1956) is

referred to as the subset-selection formulation in the statistical literature.

1.6 Formulation

In this section, the idea of two most fundamental approaches in the area of selection and

ranking are introduced under a classic case of population partition problem. Suppose

we have πi, i = 1, . . . , k(≥ 2), independent normally distributed populations, having

unknown means µi and common unknown variance σ2. We assume that µi ∈ R and

σ ∈ R+, i =1,...k. Let µ[1], . . . , µ[k] be the ordered µ-values, Since the variance is same

among all populations, we sample equally from each population and at any point of time,

whenever we need new” samples from π,s, we take a certain equal number, to be made

specific later, of samples from each π at that step. our aim is to select the population

12



associated with µ[k], and such a population is called the best population. We assume

that there is just one population associated with µ[k]. We do not, however assume any

knowledge about the association of the µ,is with µ,[i]s.

1.6.1 Indifference Zone Approach

Next, Bechhofer’s (1954)indifference zone approach is introduced. Given δ∗ > 0, we define

Ω = {µ = (µ1, ..., µk) : µi ∈ R, i = 1, ..., k},

Ω(δ∗) = {µ = (µ1, ..., µk) : µ[k] − µ[k−1] ≥ δ∗},

where Ω is the whole parameter space for µ and Ω(δ∗) is called the preference zone. For a

given P ∗ ∈ (k−1, 1), we are interested in selection procedures such that the probability of

correct selection (CS) of the population associated with µ[k] is at least P ∗ or asymptotically

(as δ∗ → 0) at least P ∗ whenever the true parameter µ ∈ Ω(δ∗). In other words, we

are interested to identify the best population having certain minimum or approximately

minimum probability P ∗ that our final decision is the right one when the best population’s

mean is at least δ∗-unit ahead of the mean of the second best. The parameter space

Ω(δ∗) is called, the preference zone, while ΩC(δ∗)(= Ω− Ω(δ∗)) is called the indifference

zone in the sense that the experimenter is not willing to pick the best population when

µ[k] − µ[k−1] < δ∗, that is the experimenter expresses indifference in the parameter space

ΩC(δ∗). Because for the indifference zone ΩC(δ∗) the best population is apparently not

that much better than the second best.

1.6.2 Random Subset Approach

Gupta (1956) assigned a procedure for selecting a subset such that the probability that

all the populations better than the standard are included in the subset is equal to or
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greater than a predetermined number P ∗. His goal is to separate those treatments which

are better than the control from those that are worse(or not better). Considering the

problem of selecting the best one of k categories when comparing k-1 categories with a

control or standard, he controls the probability of selecting the standard as the best when

the categories are equal to(or worse than) the control. Retain in the selected subset those

and only those populations Ω[i](i = 1, 2, ..., k) for which

x̄[i] ≥ µ0 − dσ/
√
ni.

To determine the value of d let k1,k2 denote the true number of populations with µ ≥ µ0

and µ < µ0, respectively, so that k1 + k2 = k. The the probability P of retaining all the

k1 populations with µ ≥ µ0 is given by

P =

k1∏
i=1

P{x̄′i ≥ µ0 − dσ
√
n′i}

=

k1∏
i=1

P{
√
n′i(x̄

′ − µ′i)/σ ≥ −d+
√
n′i(µ0 − µ′i/σ}. (1.12)

where primes refer to values associated with the k1 populations for which µ ≥ µ0. Hence

P =
k1∏
i=1

{1− F (−d+
√
n′i(µ0 − µ′i)/σ},

where F(x) refers to the standard normal cumulative distribution function. The µ′i above

are restricted by the condition µ′i ≥ µ0 and minimum of equation above is attained by

setting µ′i = µ0(i = 1, 2, ..., k1). Now since result depends on the unknown integer k1, we

can obtain a lower bound by setting k1 = k. Then using the symmetry of F we have

P ≥ [F (d)]p.
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The equation determining d is obtained by setting the right-hand member of equation

above equal to P ∗ and is given by

F (d) = (P ∗)1/p.

1.7 Selecting Best Normal Populations

As mentioned in preview sections, under some cases checking whether the means of several

populations are equal or not is far from enough. People need to find the ”best” one which

have the greatest location parameter. In this section we derive this problem under the

setting of Indifference-Zone from Bechhofer. Mukhopadhyay, N. and Solanky, T.K.S.

(1994) also summarize the relative results.

Suppose that we have k(≥) independent, normally distributed populations π1, . . . , πk,

with unknown mean µi and common unknown variance σ2, with the density function

given by

f(xij) = 1/
√

2πσ2exp{−(xij − µi)2/2σ2}. (1.13)

Let us define the following:

X̄i = n−1
∑n

j=1Xij,

Vi = (n− 1)−1
∑n

j=1(Xij − X̄i)
2,

σ̂2 =
∑k

i=0

∑n
j=1(Xij − X̄i)

2/((k + 1)(n− 1)),

(1.14)

where X̄i is the point estimate of µi and σ̂ is the pooled estimate of σ if a common

unknown standard deviation is assumed. And µ[1], . . . , µ[k] are defined as the ordered

µ-values. Right now it is assumed that σ is known and Xi1, . . . , Xin from πi have been

recorded. The natural selection rule is simply to pick the population associated with the

largest sample mean X̄i, i = 1, . . . , k, which is procedure below.

15



R∗: Select πj as the best population if X̄jn = Max1≤i≤kX̄in.

It is denoted that φ(y) = (2π)−
1
2 exp(−y2/2) and Φ(y) =

∫ y
−∞ φ(x)dx, for all y ∈ R.

Let π(i) stand for the population associated with the location parameter µ[i] and let us

write X̄(in) for the sample mean arising from the population π(i), i = 1, . . . , k. Also, write

δi = µ[k] − µ[i] and note that δi ≥ 0 for arbitrary µ ∈ Ω(δ∗) ∪ Ωc(δ∗) and δi ≥ δ∗ for

arbitrary µ ∈ Ω(δ∗). Then, the probability of correct selection is given by

Pn(CS) = P{X̄kn > X̄in, i = 1, . . . , k − 1}

= P{n 1
2σ−1(X̄kn − µ[k]) + n

1
2σ−1(µ[k] − µ[i]) > n

1
2σ−1(X̄in − µ[i]), i = 1, . . . , k − 1}

= P{Ykn + n
1
2 δiσ

−1 > Yin, i = 1, ..., k − 1},

where Yin = n
1
2 (X̄in−µ[i])/σ, i = 1, ..., k, which is following a standard normal distribution.

From equation above, for all µ ∈ Ω(δ∗),

Pn(CS) =
∫∞
−∞
∏k−1

i=1 Φ(y + n
1
2 δiσ

−1)φ(y)dy

≥
∫∞
−∞Φ(y + n

1
2 δ∗σ−1)φ(y)dy,

where the equality holds when δi = δ∗ for all i = 1, ..., k−1. Therefore µ[1] = · · · = µ[k−1] =

µ[k]−δ∗, a parameter configuration is referred to as the least favorable configuration(LFC).

Hence,

Infµ∈Ω(δ∗)Pn(CS) =

∫ ∞
−∞

Φ(y + n
1
2 δ∗σ−1)φ(y)dy, (1.15)

while this infimum is attained at the LFC. Let h = h(k, P ∗) be such that

∫ ∞
−∞

[Φ(y + h)]k−1φ(y)dy = P ∗, (1.16)

then it follows that Pn(CS) ≥ P ∗ for all µ ∈ Ω(δ∗) when n ≥ h2σ2/δ∗2 = C. In other

words, if σ was given, the experimenter should take [C]∗+1 samples from each π and and
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implement the corresponding selection rule above to pick the best normal distribution in

order to meet the P ∗ requirement for P(CS) in Ω(δ∗). However C is unknown. Moreover,

one can show that there exists no fixed-sample size procedure that will meet the P ∗

requirement for P (CS) in Ω(δ∗), uniformly in σ ∈ R+. The values of ”h” was tabulated

in Bechhofer (1954). For the case of σ being unknown, a two-stage procedure had been

proposed by Bechhofer et al. (1954) and a purely sequential procedure had been proposed

by Robbins et al. (1968).

1.8 Selecting Best Two-parameter Exponential

Populations

Two-parameter exponential model has applications in many fields. In reliability and en-

gineering, the location parameter is guarantee life of a component and scale parameter

is the average life. When distribution is used to model the life lengths in dose-response

experiments, location and scale parameters are referred as guaranteed and average effec-

tive duration of a drug respectively. For some applications of two-parameter exponential

model one may refer to Johnson and Kotz (1994), Bain and Engelhardt (1991), Lawless

and Singhal (1980), Zelen (1966).

Many researchers have discussed the problem of simultaneous comparisons of exponen-

tial location parameters when scale parameters are equal or unequal under heteroscedas-

ticity. Ng et.al (1993) proposed multiple comparison procedures with control when scale

parameters are equal. Wu et al. (2010) developed one-stage procedure of multiple com-

parisons with the control for exponential location parameters under heteroscedasticity.

The procedures proposed by these researchers make use of Lam (1987,1988) technique to

construct SCIs(Simultaneous Confidence Intervals).

While another approach of comparing multiple exponential distributions respect to
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their location parameters come from the setting of Indifference-Zone as mentioned in

previews sections which originated in comparing several normal populations.

Suppose that we have k(≥ 2) independent and exponentially population π1, ..., πk,

with density function of πi : i = 1, 2, . . . , k given by

fX(x) = σ−1exp{−(xij − θi)/σ}I(xij > θi). (1.17)

Let us define the following:

Ti = Min1≤j≤n{Xi1, ..., Xin},

Vi = (n− 1)−1
∑n

j=1(Xij − Ti),

σ̂ =
∑k

i=0

∑n
j=1(Xij − Ti)/((k + 1)(n− 1)),

(1.18)

where Ti are the order statistic or point estimate of θi and σ̂ is the pooled estimate of σ if

a common unknown scale parameter is assumed. The density function of T is derived as

F (T ) = P (T ≤ t) = 1− P (T > t) = 1− P (X1 > t,X2 > t, . . . , X(n) > t)

= 1−
∏n

i P (Xi > t) = 1−
∏n

i [1− F (Xi)]

= 1− [1− F (t)]n.

Since F (X) = 1− e−x−θσ , X > θ, then the cumulative function and density function of T

are obtained as

FT (t) = 1− e−
n(t−θ)
σ t > θ,

fT (t) = [F (T )]
′
= n

σ
e−

n(t−θ)
σ t > θ.

(1.19)

It is clear that Tis are following exponential distribution with location parameter of θ and

scale parameter of σ
n
. Here θ[1], . . . , θ[k] are defined as the ordered θ-values. The partition

problem was originated from the purpose of selecting the best two-parameter exponential
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distribution, which has the largest or smallest location parameter. It is assumed that σ

is known and the observations Xi1, ..., Xin from πi, i = 1, . . . , k have been recorded. The

natural selection rule is simply to pick the population associated with the largest Ti value,

i = 1,..., k, which is procedure

R∗: Select πj as the best population if Tj = Max1≤i≤kTin.

Let π(i) stand for the population associated with the location parameter θ[i] and let

us write Tin for the sample minimum arising from the population π(i), i = 1, ..., k. Also,

write δi = θ[k] − θ[i] and note that δi ≥ 0 for arbitrary θ ∈ Ω(δ∗) ∪ Ωc(δ∗) and δi ≥ δ∗ for

arbitrary θ ∈ Ω(δ∗). Then, the probability of correct selection is given by

Pn(CS) = P{Tkn > Tin, i = 1, ..., k − 1}

= P{nσ−1(Tkn − θ[k]) + nσ−1(θ[k] − θ[i]) > nσ−1(Tin − θ[i]), i = 1, ..., k − 1}

= P{Zkn + nδiσ
−1 > Zin, i = 1, ..., k − 1},

where Zin = n{Tin − θ[i]}/σ, i = 1, ..., k, which are all following standard exponential

distribution. From equation above, for all θ ∈ Ω(δ∗),

Pn(CS) =
∫∞

0

∏k−1
i=1 [1− exp(−z − nδiσ−1)]exp(−z)dz

≥
∫∞

0
[1− exp(−z − nδ∗σ−1)]k−1exp(−z)dz,

where the equality holds when δi = δ∗ for all i = 1, ..., k−1. Therefore θ[1] = · · · = θ[k−1] =

θ[k]−δ∗, a parameter configuration is referred to as the least favorable configuration(LFC).

Hence,

Infθ∈Ω(δ∗)Pn(CS) =

∫ ∞
0

[1− exp(−z − nδ∗σ−1)]k−1exp(−z)dz, (1.20)

while this infimum is attained at the LFC. Let b = b(k, P ∗) be such that

∫ ∞
0

{1− exp(−z − b))k−1exp(−z)dz = P ∗, (1.21)
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then it follows that Pn(CS) ≥ P ∗ for all θ ∈ Ω(δ∗) when n ≥ bσ/δ∗ = C. The values of

”b” was tabulated in Raghavachari and Starr(1970). In other words, if σ was given, the

experimenter should take [C]∗+1 samples from each π and and implement the correspond-

ing selection rule above to pick the best two-parameter negative exponential distribution

in order to meet the P ∗ requirement for P(CS) in Ω(δ∗). For the case of σ being unknown,

a two-stage procedure had been proposed by Desu et al.(1977) and a purely sequential

procedure had been proposed by Mukhopadhyay(1986).

1.9 Partition Problem

However, in many cases the need for experimenters has been beyond selecting the best

treatment. The experimenter may want the best to be some “specified amount better

than what is already in use (known as Control or Standard). This requirement forced the

researchers to seek out alternative formulations and thus the problem of comparisons with

a control originated. The problem of comparisons with a control has been investigated

by many researchers under different types of formulations, and under different criteria to

be satisfied by an acceptable procedure. Among the early investigations some research

related to comparisons with respect to a control population had been done. In 1969, Tong

published his paper of partitioning a set of normal distributions by their locations with

respect to a control through the formulation of Bechhofer’s indifference zone.

Assume that there are (k + 1) independent populations, π0, π1, ..., πk, with unknown

location parameters µi, i = 0, 1, ..., k, but common scale parameter σ2. π0 is denoted

as the standard or control populations. Given arbitrary but fixed constants δ1 and δ2,

δ1 < δ2, define three subsets along the lines of the Bechhofer’s (1954) indifference zone

formulation as
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ΩB = {πi : µi ≤ µ0 + δ1, i = 1, ..., k},

ΩI = {πi : µ0 + δ1 < µi < µ0 + δ2, i = 1, ..., k},

ΩG = {πi : µi ≥ µ0 + δ2, i = 1, ..., k}.

(1.22)

We refer to ΩG as the set of ”good populations” and ΩB as the set of ”bad populations”.

It is important to note that the choice of the constants δ1 and δ2 is generally provided by

the experimenters. Our aim is to correctly partition the populations into that two sets.

The ΩI is considered as the indifference zone set and a correct decision puts no restrictions

on the partition of the populations belonging to this set. Next, with high accuracy, we

want to partition the set Ω into two disjoint subsets SB and SG, such that, ΩB ⊆ SB and

ΩG ⊆ SG. Such a partition is know in the literature as a correct decision(CD). In other

words, given a preassigned number P ∗,2−k < P ∗ < 1, we seek statistical methodologies ℘

to determine SB and SG, such that

P{CD|µ, σ2, ℘} ≥ P ∗ ∀ µ ∈ Rk+1, σ ∈ R+, (1.23)

where µ = (µ0, µ1, · · · , µk)′.

Tong (1969) considered the following decision rule to partition the set of treatments

Ω, based on some appropriately N observations from each of the k treatments and the

control population:

SB = {πi : X̄iN − X̄0N < d, i = 1, · · · , k},

SG = {πi : X̄iN − X̄0N > d, i = 1, · · · , k},
(1.24)

where X̄iN is the sample mean from πi, i = 0, 1, · · · , k. The following is defined for later
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use:

d = (δ1 + δ2)/2, a = (−δ1 + δ2)/2, λ = σ/a, and

m =

 k/2 if k is even,

(k + 1)/2 if k is odd.

(1.25)

Next, using the partition rule (1.24), Tong (1969) showed that the probability of

correct decision for the normally distributed populations can be expressed as

Inf
µ∈Rk+1

P [CD] =

∫ ( 1
2
N)

1
2

/
λ

−∞
· · ·
∫ ( 1

2
N)

1
2

/
λ

−∞

|Σ|
1
2

(2π)
k
2

exp

(
−y
′Σ−1y

2

)
dy1 · · · dyk, (1.26)

where y′ = (y1, · · · , yk) has a multivariate normal distribution with mean vector of zero,

the covariance matrix Σ is given by

Σ =



1 1
2
−1

2
· · · −1

2

. . .
...

. . .
...

1
2

1 −1
2
· · · −1

2

−1
2
· · · −1

2
1 1

2

...
. . .

...
. . .

−1
2
· · · −1

2
1
2

1


,

and the infimum for P (CD) is attained if µ1 = µ2 = · · · = µm = µ0 + δ1 and µm+1 =

µm+2 = · · · = µk = µ0 + δ2. In the statistical literature, this parameter configuration is

known as the least favorable configuration (LFC). Next, suppose b is a constant satisfying

P ∗ =

∫ b

−∞
· · ·
∫ b

−∞

|Σ|
1
2

(2π)
k
2

exp

(
−y
′Σ−1y

2

)
dy1 · · · dyk. (1.27)

Then, if we take a sample of size N, where N > 2λ2b2, and partition the k treatments
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according to the partition rule (1.24), we have

P [CD] > P ∗, ∀ µ ∈ Rk+1, σ ∈ R+.

The values of design constant b have been tabulated in the Table 1 of Tong (1969). For

the unknown σ2 case, Tong (1969) also constructed a two-stage and a purely sequential

procedure. For the unknown σ2 case, Datta and Mukhopadhyay (1998) had constructed

a fine-tuned purely sequential procedure and some other multistage methodologies, em-

phasizing the second-order asymptotic properties. However, the sequential procedures

are known to be operationally inconvenient and rather cumbersome to use, as decisions

and computations need to be carried out after each stage of the sampling process. With

that as the motivation, Solanky (2006) constructed a two-stage procedure with elimina-

tion which eliminates too inferior or too superior populations after the stage one of the

sampling process and in the stage two sampling is carried out only from the competing

treatments.
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2

Partition Problem for Exponential

Distributions

In the chapter 1, the method of partitioning a set of normal populations respect to the

location parameter was introduced. However, what about the case when the populations

needed partitioning are not following a normal distribution? For example, suppose sev-

eral new developed medicine needs to be classified as “Good” and “Bad” based on the

effectiveness compared a control medicine. Or, several different brand light bulbs need

partitioning according to their lifetime compared to a standard bulb. In these cases, the

populations will probably be distributed as two-parameter exponential distribution, and

will require methodology to partition two-parameter exponential distributions with re-

garding to a control. In this chapter, a procedure of partitioning several two-parameter

exponential distributions respect to their location parameter is introduced. The first few

sections show the logical thinking and derivation of design parameters for this problem,

including a detailed discussion on existence and derivation of the Least Favorable con-

figuration. The later part of the chapter is devoted to developing first and second order

asymptotic properties of the proposed procedure.
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2.1 Formulation for Partitioning Two-parameter

Exponential Distributions

In this section, we will introduce the formulation of partition problem for two-parameter

exponential distributions respect to the location parameter along with the setting of Bech-

hofer’s (1954) indifference zone idea and give some necessary notations of some statistical

symbols for later sections’ use.

It is assume that there are (k + 1) independent negative exponential populations

π0, π1, . . . , πk, with unknown location parameters θ, i = 0, 1, . . . , k, and common scale

parameter σ. π1, . . . , πk are denoted as the populations to be partitioned and π0 is denoted

as the standard or control populations. For i = 0, . . . , k, the density function of the

population is expressed as

fX(xij) = σ−1exp{−(xij − θi)/σ}I(xij > θi). (2.1)

Given arbitrary but fixed constants δ1 and δ2, let us define three subsets along the

lines of the Bechhofer’s (1954) indifference zone formulation as

ΩB = {πi : θi ≤ θ0 + δ1, i = 1, ..., k},

ΩI = {πi : θ0 + δ1 < θi < θ0 + δ2, i = 1, ..., k},

ΩG = {πi : θi ≥ θ0 + δ2, i = 1, ..., k}.

(2.2)

We refer to ΩG as the set of “good populations” and ΩB as the set of “bad populations”.

It is important to note that the choice of the constants δ1 and δ2 is generally determined

by the experimenters based on the prior knowledge of the practical situation. Our aim

is to correctly partition the populations into two groups. The subset ΩI is considered

as the indifference zone set and a correct decision puts no restrictions on the partition
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of the populations belonging to this set. Next, with high accuracy, we want to partition

the set Ω into two disjoint subsets SB and SG, such that, ΩB ⊆ SB and ΩG ⊆ SG.

Such a partition can guarantee that all true “good population” and “bad population”

are correctly labeled, which is known in the literature as a correct decision(CD). In other

words, given a preassigned value P ∗, 2−k < P ∗ < 1, we seek statistical methodologies ℘

to determine SB and SG, such that

P{CD|θ, σ, ℘} ≥ P ∗ ∀ θ ∈ Rk+1, σ ∈ R+, (2.3)

where θ = (θ0, θ1, · · · , θk)′.

Alone with the setting originated in Tong (1969), with N observations from each of

the k populations to be partitioned and the control population, we define a partition rule

℘ was defined as:

SB = {πi : Ti − T0 < d, i = 1, · · · , k},

SG = {πi : Ti − T0 > d, i = 1, · · · , k},
(2.4)

where Ti = Min1≤j≤N{Xi1, . . . , XiN} is a point estimator of θi, i = 0, 1, · · · , k. Through

this decision rule, the probability of correct partition is controlled by the selection size.

Or equivalently, the power of grouping procedure according the the rule ℘ is controlled

by the setting of collection size of the k + 1 populations. Next we will show how this

relationship takes effect. In order to make the derivation clear, the following are defined

for later use:

d = (δ1 + δ2)/2, a = (−δ1 + δ2)/2, λ = σ/a, and

m =

 k/2 if k is even,

(k + 1)/2 if k is odd.

(2.5)

For simplicity let us first assume that the scale parameter σ is known and a set of
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exponential populations are partitioned based on rule ℘. Then the probability of making

a correct decision(ΩB ⊆ SB,ΩG ⊆ SG) can be obtained as

P (CD|σ, ℘) = P [Ti − T0 < d, Tj − T0 > d, 0 ≤ i ≤ N1, 0 ≤ j ≤ N2|σ, ℘]. (2.6)

Where N1 is the number of populations in ΩB and N2 is the number of populations

in ΩG. Since the population location parameters are unknown, in order to guarantee

(2.1.3) to hold, the infimum of the left hand side should be controlled greater or equal

to P ∗. Holding this purpose, the least favorable configuration of the population location

parameters(LFC) θ0 among Rk+1 minimizing the probability of correct partition is being

analyzed here. In other words, we are interested in finding the worst or hardest situation

to do the partition process.

The above states the importance of detecting the LFC to the partition process. Next

we try to tackle the task of finding the LFC.

Theorem 2.1.1 If a vector θ0 is a least favorable configuration under under procedure

℘, it has to satisfy the two conditions below:

(i) ΩI is empty.

(ii) All populations that needs to be partitioned have a location parameter lying on the

boundaries which are either θ0 + δ1 or θ0 + δ2.

Proof: Suppose there is a parameter configuration θ1 which satisfies that ΩI is not empty

and the PCD of it can be expressed as (2.6). Then k−N1−N2 > 0 and there always exits

another parameter configuration which is more difficult to be partitioned. For example,

let us assume a configuration θ2 that k − N1 − N2 populations are in ΩB while the rest

N1 + N2 populations have the same location parameter with θ1, then the PCD of under
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configuration θ2 can be expressed as

P (CD|θ2, σ, ℘)

= P [Ti − T0 < d, Tj − T0 > d, Tl − T0 < d, 0 ≤ i ≤ N1, 0 ≤ j ≤ N2,

0 ≤ l ≤ k −N1 −N2|σ, ℘]

= P [Ti − T0 < d, Tj − T0 > d ∩ Tl − T0 < d]

= P [Ti − T0 < d, Tj − T0 > d] · P [Tl − T0 < d|Ti − T0 < d, Tj − T0 > d]

< P [Ti − T0 < d, Tj − T0 > d] = P [CD|θ1, σ, ℘].

Compared to the case above, next a case that not all populations’ location parameter are

on the boundary of the indifference set is discussed.

Under the setting of (i) suppose there is a parameter configuration θ3 which satisfies

that ΩI is empty and the PCD of it can be expressed as (2.6). So now k −N1 −N2 = 0.

Let θi = θ0 + δ1 + τi, θj = θ0 + δ2 + τj, τi, τj ≥ 0 for i = 0, . . . , N1 and j = 0, . . . , N2 be

assumed as the real setting of components. Then the PCD under configuration θ3 can be

expressed as

P
[
CD|θ3, σ; ℘

]
= P

[
Ti − T0 < d, Tj − T0 > d, 0 < i ≤ N1, 0 < j ≤ N2|θ3, σ

]
= P

[Ti − θi
σ/n

− T0 − θ0

σ/n
<
d− θi + θ0

σ/n
,
Tj − θj
σ/n

− T0 − θ0

σ/n
>
d− θj + θ0

σ/n
,

0 ≤ i ≤ N1, 0 ≤ j ≤ N2

]
= P

[
Zi − Z0 <

d− (δ1 − τi)
σ/n

, Zj − Z0 >
d− (δ2 + τj)

σ/n
, 0 ≤ i ≤ N1, 0 ≤ j ≤ N2

]
= P

[
Zi − Z0 <

a

σ/n
+

τi
σ/n

, Zj − Z0 > −
a

σ/n
− τj
σ/n

, 0 ≤ i ≤ N1, 0 ≤ j ≤ N2

]
= P

[
Zi − Z0 <

an

σ
+
τin

σ
, Z0 − Zj <

an

σ
+
τjn

σ
, 0 ≤ i ≤ N1, 0 ≤ j ≤ N2

]
≤ P

[
Zi − Z0 <

an

σ
, Z0 − Zj <

an

σ
, 0 ≤ i ≤ N1, 0 ≤ j ≤ N2

]
,
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It can be shown that the infimum of PCD under configuration θ3 is attached when

τi, τj = 0 for i = 0, . . . , N1 and j = 0, . . . , N2. Equivalently speaking, the infimum is at-

tached when all populations have a location parameter on the boundary of the indifference

zone.

Next, under the setting of conditions from Theorem 2.1.1, suppose out of k populations

there are r exponential populations having a location parameter at θi = θ0 + δ1, 0 ≤ i ≤ r

and k− r exponential populations having a location parameter at θj = θ0 + δ2, r > j ≤ k.

Here comes a goal that we need to find the value of r(0 ≤ r ≤ k) which leads the

probability of the correct decision to attach the infimum.

Without the loss of generality assume that the first r populations have the location

parameter θ0+δ1 and the rest k−r populations have the location parameter θ0+δ2. Denot-

ing this configuration as θ0(r), then the probability of correct decision can be expressed

as

P
[
CD|θ0(r), σ; ℘

]
= P

[
Ti − T0 < d, Tj − T0 > d, 0 < i ≤ r, r < j ≤ k|θ0(r), σ

]
= P

[Ti − θi
σ/n

− T0 − θ0

σ/n
<
d− θi + θ0

σ/n
,
Tj − θj
σ/n

− T0 − θ0

σ/n
>
d− θj + θ0

σ/n
,

1 ≤ i ≤ r, r + 1 ≤ j ≤ k
]

= P
[
Zi − Z0 <

d− δ1

σ/n
, Zj − Z0 >

d− δ2

σ/n
, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k

]
= P

[
Zi − Z0 <

an

σ
, Z0 − Zj <

an

σ
, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k

]
, (2.7)

where Zi = Ti−θi
σ/n

for i = 0, . . . , k, are all following standard exponential distributions.

The density function of Z is derived below:
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According the (1.19),

F (Z) = P (Z ≤ z) = P (T−θ
σ/n
≤ z)

= P (T ≤ zσ
n

+ θ) = 1− e−
n( zσn +θ−θ)

σ

= 1− e−z.

Then fZ(z) = [F (Z)]
′

= e−z, which is the density function of standard exponential

distribution.

Let us define Yi = Zi − Z0 for 0 < i ≤ r and Yi = Z0 − Zi for r < i ≤ k , then

Yi for i = 1, . . . , k are all following Laplace distribution. Then it can be obtained that

Y = (Y1, Y2, . . . , Yk)
′

is a joint distribution of k Laplace distributions. And the (k × k)

covariance matrix ΣY = (σij) as

σij =


2 for i = j,

1 for i 6= j, and i, j ∈ [1, r] or i, j ∈ [r + 1, k],

−1 for i 6= j, and i ∈ [1, r] and j ∈ [r + 1, k].

(2.8)

Then probability of of correct decision (2.7) can be considered as a probability related

to a multivariate distribution. Let us denote the density function of Y as a multivariate

distribution expressed as fY (·).

Next, we will investigate if the multivariate distribution fY (·) is a Multivariate Laplace

distribution. And it is important to note that a multivariate Laplace distribution is not

a unique distribution. Also, using (2.7), we will next investigate the value of r which will

minimize the probability requirement from (2.7). This choice of r, known as LFC in the

statistical literature, will have that at a given fixed significance level α

P
[
CD|θ0(r), σ

]
≥ P ∗ = 1− α. (2.9)
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After the value of r is identified, some critical constant related to n can be computed

correspondingly. That will help statisticians with determining the sample size needed if

the power of partition procedure is required. These two different directions are detailed

discussed in the later sections.

2.2 Multivariate Distribution Identification

In the last section, a multivariate distribution is derived based on the form of the proba-

bility expression of the correct decision. In this section, the statement that distribution of

Y is a Multivariate Laplace distribution is verified. In case the statement is true, as was

the case in Tong (1969), formula of probability of correct decision (2.7) can be evaluated

as a integral of a Multivariate Laplace distribution, which is somewhat easy to solve with

or without standard software packages. In addition, some good properties of Multivariate

Laplace distribution can be developed related to our problem and then used to identify

the LFC (Least Favorable Configuration).

It is known that the joint distribution of k normal variables is not guaranteed to

follow a Multivariate Normal distribution. The Multivariate distribution requires that any

linear combination of its components to follow the same type of marginal distribution.

For example, a multivariate density is known as a multivariate normal density if any

linear combination of its components also follows a normal density. The realization of

this condition is the reason why Tong could derive a multivariate normal distribution for

the partition problem respect a set of normal populations in Tong (1969). However, the

multivariate Laplace distribution doesn’t follow the same properties. Next, we show how

a multivariate normal variable can be derived from normal partition problem and why

the multivariate Laplace variable can not, under the partition problem considered in this

thesis.
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Theorem 2.2.1 Suppose Z0, Z1, Z2 are independent standard normal variables and Y1 =

Z1 − Z0 and Y2 = Z2 − Z0, then the joint distribution of Y1 and Y2 is a bivariate normal

distribution

Proof: Note that in probability theory and statistics, the multivariate normal distribu-

tion is a generalization of the one-dimensional normal distribution to higher dimensions.

One definition is that a random vector is said to be k-variate normally distributed if every

linear combination of its k components has a univariate normal distribution. Therefore,

to prove the joint distribution of Y1 and Y2 is not a bivariate normal distribution is equiv-

alent to show that any linear combination of Y1 and Y2 is following a normal distribution

is wrong. Now we try to find whether the distribution of aY1 + bY2 is normal distribution

when a and b are not both 0. Let us define

X = aY1 + bY2 = aZ1 + bZ2 − (a+ b)Z0.

So the expectation and variance of X can be obtained

E[X] = aE[Z1] + bE[Z2]− (a+ b)E[Z0] = 0

V ar[X] = a2V ar[Z1] + b2V ar[Z2] + (a+ b)2V ar[Z0] = 2(a2 + ab+ b2),

To find the distribution of X, we first find the joint distribution of (X1 X2 X)′ by the

method of transformation of variables. Then, derive the distribution of X by obtaining

the marginal distribution. Here we let X1 = Z1 and X2 = Z2. Since Z0, Z1, Z2 are

independent normal variables. then the joint density of Z0, Z1, Z2 can be expressed as

f(Z1, Z2, Z0) = (2π)−
3
2 e−

1
2

(z21+z22+z20).
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And the relationship of Z0, Z1, Z2 and X,X1, X2 is

Z1 = X1

Z2 = X2

Z0 = a
a+b

X1 + b
a+b

X2 − 1
a+b

X

J =

∣∣∣∣∣∣∣∣∣∣
1 0 0

0 1 0

a
a+b

b
a+b

− 1
a+b

∣∣∣∣∣∣∣∣∣∣
= − 1

a+b
.

Then the joint density function of (X1 X2 X)′ can be obtained as

g(x1, x2, x) = (2π)−
3
2 e
− 1

2

[
x21+x22+( a

a+b
x1+ b

a+b
x2− 1

a+b
x)2

]
· |J |

= (2π)−
3
2 e
− 1

2

[
x21+x22+ a2

(a+b)2
x21+ b2

(a+b)2
x22+ 1

(a+b)2
x2+ 2ab

(a+b)2
x1x− 2a

(a+b)2
x1x− 2b

(a+b)2
x2x

]
· | 1

a+ b
|

=
(2π)−

3
2

|a+ b|
e
− 1

2

[
2a2+2ab+b2

(a+b)2
x21+ 2ab

(a+b)2)
x1x2− 2a

(a+b)2
x1x

]
e
− 1

2

[
a2+2ab+2b2

(a+b)2
x22−

2b
(a+b)2

x2x

]
e
− 1

2(a+b)2
x2
.

Then the marginal density g(x2, x) can be solved as

g(x2, x) =

∫ ∞
−∞

g(x1, x2, x)dx1

=
(2π)−

3
2

|a+ b|
e
− 1

2

[
a2+2ab+b2

(a+b)2
x22−

2b
(a+b)2

x2x

]
e
− 1

2(a+b)2
x2

·
∫ ∞
−∞

e
− 2a2+2ab+2b2

2(a+b)2

[
(x1− ax−abx2

2a2+2ab+b2
)2−(

ax−abx2
2a2+2ab+b2

)2

]
dx1.

Let us make the part of g(x2, x) as

A =

∫ ∞
−∞

e
− 2a2+2ab+2b2

2(a+b)2

[
(x1− ax−abx2

2a2+2ab+b2
)2−(

ax−abx2
2a2+2ab+b2

)2

]
dx1

= e
(ax−abx2)

2

2(a+b)2(2a2+2ab+b2)

∫ ∞
−∞

e
−

(x1−
ax−abx2

2a2+2ab+b2
)2

2(a+b)2/(2a2+2ab+b2)dx1

= e
(ax−abx2)

2

2(a+b)2(2a2+2ab+b2) ·
[ 2π(a+ b)2

2a2 + 2ab+ b2

](− 1
2

)(−1)

=
[ 2π(a+ b)2

2a2 + 2ab+ b2

] 1
2
e
a2b2x22−2a2bx2x+a

2x2

2(a+b)2(2a2+2ab+b2) .
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Then the density of (X2, X) can be simplified as

g(x2, x) =
(2π)−

3
2

|a+ b|
e
− 1

2

[
a2+2ab+b2

(a+b)2
x22−

2b
(a+b)2

x2x

]
e
− 1

2(a+b)2
x2 ·
[ 2π(a+ b)2

2a2 + 2ab+ b2

] 1
2
e
a2b2x22−2a2bx2x+a

2x2

2(a+b)2(2a2+2ab+b2)

=
(2π)−1

(2a2 + 2ab+ b2)
1
2

e
− 1

2(a+b)2
x2

· e
− 1

2(a+b)2(2a2+2ab+b2)

[
(a2+2ab+2b2)(2a2+2ab+b2)x22−2b(2a2+2ab+b2)x2x−a2b2x22+2a2bx2x−a2x2

]
=

(2π)−1

(2a2 + 2ab+ b2)
1
2

e
− 1

2(a+b)2
x2
e

a2

2(a+b)2(2a2+2ab+b2)
x2

· e
− 1

2(a+b)2(2a2+2ab+b2)

[
2(a+b)2(a2+ab+b2)x22−2b(a+b)2x2x

]

=
(2π)−1

(2a2 + 2ab+ b2)
1
2

e
− 1

2(a+b)2
x2
e

a2

2(a+b)2(2a2+2ab+b2)
x2
e
− a2+ab+b2

2a2+2ab+b2

[
x22−

bx
a2+ab+b2

x2

]
,

then solve g(x) by solving

g(x) =

∫ ∞
−∞

g(x2, x)dx2

=
(2π)−1

(2a2 + 2ab+ b2)
1
2

e
− 1

2(a+b)2
x2
e

a2

2(a+b)2(2a2+2ab+b2)
x2
∫ ∞
−∞

e
− a2+ab+b2

2a2+2ab+b2

[
x22−

bx
a2+ab+b2

x2

]
dx2.

Similarly, we can let part of g(x) be

B =

∫ ∞
−∞

e
− a2+ab+b2

2a2+2ab+b2

[
x22−

bx
a2+ab+b2

x2

]
dx2

=

∫ ∞
−∞

e
− a2+ab+b2

2a2+2ab+b2

[
(x2− bx

2(a2+ab+b2)
)2−( bx

2(a2+ab+b2)
)2

]
dx2

= e
b2x2

4(2a2+2ab+b2)(a2+ab+b2)

∫ ∞
−∞

e
−

(x2−
1
2 bx

a2+ab+b2
)2

(2a2+2ab+b2)/(a2+ab+b2)dx2

= e
b2x2

4(2a2+2ab+b2)(a2+ab+b2) ·
[
2π · 2(2a2 + 2ab+ b2)/(a2 + ab+ b2)

](− 1
2

)(−1)

=
[4π(2a2 + 2ab+ b2)

a2 + ab+ b2

] 1
2
e

b2x2

4(2a2+2ab+b2)(a2+ab+b2) ,
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then the density function of variable X can be obtained as

g(x) =
(2π)−1

(2a2 + 2ab+ b2)
1
2

e
− 1

2(a+b)2
x2
e

a2

2(a+b)2(2a2+2ab+b2)
x2 ·
[4π(2a2 + 2ab+ b2)

a2 + ab+ b2

] 1
2

· e
b2x2

4(2a2+2ab+b2)(a2+ab+b2)

=
[
4π(a2 + ab+ b2)

]− 1
2

· e
− 1

4(a+b)2(2a2+2ab+b2)(a2+ab+b2)

[
2(2a2+2ab+b2)(a2+ab+b2)x2−2a2(a2+ab+b2)x2−b2(a+b)2x2

]

=
[
4π(a2 + ab+ b2)

]− 1
2
e
− 1

4(a+b)2(2a2+2ab+b2)(a2+ab+b2)

[
(2a2+2ab+b2)(a+b)2x2

]
=
[
4π(a2 + ab+ b2)

]− 1
2
e
− x2

4(a2+ab+b2) .

It is shown that g(x) is density function of a normal distribution with µx = 0 and

σ2
x = 2(a2 + ab + b2). It implies X = aY1 + bY2 follows normal distribution when a and

b are not both 0. That is, the joint distribution of Y1 and Y2 is a multivariate normal

distribution.

Above, we have shown that for the normal partition problem considered in Tong

(1969), a Multivariate Normal distribution can be derived to calculate the probability of

correct decision. Next, we show some results for the case of partitioning two-parameter

exponential distributions.

Theorem 2.2.2 Suppose Z0, Z1, Z2 are independent standard exponential variables and

Y1 = Z1−Z0 and Y2 = Z2−Z0, then the joint distribution of Y1 and Y2 is not a bivariate

Laplace distribution.

Proof: Since Z0, Z1, Z2 are independent standard exponential variables, Y1, Y2 are both

following Laplace distribution with location parameter of zero and scale parameter of 1.

Then note that to prove the joint distribution of Y1 and Y2 is not a bivariate Laplace

distribution, we will show that not all linear combinations of Y1 and Y2 does follow a
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Laplace distribution. That is, we will prove that the distribution of aY1 + bY2 is not

Laplace distribution. Let us define

X = aY1 + bY2 = aZ1 + bZ2 − (a+ b)Z0 (2.10)

So E[X] = aE[Z1] + bE[X2]− (a+ b)E[Z0] = 0. And then denote X = A−B, where

A = aZ1 + bZ2

B = (a+ b)Z0.

Let us consider the case that a and b are both positive but not equal for simplicity. First,

since Z0, Z1, Z2 are independent exponential variables, then the characteristic function of

A is

ϕ(A) = ϕ(aZ1) · ϕ(bZ2) =
1

1− iat
· 1

a− ibt
.

Since a 6= b, then the characteristic function can be expressed as

ϕ(A) =
a

a− b
· 1

1− iat
+

b

b− a
· 1

1− ibt
.

By inverse Fourier transform, it is easy to obtain the density function of A and B, which

are expressed as

f(A) = a
a−b ·

1
a
e−

A
a + b

b−a ·
1
b
e−

A
b = 1

a−be
−A
a + 1

b−ae
−A
b , 0 ≤ A <∞

f(B) = 1
a+b

e−
B
a+b , 0 ≤ B <∞.

Then to solve then cumulative function of X,

P (X ≤ x) = P (A−B ≤ x)

= P (A ≤ B + x).
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For x ≥ 0,

P (X ≤ x) =

∫ ∞
0

∫ B+x

0

1

a− b
e−

A
a +

1

b− a
e−

A
b dA

1

a+ b
e−

B
a+bdB

=

∫ ∞
0

[
(− a

a− b
)e−

A
a − b

b− a
e−

A
b

]B+x

0

1

a+ b
e−

B
a+bdB

=

∫ ∞
0

[
(− a

a− b
)e−

B+x
a − b

b− a
e−

B+x
b +

a

a− b
+

b

b− a

]
· 1

a+ b
e−

B
a+bdB

=

∫ ∞
0

− a

(a+ b)(a− b)
e−

x
a e−

2a+b
a(a+b)

B − b

(a+ b)(b− a)
e−

x
b e−

a+2b
b(a+b)

B +
1

a+ b
e−

B
a+bdB

=
[ a

(a+ b)(a− b)
· a(a+ b))

2a+ b
e−

x
a e−

2a+b
a(a+b)

B +
b

(a+ b)(b− a)

· b(a+ b)

a+ 2b
e−

x
b e−

a+2b
b(a+b)

B − e−
B
a+b

]∞
0

=
[ a2

(a− b)(2a+ b)
e−

x
a e−

2a+b
a(a+b)

B +
b2

(b− a)(a+ 2b)
e−

x
b e−

a+2b
b(a+b)

B − e
B
a+b

]∞
0

=
−a2

(a− b)(2a+ b)
e−

x
a +

−b2

(b− a)(a+ 2b)
e−

x
b + 1.

For x < 0,

P (X ≤ x) =

∫ ∞
−x

∫ B+x

0

1

a− b
e−

A
a +

1

b− a
e−

A
b dA

1

a+ b
e−

B
a+bdB

=
[ a2

(a− b)(2a+ b)
e−

x
a e−

2a+b
a(a+b)

B +
b2

(b− a)(a+ 2b)
e−

x
b e−

a+2b
b(a+b)

B − e
B
a+b

]∞
−x

=
−a2

(a− b)(2a+ b)
e−

x
a e

2a+b
a(a+b)

x +
−b2

(b− a)(a+ 2b)
e−

x
b e

a+2b
b(a+b)

x + e
x
a+b

=
−a2

(a− b)(2a+ b)
e

x
a+b +

−b2

(b− a)(a+ 2b)
e

x
a+b + e

x
a+b

=
−a2(a+ 2b) + b2(2a+ b) + (a− b)(2a+ b)(a+ 2b)

(a− b)(2a+ b)(a+ 2b)
e

x
a+b

=
(a+ b)2

(2a+ b)(a+ 2b)
e

x
a+b .
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Combining the results above the cumulative density function of X can be expressed as

F (X) =


−a2

(a−b)(2a+b)
e−

x
a + −b2

(b−a)(a+2b)
e−

x
b + 1 if x ≥ 0

(a+b)2

(2a+b)(a+2b)
e

x
a+b if x < 0.

Taking the derivative of the cumulative function, the probability density function of X

for the case a and b are unequal positive can be obtained as

f(X) =


a

(a−b)(2a+b)
e−

x
a + b

(b−a)(a+2b)
e−

x
b if x ≥ 0

a+b
(2a+b)(a+2b)

e
x
a+b if x < 0.

To summarize, we have shown that the probability density function of X is not sym-

metric about 0, which implies X = aY1 + bY2 does not follow Laplace distribution when

a and b are unequal positive. That is, the joint distribution of Y1 and Y2 is not a multi-

variate Laplace distribution. For a, b are negative or equal values, the same conclusion

can also be obtained. But here we don’t provide the proof for brevity.

Remark: One may also consider there are some other multivariate Laplace distributions

or define a new multivariate Laplace related to our problem. The author did some work

and found out that there are no other Multivariate Laplace densities matching our density;

in addition, since our distribution doesn’t contain very classic properties and doesn’t seem

common in practice, the author doesn’t try to define as a new joint multivariate Laplace.

2.3 LFC Validation

In the last section it is shown that fY (·) is not a multivariate Laplace distribution. In this

section, we focus on finding the LFC from symmetric multivariate Laplace distribution. To

detect the parametric configuration index r which minimizes (2.7), Monte Carol method is
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used to simulate the performance of the partition for various type of setting of parametric

configurations. In Tables (2.1)-(2.7), we have summarized the performance of the selection

procedure under various parametric configurations for the case when k = 3, 4, 6, 8 for

different values of σ, a and n. Recall that σ is the common scale parameter of those k+ 1

exponential populations, a is a half length of the indifference zone defined in (2.5) and n

is the selection sample size. And we use (r, k − r) to denote that there are r and k − r

populations need partitioning which have a location parameter at left boundary and right

boundary of indifference zone respectively. For example, when k = 3, (3,0) indicates all

populations’ location parameter are at µ0 + δ1; (2,1) indicates that two populations have

a location parameter at µ0 + δ1 and one population have a location parameter at µ0 + δ2.

The simulation studies summarized in the Tables (2.1) and (2.2) conclude that there

is no significant difference between the probability of making a correct partition for the

cases of µ0 = 0 and µ0 = 1 when k = 3, and no significant difference for the cases of

µ0 = 0 and µ0 = 5 when k = 4, it is obvious that PCD through partition rule of 2.4 isn’t

affected by the value of the location parameter of the control population. While it only

depends on the length of indifferent zone if the common standard deviation σ is fixed.

The the proof is shown in the section (2.5) of simulation. Also, the results presented in

the tables (2.1) and (2.2), the PCD is not symmetric about r = k/2. For example, (0,3)

is very different with (3,1) and (1,2) is very different with (2,1) when k = 3; for k = 4,

(0,4) is very different with (4,0) and (1,3) is very different with (3,1); and PCD does not

occur at (2,2).

In addition, the Table (2.3) and (2.4) is consistent with the assumption that all the

location parameters should be located on the boundary of the indifference zone to diminish

the probability of making correct partition.

And Table (2.1) and (2.2) shows that for n = 25, 50, 75, 100, the PCD of configuration

(2,1) and (3,1) turns out to be the smallest among all different cases for k = 3 and k = 4
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receptively. Table (2.5) - (2.7) shows the result of k = 6 for different σ. It is seen that for

n = 25, 50, 75, 100, The PCD of configuration (5,1) is the smallest.

Table 2.1: Monte Carlo Simulation Results; Based on 100,000 iterations, k = 3
parametric confi. a σ λ n∗ P̄ (µ0 = 0) Std(P̄ ) P̄ (µ0 = 1) Std(P̄ )

(0,3)
0.1 1 10

25 0.9388 0.0008 0.9393 0.00076
50 0.9947 0.00023 0.9949 0.00022
75 0.9996 0.00006 0.9996 0.00006
100 0.9999 0.00002 0.9999 0.00002

(1,2)
0.1 1 10

25 0.9048 0.0009 0.9045 0.00093
50 0.9928 0.00027 0.9925 0.00027
75 0.9993 0.00008 0.9994 0.00008
100 0.9999 0.00002 0.9999 0.00003

(2,1)
0.1 1 10

25 0.8778 0.0010 0.8781 0.00103
50 0.9896 0.00032 0.9899 0.00032
75 0.9990 0.00010 0.9993 0.00008
100 0.9999 0.00002 0.9999 0.00003

(3,0)
0.1 1 10

25 0.8835 0.0010 0.8830 0.00102
50 0.9897 0.00032 0.9900 0.00032
75 0.9992 0.00009 0.9992 0.00009
100 0.9999 0.00002 0.9999 0.00002

(0,3)
0.1 2 20

25 0.7843 0.0013 0.7862 0.00130
50 0.9388 0.00076 0.9373 0.00077
75 0.9824 0.00042 0.9824 0.00042
100 0.9948 0.00023 0.9948 0.00023

(1,2)
0.1 2 20

25 0.6710 0.0015 0.6713 0.00149
50 0.9046 0.00093 0.9048 0.00093
75 0.9732 0.00051 0.9725 0.00052
100 0.9926 0.00027 0.9917 0.00029

(2,1)
0.1 2 20

25 0.6037 0.0015 0.6009 0.00155
50 0.8780 0.00103 0.8785 0.00103
75 0.9647 0.00058 0.9648 0.00058
100 0.9898 0.00032 0.9898 0.00032

(3,0)
0.1 2 20

25 0.6451 0.0015 0.6483 0.00151
50 0.8843 0.00100 0.8851 0.00101
75 0.9651 0.00058 0.9648 0.00058
100 0.9900 0.00031 0.9897 0.00032

40



Table 2.2: Monte Carlo Simulation Results; Based on 100,000 iterations, k = 4
configuration a σ λ n∗ P̄ (µ0 = 0) Std(P̄ ) P̄ (µ0 = 5) Std(P̄ )

(0,4) 0.5 5 10

25 0.93322 0.00079 0.93569 0.00077
50 0.99450 0.00023 0.99458 0.00023
75 0.99959 0.00006 0.99952 0.00007
100 0.99998 0.00001 0.99997 0.00002

(1,3) 0.5 5 10

25 0.89844 0.00096 0.89840 0.00096
50 0.99104 0.00029 0.99178 0.00029
75 0.99926 0.00009 0.99929 0.00008
100 0.99994 0.00002 0.99991 0.00003

(2,2) 0.5 5 10

25 0.86480 0.00108 0.86651 0.00079
50 0.98846 0.00033 0.98895 0.00033
75 0.99883 0.00011 0.99912 0.00009
100 0.99994 0.00002 0.99989 0.00003

(3,1) 0.5 5 10

25 0.84397 0.00115 0.84102 0.00116
50 0.98664 0.00036 0.98658 0.00036
75 0.99880 0.00011 0.99883 0.00011
100 0.99983 0.00004 0.99986 0.00004

(4,0) 0.5 5 10

25 0.84947 0.00113 0.84893 0.00113
50 0.98706 0.00036 0.98702 0.00036
75 0.99901 0.00010 0.99895 0.00010
100 0.99993 0.00003 0.99996 0.00002

(0,4) 0.5 10 20

25 0.77136 0.00133 0.76967 0.00133
50 0.93460 0.00078 0.93545 0.00078
75 0.98103 0.00043 0.98120 0.00043
100 0.99439 0.00024 0.99459 0.00023

(1,3) 0.5 10 20

25 0.64677 0.00151 0.65191 0.00151
50 0.89620 0.00097 0.89843 0.00096
75 0.97078 0.00053 0.97062 0.00053
100 0.99189 0.00028 0.99115 0.00030

(2,2) 0.5 10 20

25 0.56026 0.00157 0.55991 0.00157
50 0.86628 0.00108 0.86633 0.00096
75 0.96094 0.00062 0.96043 0.00062
100 0.98864 0.00034 0.98889 0.00033

(3,1) 0.5 10 20

25 0.51220 0.00158 0.51370 0.00158
50 0.84201 0.00115 0.84387 0.00115
75 0.95215 0.00065 0.95384 0.00066
100 0.98625 0.00037 0.98666 0.00036

(4,0) 0.5 10 20

25 0.56892 0.00157 0.57356 0.00156
50 0.84617 0.00114 0.84920 0.00113
75 0.95308 0.00066 0.95484 0.00066
100 0.98691 0.00036 0.98672 0.00036
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Table 2.3: Monte Carlo Simulation Results of (µ1, µ2, µ3); Based on 100,000 iterations,
indifference zone=(10,11), σ = 20, k = 3

n
P̄
(
Std(P̄ )

)
(10,11,11) (10,11,12) (10,11,13) (11,11,11) (11,11,12) (11,11,13)

25
0.41335 0.48531 0.48598 0.59729 0.64196 0.64395
0.00155 0.00158 0.00158 0.00155 0.00151 0.00151

50
0.67283 0.71570 0.72001 0.78557 0.80801 0.80851
0.00148 0.00142 0.00142 0.00129 0.00124 0.00124

75
0.82113 0.84562 0.84718 0.88515 0.89694 0.89916
0.00121 0.00114 0.00113 0.00100 0.00096 0.00095

100
0.90534 0.91611 0.91819 0.93853 0.94395 0.94568
0.00092 0.00087 0.00086 0.00076 0.00072 0.00071

125
0.94865 0.95600 0.95651 0.96666 0.97040 0.97116
0.00069 0.00064 0.00064 0.00056 0.00053 0.00052

Table 2.4: Monte Carlo Simulation Results of (µ1, µ2, µ3, µ4); Based on 100,000 iterations,
indifference zone=(10,11), σ = 20, k = 4

n
P̄
(
Std(P̄ )

)
(8,10,10,10) (9,10,10,10) (10,10,10,10) (11,11,11,11) (11,11,11,12) (11,11,11,13)

25
0.41906 0.42450 0.36387 0.56953 0.59850 0.60071
0.00156 0.00156 0.00152 0.00156 0.00155 0.00154

50
0.64654 0.64219 0.56897 0.77152 0.78349 0.78661
0.00151 0.00151 0.00156 0.00132 0.00130 0.00129

75
0.79178 0.78955 0.73688 0.87818 0.88499 0.88575
0.00128 0.00128 0.00139 0.00103 0.00101 0.00100

100
0.88452 0.88180 0.84897 0.93566 0.93831 0.93861
0.00101 0.00102 0.00113 0.00077 0.00076 0.00075

125
0.93632 0.93619 0.91496 0.96433 0.96709 0.96754
0.00077 0.00077 0.00088 0.00058 0.00056 0.00056

150
0.96531 0.96488 0.95484 0.98114 0.98154 0.98206
0.00057 0.00058 0.00065 0.00043 0.00042 0.00042
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Table 2.5: Monte Carlo Simulation Results; Based on 100,000 iterations, σ = 5, k = 6

configuration a σ λ
P̄ (Std(P̄ ))

n = 25 n = 50 n = 75 n = 100

(0,6) 0.5 5 20
0.9299 0.9944 0.9995 0.9999
0.00081 0.00024 0.00007 0.00002

(1,5) 0.5 5 20
0.8899 0.9910 0.9993 0.9999
0.00099 0.00030 0.00008 0.00003

(2,4) 0.5 5 20
0.8546 0.9876 0.9991 0.9999
0.00112 0.00035 0.00010 0.00003

(3,3) 0.5 5 20
0.8261 0.9849 0.9989 0.9999
0.00120 0.00039 0.00010 0.00004

(4,2) 0.5 5 20
0.7919 0.9828 0.9987 0.9999
0.00128 0.00041 0.00011 0.00003

(5,1) 0.5 5 20
0.7765 0.9801 0.9983 0.9999
0.00132 0.00044 0.00013 0.00004

(6,0) 0.5 5 20
0.7859 0.9799 0.9983 0.9999
0.00130 0.00044 0.00013 0.00003

Table 2.6: Monte Carlo Simulation Results; Based on 100,000 iterations, σ = 10, k = 6

configuration a σ λ
P̄ (Std(P̄ ))

n = 25 n = 50 n = 75 n = 100

(0,6) 0.5 10 10
0.7570 0.9314 0.9796 0.9943
0.00136 0.00080 0.00045 0.00024

(1,5) 0.5 10 10
0.6255 0.8918 0.9685 0.9906
0.00153 0.00098 0.00055 0.00031

(2,4) 0.5 10 10
0.5259 0.8564 0.9579 0.9875
0.00158 0.00111 0.00064 0.00035

(3,3) 0.5 10 10
0.4529 0.8216 0.9485 0.9852
0.00157 0.00121 0.00070 0.00038

(4,2) 0.5 10 10
0.3988 0.7924 0.9383 0.9824
0.00155 0.00128 0.00076 0.00042

(5,1) 0.5 10 10
0.3780 0.7755 0.9306 0.9799
0.00153 0.00132 0.00080 0.00044

(6,0) 0.5 10 10
0.4524 0.7841 0.9329 0.9801
0.00157 0.00130 0.00079 0.00044
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Table 2.7: Monte Carlo Simulation Results; Based on 100,000 iterations, σ = 15, k = 6

configuration a σ λ
P̄ (Std(P̄ ))

n = 25 n = 50 n = 75 n = 100

(0,6) 0.5 15 20
0.6316 0.8341 0.9303 0.9698
0.00153 0.00118 0.00081 0.00054

(1,5) 0.5 15 20
0.4517 0.7492 0.8912 0.9538
0.00157 0.00137 0.00099 0.00066

(2,4) 0.5 15 20
0.3297 0.6780 0.8563 0.9363
0.00149 0.00148 0.00111 0.00077

(3,3) 0.5 15 20
0.2565 0.6130 0.8212 0.9202
0.00138 0.00154 0.00121 0.00086

(4,2) 0.5 15 20
0.2142 0.5703 0.7936 0.9083
0.00130 0.00157 0.00128 0.00091

(5,1) 0.5 15 20
0.2106 0.5416 0.7762 0.8967
0.00129 0.00158 0.00132 0.00096

(6,0) 0.5 15 20
0.3226 0.5812 0.7838 0.8975
0.00148 0.00156 0.00130 0.00096

2.4 Single-stage Procedure

As seen in the previous section, based on Monte Carlo Simulations, we have concluded

that least favorable configuration is not unique for different k and different α. However,

it is shown that LFC is associated with a parametric configuration when each location

parameter of the k populations is either θ+ δ1 or θ+ δ2. Next, all different configurations

under this situation need to be considered and compared for a fixed α to determine the

LFC. In this section, a single-stage procedure is introduced to partition k two-parameter

exponential populations with a required correction probability satisfied.

Theorem 2.4.1 Assuming σ is known, the partition problem (2.2) has

P
[
CD|θ0(r), σ

]
≥ P ∗ (2.11)

using the partition rule (2.4), provided the sample size is at least n∗ = bσ
a

. The constant

b = b(k, P ∗) is a solution of an integral equation (2.14) and determined by (2.15).
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Proof: Recall the formulation 2.7, we have

P
[
CD|θ0(r), σ

]
= P

[
Zi − Z0 <

an

σ
, Z0 − Zj <

an

σ
, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k

]
.

Let us define

b =
an

σ
, (2.12)

which can be considered as a fixed positive constant if a, n, σ are already determined. If

only a and σ are given, in order to reach a required power the value of b can be considered

as a critical constant to solve, which can be used to determine the sample size needed to

fulfill the partition process.

With (2.12), the probability of making correct decision can be expressed as

P
[
CD|θ0(r), σ

]
= P

[
Zi − Z0 < b, Z0 − Zj < b, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k

]
= P

[
Zi < b+ Z0, Zj > −b+ Z0, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k

]
=
∫∞

0
P
[
Zi < b+ z, Zj > −b+ z, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k

]
f(z) dz

=
∫∞

0

{∏r
i=1 P (Zi < b+ z)

}{∏k−r
j=1 P (Zj > −b+ z)

}
f(z) dz

=
∫ b

0
F (b+ z)rf(z)dz +

∫∞
b
F (b+ z)r[1− F (−b+ z)]k−rf(z) dz,

(2.13)

where F(.) and f(.) are respectively the cumulative function(cdf) and probability density

function(pdf) of the standard exponential distribution, which are expressed as

F (z) = 1− e−z, f(z) = e−z.

The least value of P
[
CD|θ0(r), σ

]
is attained for some unknown r in the range

r = 0, . . . , k. So in order to solve for b values, we perform a numerical computation

to determine the value of r and then to solve for b. Equivalently, we have to compute
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the critical constant b∗ = bk,α by solving P
[
CD|θ0(r), σ

]
= 1 − α for some value of

r ∈ (0, 1, . . . , k) which minimize P (CD) given some specified α. Following algorithm was

implemented to compute the values of critical constants numerically.

Algorithm:

Step 1: For fixed values of k and α, compute numerically the values of critical con-

stants b(k, α) that satisfy the probability requirement Pr(CD|θ0(r), σ) ≥ 1 − α for

r = 0, 1, . . . , k. In other words, let br(k, α) be the solution of the integral equation:

∫ b

0

F (b+ z)rf(z) dz +

∫ ∞
b

F (b+ z)r[1− F (−b+ z)]k−rf(z) dz = P ∗ (2.14)

when r = 0, 1, . . . , k.

Step 2: Let

b∗ = max (b0, b1, . . . , bk) . (2.15)

Then the optimum value of the critical constant satisfying the probability requirement

P
[
CD|θ0(r), σ

]
= 1− α, irrespective of r, is b∗.

The values of critical constant obtained in step 2 above for different values of α are

tabulated for different k in table 2.8. Next, it can be shown that probability requirement

(2.9) is satisfied if n satisfies that

n ≥ bσ

a
. (2.16)

The expression for the sample size n∗ = bσ
a

, will be defined as the optimal fixed sample

size, had σ been known. This completes the proof of the Theorem 1.

Along with the introducing of process of single-stage selection and the simulations in

section 2.2, here author gives some theoretical proof of LFC for the case when k = 3 and

k = 4. Recall the result of (2.4.13), the probability of making correct decision can be
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Table 2.8: Value of constant b satisfying (2.14)

k
P ∗

0.50 0.75 0.80 0.90 0.95 0.975 0.99
1 0.0000 0.6931 0.9162 1.6094 2.3025 2.9957 3.9120
2 0.6463 1.3755 1.6026 2.3009 2.9953 3.6887 4.6051
3 0.9776 1.7451 1.9793 2.6918 3.3934 4.0905 5.0091
4 1.2135 2.0075 2.2468 2.9693 3.6760 4.3756 5.2958
5 1.3989 2.2126 2.4556 3.1854 3.8956 4.5970 5.5182
6 1.5524 2.3815 2.6273 3.3626 4.0754 4.7781 5.7000
7 1.6837 2.5254 2.7734 3.5128 4.2276 4.9313 5.8538
8 1.7988 2.6507 2.9005 3.6433 4.3597 5.0641 5.9870
9 1.9013 2.7619 3.0131 3.7586 4.4763 5.1813 6.1046
10 1.9937 2.8618 3.1142 3.8620 4.5806 5.2861 6.2097
11 2.0780 2.9525 3.2060 3.9556 4.6751 5.3811 6.3049
12 2.1554 3.0355 3.2899 4.0412 4.7614 5.4677 6.3918
13 2.2271 3.1122 3.3673 4.1200 4.8409 5.5475 6.4717
14 2.2938 3.1833 3.4392 4.1930 4.9145 5.6213 6.5457
15 2.3562 3.2497 3.5062 4.2611 4.9830 5.6901 6.6146
16 2.4149 3.3119 3.5689 4.3248 5.0472 5.7545 6.6791
17 2.4702 3.3705 3.6280 4.3847 5.1075 5.8149 6.7396
18 2.5226 3.4258 3.6837 4.4412 5.1643 5.8719 6.7967
19 2.5723 3.4782 3.7365 4.4947 5.2181 5.9258 6.8507
20 2.6396 3.5280 3.7867 4.5455 5.2691 5.9770 6.9020

47



expressed as

P
[
CD|θ0(r), σ

]
=

∫ b

0

F (b+ z)rf(z)dz +

∫ ∞
b

F (b+ z)r[1− F (−b+ z)]k−rf(z) dz.

Theorem 2.4.2 Assuming σ is known, using the partition rule (2.4) to deal with the

partition problem (2.2), LFC is attached at r = 2 for k = 3 for any predetermined

probability requirement P ∗. Here r stands for the number of exponential populations to be

partitioned which has a location parameter on the left boundary of the indifference zone.

Proof: According to Theorem (2.1.1), LFC must be one of the parametric configura-

tions that all the location parameters of the two-parameter exponential populations to be

partitioned are on the boundary of the indifference zone. First, PCD for those parametric

configurations can be obtained.

P (CD|r = 0) =

∫ b

0

(1− e−b−z)0e−zdz +

∫ ∞
b

(1− e−b−z)0(eb−z)3e−zdz

= [−e−z]b0 +

∫ ∞
b

e3be−4zdz

= 1− e−b + [−1

4
e3be−4z]∞b

= 1− 3

4
e−b.

P (CD|r = 1) =

∫ b

0

(1− e−b−z)1e−zdz +

∫ ∞
b

(1− e−b−z)1(eb−z)2e−zdz

= 1− 7

6
e−b +

1

4
e−3b.

P (CD|r = 2) =

∫ b

0

(1− e−b−z)2e−zdz +

∫ ∞
b

(1− e−b−z)2(eb−z)1e−zdz

= 1− 3

2
e−b +

1

3
e−2b +

1

3
e−3b − 1

12
e−5m.
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P (CD|r = 3) =

∫ b

0

(1− e−b−z)3e−zdz +

∫ ∞
b

(1− e−b−z)3(eb−z)0e−zdz

= 1− 3

2
e−b + e−2b − 1

4
e−3b.

Next we try to compare PCD for different configurations.

P (CD|r = 0)− P (CD|r = 3) = 1− 3

4
e−b − (1− 3

2
e−b + e−2b − 1

4
e−3m)

=
3

4
e−b − e−2b +

1

4
e−3b

=
3

4
e−2b(eb − 1)− 1

4
e−3b(eb − 1)

= (
3

4
e−2b − 1

4
e−3b)(eb − 1) > 0.

So P (CD|r = 0) > P (CD|r = 3).

P (CD|r = 1)− P (CD|r = 2) = 1− 7

6
e−b +

1

4
e−3b − (1− 3

2
e−b +

1

3
e−2b +

1

3
e−3b − 1

12
e−5b)

=
1

3
e−b − 1

3
e−2b − 1

12
e−3b +

1

12
e−5b

= (
1

3
e−b(1− e−b)− 1

12
e−3b(1 + e−b)(1− e−b)

= (
1

3
e−b − 1

12
e−3b − 1

12
e−4b)(1− e−b)

> (
1

3
e−b − 1

6
e−3b)(1− e−b) > 0.

So P (CD|r = 1) > P (CD|r = 2).

P (CD|r = 3)− P (CD|r = 2) = 1− 3

2
e−b + e−2b − 1

4
e−3b − (1− 3

2
e−b +

1

3
e−2b +

1

3
e−3b − 1

12
e−5b)

=
2

3
e−2b − 7

12
e−3b +

1

12
e−5b

> (
8

12
e−2b − 7

12
(e−3b) > 0.

So P (CD|r = 3) > P (CD|r = 2). Then we can conclude that under k = 3, for any P ∗,
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the LFC can be attained when r = 2 since P (CD|r = 0) > P (CD|r = 1) > P (CD|r =

2) < P (CD|r = 3).

Theorem 2.4.3 Assuming σ is known, using the partition rule (2.4) to deal with the

partition problem (2.2) for k = 4, LFC can be attained at different value of r for different

predetermined probability requirement P ∗. Here r stands for the number of exponential

populations to be partitioned which has a location parameter on the left boundary of the

indifference zone.

Proof: According to Theorem (2.1.1), LFC must be one of the parametric configura-

tions that all the location parameters of the two-parameter exponential populations to be

partitioned are on the boundary of the indifference zone. First, PCD for those parametric

configurations can be obtained.

P (CD|r = 0) =

∫ b

0

(1− e−b−z)0e−zdz +

∫ ∞
b

(1− e−b−z)0(eb−z)4e−zdz

= 1− 4

5
e−b.

P (CD|r = 1) =

∫ b

0

(1− e−b−z)1e−zdz +

∫ ∞
b

(1− e−b−z)1(eb−z)3e−zdz

= 1− 5

4
e−b +

3

10
e−3b.

P (CD|r = 2) =

∫ b

0

(1− e−b−z)2e−zdz +

∫ ∞
b

(1− e−b−z)2(eb−z)2e−zdz

= 1− 5

3
e−b +

1

3
e−2b +

1

2
e−3b − 2

15
e−5b.
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P (CD|r = 3) =

∫ b

0

(1− e−b−z)3e−zdz +

∫ ∞
b

(1− e−b−z)3(eb−z)1e−zdz

= 1− 2e−b + e−2b +
1

4
e−3b − 1

4
e−5b +

1

20
e−7b.

P (CD|r = 4) =

∫ b

0

(1− e−b−z)4e−zdz +

∫ ∞
b

(1− e−b−z)4(eb−z)0e−zdz

= 1− 2e−b + 2e−2b − e−3b +
1

5
e−4b.

Next we try to compare PCD for different configuration.

P (CD|r = 0)− P (CD|r = 1) = 1− 4

5
e−b − (1− 5

4
e−b +

3

10
e−3b)

=
9

20
e−b − 3

10
e−3b

>
9

20
e−b − 9

20
e−3b > 0

= (
3

4
e−2b − 1

4
e−3b)(eb − 1) > 0.

So P (CD|r = 0) > P (CD|r = 1).

P (CD|r = 1)− P (CD|r = 2) = 1− 5

4
e−b +

3

10
e−3b − (1− 5

3
e−b +

1

3
e−2b +

1

2
e−3b − 2

15
e−5b)

=
5

12
e−b − 1

3
e−2b − 1

5
e−3b +

2

15
e−5b

=
1

3
e−b +

1

12
e−b − 1

3
e−2b − 1

5
e−3b +

2

15
e−5b

=
1

3
(e−2b − e−2b) +

1

12
e−5b(e4b− 12

5
e2b +

8

5
)

=
1

3
(e−2b − e−2b) +

1

12
e−5b[(e2b − 6

5
)2 +

4

25
] > 0.

So P (CD|r = 1) > P (CD|r = 2).

P (CD|r = 2)− P (CD|r = 3) = 1− 5

3
e−b +

1

3
e−2b +

1

2
e−3b − 2

15
e−5b − (1− 2e−b + e−2b
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+
1

4
e−3b − 1

4
e−5b +

1

20
e−7b)

=
1

3
e−b − 2

3
e−2b +

1

4
e−3b +

7

60
e−5b − 1

20
e−7b

= f(b).

It is not easy to compare P (CD|r = 2) and P (CD|r = 3) by subtraction directly. How-

ever, it is easy to calculate f(0.2) = −0.0062 and f(0.3) = 0.0026. Since f(m) is a

continuous function, there must exist a number c between 0.2 and 0.3 such that f(c) = 0.

Therefore, the sign of f(b) are different for different b values. And we know for different

configuration b values depends on the P ∗. That implies, for different P ∗, the sign of

f(m) can be positive or negative, resulting of which the relationship of P (CD|r = 2) and

P (CD|r = 3) can be opposite. After performing amounts of simulations, it is obtained

that there is a bound q(about 0.3) for P ∗ that P (CD|r = 0) > P (CD|r = 1) when P ∗ > q

and P (CD|r = 0) < P (CD|r = 1) when P ∗ < q. Continue to compare PCD,

P (CD|r = 4)− P (CD|r = 3) = 1− 2e−b + 2e−2b − e−3b +
1

5
e−4b − (1− 2e−b + e−2b

+
1

4
e−3b − 1

4
e−5b +

1

20
e−7b)

= e−2b − 5

4
e−3b +

1

5
e−4b +

1

4
e−5b − 1

20
e−7b

= (1− e−b)2(e−2b +
3

4
e−3b) +

7

10
e−4b − 1

2
e−5b − 1

20
e−7b

= (1− e−b)2(e−2b +
3

4
e−3b) + (

1

2
e−4b − 1

2
e−5b)

+ (
1

5
e−4b − 1

20
e−7b) > 0.

So P (CD|r = 4) > P (CD|r = 3). Combining the results above, we have P (CD|r = 0) >

P (CD|r = 1) > P (CD|r = 2)?P (CD|r = 3) < P (CD|r = 4). Then we can conclude

that under k = 4, for different P ∗, the LFC can be attained either at r = 2 or r = 3.
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For the case k > 4, this kind of performance that LFC is not unique for different P ∗

also appear. This also shows the goodness of our Single-stage because it guarantees the

critical constant b∗ obtained comes from the LFC for any given P ∗ .

2.5 Monte Carlo Simulation Study of Single-stage

Procedure

The following steps were taken to simulate the single-stage procedure (2.4.1).

Step 1 Generate random observations Xil, i = 0, 1, . . . , k, l = 1, . . . , n

Denote A = ExpRandom(σ), which is random observation from exponential distri-

bution with scale parameter σ. Then

Xil = Ail + µi, i = 0, 1, . . . , k, l = 1, . . . , n ;

Step 2 Compute Ti, i = 0, 1, . . . , k

T0 = Min1≤l≤nX0l = Min(A0) + µ0

Ti = Min1≤l≤rXil = Min(Ai) + µi, where i = 0, 1, . . . , r

Tj = Min1≤l≤k−rXjl = Min(Aj) + µj, where j = r + 1, r + 2, . . . , k ;

Step 3 Calculate Flag

Flagi = 1 if Ti − T0 < d,

Flagi = 0 otherwise.

Flagj = 1 if Tj − T0 > d,

Flagj = 0 otherwise .

Flag =
∏k

i=1 Flagi .

Flag = 1 indicates a correct partition, Flag = 0 indicates an incorrect partition

Step 4 Run step (1)− (3) N times and calculate P (CD) = P (Flag = 1)
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It was shown in Theorem (2.1.1) that in order to attach the infimum of PCD all the

location parameters of populations waiting to be partitioned should be located on either

θ0 + δ1 or θ0 + δ2. Here the simulation process are also consistent with that conclusion.

According to the step 2 and step 3 in the simulation process, we have

Ti − T0 = (Min(Ai) + µi)− (Min(A0) + µ0)

= Min(Ai)−Min(A0) + µi − µ0,

Tj − T0 = (Min(Aj) + µj)− (Min(A0) + µ0)

= Min(Ai)−Min(A0) + µj − µ0

In order to compare the different case that location components of the two-parameter

exponential variables does and doesn’t sit on the boundary of the indifference zone. First

the prior case is analyzed. Let’s suppose µi = µ0 + δ1, µj = µ0 + δ2, for i = 1, . . . , r and

j = r + 1, . . . , k then in step 3 to check whether Ti − T0 < d is true, it is equivalent as to

check

Min(Ai)−Min(A0) + δ1 <
δ1 + δ2

2
,

Min(Ai)−Min(A0) <
δ2 − δ1

2
= a.

Similarly to check whether Tj − T0 > d is true, it is equivalent as to check

Min(Ai)−Min(A0) + δ2 >
δ1 + δ2

2
,

Min(Ai)−Min(A0) >
δ2 − δ1

2
= −a.

It is easy to infer that the probability of correctly partitioning only depends on σ, a and n,

irrespective to the value of µ0, δ1 and δ2. To detect the configuration component r, firstly
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σ, a are fixed as some specified values, the PCD then is simulated out for all possible r

under different n. By doing this manipulation, it is convenient to see the difference of

PCD for different r when PCD is attaching different values due to different n.

Compared to the case above, next a case that not all populations’ location parameter

are on the boundary of the indifference set is discussed. Here µi = µ0 + δ1, µj = µ0 +

δ2 + τ, τ > 0 for i = 1, . . . , r and j = r + 1, . . . , k is assumed as the real setting of

components. Following the step 3 of simulation process, the statements Ti − T0 < d and

Tj −T0 > d are checked. As shown above, to check Ti−T0 < d is still equivalent to check

Min(Ai)−Min(A0) < a. However, to check whether Tj − T0 > d is achieved or not, it is

equivalent as to check

Min(Ai)−Min(A0) + δ2 + τ >
δ1 + δ2

2
,

Min(Ai)−Min(A0) >
δ2 − δ1

2
− τ = −a− τ.

Because −a > −a−τ , it is clear that while δ, a and n are all fixed, the PCD for all possible

r of the case that not all population location parameter are on the boundary must be

larger than PCD of the case that all location components are located on the boundary.

In other words, the infimum must be attached under the case that all population needs

partitioning should have a location parameter on the boundary of the indifference zone;

under infimum of PCD, populations in “Bad Set” have a location component at µi =

µ0 + δ1 and populations in “Good Set” have a location component at µj = µ0 + δ2.

In tables (2.9)-(2.12), the performance of single-stage selection procedure is summa-

rized for different P ∗ and k under different parametric configurations. For preassigned P ∗,

after obtaining the value of constant b in table (2.8) with k, n∗ can be calculated under

the setting of σ and a. Next, Monte Carlo simulations are performed by assigning the

selection size n∗ for different parametric configurations. Respect to Theorem (2.1.1), LFC
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is certainly included in those configurations even though it is not known before performing

the simulation. It can be noticed that P̄ s are all above P ∗ and the corresponding standard

deviations are very small, which indicates the probability requirement 2.9 is satisfied for

single-stage procedure.

Table 2.9: Simulation of Single-stage Procedure (2.4.1); Based on 100,000 iterations,
P ∗ = 0.9 and n∗ =50, k=4

configuration n∗ P̄ Std(P̄ ) a σ
(0,4) 50 0.95857 0.00063 0.5938 10
(1,3) 50 0.93611 0.00077 0.5938 10
(2,2) 50 0.91453 0.00088 0.5938 10
(3,1) 50 0.90056 0.00095 0.5938 10
(4,0) 50 0.90258 0.00093 0.5938 20
(0,4) 50 0.96017 0.00093 1.1877 20
(1,3) 50 0.93594 0.00103 1.1877 20
(2,2) 50 0.91582 0.00100 1.1877 20
(3,1) 50 0.90034 0.00076 1.1877 20
(4,0) 50 0.90392 0.00093 1.1877 20

Table 2.10: Simulation of Single-stage Procedure (2.4.1); Based on 100,000 iterations,
P ∗ = 0.95 and n∗ =50, k=4

configuration n∗ P̄ Std(P̄ ) a σ
(0,4) 50 0.97963 0.00044 0.73521 10
(1,3) 50 0.96472 0.00056 0.73521 10
(2,2) 50 0.95789 0.00063 0.73521 10
(3,1) 50 0.94979 0.00069 0.73521 10
(4,0) 50 0.95069 0.00068 0.73521 20
(0,4) 50 0.97910 0.00045 1.47042 20
(1,3) 50 0.96951 0.00054 1.47042 20
(2,2) 50 0.95683 0.00064 1.47042 20
(3,1) 50 0.95022 0.00068 1.47042 20
(4,0) 50 0.95027 0.00068 1.47042 20
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Table 2.11: Simulation of Single-stage Procedure (2.4.1); Based on 100,000 iterations,
P ∗ = 0.9 and n∗ =50, k=6

configuration n∗ P̄ Std(P̄ ) a σ
(0,6) 50 0.96994 0.00054 0.67252 10
(1,5) 50 0.95430 0.00066 0.67252 10
(2,4) 50 0.93819 0.00076 0.67252 10
(3,3) 50 0.92275 0.00084 0.67252 10
(4,2) 50 0.91155 0.00089 0.67252 10
(5,1) 50 0.90043 0.00095 0.67252 10
(6,0) 50 0.90151 0.00094 0.67252 10
(0,6) 50 0.96924 0.00055 1.34504 10
(1,5) 50 0.95432 0.00066 1.34504 10
(2,4) 50 0.93879 0.00076 1.34504 10
(3,3) 50 0.92175 0.00085 1.34504 10
(4,2) 50 0.90991 0.00090 1.34504 20
(5,1) 50 0.89921 0.00095 1.34504 20
(6,0) 50 0.90216 0.00094 1.34504 20

Table 2.12: Simulation of Single-stage Procedure (2.4.1); Based on 100,000 iterations,
P ∗ = 0.95 and n∗ =50, k=6

configuration n∗ P̄ Std(P̄ ) a σ
(0,6) 50 0.98549 0.00037 0.81509 10
(1,5) 50 0.97645 0.00048 0.81509 10
(2,4) 50 0.97044 0.00053 0.81509 10
(3,3) 50 0.96169 0.00060 0.81509 10
(4,2) 50 0.95441 0.00066 0.81509 20
(5,1) 50 0.94985 0.00069 0.81509 20
(6,0) 50 0.95049 0.00068 0.81509 20
(0,6) 50 0.98555 0.00037 1.63018 10
(1,5) 50 0.97713 0.00047 1.63018 10
(2,4) 50 0.96851 0.00055 1.63018 10
(3,3) 50 0.96233 0.00060 1.63018 10
(4,2) 50 0.95520 0.00065 1.63018 20
(5,1) 50 0.94972 0.00069 1.63018 20
(6,0) 50 0.95102 0.00068 1.63018 20
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3

Multistage Methodology for the partition

problem

In the next chapters we will consider two general types of sequential procedures, namely a

purely sequential and a two-stage procedures to partition a set of two-parameter exponen-

tial populations based on comparisons with a control population. First the purely sequen-

tial procedure is derived and then its theoretical first-order and second-order asymptotic

properties are derived. These properties are studied via Monte Carlo simulations and the

efficiency of the proposed procedure is studied.

3.1 Purely Sequential Selection

In this section, we will construct a purely sequential procedure along the lines of

Mukhopadhyay and Solanky (1994). One may also see Robbins et al. (1968), and Rob-

bins (1959) to review a brief history of the purely sequential procedures. Recall that

n∗ = bσ
a

, is the optimal fixed sample size required from each population, had σ been

known. As before, based on the sample size n, Let Xij denote the jth observation from

the ith population, with the density function as below

fX(x) = σ−1exp{−(xij − θi)/σ}I(xij > θi). (3.1)
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Let us define the following

Ti = Min1≤j≤n{Xi1, ..., Xin},

Vi = (n− 1)−1
∑n

j=1(Xij − Ti),

σ̂ =
∑k

i=0

∑n
j=1(Xij − Ti)/((k + 1)(n− 1)).

(3.2)

For the case σ is unknown, the basic idea is to keep updating estimates of σ until

we arrive at some kind of “stability”, that is the sample size n and the corresponding

estimator σ̂ of σ satisfies a certain relationship which is to be made precise very shortly.

We start with m(≥ 2) observations from each of the k populations to be partitioned

and the control population. Then keep taking one more observation at a time from each

population according to the following stopping rule:

N = N (a) = inf

{
n ≥ m : n ≥ bσ̂

a

}
. (3.3)

The constant b in above equation comes from (2.15). Next we will shown that the purely

sequential procedure (3.3) is a well defined rule which will terminate with probability 1.

Theorem 3.1.1 The purely sequential procedure (3.3) terminates with probability 1.

Proof: Fox fixed θ, σ,m and a, we have P (N < ∞) = 1 − limn→∞ P (N > n) ≥

1 − limn→∞ P (n < bσ̂
a

) = 1, since σ̂ → σ w.p. 1 as n → ∞. That is, P (N < ∞) = 1, in

other words the purely sequential procedure (3.3) terminates with probability one.

Based on the totality of all samples, that is having Xi1, Xi2, . . . , Xik from πi, i =

1, . . . , k, we now implements the customary selection procedure PN given by (2.4).

Throughout, θ and σ are kept fixed. In next, we derive some theoretical properties

of purely sequential procedure.
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3.2 Asymptotic Properties of Purely Sequential

Procedure

In this section, we derive some essential properties for the purely sequential procedure

as defined in (3.3). The derived properties show the efficiency of the proposed purely

sequential procedure (3.3). We will also prove the probability of correct decision of the

procedure is guaranteed.

Theorem 3.2.1 For the purely sequential procedure (3.3), we have as a→ 0:

(i) N/n∗ → 1 w.p. 1;

(ii) E (N/n∗)→ 1;

(iii) n∗
1
2 (N − n∗)→ N

(
0, 1
/

(k + 1)
)
;

(iv) lim inf P (CD) ≥ P ∗ under the LFC;

where n∗ = bσ/a and the constant b comes from (2.14) and determined by (2.15).

Proof: Utilizing the Lemma 1 of Chow and Robbins (1965), it follows that as a → 0,

we have N → ∞, w.p. 1, σ̂N → σ w.p. 1, and σ̂N−1 → σ w.p. 1. Note that the purely

sequential procedure (3.3) can be expressed as N = Nν = inf {n ≥ m : n > ΨνTn}, with

Ψν = b
a
, Tn = σ̂ and the basic inequality (equation 2.4.3 in Mukhopadhyay and Solanky

(1994) simplifies to

b

a
σ̂N ≤ N ≤ m+

b

a
σ̂N−1. (3.4)

Dividing throughout (3.4) by n∗ and taking limits as a→ 0 leads to the part (i). Next,
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invoke the Helmert’s orthogonal transformation, the σ̂N can be expressed as

σ̂N =
∑k

i=0

∑n
j=1 (Xij − Ti)/ ((k + 1)(n− 1))

= (n− 1)−1∑n−1
i=1 W

′
i

= 1
2
σ(k + 1)−1(n− 1)−1

∑n−1
i=1 χ

2
2(k+1),

(3.5)

where W ′
i s are i.i.d. 1

2
σ(k + 1)−1(n− 1)−1

∑n−1
i=1 χ

2
2(k+1) distributed random variables.

Let W ∗ = sup
n≥2

{
(n− 1)−1

n−1∑
i=1

W ′
}

. From the right hand side of the basic inequality

(3.4), we can write N ≤ m+a−1bσN−1 as N ≤ m+a−1bW ∗. That is, Nn∗−1 ≤ m+σ−1W ∗

for sufficiently small values of a such that n∗−1 becomes smaller than unity. By Wiener’s

(1939) dominated ergodic theorem one concludes that E (W ∗) <∞. Now, the dominated

convergence theorem and part (i) together imply part (ii) E (N/n∗)→ 1.

According to (3.5), it can be obtained the following

E (σ̂N) = σ,

V ar (σ̂N) =
1

4
σ2(k + 1)−2(N − 1)−2 · (N − 1) · 4(k + 1)

= σ2(k + 1)−1(N − 1)−1,

Std (σ̂N) = σ(k + 1)−
1
2 (N − 1)−

1
2 .

Then, one may easily obtain N
1
2 (σN−σ)

σ(k+1)−
1
2

and N
1
2 (σN−1−σ)

σ(k+1)−
1
2

both converge to N(0, 1) as

a→ 0. Next, along the lines of Theorem 2.4.1 in Mukhopadhyay and Solanky (1994), we

can let Ψν = b
a
. Let a′ = σ, b′ = (k + 1)

1
2σ and then obtain a′

1
2 (Nν−a′Ψν)

b′Ψ
1
2

→ N (0, 1). The

results can be expressed as:

σ
1
2 (N−n∗)

(k+1)−
1
2 σ(b/a)

1
2
→ N(0, 1),

N−n∗

(k+1)−
1
2 n∗

1
2
→ N(0, 1),

n∗−
1
2 (N − n∗)→ N(0, 1

k+1
).
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Then part (iii) is proved. Next, to prove the part (iv), first note that the two properties

of the LFC still hold. That is, for any N , the LFC is attached when all the populations

partitioning have a location parameter either at µ0 + δ1 or µ0 + δ2. Then along with

following the steps of Theorem 2.4.1, the P (CD) based on the sample of size N can be

written as

P
[
CD|θ0(r), σ

]
= P

[
Ti − T0 < d, Tj − T0 > d, 0 < i ≤ r, r < j ≤ k|θ0(r), σ

]
= P

[
Ti−θi
σ/N
− T0−θ0

σ/N
< d−θi+θ0

σ/N
,
Tj−θj
σ/N
− T0−θ0

σ/N
>

d−θj+θ0
σ/N

, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k
]

= P
[
Zi − Z0 <

d−δ1
σ/N

, Zj − Z0 >
d−δ2
σ/N

, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k
]

= P
[
Zi − Z0 <

a
σ/N

, Zj − Z0 > − a
σ/N

, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k
]

= P
[
Zi − Z0 <

aN
σ
, Zj − Z0 > −aN

σ
, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k

]
= E

[ ∫ b′
0
F (b′ + z)rf(z) dz +

∫∞
b′
F (b′ + z)r[1− F (−b′ + z)]k−rf(z) dz

]
,

(3.6)

where F(.) and f(.) are respectively the cumulative function(cdf) and probability density

function(pdf) of the standard exponential distribution as F (z) = 1− e−z and f(z) = e−z

and b′ = aN
σ

.

Also, from part (i), one get aNσ−1 → b w.p.1 as a → 0, and hence (3.6) together

with the dominated convergence theorem will lead to part (iv). This complete the proof

of Theorem 2.

Next, for the purely sequential procedure (3.3) we will derive a second-order expansion

to determine the amount of over-sampling the procedure does asymptotically. The amount

of oversampling β is defined below and also tabulated for the practitioners. We will also

compare the validity of the asymptotic expression β for the small and moderate sample

sizes.

Theorem 3.2.2 For the purely sequential procedure (3.3), we have as a→ 0 :
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(i) E (N) = n∗ + β + o(1) for all θ ∈ Ω (a) if m ≥ 2 when k ≥ 2;

(ii) P (CD) = P ∗ + 1
n∗
{bβg′(b) + b2

2(k+1)
g′′(b)} + ◦

(
1
n∗

)
under the LFC for m ≥ 2 when

k ≥ 2.

where where n∗ = bσ/a and the constant b comes from (2.14) and tabulated in Table

(2.8). β = (k + 1)−1(1
2
τ − 1) with ν defined in (3.8). g(x) is define in (3.9), g′(x) and

g′′(x) are defined in (3.11) and (3.12). The values of the constant β = β(k) are provided

in Table (3.1).

Proof: First note that using (3.5), we can rewrite σ̂ = (n− 1)−1∑n−1
i=1 W

′
i , where W ′

1,

W ′
2, · · · are i.i.d. 1

2
(k + 1)−1 σχ2

2(k+1) random variables. Let’s write Wi = 2 (k + 1)σ−1W ′
i ,

with Wi being i.i.d. χ2
2(k+1) random variables. Using this the purely sequential procedure

could be rewritten as

N = inf
{
n ≥ m : n ≥ bσ̂

a

}
,

N = inf
{
n ≥ m : nn∗−1 ≥ σ−1(n− 1)−1

∑n−1
i=1 W

′
i

}
,

N = inf
{
n ≥ m : 2 (k + 1)n∗−1n (n− 1) ≥

∑n−1
i=1 Wi

}
.

Note that N = Q+ 1 where

Q = inf
{
n ≥ m− 1 : 2 (k + 1)n∗−1n2

(
n−1 + 1

)
≥
∑n

i=1
Wi

}
. (3.7)

The stopping variable Q is of the form of Mukhopadhyay and Solanky (1994)s equation

(2.4.7) with δ = 2, L0 = 1, h∗ = 2(k+1)
n∗

, θ = E (Wi) = 2(k + 1), τ 2 = E (W 2
i ) − θ2 =

4 (k + 1), β∗ = (δ − 1)−1 = 1, n∗0 = (θ/h∗)β
∗

= n∗, P = β∗2τ 2θ−2 = (k + 1)−1, b = k + 1,

and ν is defined in the equation (2.4.9) in Mukhopadhyay and Solanky (1994) as

ν = ν (k) = k + 2−
∑∞

n=1
n−1E

[
max

{
0, χ2

2n(k+1) − 4n (k + 1)
}]
. (3.8)
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Next, note that the constant η as defined in the equation (2.4.10) in Mukhopadhyay and

Solanky (1994) simplifies to

η = β∗θ−1ν − β∗L0 −
1

2
δβ∗2r2θ−2

=
1

2 (k + 1)
ν − 1− 4 (k + 1)

4 (k + 1)2

= (k + 1)−1 (
1

2
ν − 1)− 1.

Using the Theorem 2.4.8(v) of Mukhopadhyay and Solanky (1994) with w = 1 leads to

E (Q/n∗0) = 1 + ηn∗−1
0 + o(n∗−1

0 )

Then it can be obtained that

E (N) = E (Q) + 1

= 1 + n∗0 + η + ◦ (1)

= n∗ + (k + 1)−1 (
1

2
ν − 1) + ◦ (1) ,

if m − 1 > (k + 1)−1, that is, if m > 1 + (k + 1)−1. This is part (i). And β = (k +

1)−1(1
2
τ − 1)

In order to prove part (ii), let us denote a function g(x) as

g(x) =

∫ x

0

F (x+ z)rf(z) dz +

∫ ∞
x

F (x+ z)r[1− F (−x+ z)]k−rf(z) dz. (3.9)

where F(.) and f(.) are respectively the cumulative function(cdf) and probability density

function(pdf) of the standard exponential distribution; k is the number of populations

to be partitioned and r is the value for LFC to be attained. Then we should have

E[g(aN
σ

)] = P and g(b) = P ∗, where b comes from (2.14) and are tabulated in Table (2.8).
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By expanding the series of F(.) and f(.), the expression function g(x) can be transformed

to

g(x) =
∫ x

0
F (z + x)rf(z) dz +

∫∞
x
F (z + x)r[1− F (z − x)]k−rf(z) dz

=
∫ x

0
(1− e−z−x)re−z dz +

∫∞
x

(1− e−z−x)r(e−z+x)k−re−z dz

=
∫ x

0

∑r
i=0

(
r
i

)
(−1)ie−iz−ixe−z dz +

∫∞
x

∑r
i=0

(
r
i

)
(−1)ie−iz−ixe−(k−r)z+(k−r)xe−z dz

=
∑r

i=0

(
r
i

)
(−1)ie−ix

∫ x
0
e−(i+1)z dz +

∑r
i=0

(
r
i

)
(−1)ie(k−r−i)x ∫∞

x
e−(k−r+1+i)z dz

=
∑r

i=0

(
r
i

)
(−1)i(i+ 1)−1e−ix(1− e−(i+1)x) +

∑r
i=0

(
r
i

)
(−1)i(k − r + 1 + i)−1

e(k−r−i)xe−(k−r+1+i)x

=
∑r

i=0

(
r
i

)
(−1)i(i+ 1)−1[e−ix − e−(2i+1)x] +

∑r
i=0

(
r
i

)
(−1)i(k − r + 1 + i)−1e−(2i+1)x.

(3.10)

Then the first and second derivative of the function g(x) can be obtained as

g′(x) =
∑r

i=0

(
r
i

)
(−1)i(i+ 1)−1[−ie−ix + (2i+ 1)e−(2i+1)x]

+
∑r

i=0

(
r
i

)
(−1)i(k − r + 1 + i)−1(−2i+ 1)e−(2i+1)x.

(3.11)

g′′(x) =
∑r

i=0

(
r
i

)
(−1)i(i+ 1)−1[i2e−ix − (2i+ 1)2e−(2i+1)x]

+
∑r

i=0

(
r
i

)
(−1)i(k − r + 1 + i)−1(−2i+ 1)2e−(2i+1)x.

(3.12)

Expanding g(x) at x = b, we can have

g(x) = g(b) + g′(b)(x− b) + g′′(Z(x))
(x− b)2

2
, (3.13)

where Z(x) is a positive random variable such that min(x, b) ≤ Z(x) ≤ max(x, b). Then

we can have the following

E[g(aN
σ

)] = E[g(b N
n∗

)] = g(b) + g′(b)E[(b N
n∗
− b)] + 1

2
E[g′′(Z(x))(b N

n∗
− b)2]

= g(b) + bg′(b)
n∗

E[(N − n∗)] + b2

2n∗
E[g′′(Z(x))U∗].

(3.14)

65



Recall that g(b) = P ∗ and E(N) = n∗ + (k + 1)−1 (1
2
ν − 1) + ◦ (1). And according to the

Theorem 2.4.8(iv) of Mukhopadhyay and Solanky (1994) with w = 1 it can be obtained

that g′′(Z(x))U∗2 is uniformly integrable if m − 1 > (k + 1)−1. Also, g′′(Z(x))U∗2 →

(k + 1)−1g′′(b)χ2
1 as a→ 0. Then, it can be obtained that for m > 1 + (k + 1)−1, that is,

for m ≥ 2,

P (CD) = P ∗ + bg′(b)
n∗

(β + ◦ (1)) + b2

2n∗
((k + 1)−1g′′(b) + ◦ (1))

= P ∗ + 1
n∗
{bβg′(b) + b2

2(k+1)
g′′(b)}+ ◦

(
1
n∗

)
.

It should be noted in part(ii) of Theorem (3.2.2), the function g(x) is defined under the

least favorable configuration. The procedure (3.3) doesn’t provide when LFC is attained

for different value of k. The theoretical result is provided in case statisticians need to

consider it for specified situations.

3.3 Monte Carlo Simulation Study of Purely

Sequential Procedure

The purely sequential procedure (3.3), starts with m ≥ 2 observations from each of the

k populations and the control population. The procedure takes one additional sample

at a time from each all the k populations and the control population until stopping rule

(3.3) is satisfied. In this section, some simulation are performed under different setting

of n∗, b, a and σ. In table (3.2-3.4), we took the value of m = 5 and m = 10, k = 4, and

P ∗ = 0.9, p∗ = 0.95. Respect to the value of k and P ∗, the value of the design constant b

was obtained from (2.8). Recall that the design parameters δ1 and δ2 are predetermined

by the experimenter based on the definition of the Good and Bad populations. Note that
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Table 3.1: The values of the constant β and ν as defined in Theorem 3.2.2
k ν β k ν β
1 2.62634 0.17158 21 22.99967 0.47727
2 3.79489 0.29915 22 23.99976 0.47826
3 4.86155 0.35769 23 24.99983 0.47916
4 5.90474 0.39047 24 25.99987 0.48000
5 6.93362 0.41113 25 26.99991 0.48077
6 7.95334 0.42524 26 27.99993 0.48148
7 8.96699 0.43544 27 28.99995 0.48214
8 9.97653 0.44314 28 29.99997 0.48276
9 10.98326 0.44916 29 30.99997 0.48333
10 11.98803 0.45400 30 31.99998 0.48387
11 12.99141 0.45798 31 33.00000 0.48437
12 13.99383 0.46130 32 34.00000 0.48485
13 14.99556 0.46413 33 35.00000 0.48529
14 15.99680 0.46656 34 36.00000 0.48571
15 16.99770 0.46868 35 37.00000 0.48611
16 17.99834 0.47054 36 38.00000 0.48649
17 18.99880 0.47219 37 39.00000 0.48684
18 19.99913 0.47366 38 40.00000 0.48718
19 20.99937 0.47498 39 41.00000 0.48750
20 21.99955 0.47618 40 42.00000 0.48780
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a = δ2 − δ1, which represents the length of indifference zone.

Table 3.2: Simulation of The purely Sequential Procedure (3.3); Based on 100,000 itera-
tions, p∗ =0.9, k=4, m =5

configuration n∗ n̄ Std(n) P̄ Std(P̄ ) b a σ λ
(0,4) 29.6939 30.0798 0.0079 0.9588 0.0006 2.9693 0.5 5 10
(1,3) 29.6939 30.0661 0.0079 0.9359 0.0007 2.9693 0.5 5 10
(2,2) 29.6939 30.0582 0.0079 0.9166 0.0008 2.9693 0.5 5 10
(3,1) 29.6939 30.0764 0.0079 0.9020 0.0009 2.9693 0.5 5 10
(4,0) 29.6939 30.0783 0.0079 0.9035 0.0009 2.9693 0.5 5 10
(0,4) 59.3878 59.7425 0.0347 0.9549 0.0020 2.9693 0.5 10 20
(1,3) 59.3878 59.7787 0.0349 0.9356 0.0024 2.9693 0.5 10 20
(2,2) 59.3878 59.7613 0.0351 0.9152 0.0027 2.9693 0.5 10 20
(3,1) 59.3878 59.7628 0.0346 0.9012 0.0029 2.9693 0.5 10 20
(4,0) 59.3878 59.7767 0.0347 0.9019 0.0029 2.9693 0.5 10 20

Table 3.3: Simulation of The purely Sequential Procedure (3.3); Based on 100,000 itera-
tions, p∗ =0.95, k=4, m =5

configuration n∗ n̄ Std(n) P̄ Std(P̄ ) b a σ λ
(0,4) 36.7605 37.1282 0.0087 0.9793 0.0004 3.6760 0.5 5 10
(1,3) 36.7605 37.1429 0.0088 0.9670 0.0005 3.6760 0.5 5 10
(2,2) 36.7605 37.1488 0.0087 0.9582 0.0006 3.6760 0.5 5 10
(3,1) 36.7605 37.1394 0.0087 0.9502 0.0006 3.6760 0.5 5 10
(4,0) 36.7605 37.1379 0.0088 0.9503 0.0006 3.6760 0.5 5 10
(0,4) 73.5210 73.8684 0.0392 0.9791 0.0014 3.6760 0.5 10 20
(1,3) 73.5210 73.9263 0.0393 0.9660 0.0018 3.6760 0.5 10 20
(2,2) 73.5210 73.8798 0.0389 0.9580 0.0020 3.6760 0.5 10 20
(3,1) 73.5210 73.9342 0.0388 0.9511 0.0021 3.6760 0.5 10 20
(4,0) 73.5210 73.9369 0.0390 0.9513 0.0021 3.6760 0.5 10 20
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Table 3.4: Simulation of The purely Sequential Procedure (3.3); Based on 100,000 itera-
tions, p∗ =0.99, k=4, m =5

configuration n∗ n̄ Std(n) P̄ Std(P̄ ) b a σ λ
(0,4) 52.9580 53.3041 0.0333 0.9951 0.0007 5.2958 0.5 5 10
(1,3) 52.9580 53.3730 0.0329 0.9937 0.0008 5.2958 0.5 5 10
(2,2) 52.9580 53.2533 0.0335 0.9908 0.0009 5.2958 0.5 5 10
(3,1) 52.9580 53.3993 0.0332 0.9900 0.0010 5.2958 0.5 5 10
(4,0) 52.9580 53.3478 0.0330 0.9906 0.0010 5.2958 0.5 5 10
(0,4) 105.9160 106.3808 0.0463 0.9957 0.0006 5.2958 0.5 10 20
(1,3) 105.9160 106.2043 0.0458 0.9954 0.0007 5.2958 0.5 10 20
(2,2) 105.9160 106.3197 0.0461 0.9914 0.0009 5.2958 0.5 10 20
(3,1) 105.9160 106.2876 0.0465 0.9510 0.0009 5.2958 0.5 10 20
(4,0) 105.9160 106.2534 0.0465 0.9515 0.0009 5.2958 0.5 10 20

69



4

Two-stage Selection Procedure

In this chapter a two-stage procedures to partition a set of two-parameter exponential pop-

ulations based on comparisons with a control population will be considered and compared

with the purely sequential procedure derived in last chapter. First the two-stage proce-

dure is derived and then its theoretical first-order and second-order asymptotic properties

are derived. These properties are studied via Monte Carlo simulations and the efficiency

of the proposed procedure is studied.

4.1 Two-stage Selection

In this section, we will propose a two-stage procedure for the partition problem introduced

in the chapter 2 for the unknown σ case. The two-stage procedures are operationally more

convenient to implement than the purely sequential procedures. Unlike for the purely

sequential procedure, in which the experimenter has to decide whether or not to continue

sampling after adding each observation, in the two-stage procedure the sample size is

determined only once. Meaning, the experimenter would select a small pilot sample and

then based on that pilot sample it is determined how many additional samples need to

be collected. This feature of the two-stage procedure makes it more user friendly and

operationally convenient. For more literature on the two-stage procedures, the reader is

recommended to Solanky (2006) and Mukhopadhyay and Solanky (1994).
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Next, we describe the a two-stage procedure for the partition problem introduced in

the chapter 2.

Stage I. Let m(≥ 2) denote the common starting sample size from k treatments and

the control group. The procedure begins by taking a sample Xij from πi; i = 0, . . . , k; j =

1, . . . ,m. Let

Ti = Min1≤j≤m{Xi1, ..., Xim},

Vim = (m− 1)−1
∑m

j=1(Xij − Ti),

σ̂m =
∑k

i=0

∑m
j=1(Xij − Ti)/((k + 1)(m− 1)).

Note that σ̂m is the pooled estimator of σ.

Stage II. Let us define

N = N (a) = max

{
m,
[hσ̂m
a

]}
. (4.1)

The constant h = h(k;m;P ∗) is a positive constant defined in (4.4) and [x] denotes the

smallest integer greater than or equal to x. If N = m, we do not take any more samples

from each population. However, if N > m, then we sample the difference in the second

stage, that is, we take (N − m) more samples from each πi, i = 0, · · · , k in the second

stage. Based on the totality of all samples, that is having Xi1, · · · , XiN from πi, we now

implements the selection procedure ℘ given by (2.4). Throughout, θ and σ are kept fixed.

Fox fixed θ, σ,m and a, we have P (N < ∞) = 1 − limn→∞ P (N > n) ≥ 1 −

limn→∞ P (n < hσ̂m
a

) = 1. That is, P (N < ∞) = 1, in other words the two-stage proce-

dure (4.1) terminates with probability one.In next, we derive some theoretical properties

of the two-stage procedure.

4.2 Asymptotic Properties of Two-stage Procedure

Theorem 4.2.1 For the two-stage procedure (4.1), with h defined in (4.4), we have:
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(i) P (CD) ≥ P ∗ for all θ ∈ Ω(a);

(ii) hσa−1 ≤ E(N) ≤ m+ hσa−1;

(iii) E (N/n∗)→ hb−1 as a→ 0;

(iv) lim inf P (CD) ≥ P ∗ for all θ ∈ Ω(a) as a→ 0;

where n∗ = bσ/a and the constant b comes from (2.15).

Proof: First we notice the basic inequality respect to the definition of N ,

hσma
−1 ≤ N ≤ m+ hσma

−1.

Take expectation for each part of the inequality turns out to be part(ii) since E(σ̂m) = σ.

Next, dividing throughout the expression by n∗ and taking limits as a → 0 leads to the

part (iii).

Next, invoke the Helmert’s orthogonal transformation, the σ̂m can be expressed as

σ̂m =
∑k

i=0

∑m
j=1 (Xij − Ti)/ ((k + 1)(m− 1))

= 1
2
σ(k + 1)−1(m− 1)−1

∑m−1
i=1 χ2

2(k+1)

= 1
2
σ(k + 1)−1(m− 1)−1χ2

2(k+1)(m−1),

According to the expression above, it is easy to have fσ̂m/σ is χ2
f distributed, where

f = 2(k+1)(m−1) is the degree of freedom. To prove the part (i), first note that theorem

(2.1) holds for the two-stage selection procedure (4.1). That is, for any N determined by

(4.1), the LFC is attached when all the populations partitioning have a location parameter

either at µ0 + δ1 or µ0 + δ2. In addition, the distribution of N doesn’t depend on θ;

I(N = n) is independent of (T1n, · · · , Tkn) for every fixed n ≥ 2. Then for two-stage

procedure, the P (CD) based on the selection rule (2.4) with the initial sample size m and
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stopping sample size N can be written as

P
[
CD|θ0(r), σ

]
= P

[
Ti − T0 < d, Tj − T0 > d, 0 < i ≤ r, r < j ≤ k|θ0(r), σ

]
= P

[
Ti−θi
σ/N
− T0−θ0

σ/N
< d−θi+θ0

σ/N
,
Tj−θj
σ/N
− T0−θ0

σ/N
>

d−θj+θ0
σ/N

, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k
]

= P
[
Zi − Z0 <

d−δ1
σ/N

, Zj − Z0 >
d−δ2
σ/N

, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k
]

= P
[
Zi − Z0 <

aN
σ
, Zj − Z0 > −aN

σ
, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k

]
≥ P

[
Zi − Z0 <

a
σ
hσ̂m
a
, Zj − Z0 >

−a
σ
hσ̂m
a
, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k

]
= P

[
Zi − Z0 < hf−1χ2

f , Zj − Z0 > −hf−1χ2
f , 1 ≤ i ≤ r, r + 1 ≤ j ≤ k

]
=
∫∞

0
P
[
Zi − Z0 < hf−1t, Zj − Z0 > −hf−1t, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k

]
g(t) dt

=
∫∞

0

∫∞
0
P
[
Zi < z + hf−1t, Zj > z − hf−1t, 1 ≤ i ≤ r, r + 1 ≤ j ≤ k

]
g(t)f(z) dtdz

=
∫∞

0

∫∞
0

{∏r
i=1 P (Zi < z + hf−1t)

}{∏k−r
i=1 P (Zj > z − hf−1t)

}
f(z)g(t) dzdt

=
∫∞

0

∫ hf−1t

0
{F (z + hf−1t)}rf(z)g(t) dzdt

+
∫∞

0

∫∞
hf−1t
{F (z + hf−1t)}r{1− F (z − hf−1t)}k−rf(z)g(t) dzdt,

where F(.) and f(.) are respectively the cumulative function(cdf) and probability density

function(pdf) of the standard exponential distribution as F (z) = 1− e−z and f(z) = e−z;

and g(t) is the probability density function of χ2
f . Here we define h as below

h =
aN

σ̂m
(4.2)

In the above expression, the critical constant h depends upon the value of an integer

r(0 ≤ r ≤ k) and we have to compute the critical constant h that minimizes P [CD]

for r = 0, 1, · · · , k and simultaneously satisfies the probability requirement in order to

maintain significance lever at α.

The least value of P [CD] is attained for some unknown r in the range r = 0, . . . , k.

So in order to solve for h values, we perform a numerical way to detect r and deter-
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mine h. Equivalently, we have to compute the critical constant h∗ = hk,m,α by solving

P
[
CD|θ0(r), σ

]
= 1−α for some value of r ∈ (0, 1, . . . , k) which minimize P (CD) given

some specified α. Following algorithm is implemented to compute the values of critical

constants numerically.

Algorithm:

Step 1 For fixed values of k, m and α, compute numerically the values of critical constants

h(k,m, α) that satisfy the probability requirement Pr(CD|θ0(r), σ) = 1 − α for r =

0, 1, . . . , k. In other words, let hr(k,m, α) be the solution of the integral equation:

∫ ∞
0

∫ hf−1t

0

{F (z + hf−1t)}rf(z)g(t) dzdt

+

∫ ∞
0

∫ ∞
hf−1t

{F (z + hf−1t)}r{1− F (z − hf−1t)}k−rf(z)g(t) dzdt = P ∗,

(4.3)

where r = 0, 1, . . . , k.

Step 2 Let

h∗ = max (h0, h1, . . . , hk) . (4.4)

The optimum value of the critical constant satisfying the probability requirement

P
[
CD|θ0(r), σ

]
= 1− α, irrespective of r, is h∗.

Next, to reduce the complexity of solving the integral equation (4.3) in step 1, the following

steps are performed. Let I1 and I2 be the first and second integral of of the left hand side
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of the equation. Then I1 and I2 can be simplified as

I1 =
∫∞

0

∫ hf−1t

0
{F (z + hf−1t)}rf(z)g(t) dzdt

=
∫∞

0

∫ hf−1t

0
(1− e−z−hf−1t)re−zg(t) dzdt

=
∫∞

0

∫ hf−1t

0

∑r
i=0

(
r
i

)
(−1)ie−iz−hf

−1ite−zg(t) dzdt

=
∑r

i=0

(
r
i

)
(−1)i

∫∞
0
e−hf

−1itg(t)
∫ hf−1t

0
e−(i+1)z dzdt

=
∑r

i=0

(
r
i

)
(−1)i(i+ 1)−1

∫∞
0
e−hf

−1it(1− e−(i+1)hf−1tg(t) dt

=
∑r

i=0

(
r
i

)
(−1)i(i+ 1)−1

∫∞
0

(e−hf
−1it − e−(2i+1)hf−1t)g(t) dt

=
∑r

i=0

(
r
i

)
(−1)i(i+ 1)−1

[
(2hf−1i+ 1)f/2 − (2(2i+ 1)hf−1 + 1)f/2

]
.

(4.5)

Similarly, I2 can be simplified as

I2 =
∫∞

0

∫∞
hf−1t
{F (z + hf−1t)}r{1− F (z − hf−1t)}k−rf(z)g(t) dzdt

=
∫∞

0

∫∞
hf−1t

(1− e−z−hf−1t)r(e−z+hf
−1t)k−re−zg(t) dzdt

=
∫∞

0

∫∞
hf−1t

∑r
i=0

(
r
i

)
(−1)ie−iz−hf

−1ite−(k−r)z+(k−r)hf−1te−zg(t) dzdt

=
∑r

i=0

(
r
i

)
(−1)i

∫∞
0
e−hf

−1ite(k−r)hf−1tg(t)
∫∞
hf−1t

e−(k−r+1+i)z dzdt

=
∑r

i=0

(
r
i

)
(−1)i(k − r + 1 + i)−1

∫∞
0
e−hf

−1ite(k−r)hf−1tg(t)e−(k−r+1+i)hf−1t dt

=
∑r

i=0

(
r
i

)
(−1)i(k − r + 1 + i)−1

∫∞
0
e−(2i+1)hf−1tg(t) dt

=
∑r

i=0

(
r
i

)
(−1)i(k − r + 1 + i)−1

[
2(2i+ 1)hf−1 + 1

]f/2
.

(4.6)

Combining (4.5) and (4.6), we have the following

r∑
i=0

(
r

i

)
(−1)i

[
(i+ 1)−1(2hf−1i+ 1)f/2 − (i+ 1)−1[2(2i+ 1)hf−1 + 1]f/2

+ (k − r + 1 + i)−1[2(2i+ 1)hf−1 + 1]f/2
]

= P ∗.

(4.7)

That is, alternatively one can determine hr = h(k,m, α) such that is satisfy (4.7). After

comparing the h values for different r(0 ≤ r ≤ k) under fixed different k m and α, the

values of critical constant are obtained. Table (4.1)-(4.3) presents the values of critical
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constant for m = 2, . . . , 20, k = 2, . . . , 10 and P ∗ = 0.9, 0.95, 0.99. Then, it is straight

forward known that probability requirement (2.9) is satisfied if n satisfies that

n ≥ hσ̂m
a

(4.8)

Along with the expression of (4.1), this procedure certainly guaranteeing the requirement

of correct partition rate. This completes the proof of part(i).

Table 4.1: Critical Constant value of h, as defined in (4.4) for P ∗ = 0.9

m
k

2 3 4 5 6 7 8 9 10
2 3.4223 3.7513 3.9423 4.0805 4.1914 4.2857 4.3685 4.4428 4.5104
3 2.7939 3.1714 3.4186 3.6046 3.7548 3.8815 3.9914 4.0887 4.1761
4 2.6163 3.0014 3.2612 3.4590 3.6194 3.7549 3.8723 3.9761 4.0693
5 2.5327 2.9203 3.1855 3.3884 3.5535 3.6930 3.8139 3.9208 4.0167
6 2.4841 2.8729 3.1409 3.3468 3.5145 3.6563 3.7793 3.8879 3.9854
7 2.4523 2.8417 3.1116 3.3193 3.4887 3.6320 3.7563 3.8661 3.9646
8 2.4300 2.8197 3.0908 3.2999 3.4704 3.6148 3.7400 3.8506 3.9498
9 2.4133 2.8034 3.0754 3.2853 3.4568 3.6019 3.7278 3.8390 3.9387
10 2.4005 2.7907 3.0634 3.2741 3.4462 3.5919 3.7183 3.8300 3.9301
11 2.3903 2.7806 3.0538 3.2651 3.4377 3.5839 3.7107 3.8228 3.9233
12 2.3820 2.7724 3.0460 3.2578 3.4308 3.5774 3.7046 3.8170 3.9177
13 2.3751 2.7656 3.0396 3.2517 3.4251 3.5720 3.6994 3.8121 3.9130
14 2.3693 2.7598 3.0341 3.2465 3.4203 3.5674 3.6951 3.8079 3.9091
15 2.3643 2.7549 3.0294 3.2421 3.4161 3.5635 3.6914 3.8044 3.9057
16 2.3600 2.7506 3.0254 3.2383 3.4125 3.5601 3.6881 3.8013 3.9028
17 2.3563 2.7469 3.0218 3.2350 3.4094 3.5571 3.6853 3.7987 3.9002
18 2.3530 2.7436 3.0187 3.2320 3.4066 3.5545 3.6828 3.7963 3.8979
19 2.3500 2.7407 3.0160 3.2294 3.4041 3.5522 3.6806 3.7942 3.8959
20 2.3474 2.7381 3.0135 3.2271 3.4019 3.5501 3.6787 3.7923 3.8941
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Table 4.2: Critical Constant value of h, as defined in (4.4) for P ∗ = 0.95

m
k

2 3 4 5 6 7 8 9 10
2 5.1038 5.2493 5.3150 5.3651 5.4110 5.4553 5.4984 5.5403 5.5810
3 3.8767 4.2012 4.4088 4.5650 4.6921 4.8004 4.8953 4.9800 5.0568
4 3.5504 3.9084 4.1471 4.3285 4.4760 4.6009 4.7096 4.8061 4.8930
5 3.4001 3.7712 4.0230 4.2154 4.3719 4.5044 4.6195 4.7214 4.8130
6 3.3138 3.6917 3.9506 4.1491 4.3108 4.4476 4.5663 4.6713 4.7656
7 3.2578 3.6398 3.9032 4.1056 4.2706 4.4101 4.5312 4.6382 4.7343
8 3.2185 3.6033 3.8698 4.0748 4.2421 4.3835 4.5062 4.6147 4.7120
9 3.1895 3.5762 3.8449 4.0519 4.2208 4.3637 4.4876 4.5972 4.6954
10 3.1671 3.5553 3.8257 4.0342 4.2044 4.3484 4.4732 4.5836 4.6825
11 3.1494 3.5387 3.8104 4.0201 4.1933 4.3361 4.4617 4.5727 4.6722
12 3.1398 3.5252 3.7979 4.0086 4.1806 4.3261 4.4524 4.5639 4.6638
13 3.1230 3.5139 3.7876 3.9991 4.1717 4.3178 4.4446 4.5565 4.6568
14 3.1129 3.5045 3.7789 3.9910 4.1642 4.3108 4.4380 4.5503 4.6509
15 3.1043 3.4964 3.7714 3.9841 4.1578 4.3048 4.4323 4.5450 4.6459
16 3.0969 3.4894 3.7650 3.9781 4.1523 4.2996 4.4274 4.5403 4.6415
17 3.0904 3.4833 3.7593 3.9729 4.1474 4.2951 4.4232 4.5363 4.6377
18 3.0847 3.4779 3.7544 3.9683 4.1431 4.2911 4.4194 4.5328 4.6343
19 3.0796 3.4732 3.7500 3.9642 4.1393 4.2875 4.4161 4.5296 4.6313
20 3.0751 3.4689 3.7460 3.9606 4.1359 4.2844 4.4131 4.5268 4.6286
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Table 4.3: Critical Constant value of h, as defined in (4.4) for P ∗ = 0.99

m
k

2 3 4 5 6 7 8 9 10
2 9.1644 9.8849 9.3020 8.9395 8.7007 8.5367 8.4205 8.3366 8.2753
3 6.9220 6.9439 6.9584 6.9816 7.0116 7.0457 7.0819 7.1190 7.1562
4 6.0115 6.2082 6.3400 6.4458 6.5370 6.6182 6.6920 6.7598 6.8228
5 5.6129 5.8768 6.0563 6.1968 6.3142 6.4162 6.5067 6.5883 6.6629
6 5.3899 5.6887 5.8936 6.0530 6.1851 6.2985 6.3985 6.4880 6.5691
7 5.2476 5.5675 5.7882 5.9595 6.1007 6.2216 6.3275 6.4221 6.5075
8 5.1489 5.4830 5.7144 5.8938 6.0414 6.1673 6.2774 6.3755 6.4639
9 5.0765 5.4207 5.6598 5.8451 5.9973 6.1270 6.2402 6.3408 6.4315
10 5.0210 5.3728 5.6178 5.8076 5.9634 6.0959 6.2114 6.3140 6.4064
11 4.9773 5.3349 5.5845 5.7778 5.9364 6.0711 6.1885 6.2927 6.3864
12 4.9418 5.3042 5.5574 5.7536 5.9144 6.0509 6.1699 6.2753 6.3700
13 4.9126 5.2788 5.5350 5.7335 5.8961 6.0342 6.1544 6.2608 6.3565
14 4.8880 5.2574 5.5161 5.7166 5.8807 6.0201 6.1413 6.2486 6.3451
15 4.8670 5.2391 5.5000 5.7021 5.8676 6.0080 6.1301 6.2382 6.3353
16 4.8489 5.2233 5.4861 5.6896 5.8562 5.9976 6.1204 6.2292 6.3268
17 4.8332 5.2096 5.4739 5.6787 5.8463 5.9885 6.1120 6.2213 6.3194
18 4.8194 5.1975 5.4632 5.6691 5.8376 5.9804 6.1046 6.2144 6.3129
19 4.8071 5.1868 5.4537 5.6606 5.8298 5.9733 6.0979 6.2082 6.3071
20 4.7962 5.1773 5.4453 5.6530 5.8229 5.9669 6.0920 6.2027 6.3019
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4.3 Monte Carlo Simulation Study of Two-stage

Procedure

The two-stage procedure (4.1), starts with m ≥ 2 at the first stage observations from each

of the k populations and the control population. The procedure takes N −m additional

samples at the second stage from each all the k populations and the control population.

In this section, some simulation are performed under different setting of n∗, h, a and σ.

In table (4.4-4.8), we took the value of m = 5 and m = 10, k = 4, and P ∗ = 0.9, p∗ = 0.95

and p∗ = 0.99. Respect to the value of k and P ∗, the value of the design constant h was

obtained from (3.8). Recall that the design parameters δ1 and δ2 are predetermined by

the experimenter based on the definition of the Good and Bad populations. Note that

a = δ2 − δ1, which represents the length of indifference zone.

Table 4.4: Simulation of Two-stage Procedure (4.1); Based on 100,000 iterations, p∗ =0.95,
k=4, m =5
configuration n∗ n̄ Std(n) P̄ Std(P̄ ) b h a σ λ

(0,4) 36.7605 40.7309 0.0284 0.9801 0.0004 3.6760 4.0230 0.5 5 10
(1,3) 36.7605 40.7130 0.0285 0.9690 0.0005 3.6760 4.0230 0.5 5 10
(2,2) 36.7605 40.7430 0.0285 0.9587 0.0006 3.6760 4.0230 0.5 5 10
(3,1) 36.7605 40.7202 0.0284 0.9518 0.0006 3.6760 4.0230 0.5 5 10
(4,0) 36.7605 40.7110 0.0283 0.9536 0.0006 3.6760 4.0230 0.5 5 10
(0,4) 73.521 80.9339 0.0179 0.9802 0.0001 3.6760 4.0230 0.5 10 20
(1,3) 73.521 80.9671 0.0179 0.9689 0.0001 3.6760 4.0230 0.5 10 20
(2,2) 73.521 80.9757 0.0180 0.9587 0.0001 3.6760 4.0230 0.5 10 20
(3,1) 73.521 80.9655 0.0179 0.9515 0.0002 3.6760 4.0230 0.5 10 20
(4,0) 73.521 80.9202 0.0179 0.9525 0.0002 3.6760 4.0230 0.5 10 20

4.4 Concluding Remarks and Future Work

As well as proposing a convenient partition rule this dissertation provides the sample size

needed for practitioners in order to reach a prerequired probability of correct decision,
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Table 4.5: Simulation of Two-stage Procedure (4.1); Based on 100,000 iterations, p∗ =0.9,
k=4, m =5
configuration n∗ n̄ Std(n) P̄ Std(P̄ ) b h a σ λ

(0,4) 29.6939 32.3596 0.0225 0.9603 0.0006 2.9639 3.1855 0.5 5 10
(1,3) 29.6939 32.3532 0.0225 0.9381 0.0007 2.9639 3.1855 0.5 5 10
(2,2) 29.6939 32.3567 0.0225 0.9187 0.0008 2.9639 3.1855 0.5 5 10
(3,1) 29.6939 32.3665 0.0225 0.9049 0.0009 2.9639 3.1855 0.5 5 10
(4,0) 29.6939 32.3583 0.0225 0.9075 0.0009 2.9639 3.1855 0.5 5 10
(0,4) 59.3878 64.2152 0.0451 0.9594 0.0002 2.9639 3.1855 0.5 10 20
(1,3) 59.3878 64.2055 0.0449 0.9359 0.0002 2.9639 3.1855 0.5 10 20
(2,2) 59.3878 64.2158 0.0449 0.9167 0.0003 2.9639 3.1855 0.5 10 20
(3,1) 59.3878 64.2119 0.0451 0.9020 0.0003 2.9639 3.1855 0.5 10 20
(4,0) 59.3878 64.1813 0.0450 0.9051 0.0003 2.9639 3.1855 0.5 10 20

Table 4.6: Simulation of Two-stage Procedure (4.1); Based on 100,000 iterations, p∗ =0.99,
k=4, m =5
configuration n∗ n̄ Std(n) P̄ Std(P̄ ) b h a σ λ

(0,4) 52.958 61.0838 0.0135 0.9962 0.0004 5.2958 6.0563 0.5 5 10
(1,3) 52.958 61.0423 0.0135 0.9939 0.0005 5.2958 6.0563 0.5 5 10
(2,2) 52.958 61.0672 0.0135 0.9921 0.0006 5.2958 6.0563 0.5 5 10
(3,1) 52.958 61.0735 0.0135 0.9904 0.0006 5.2958 6.0563 0.5 5 10
(4,0) 52.958 61.0761 0.0135 0.9905 0.0006 5.2958 6.0563 0.5 5 10
(0,4) 105.916 121.6386 0.0271 0.9961 0.0001 5.2958 6.0563 0.5 10 20
(1,3) 105.916 121.6365 0.0271 0.9938 0.0001 5.2958 6.0563 0.5 10 20
(2,2) 105.916 121.6433 0.0270 0.9919 0.0001 5.2958 6.0563 0.5 10 20
(3,1) 105.916 121.6309 0.0271 0.9901 0.0001 5.2958 6.0563 0.5 10 20
(4,0) 105.916 121.6166 0.0270 0.9902 0.0001 5.2958 6.0563 0.5 10 20

Table 4.7: Simulation of Two-stage Procedure (4.1); Based on 100,000 iterations, p∗ =0.9,
k=4, m =10
configuration n∗ n̄ Std(n) P̄ Std(P̄ ) b h a σ λ

(0,4) 29.6939 31.1381 0.0045 0.9611 0.0001 2.9639 3.0634 0.5 5 10
(1,3) 29.6939 31.1534 0.0045 0.9384 0.0002 2.9639 3.0634 0.5 5 10
(2,2) 29.6939 31.1329 0.0045 0.9194 0.0002 2.9639 3.0634 0.5 5 10
(3,1) 29.6939 31.1397 0.0045 0.9050 0.0002 2.9639 3.0634 0.5 5 10
(4,0) 29.6939 31.1279 0.0045 0.9072 0.0002 2.9639 3.0634 0.5 5 10
(0,4) 59.3878 61.7847 0.0091 0.9599 0.0001 2.9639 3.0634 0.5 10 20
(1,3) 59.3878 61.7586 0.0091 0.9370 0.0002 2.9639 3.0634 0.5 10 20
(2,2) 59.3878 61.7827 0.0091 0.9173 0.0002 2.9639 3.0634 0.5 10 20
(3,1) 59.3878 61.7739 0.0091 0.9030 0.0002 2.9639 3.0634 0.5 10 20
(4,0) 59.3878 61.7687 0.0091 0.9053 0.0002 2.9639 3.0634 0.5 10 20
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Table 4.8: Simulation of Two-stage Procedure (4.1); Based on 100,000 iterations, p∗ =0.95,
k=4, m =10
configuration n∗ n̄ Std(n) P̄ Std(P̄ ) b h a σ λ

(0,4) 36.7605 38.7659 0.0057 0.9806 0.0001 3.6760 3.8257 0.5 5 10
(1,3) 36.7605 38.7657 0.0057 0.9697 0.0001 3.6760 3.8257 0.5 5 10
(2,2) 36.7605 38.7491 0.0057 0.9597 0.0001 3.6760 3.8257 0.5 5 10
(3,1) 36.7605 38.7552 0.0057 0.9524 0.0002 3.6760 3.8257 0.5 5 10
(4,0) 36.7605 38.7549 0.0057 0.9533 0.0002 3.6760 3.8257 0.5 5 10
(0,4) 73.5210 77.0131 0.0114 0.9800 0.0001 3.6760 3.8257 0.5 10 20
(1,3) 73.5210 77.0022 0.0114 0.9690 0.0001 3.6760 3.8257 0.5 10 20
(2,2) 73.5210 76.9935 0.0114 0.9590 0.0001 3.6760 3.8257 0.5 10 20
(3,1) 73.5210 76.9941 0.0114 0.9509 0.0002 3.6760 3.8257 0.5 10 20
(4,0) 73.5210 77.0104 0.0113 0.9519 0.0002 3.6760 3.8257 0.5 10 20

which is selecting “Good” and “Bad” two-parameter exponential populations with a con-

trol respect to the location parameter when scaling parameter is unknown. When scaling

parameter is unknown, this dissertation proposes two sequential procedures to implement

which also guarantees the PCD under the same partition rule. Of course, more studies

on the proposed model remain to be done. They include the following several aspects.

(i) This dissertation assumes the scale parameter stays the same among all exponential

populations as well as the control population. But heteroscedasiticity may exist for

the two-parameter exponential populations partitioning.

(ii) This dissertation assumes that statisticians are selecting the sample size a vector

at a time. This consideration is made since no prior knowledge is given on the

cost of selecting. For example, when comparing several drugs is needed, the cost of

collecting a patient taking one drug may be more expensive then collecting a patient

taking a different drug. Under such circumstances, the procedure proposed in this

dissertation can be improved.

(iii) In this dissertation, a single population is considered in the control set. But it is

possible to have more than one control in some real cases.
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