
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

University of New Orleans Theses and 
Dissertations Dissertations and Theses 

Summer 8-6-2018 

An Analysis of Harmonic Airloads Acting on Helicopter Rotor An Analysis of Harmonic Airloads Acting on Helicopter Rotor 

Blades Blades 

Iftekhar A. Riyad 
University of New Orleans, iariyad@uno.edu 

Follow this and additional works at: https://scholarworks.uno.edu/td 

 Part of the Aerodynamics and Fluid Mechanics Commons 

Recommended Citation Recommended Citation 
Riyad, Iftekhar A., "An Analysis of Harmonic Airloads Acting on Helicopter Rotor Blades" (2018). University 
of New Orleans Theses and Dissertations. 2507. 
https://scholarworks.uno.edu/td/2507 

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with 
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright 
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the 
work itself. 
 
This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an 
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/222?utm_source=scholarworks.uno.edu%2Ftd%2F2507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2507?utm_source=scholarworks.uno.edu%2Ftd%2F2507&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


 

 

 

 

An Analysis of Harmonic Airloads Acting on Helicopter Rotor Blades 

 

 

 

A Thesis 

 

 

 

 

 

Submitted to the Graduate Faculty of the 

 University of New Orleans  

in partial fulfillment of the 

requirements for the degree of 

 

 

 

 

 

Master of Science 

in 

Engineering  

Mechanical  
 

 

 

 

 

by 

 

Iftekhar Alam Riyad 
 

B.Sc., Bangladesh University of Engineering and Technology, 2014 

 

August, 2018 

  



ii 
 

DEDICATION 

 

 

To 

My Parents  

who have always loved me unconditionally and taught me to work hard for the things that I 

aspire to achieve 

 

and  

 

My Wife 

who has been a constant source of support and encouragement during the challenges of graduate 

school and life  

  



iii 
 

ACKNOWLEDGMENT 

First of all, I thank God almighty for giving me the strength and confidence to carry on 

this research and for blessing me with many great people who have been my greatest support in 

both my personal and professional life. 

I would like to seize this opportunity to express my deepest regards and gratitude to my 

supervisor Dr. Uttam K Chakravarty for the continuous support, motivation, and guidance for my 

Master’s study and research. His sense of professionalism, enthusiasm, and immense knowledge 

helped me to strengthen my skills on professional problem-analyzing, problem-solving, and 

report-writing.  I also want to thank the members of my thesis committee; Dr. Paul J Schilling 

and Dr. Paul D Herrington for their valuable thoughts and comments on my research. 

I would specially like to express my gratitude to Pratik Sarker, whose invaluable 

knowledge expanded my perspective of this research in many ways. I would like to express my 

deepest gratitude to Md Mosleh Uddin and M. Shafiqur Rahman who were always there 

whenever I faced any difficulty about this research. I was lucky enough to have Khairul Habib 

Pulok and Debabrata Mondal in our lab whose presence made my life at University of New 

Orleans more enjoyable. Last but not the least; I would like to express my sincere appreciation to 

my friend Kauser Ahmmed Anik for his valuable insight and advice during the process of 

generating results. 

 

 

  



iv 
 

Table of Contents 
 

Nomenclature ................................................................................................................................. vi 

List of Figures .............................................................................................................................. viii 

List of tables .....................................................................................................................................x 

Abstract .......................................................................................................................................... xi 

Chapter 1 ..........................................................................................................................................1 

Introduction ................................................................................................................................1 

1.1 Motivation ..........................................................................................................................1 

1.2 Influence of Airloads in Helicopter Vibration ....................................................................2 

1.3 Aerodynamics of Helicopter...............................................................................................3 

1.4 Review of Literature ...........................................................................................................6 

1.5 Research Objective ...........................................................................................................10 

Chapter 2 ........................................................................................................................................ 11 

Theoretical Context on Rotor Blade Aerodynamics .............................................................11 

2.1 Classical Theories of Aerodynamics ................................................................................11 

2.2 Formulation of Rotary Wing Aerodynamic Problem .......................................................14 

Chapter 3 ........................................................................................................................................17 

Mathematical Model for Blade Airload Calculation ............................................................17 

3.1 Two-Dimensional Vorticity Distribution .........................................................................17 

3.2 Three-Dimensional Rotor Induced Downwash ................................................................18 

3.3 Three-Dimensional Airloads Solution ..............................................................................21 

3.3.1 Hovering Flight Condition ...................................................................................21 

3.3.2 Forward Flight Condition .....................................................................................23 

3.4 Determination of Sectional Drag ......................................................................................29 

3.5 Determination of Pitching Moment ..................................................................................31 

Chapter 4 ........................................................................................................................................33 

Results and Discussions ...........................................................................................................33 

Chapter 5 ........................................................................................................................................42 

Conclusions and Recommendations .......................................................................................42 

5.1 Concluding Remarks ........................................................................................................42 



v 
 

5.2 Recommendations and Future Work ................................................................................43 

References ......................................................................................................................................44 

VITA ..............................................................................................................................................48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

Nomenclature 

 coefficients of chordwise vorticity distribution  

 blade coning angle   cosine component of blade flapping angle 

 distance between center of twist and center of airfoil 

 sine component of blade flapping angle 

 blade semichord  

𝐿 lift coefficient of the airfoil 

𝐷 drag coefficient of the airfoil 

𝐷  average drag coefficient of the airfoil 

 lift deficiency function 

 chord length of airfoil  
𝑇 coefficient of rotor thrust 

 section aerodynamic drag force 

 horizontal distance traveled by rotor hub ℎ heaving motion of the airfoil  

k reduced frequency 

 section aerodynamic lift force 

 Mach number  

 number of wake spirals 

 harmonic of rotor speed 

 number of blades 

 rotor radius 

 rotor thrust 



vii 
 

 freestream velocity 

 forward velocity 

 velocity of rotor tip 

 velocity normal to the blade 

 induced velocity at blade due to wake 

 distance along blade chord  𝑧 vertical distance traveled by rotor hub 

 angle of attack 

 blade flapping angle 

γ element of distributed vorticity 

 angle between rotor disk and relative wind  𝜉 distance of element of vorticity from airfoil mid chord 

 density of air  𝛺 rotor rotational speed 

 advance ratio 𝜎 rotor solidity  𝛤 blade bound circulation 𝜓 azimuth angle of the blade or rotor disk 𝜑  azimuth of wake measured from downwind position 

 blade pitch or feathering angle 

 mean inflow coefficient through the rotor disk 

 inflow coefficient normal to rotor disk ,  rotor span parameter 

 blade spacing 



viii 
 

List of Figures 

 

Figure 1.1: Block diagram of elements contributing to helicopter vibration showing interactions 

Figure 1.2: Wake vorticity formation in a rotor blade with multiple vortex lines and bound   

circulation 

Figure 1.3: Finite straight line approximation of helical vortex wake of a rotor blade 

Figure 2.1: Induction of vortex filament of a point at a particular distance 

Figure 2.2: Unsteady thin airfoil theory model of the two-dimensional wing and wake 

Figure 3.1: Wake geometry showing trailing and shed vortex wake 

Figure 3.2: Induced drag on on airfoil section 

Figure 4.1: Vorticity distribution  induced by a vortex wake at various distances 𝜉 from the 

midpoint of a chord 

Figure 4.2: Nondimensionalized lift with varying azimuth angle of a 4-bladed rotor for advance 

ratios = .  and .  and for spanwise station = .  for forward flight condition 

Figure 4.3: Nondimensionalized lift with varying azimuth angle of a 4-bladed rotor for advance 

ratios = .  and .  and for spanwise station = .  for forward flight condition 

Figure 4.4: Nondimensionalized lift with varying azimuth angle of a 4-bladed rotor for advance 

ratios = .  and .  and for spanwise station = .  for forward flight condition 

Figure 4.5: Nondimensionalized lift with varying azimuth angle of a 4-bladed rotor for advance 

ratios = .  and .  and for spanwise station = .  for forward flight condition 

Figure 4.6: Nondimensionalized drag with varying azimuth angle of a 4-bladed rotor for advance 

ratios = .  and .  and for spanwise station = .  for forward flight condition 



ix 
 

Figure 4.7: Nondimensionalized drag with varying azimuth angle of a 4-bladed rotor for advance 

ratios = .  and .  and for spanwise station = .  for forward flight condition 

Figure 4.8: Nondimensionalized drag with varying azimuth angle of a 4-bladed rotor for advance 

ratios = .  and .  and for spanwise station = .  for forward flight condition 

Figure 4.9: Nondimensionalized drag with varying azimuth angle of a 4-bladed rotor for advance 

ratios = .  and .  and for spanwise station = .  for forward flight condition 

Figure 4.10: Nondimensionalized pitching moment with varying azimuth angle of a 4-bladed 

rotor for advance ratios = .  and .  and for the spanwise station = .  for the 

forward flight condition 

Figure 4.11: Nondimensionalized pitching moment with varying azimuth angle of a 4-bladed 

rotor for advance ratios = .  and .  and for the spanwise station = .  for the 

forward flight condition 

Figure 4.12: Nondimensionalized pitching moment with varying azimuth angle of a 4-bladed 

rotor for advance ratios = .  and .  and for spanwise station = .  for forward 

flight condition 

Figure 4.13: Nondimensionalized pitching moment with varying azimuth angle of a 4-bladed 

rotor for advance ratios = .  and .  and for the spanwise station = .  for the 

forward flight condition 

Figure 4.14: Comparison of experimental and calculated lift with varying azimuth angle of a 4- 

bladed rotor for advance ratio = .   for the spanwise station  = .  for the 

forward flight condition 

 

 



x 
 

List of Tables 

Table 1: Flapping and pitching coefficients for UH-60 helicopter 

Table 2: Parameters of UH-60 helicopter 

 

 

 

 

  



xi 
 

ABSTRACT 

Rotary wing aircrafts in any flight conditions suffer from excessive vibration which 

makes the passengers feel uncomfortable and causes fatigue failure in the structure. The main 

sources of vibration are the rotor harmonic airloads which originate primarily from the rapid 

variation of flow around the blade due to the vortex wake. In this thesis, a mathematical model is 

developed for rotor blades to compute the harmonic airloads at rotor blades for two flight 

conditions−vertical takeoff and landing, and forward flight. The sectional lift, drag, and pitching 

moment are computed at a radial blade station for both flight conditions. The lift at a particular 

radial station is computed considering trailing and shed vortices and summing over each blade. 

The results for airloads are obtained by MATLAB after considering zeroth, first, and second 

harmonics. The calculated results for airloads are compared to the experimental flight-test data.  

 

Keywords: Harmonic airloads, azimuth angle, trailing vortex, shed vortex, vortex wake.
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Chapter 1 

Introduction 

1.1 Motivation 

Rotary wing aircrafts are subjected to excessive vibration which makes the passengers 

uncomfortable and results in fatigue failure in both structure and equipment. There are three 

basic factors that contribute to the vibration of the helicopter. These three elements are−rotor 

aerodynamic loading, blade and rotor dynamics, and fuselage dynamics. The primary source of 

vibration is the aerodynamic loading.  One of the most difficult problems faced by the designer 

of rotary wing aircrafts is the determination of aerodynamic airloads. Among the aerodynamic 

loading, harmonic airloads are mainly responsible for vibration. For design purpose and cost 

effectiveness, it is important to understand the harmonic airloads. Rotor harmonic airloads come 

from two sources− per revolution variation in velocity tangential to the blade and rapid variation 

in velocity perpendicular to the blade due to vortex wake. To compute the harmonic airloads, the 

harmonic induced velocity at the rotor blades is computed by the integration of Biot-Savart law 

over the vortex wake. Tip vortices contribute most to the downwash at the rotor disc. The main 

objective is to compute the harmonic airloads in hovering and forward flight cases. This is 

always a challenge to calculate aerodynamic airloads with less computation time without 

sacrificing accuracy.  
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1.2 Influence of Airloads on Helicopter Vibration 

There are many elements contributing to the vibration of a helicopter. The interaction 

between the elements determines the degree of complexity required for numerical solution. The 

elements of vibration can be shown in Fig. 1.1 [1]. 

  

 

Research has indicated that the interactions shown by broken lines are not important. The 

harmonic airloads depend on wake geometry and are the primary source of vibration. Blade 

motions are coupled with harmonic airloads. Mean rotor thrust, trailing wake, and shed wake are 

the components that contribute to harmonic airloads. Rotor dynamics and fuselage vibration are 

also related to harmonic airloads. Blade-vortex interactions (BVI) are responsible for harmonic 

Harmonic 
airloads 

Blade 
motions 

Hub 
shears 

Fuselage 
displacements 

Shed & 
trailing 
wake 

Figure 1.1: Block diagram of elements contributing to helicopter vibration 

Rotor 
thrust 

Trailing 
wake 

Rotor Aerodynamic Loading Rotor Dynamics 
Fuselage 
Vibration 
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airloads. Vortices trailed from one blade interact with next blade which causes the circulation 

around the wing unsteady. As the rotor blade encounters wake from the preceding blades, 

substantial time varying loads are produced. Even in steady-state forward flight, the blade 

loading is periodic in nature. For the computation of airloads, different methods are developed to 

model the rotor blade vortex in a way so that it becomes mathematically tractable.  

 

1.3 Aerodynamics of Helicopter 

Aerodynamics of a helicopter deals with forces and moments necessary to have a 

controlled and sustainable flight. These forces are called lift and drag. The lift is defined as the 

component of force acting in a direction perpendicular to the line of flight and drag acts in the 

direction of flight. Due to the encounter of vortices with rotor blades, the aerodynamics of 

helicopter is always unsteady in nature. 

1.3.1 Unsteady Aerodynamics of Rotor Blades: Helicopter rotor aerodynamics in any 

flight condition is unsteady in nature because of the rapid change of circulation around the blade. 

Unlike a fixed-wing aircraft, helicopter rotors experience oscillatory aerodynamic loads even in 

steady flight condition. Variations in relative speed occur at blade sections when the blade rotates 

through the azimuth angle. Rotor blades shade helical vortex sheets that remain below the rotor 

disc which influence the mean inflow through the rotor making the inflow non-uniform. All the 

aerodynamic loads (lift, drag, and pitching moment) are influenced by the vortices shed from the 

trailing edge of the blades. For any aerodynamic load calculations, three types of vortices are 

considered− trailing vortex, shed vortex, and tip vortex. The lift on a blade is due to its bound 

circulation. Trailing vortices are formed by the spanwise variation of bound circulation and are 
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parallel to the free stream velocity. Shed vortices are parallel to wing span and are produced due 

to time variation of bound circulation.  

Tip Vortex: Tip vortices results from the rolling up of trailing vortices near the tip of wing 

and has the major influence on the aerodynamic loads, e.g., lift on a blade is maximum at the 

blade tip due to the rolled up tip vortices. These vortices are the only concentrated vortices in the 

helical wake. These tip vortices are formed due to rapid drop in circulation near the blade tip. 

Most of the trailing vortices outboard of the blade quickly rolls up into concentrated tip vortices. 

The rest of the trailing wake and shed wake do not roll up until they are far downstream of the 

flow field. Therefore, tip vortices are the primary source of harmonic airloads. Three types of 

vortices are illustrated in Fig. 1.2. 

 

 

Figure 1.2: Wake vorticity formation in a rotor blade with multiple vortex lines and 
bound circulation 

Tip vortex 

Trailing vortex 

Shed vortex 

Bound circulation 
distribution 

Lifting line 
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Harmonic airloads arise from the rapid variation of induced velocity at the rotor blades, 

radially and azimuthally. This rapid variation is due to the passage of rotor blades close to the 

concentrated tip vortices in the wake. 

1.3.2 Influence of Rotor Wake on Airloads Computation: An airfoil immersed in a free 

stream experiences a force proportional to the density of surrounding fluid medium, the vortex 

strength and the freestream velocity. If the wing in a freestream is modeled with a continuous 

vortex sheet, the total aerodynamic force acting on it can be evaluated as the integral effect of the 

vortex sheet. In rotary wing aerodynamics, the returning effect of the wake on the neighboring 

blade can also be modeled with vortex aerodynamics. Since, concentrated tip vortices have the 

maximum influence on the blade airloads, errors in their location during load computation can 

lead to wrong induced velocity distribution. Therefore, a rigid wake model is sufficient for 

trailing and shed vortices but an adequate accurate representation of tip vortices are necessary to 

compute the airloads accurately. The wake of each blade is assumed to consist of a series of 

vortex lines, each forming a skewed helix whose geometry is determined by the advance ratio of 

the helicopter. The computer solution uses numerical integration of Biot-Savart relation over the 

helical skewed wake. As the integration is done numerically, the wake can be represented by 

finite straight lines with a varying azimuth of 7.5° to 15°, which is represented in Fig. 1.3. In this 

thesis, finite line approximation is used for saving a significant amount of computation time. For 

forward flight case, three spirals of wake can give satisfactory results for airloads calculation. 

For hovering case, since there is no relative wind, the wake does not move away from the rotor 

as rapidly as for the forward flight case. Generally, six turns of spirals give satisfactory results 

and a semi-infinite vortex cylinder is used to represent the tip vortices.  
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Figure 1.3: Finite straight line approximation of helical vortex wake of a rotor blade 

 

1.4 Review of Literature 

Rotary wing aircrafts are subjected to excessive vibration which results in fatigue failure 

in both the structure and equipment. There are three basic elements that contribute to the 

vibration of a helicopter. These are−the rotor aerodynamic loadings, rotor dynamics, and 

fuselage dynamics. Among these three elements, the main source of vibration is the aerodynamic 

loading, the determination of which is the most difficult problem faced by the rotary wing 

aircraft designer. Harmonic airloads are mainly responsible for vibration which come from two 

sources−per revolution variation in velocity tangential to the blade and rapid variation in 

velocity perpendicular to the blade due to vortex wake. The airloads on a rotor blade also depend 

on the wake geometry and its distortion during the flight. Harmonic airloads are computed by the 

integration of trailing and shed wake. The BVI creates noise and vibration in a helicopter and is 

responsible for harmonic airloads. As the rotary wing encounters the wake generated from the 

Rotor hub 
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preceding blades, substantial time-varying loads are produced. For the computation of airloads, 

different methods [1, 2] were developed to model the rotor blade unsteady aerodynamic problem 

to calculate the vortex induced airloads. Although extensive work was done in this area for many 

decades, this is always a challenge to calculate aerodynamic airloads with less computation time 

and without sacrificing accuracy. 

For the fixed-wing aircraft, the influence of the wake distortion can be neglected because 

the wake is left downstream away from the blade. In case of the rotary wing, the helical vortex 

wake remains below the rotor disk which influence the mean inflow through the rotor disk 

making the inflow nonuniform. For the computation of the aerodynamic loadings, three types of 

vortices are considered−trailing vortex, shed vortex, and tip vortex. Trailing vortices are formed 

by the spanwise variation of the bound circulation and are parallel to the freestream velocity. 

Shed vortices are parallel to the wing span and are produced due to the time-variation of bound 

circulation. Tip vortices are formed by the rolling up of trailing vortices near the tip of the wing 

and contribute most towards the airloads. The lift on a blade is maximum at the tip due to the tip 

vortices. Tip vortices are formed due to the rapid drop in the circulation near the blade tip. Most 

of the trailing vortices outboard of the blade then quickly roll up into concentrated tip vortices. 

Therefore, tip vortices are the primary source of harmonic airloads. The aerodynamic 

consideration of a wing can be divided into two parts− the study of the wing section (airfoil) and 

the modification to the airfoil properties to account for the finite wing [3]. If the wing section in 

a freestream is modeled with a continuous vortex sheet, the total aerodynamic force acting on it 

can be evaluated as the integral effect of the vortex sheet. Theodorsen [4] presented the 

aerodynamic forces acting on an oscillating thin, two-dimensional airfoil which was based on the 

potential flow and Kutta conditions [3]. Karman, Sears, and Isaacs [5−7] discussed the wake of 
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vorticity formation by an airfoil and formulated vortex induced airloads equations of an 

oscillating airfoil. Isaacs [6, 7] considered the practical case where the airfoil was subjected to 

the variable freestream velocity. The lift and moment equations were developed in the form of 

the Fourier series considering sinusoidal variation of the freestream velocity and the angle of 

attack. Loewy [8] considered the aerodynamics of an oscillatory rotary wing airfoil and 

developed equations for lift and pitching moments with the modified Theodersen’s lift-deficiency 

function. The lift-deficiency function  was modified to include the effects of the number of 

blades in the rotor, returning wakes, the ratio of oscillatory frequency to rotational frequency, and 

the inflow ratio. In recent times, the aforementioned theories of two-dimensional airfoil were 

reviewed and closed form solutions for lift and pitching moment equations were presented in the 

frequency domain [9−14]. Johnson [15] showed the application of the unsteady airfoil lift and 

pitching moment equations to three-dimensional rotary wings. 

 Airloads on a three-dimensional wing are computed by the lifting-line and lifting-surface 

theory. The computation methods of lifting-line theory were discussed elaborately [16]. In recent 

times, with a few minor alterations and the use of a modern computer, the lifting-line theory 

proposed by Prandtl is used to predict the inviscid forces and moments acting on lifting surfaces 

[17]. The accuracy of the results is as good as that obtained from modern panel codes or 

computational fluid dynamics (CFD) methods, but at a small fraction of the computational cost. 

However, Jones [18] showed that the lifting-line theory was adequate to predict the loading 

distributions in a forward flight, although if a vortex passes very close to the blade, modified 

lifting-line theory or lifting-surface theory must be used. To achieve the accuracy in the 

prediction of the blade loadings, it was necessary to consider the chordwise loadings, too. The 

lifting-surface theory presented by Ashley and Windall [19] emphasized on numerical 
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approaches to the vortex induced blade loading problem. Landhal [20] applied the numerical 

lifting-surface theory to linearized thin-wing problem in details and showed comparison with 

experimental results. The comparison showed that the numerical lifting-surface methods were 

useful in predicting the airloads accurately. The lifting-surface theory was applied to calculate 

the lift generated on a rotor blade in forward flight for both compressible and incompressible 

flows [21]. The method utilized the concept of the linearized acceleration potential originally 

developed by Kussner [22] and calculations were demonstrated in terms of the lift distribution on 

a single and double bladed rotor. Johnson [23] developed a practical procedure for the use of the 

lifting-surface theory to calculate the airloads induced on a helicopter rotor blade by a nearby tip 

vortex. Planar lifting-surface theory was applied to the model problem of an infinite aspect ratio 

of the wing encountering an infinite vortex at an arbitrary angle with the wing. The solution of 

the problem required the development of the general aerodynamic kernel function developed and 

modified by Watkins and others [24, 25]. Johnson showed that the use of the lifting surface 

solution [18] was necessary to obtain accurate loading prediction for the case involving the tip 

vortex passing close to the blade. 

One of the earliest attempts to compute the induced velocity field at the rotor flow was 

presented by Drees [26] primarily for the purpose of performance estimation. Miller [27] 

presented a theoretical approach of determining blade harmonic airloads in both hovering and 

forward flights. The first step of airloads calculation was to compute the vortex induced 

downwash at the rotor disk at a particular spanwise distance. Biot-Savart induction law [3] was 

used to calculate the downwash at a particular spanwise station. Miller [27] presented the 

equations to compute the downwash for the trailing and shed wakes using the Biot-Savart law 

[28]. Integration of these equations gave the total downwash at a particular blade station. Mean 
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inflow through the rotor disk was then calculated which was used to compute the lift force on the 

blade section. Ghareeb [29] programmed the procedure of the lift calculation described in an 

IBM 7090 computer at MIT. Later, Scully [30, 31] discussed the various methods of calculating 

the airloads on a helicopter rotor in steady, forward flight for the purpose of achieving faster 

solution time for a given level of accuracy. Widnall [32] discussed the stability of a helical vortex 

filament of finite core size and concluded that the vortex was unstable to small sinusoidal 

displacements of the filament. Scully [33] and Landgrebe [34] presented the methods to predict 

the rotor blade wake geometry. The airloads solution used numerical integration of the Biot-

Savart relation [27] over the helical skewed wake. As the integration was done numerically, the 

wake was represented by finite straight lines [35, 36] with a varying azimuth of 7.5° to 15°. The 

airloads calculation using the Biot-Savart law [27] with the lifting-line approximation gives 

almost accurate results for lower harmonics. In recent times, the application of numerical panel 

methods [37−44] and inviscid CFD methods [45−48] are popular for the fast computation of the 

airloads using CAMRAD ІІ software designed specially for the rotary wing. 

 

1.5 Research Objective 

The objective of this thesis is to present a mathematical model to compute the harmonic 

airloads. A simplified mathematical model is developed to make the airloads expressions 

mathematically tractable. For forward flight case, assuming a harmonic circulation and semirigid 

trailing wake, the numerical integration of the Biot-Savart relation [28] is carried out over the 

helical vortex to find the induced downwash at a radial station. Harmonic analysis is carried out 

on the downwash velocity to compute the mean inflow through the rotor disk. By computing the 

inflow, the lift at a particular spanwise station is calculated with varying azimuth angle. For both 

flight conditions, three spirals of the vortex are considered for the airloads calculation. Results 
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for airloads are obtained by considering the zeroth, first, and second harmonics only. The 

pitching moment and sectional drag are also calculated along with lift force and all the results are 

expressed in nondimensionalized form. For the airloads computation, the parameters of the UH-

60 helicopter rotor blade are used. All the computations are done in MATLAB. 

 All the numerical calculations and plots have been done in MATLAB 2015a. The Results 

obtained for lift are then compared to the experimental results of full scale flight tests. 

 

 

Chapter 2 
 

Theoretical Context on Rotor Blade Aerodynamics 

 
2.1 Classical Theories of Aerodynamics 

Aerodynamics deals with forces and moments necessary to have a controlled and 

sustainable flight for any aircraft. These forces are called lift and drag. The lift is defined as the 

component of force acting in a direction perpendicular to the line of flight which must be greater 

than the force of gravity in order to ascend the aircraft. The drag acts in the direction of flight, 

which is the resistance felt by the aircraft against the flow of air. The lift and drag equations for 

an airfoil section are given as [3]: 

 

                                                          = 𝐿                                                                        

                                                         = 𝐷                                                                         
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The lift generated on an airfoil can also be expressed as a function of its bound 

circulation. Among the classical theories of aerodynamics, Kutta condition [3] gives the 

circulation nature around the airfoil which states that a body with a sharp trailing edge which is 

moving through a fluid will create about itself a circulation of sufficient strength to hold the rear 

stagnation point at the trailing edge i.e., the vortex will be produced at the trailing edge only. 

Kelvin’s circulation theory [45] states that the circulation around the airfoil is equal and opposite 

of the circulation around the starting vortex. The well-known Kutta-Joukowski theorem [3] 

relates the lift generated by an airfoil to the airfoil speed, fluid density, and the circulation around 

the airfoil. According to this theory, the lift per unit length is given by, 

 

                                                        = 𝛤                                                                               

 

The theorems discussed apply only for the steady-state condition. When the flow velocity 

around the airfoil increases (which is the case for all aircrafts) i.e., the Reynolds number  

increases, the flow becomes unsteady in nature. In order to calculate the unsteady lift, drag and 

pitching moment, the magnitude of induced velocity by the trailing vortices around the airfoil is 

to be known. The conservation of vorticity for a finite wing requires that there will be trailing 

and shed vorticities in the wake behind the wing. The trailing vorticity is parallel to the 

freestream velocity and is produced due to the spanwise variation of bound circulation. The shed 

vorticity is parallel to the blade span and is produced due to the time variation of bound 

circulation. The resultant vortex behind the wing is the combination of trailed and shed vorticity. 

 

In this thesis, the airloads at a spanwise station of a blade will be calculated using the 

Biot-Savart law. The concept of vortex filament is necessary for the application of this law. A 
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vortex filament can be a curved line which extends from the trailing edge of the blade. A portion 

of vortex filament is shown in Fig. 3.1 [3]. 

 

 

 
 

The filament induces a flow field in the surrounding space. The strength of vortex 

filament is assumed as 𝛤. Let us consider a small segment of the filament , as shown in Fig. 

2.1. The radius vector from  to an arbitrary point  in space is . The segment  induces 

velocity  at  which is expressed as:  

 = 𝛤 ⨯                                                                             

 

 

Equation (4) is known as Biot-Savart law and is one of the fundamental equations in the 

theory of inviscid incompressible flow. Helmholtz [3] was the first to make use of the vortex 

filament concept in the analysis of inviscid, incompressible flow and to calculate the airloads. 

The Helmholtz theorem states that: 

Figure 2.1: Induction by vortex filament at a point near the filament 
 

𝑑𝑣 

Vortex filament of strength  𝛤 

𝑟 
𝑃 
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1. The strength of a vortex filament is constant along its length. 

2. A vortex filament cannot end in a fluid; it must extend to the boundaries of the fluid or form a 

closed path. 

These theorems are the basics of the theory of lift distribution along the span of a finite blade. 

The aerodynamic study of a wing can be separated into two categories−the study of wing 

section (airfoil), and the study of three-dimensional wing. The first practical theory for predicting 

the aerodynamic properties of a finite wing was developed by Prandtl [3, 16]. The utility of 

Prandtl's theory is still in use today for preliminary calculations of wing characteristics. This 

lifting-line theory is the basis of modern numerical methods for calculating the blade loadings. 

The lifting-line approach assumes a straight line along the span of a wing and calculates the lift 

along this line only. This method does not necessarily give the accurate prediction of airloads but 

gives a preliminary idea about the airloads. 

 

2.2 Two-Dimensional Aerodynamics of Airfoil  

Since the aerodynamic environment of the rotor blade in hovering or forward flight is 

unsteady, lifting-line theory requires an analysis of the unsteady aerodynamic environment of a 

two-dimensional airfoil. Considering the problem of a two-dimensional airfoil undergoing 

unsteady motion in a uniform freestream, the airfoil and its wake are represented by thin surfaces 

of vorticity parallel to the freestream velocity given in Fig. 2.2 [16]. The shed vorticity in 

unsteady aerodynamic environment are modeled by planar sheets of vorticity. An airfoil of chord 

2b is in a uniform freestream velocity U. Since the bound circulation of the section varies with 

time, there is shed vorticity in the wake downstream of the airfoil. The vorticity strength on the 

airfoil is  and the wake is 𝑤. The blade motion is described by a heaving motion h (positive 



15 
 

downward) and a pitch angle α about an axis at =  (positive for nose upward). The 

aerodynamic pitch moment is evaluated about the axis at = . 

 

 

The lift and the pitching moment of a two-dimensional airfoil are expressed as [15]:  

 = (ℎ + − ) + (ℎ + + ( − ) )                       

 = [ ℎ + − − ( + ) ] + ( + ) [ ℎ + +
− ]                                                                                                                                   

 

For the complete analysis of the airloads of a wing, it is necessary to consider the three-

dimensional wing. A finite blade is a three-dimensional body and the flow around it is also three-

dimensional; i.e., there is a component of flow in the spanwise direction. The blade experiences 

lift due to the existence of a high pressure on the bottom surface and a low pressure on the top 

surface of the blade. The net imbalance of the pressure distribution creates the lift and the 

Figure 2.2: Unsteady thin airfoil model of a two-dimensional wing and its wake  
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pressure imbalance. The flow near the wing tip tends to curl around the tips, being forced from 

the high pressure region just underneath the tips to the low-pressure region on top. As a result, on 

the top surface of the wing, there is generally a spanwise component of flow from the tip toward 

the wing root, causing the streamlines over the top surface to bend toward the root. Similarly, on 

the bottom surface of the wing, there is a span wise component of flow from the root toward the 

tip, causing the streamlines over the bottom surface to bend toward the tip and tip-vortex is 

formed. The tendency of the flow to leak around the blade tips has another important effect on 

the aerodynamics of the blade. This flow causes a circulatory motion which trails downstream of 

the blade; i.e., trailing vortices are created at the trailing edge of blade sections. These trailing 

vortices downstream of the wing induce a small downward component of air velocity in the 

neighbourhood of the blade itself. These vortices tend to drag the surrounding air around with 

them, and this secondary movement induces a small velocity component in the downward 

direction at the wing. This downward component is called downwash . The downwash 

combines with the freestream velocity  and has its effect on the lift and thrust generation on the 

blade. 
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Chapter 3 

Mathematical Model for Blade Airload Calculation 

3.1 Two-Dimensional Vorticity Distribution 

The problem of calculating the unsteady loads on a three-dimensional wing can be 

divided into two parts−an inner problem involving the aerodynamic behavior of a two-

dimensional airfoil, and an outer problem involving the calculation of the velocity induced by the 

rotor vortex wake at the blade section [16]. Johnson [16, 49] discussed the unsteady two-

dimensional aerodynamic model for a rotary wing. The vorticity distribution induced by a vortex 

of constant strength measured from the midchord position of the airfoil is expressed as [5]: 

 = 𝛤𝜉 − √ −+ √𝜉 +𝜉 −                                                              

 

where  is the distance along the blade chord and −1 ≤  ≤ 1,  𝜉 is the distance of the vortex 

from the midchord, 𝛤 is the circulation strength of an element of vorticity. The chordwise 

vorticity can also be represented by the following series [50]: 

  = tan + ∑ sin  ∞
=                                                         

 

The flow normal to the blade at a chordwise station  can be written as [1]: 

 = + ∑ cos∞
=                                                                
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where  is the Fourier coefficient of chordwise vorticity distribution and  is the number of 

harmonics [50]. A two-dimensional lifting-surface theory considering the chordwise vorticity 

was developed [1, 35] and shown that the lift expression could be given in terms of the 

coefficients of chordwise vorticity  as: 

           = [  𝜕𝜕 ( − ) + 𝜕𝜕 ( + ) + ( + )]                     

 

3.2 Three-Dimensional Rotor Induced Downwash 

Three-dimensional system of the rotor wake is completed by trailing vortex lines 

generated by the blade. Shed vortices generate as a result of time variation of circulation around 

the blade. Among the trailing vortices, tip vortex has the highest influence on the blade loading. 

The three-dimensional model for the airloads calculation consists of the trailing and shed vortex 

lines generated by the changes in circulation along the blade span shown in Fig. 3.1. The nature 

of the wake is semirigid, i.e., every element of the vorticity is assumed to retain the instantaneous 

vertical velocity imparted to it at the moment it is trailed or shed. This assumption establishes a 

spiral wake descending at every spanwise station with a constant velocity in time but permits 

different vertical velocities azimuthwise. Since the induced velocity at the blade span is 

determined mainly by the first few spirals, this assumption is considered to be valid [27]. The 

relationship required to compute the downwash at a spanwise station of rotor blade is developed 

below. Numerical integration of the Biot-Savart relation [51] is used to calculate the total 

downwash at the blade station for a three-dimensional rotor, operating at an advance ratio . 
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Figure 3.1: Wake geometry showing trailing and shed vortex wake 

 

From Fig. 3.1, the element of vorticity is generated from the trailing edge of the blade at a 

spanwise station  from the center of the rotor hub when the blade is at an angle 𝜑. The vertical 

component of downwash,  induced at another spanwise station  and chordwise station  by 

this wake element at the azimuth angle,  𝜓 is given [1] as: 

 = 𝛤     −( + + )                                                      

= 𝜑 cos 𝜑                                                                   

= 𝜑 sin 𝜑 + 𝜑                                                            

𝜂 𝑙 
𝑑 

 
𝜓 

Trailing vortex 

Shed vortex 

 𝜑 
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= + cos 𝜑 − cos 𝜓 − 𝜑 − sin 𝜓 − 𝜑                                  

= sin 𝜑 + sin 𝜓 − 𝜑 − cos 𝜓 − 𝜑                                          

= −𝑧                                                                        

= [ + 𝜓 − 𝜑 + ]                                                  

𝑧 = [ + 𝜓 − 𝜑 + ] + 𝑧 − 𝑧                                          

 

where  is the distance travelled by rotor hub during the time, = 𝜓 − 𝜑 𝛺⁄ , and 𝑧 is 

the vertical distance of element of vorticity below the blade. 𝑧  is the steady-state displacement 

of the blade out of the tip-path plane (TPP). For a rigid wake, 𝑧 − 𝑧 = − .  is 

the spacing of the blades and for a four-bladed rotor,  has values 0,  /2,  , and 3  /2. The 

downwash for a single trailing vortex and a single blade is calculated by integrating Eq. (11) over 

the number of the spirals considered. The downwash due to the shed vorticity [27] is expressed 

as: 

 = − 𝛤  𝛤𝜑  𝜑  ( + + )                                            

 

To find the total downwash , Eq. (19) is integrated with respect to  over each finite 

interval before integration with respect to 𝜑. The summation of downwash due to trailing and 

shed vorticity is: 

= +                                                                   
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The bound circulation induced on the blade at a particular spanwise station and the 

corresponding lift force are given [1] as: 

 𝛤 = −                                                                             

𝜓, = − = 𝛤                                                                

 

Equation (22) gives the lift equation at a particular spanwise station and a particular 

azimuth angle. Total lift at any spanwise station can be calculated using Eq. (22) after summing 

over all the blades. 

3.3 Three-Dimensional Airloads Solution 

3.3.1 Hovering Flight Condition: Three-dimensional downwash calculation for 

hovering or vertical flight is mainly based on uniform downwash. For the hovering case, Eq. (11) 

becomes: 

 = 𝛤     [ − cos 𝜓 − 𝜑 ] 𝜑[ + + 𝑧 − cos 𝜓 − 𝜑 ]                                     

 

Now, replacing the spiral of the trailing vorticity of strength, 𝛤 by a vortex cylinder, the 

distribution of vorticity along 𝑧 axis is given by: 

 𝛤𝑧 = 𝛤                                                                                 
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where  is the mean inflow normal to the rotor disk. The downwash velocity due to 

trailing vortices is obtained by integrating over the complete wake as: 

 =  ∫  𝛤[ − cos 𝜓 − 𝜑 ][ + − cos 𝜓 − 𝜑 ]𝜋 𝜑                                     

 

Since, = /𝛺  for hovering flight, the constant circulation strength is expressed by: 

 𝛤 = 𝛺                                                                           

 

From definition, the coefficient of thrust is: 

 

𝑇 = 𝛺                                                                             

and    

= √ 𝑇                                                                                  

 

The lift depends on the bound circulation around the blade section. The harmonic 

variation of bound circulation 𝛤 𝜑  is given as follows: 

 𝛤 𝜑 = 𝛤 sin 𝜑 + 𝛤 cos 𝜑                                                       
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From Eq. (5), the downwash due to trailing vorticity is: 

 = ∫ 𝛤 𝜑 [ − cos 𝜓 − 𝜑 ][ + − cos 𝜓 − 𝜑 ]𝜋 𝜑                              

 

For the complete solution of downwash, the effect of shed vorticity is to be considered 

and for hovering case, Eq. (19) becomes:  

 =  ∫ ∫  𝛤𝜑  𝜑 [  sin 𝜓 − 𝜑 +𝜂𝜋  sin 𝜓 − 𝜑 ]
+ ∫ ∫  𝛤𝜑  𝜑 [  sin 𝜓 − 𝜑 +𝜂

𝜋  sin 𝜓 − 𝜑 ]                   

 

which can be reduced to the form below given in Eq. (32), after substituting  𝛤 𝜑 =𝛤 sin 𝜑 + 𝛤 cos 𝜑 and integrating over φ and . 

   =  [𝛤 − sin 𝜓 + 𝛤 − cos 𝜓]                              

 

After calculating  and  for a spanwise station, total downwash  and the 

corresponding lift are calculated using Eqs. (20) and (22) after summing over all blades and all 

the trailing and shed vortices for hovering flight condition.  

3.3.2 Forward Flight Condition: Rotor blades in forward flight are subject to variable 

velocities and airloads are maximum on the advancing side of blades and minimum on the 

retreating side. Using the downwash theory [27, 28] and considering the blade to be in flapping 
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equilibrium, the blade loadings for an advance ratio are calculated. Like in hovering case, the 

forward flight case also consists of trailing and shed wakes. The downwash Eq. (23) due to the 

trailing wake takes the form for the forward flight case as: 

 = 𝛤 𝜑  [ + cos 𝜑 − cos 𝜓 − 𝜑 ] 𝜑[ + + + 𝑧 − cos 𝜓 − 𝜑 + cos 𝜑 − cos 𝜓]        
 

Equation (33) is simplified to the case of a lifting-line theory for the simplicity of 

calculations where the chordwise station  is neglected. The time variation of circulation gives 

rise to shed vorticity and must be considered for the computation of the airloads. The downwash 

at the blade due to the shed wake can be represented as [28]:  

 = − 𝛤 𝜑𝜑  [ sin 𝜓 − 𝜑 − cos 𝜓 − 𝜑 + sin 𝜑][ + − sin 𝜓 − 𝜑 − ]  𝜑                

 

where 

= + + + 𝑧 − 𝜓 − 𝜑 + − 𝜓                                

 

One important difference between Eqs. (33) and (34) is the presence of chordwise station 

 in Eq. (34). However, if chordwise station is ignored for the computation of the shed wake, the 

lifting-line theory must be applied and Eq. (34) takes the form as: 
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= − [ 𝜓 − 𝜑 + 𝜑𝑧 + [ sin 𝜓 − 𝜑 + sin 𝜑] { + 𝜑 − 𝜓 − 𝜑√ + + 𝑧 + − 𝜓 − 𝜑 + 𝜑 − 𝜓
− 𝜑 − 𝜓 − 𝜑√ + + 𝑧 − 𝜓}] 𝛤 𝜑𝜑 𝜑                                                                                                         

 

The total downwash due to shed wake can be obtained by the numerical integration of Eq. 

(36). 

After the numerical integration for downwash due to the trailing and shed wakes from 

Eqs. (33) and (36) for forward flight case, the harmonic analysis of  and  are done [28, 29]. 

Harmonic analyses are carried out using the following expressions: 

 𝜓𝛺 = + ∑ [ 𝜓 + 𝜓 ]=                                   

𝜓𝛺 = + ∑ [ 𝜓 + 𝜓 ]=                                 

 

where the subscripts ,  , and  correspond to the number of harmonics considered, the 

spanwise distance where downwash is calculated, and the spanwise distance of the trailing or 

shed wake from rotor hub, respectively. For zeroth harmonic, there is no sine component, so only 

cosine components are considered in the calculation of airloads. For the other harmonics,  and 

 from Eq. (37) refers to cosine and sine components of downwash due to the trailing wake, 

respectively. For the shed wake,  and  refer to cosine and sine components of the downwash, 

respectively. After calculating the components, the load coefficients, i.e., the inflow coefficients 
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through the rotor disk due to the trailing wake are calculated using the following formula [28, 

29]: 

 = ∑ [ − − − ] − tan=                                   

= ∑ [ − − − ]=                                                      

= ∑ [ − − − ]=                                                    

 

The load coefficients due to shed wake are calculated by the following expression [29]: 

 = ∑ [ − − − ] − tan=                                       

 

The lift at any spanwise station is dependent on the bound circulation  𝛤 . For the 

convenience of calculation, the bound circulation is nondimensionalized as: 

 = 𝛤𝛺                                                                               

 

The inflow coefficient   and bound circulation  can be related to a particular spanwise 

station  as follows [28]: 
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 = − +                                                              

= − − +                                                    

= − + − +                                                 

= − −  + + + −                                       

= − +  + + + −                                      

 

where , , and  are the blade flapping coefficients obtained from the following 

blade flapping equilibrium equation [1]: 

 𝐼 + 𝐼𝛺 = ∫ 𝐿 Ω + sin 𝜓                                          

 

The harmonic variations of blade pitching angle considering second harmonics are 

calculated using the following expressions: 

 = + cos 𝜓 + sin 𝜓 + 𝜓 + 𝜓                            

 

Now, using the lifting-line theory, the sine and the cosine components of airloads for a 

particular harmonic number at a station  on the blade are expressed as: 
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= 𝛺 [  + { + − − }]                                   

= 𝛺 [  + { − 𝑐 − + 𝑐}]                                   

 

Total lift of a section at a spanwise station  with varying azimuth angle 𝜓 after 

extracting zeroth, first, and second harmonics can be expressed as [29]:  

 𝜓 = 𝛺 [( + sin 𝜓) 𝜓 − −
− + cos 𝜓 − + − sin 𝜓
− − + cos 𝜓
− + − sin 𝜓 ]                                                                      

 

The procedures to calculate lift at a spanwise station can be summarized as follows: 

1. Assume a mean inflow  and calculate sine and cosine components of downwash and  

from Eqs. (33) and (36), respectively. 

2. Harmonic analysis is carried out to calculate the harmonic airloads coefficients. 

3. Calculate  using Eq. (39) and use this value in step 1 to calculate downwash and in step 2 to 

calculate the harmonic airloads coefficients. 

4. Calculate the sine and cosine components of inflow for different harmonics form Eqs. (39) −(42). 
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5. Calculate sine and cosine components of lift using Eqs. (51) and (52) and total lift by 

extracting up to second harmonics from Eq. (53). 

3.4 Determination of Sectional Drag 

The sectional drag of the blade is dependent on the angle of attack and the Mach number. 

Time-varying angle of attack, three-dimensional flow effects at the blade tip, tangential airspeed 

at radial station, and airspeed perpendicular to no feathering plane (NFP) are considered for 

unsteady aerodynamics of helicopter. There are two components of the drag− viscous drag and 

vortex induced drag. The total drag of the sectional profile is: 

 

𝑇 = + = 𝛺  𝐷 + 𝐿 𝑇                                       

 
Now, the tangential airspeed 𝑇 and the perpendicular airspeed  can be expressed as 

[16]:  

 𝑇 = 𝛺 + 𝛺 sin 𝜓                                                              

𝑇 

𝑃 
 

𝐿𝑖  
𝐷𝑖  

Figure 3.2: Induced drag on on airfoil section 
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= 𝛺 + + 𝛺 cos 𝜓                                                     

 

Blade flapping angle 𝜓  can be found from the blade flapping equilibrium Eq. (49). 

The general solution of Eq. (49) is given as:  

 𝜓 = + cos 𝜓 + sin 𝜓 + cos 𝜓 + sin 𝜓                                          

 

The values of the coefficients are taken from literature survey for the calculation of 

sectional drag. After determining all the dependent variables, sectional drag is determined using 

Eq. (54). The values for flapping and pitching coefficients [52−56] of the UH-60 helicopter are 

given in Table 1. 

Table 1: Flapping and Pitching Coefficients for UH-60 Helicopter 

 

Parameters         Value                      
 

Parameters 

                      

 

Value 

 13.51°  6.9° 

 2.47°  −5.9° 

 −8.99°  −2.2° 

 1.8°  −4.67° 

 −6.25°  −1.7° 
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3.5 Determination of Pitching Moment 

According to the Theodorsen’s theory [4] of a thin, two-dimensional airfoil undergoing 

unsteady motion in an incompressible flow, the pitching moment equation is given as [15]: 

 = [ ℎ − ( − ) − ( + ) ]
+ ( + ) [ℎ + + ( − ) ]                                                 

 

The airfoil has the heaving displacement ℎ and the angle of attack .  is the 

Theodorsen lift deficiency function. The normal velocity due to the airfoil motion is given as:  

 = −(ℎ + ) − −                                                           

Through Eq. (59), the airfoil motion enters into the rotary wing problem. The boundary 

condition of the unsteady airfoil theory is that there is no flow through the wing surface [16]. 

These boundary conditions depend on the quantities (ℎ + ) and  and the solution of this 

linear problem also depends on these two quantities. So, Eq. (58) takes the form:  

   = [ ℎ + − − ( + ) ] + ( + ) [ ℎ + +
− ]                                                                                                                                

 

It is a common practice in rotary wing analysis to identify ℎ as a function of the normal 

velocity , and . The term ℎ +  and  can be expressed as [15]: 
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 ℎ + = 𝑇 − = 𝛺 + 𝛺 sin 𝜓 − (𝛺 + + 𝛺 𝜓)                      

 = + 𝛺                                                                              

 

Substitution of Eqs. (61) and (62) in Eq. (60) gives the moment expression with varying 

azimuth for rotary wing analysis.  

The parameters of UH-60 helicopter [53, 54] are used for the calculation of airloads.  

Table 2: Parameters of UH-60 Helicopter 

Parameters Value 

 

Parameters 

 

Value 

 8.18 m 𝜎 0.0826 

 0.527 m  0−0.2 𝛺  rad/s 𝐷  0.0078 

 221 m/s 𝐿 0.78 

airfoil SC1095 𝑇 0.005 
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Chapter 4 

Results and Discussions 

This vorticity distribution on the airfoil is shown in Fig. 4.1 for various distances of 

vorticity from the midchord position. The Fig. 4.1 shows that a vortex placed very close to the 

airfoil induces a much stronger vorticity over the chord, with a definite peak near the leading and 

the trailing edges.  

 

 

Aerodynamic airloads− the lift, the drag, and the pitching moment of a spanwise station 

are computed for forward flight case considering the parameters [52−54] of the UH-60 

helicopter with a varying azimuth angle from 0° to 360°. The advance ratio of UH-60 helicopter 

is limited to 0.21 in practice and the airloads are calculated for advance ratios of 0.1 and 0.2 for 

Figure 4.1: Vorticity distribution 𝛾 induced by a vortex wake at various distances 𝜉 
from the midpoint of a chord 
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comparison. The results for lift are obtained by using Eqs. (51)−(53) and extracting harmonics 

up to second harmonics and are nondimensionalized by 𝛺 . The variations of the lift at = . , . , . , and .  spanwise stations are shown in Figs. 4.2−4.5, respectively. These 

figures show that the advancing side of the disk, i.e., 𝜓 = ° has the highest peak, which is the 

case for any flight conditions. As the advance ratio increases, the lift also increases with it. The 

lift is maximum near the tip and decreases gradually towards the root of the blade. 

 

Figure 4.2: Nondimensionalized lift with varying azimuth angle of a 4-bladed rotor for 
advance ratios 𝜇 = .  and .  and for the spanwise station 𝜂 = .  for the forward 

flight condition 
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Figure 4.3: Nondimensionalized lift with varying azimuth angle of a 4-bladed rotor for 
advance ratios 𝜇 = .  and .  and for the spanwise station 𝜂 = .  for the forward 

flight condition 

Figure 4.4: Nondimensionalized lift with varying azimuth angle of a 4-bladed rotor for 
advance ratios 𝜇 = .  and .  and for the spanwise station 𝜂 = .  for the forward 

flight condition 
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The drag force is calculated with varying azimuth considering tangential and 

perpendicular air speed on the blade section for forward flight case and for a four-bladed rotor 

using Eq. (54). The coefficients of the blade flapping are needed for the drag calculations and are 

taken from Table 1. The drag forces are nondimensionalized by 𝛺  and presented in Figs. 

4.6−4.9. The azimuth variations of drag are shown for the advance ratios of 0.1 and 0.2 for 

comparison. The drag force has its highest peak at the advancing side, i.e., at 𝜓 = ° which is 

similar to the results obtained for sectional lift. For advance ratio of 0.2, the drag is more at the 

advancing side than that of the advance ratio of 0.1. 

 

Figure 4.5: Nondimensionalized lift with varying azimuth angle of a 4-bladed rotor for 
advance ratios 𝜇 = .  and .  and for the spanwise station 𝜂 = .  for the forward 

flight condition 
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Figure 4.6: Nondimensionalized drag with varying azimuth angle of a 4-bladed rotor 
for advance ratios 𝜇 = .  and .  for the spanwise station  𝜂 = .  for the forward 

flight condition 

Figure 4.7: Nondimensionalized drag with varying azimuth angle of a 4-bladed rotor 
for advance ratios 𝜇 = .  and .  for the spanwise station  𝜂 = .  for the forward 

flight condition 
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Figure 4.8: Nondimensionalized drag with varying azimuth angle of a 4-bladed rotor 
for advance ratios 𝜇 = .  and .  for the spanwise station  𝜂 = .  for the forward 

flight condition 

Figure 4.9: Nondimensionalized drag with varying azimuth angle of a 4-bladed rotor 
for advance ratios 𝜇 = .  and .  for the spanwise station  𝜂 = .  for the forward 

flight condition 
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The pitching moments of the blade section are calculated with varying azimuth for the 

forward flight case and are shown in Figs. 4.10−4.13. The pitching moment about an axis at =  from the midchord position is calculated using Eq. (60) and is nondimensionalized 

by . The results are shown for advance ratios 0.1 and 0.2. At the advancing side, the 

pitching moment drops for both advance ratios which is the opposite case compared to the lift 

and drag.  

 

 

Figure 4.10: Nondimensionalized pitching moment with varying azimuth angle of a 4-

bladed rotor for advance ratios 𝜇 = .  and .  for the spanwise station  𝜂 = .  for  
the forward flight condition 
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Figure 4.11: Nondimensionalized pitching moment with varying azimuth angle of a 4-

bladed rotor for advance ratios 𝜇 = .  and .  for the spanwise station  𝜂 = .  for 
the forward flight condition 

Figure 4.12: Nondimensionalized pitching moment with varying azimuth angle of a 4-

bladed rotor for advance ratios 𝜇 = .  and .  for the spanwise station  𝜂 = .  for the 
forward flight condition 
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Figure 4.13: Nondimensionalized pitching moment with varying azimuth angle of a 4- 
bladed rotor for advance ratios 𝜇 = .  and .  for the spanwise station  𝜂 = .  for the 

forward flight condition 

Figure 4.14: Comparison of experimental [30] and calculated lift with varying azimuth 
angle of a 4-bladed rotor for advance ratio 𝜇 = .   for the spanwise station  𝜂 = .  

for the forward flight condition 
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The lower harmonics of airloads can be calculated with a reasonable accuracy by uniform 

inflow methods. The lift of the blade section for the forward flight case is calculated using 

zeroth, first, and second harmonics. For the comparison of calculated and experimental lift, 

NASA flight test data [30] is used. The comparison of the calculated lift with NASA flight test 

data [30] is shown in Fig. 4.14. The figure shows that there is a little difference as far as the 

ability to predict the experimental data is concerned. The calculated results for the lift show a 

good agreement with the experimental results. 

 

Chapter 5 

Conclusions and Recommendations 

5.1 Concluding Remarks 

In the thesis, the unsteady aerodynamic airloads−the lift, the drag, and the pitching 

moment at a particular blade section are calculated for lower harmonics. The calculated airloads 

are compared with the experimental flight-test data. The experimental data of blade airloads for a 

four-bladed rotor show good agreement with the calculated airloads. The drag and the pitching 

moment are also calculated at the blade section with varying azimuth. Higher harmonic variation 

at the blade section is not considered for the computation of airloads but it gives a good 

prediction of the lift variation when compared with the flight test data. Unsteady aerodynamic 

effects are of considerable importance for the rotary wing because of the proximity of the 

returning wake to the blade. These effects are simplified by treating the far wake using the 

lifting-line theory, and the lifting-surface theory is used for the near wake. Higher advance ratios 
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are not considered in this thesis for the calculation of airloads. For higher advance ratios, the 

consideration of only one spiral is enough instead of three for a reasonable accuracy.  

The accuracy of the calculated airloads is checked by comparing with the experimental 

data [30]. The agreement of the calculated results with the experimental one is good and is 

concluded that as far as the lower harmonics are considered, the mathematical model and 

airloads calculation method discussed are adequate for the computation of airloads.  

5.2 Recommendations and Future Work 

The mathematical model discussed in this thesis is applicable to lower harmonics only. If 

higher harmonic airloads are to be obtained, the analytical approach discussed in this thesis has 

to be modified. The mathematical model presented in this thesis can be modified for higher 

harmonics by including the effects of vortex bursting and compressibility. Many factors 

contribute to higher harmonic airloads in addition to the downwash variations. In particular, the 

in-plane components of blade inertia loads and airloads can contribute to large pitch and flap 

angle variations. All these factors should be considered and the modification must be made to the 

mathematical model discussed in this thesis. A fluid-structure interaction model can be 

developed for rotor blade system and compared to the results obtained for modified 

mathematical model.  

The best approach is to use modern panel codes or CFD solver to compute the higher 

harmonic airloads. The solutions of Reynolds-averaged Navier-Stokes (RANS) equations offer 

significant improvements in the calculation of blade airloads, compared to methods based on 

lifting-line theory. There are some commercially available software like CAMRAD ІІ to 

calculate the airloads for higher harmonics.  
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