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Abstract 

The Littoral Acoustic Demonstration Center has collected passive acoustic monitoring data in the 

northern Gulf of Mexico since 2001. Recordings were made in 2007 near the Deepwater Horizon oil spill 

that provide a baseline for an extensive study of regional marine mammal populations in response to the 

disaster. Animal density estimates can be derived from detections of echolocation signals in the acoustic 

data. Beaked whales are of particular interest as they remain one of the least understood groups of marine 

mammals, and relatively few abundance estimates exist. Efficient methods for classifying detected 

echolocation transients are essential for mining long-term passive acoustic data. In this study, three data 

clustering routines using k-means, self-organizing maps, and spectral clustering were tested with various 

features of detected echolocation transients. Several methods effectively isolated the echolocation signals 

of regional beaked whales at the species level. Feedforward neural network classifiers were also 

evaluated, and performed with high accuracy under various noise conditions. The waveform fractal 

dimension was tested as a feature for marine biosonar classification and improved the accuracy of the 

classifiers. [This research was made possible by a grant from The Gulf of Mexico Research Initiative. 

Data are publicly available through the Gulf of Mexico Research Initiative Information & Data 

Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org.] [DOIs: 10.7266/N7W094CG, 

10.7266/N7QF8R9K]  
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1. Introduction 

The Littoral Acoustic Demonstration Center (LADC) consortium has collected passive 

acoustic monitoring data in the northern Gulf of Mexico (GOM) since 2001. Recordings were 

made in 2007 near the Deepwater Horizon oil spill that provide a baseline for an extensive study 

of regional marine mammal populations in response to the disaster. Detections of bioacoustic 

signals in the ambient recordings allow for the derivation of probabilistic estimates of regional 

species density. Understanding the dynamics of species abundance and distribution can offer 

insight into the function of the deep-sea ecosystem. Passive acoustic monitoring (PAM) has been 

commonly used for stock assessments and behavioral studies of echolocating marine mammals. 

However, the LADC Gulf Ecological Monitoring and Modeling (LADC-GEMM) effort marks the 

first step toward long-term monitoring of endangered species abundance based on acoustic 

recordings. 

A number of marine mammals are known to use echolocation to perceive their environment 

acoustically. These include the beaked whale family (Ziphiidae), which are of particular interest 

to LADC. They have remained one of the least understood groups of marine mammals due to a 

deep-sea habitat, long dive durations, and an apparent low abundance (Bianucci et al., 2008). Many 

approaches to automated detection and classification for commonly assessed cetaceans such as 

sperm whales and dolphins have been developed (Kandia & Stylianou, 2006; Parada & Cardenal-

López, 2014; Bittle & Duncan, 2013). However, this is less true for beaked whales. Although 

several methods of family-level detection exist (Yack, 2010; Parnum et al., 2011), high accuracy 

species classification methods have remained undeveloped. In this work, several clustering 

algorithms are shown to distinguish regional beaked whale species with high accuracy based on 
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selected biosonar features. Furthermore, trained neural network classifiers are evaluated using 

these features and perform with high accuracy under various noise conditions. 

Automated classification of acoustic transients is a priority in passive animal bioacoustics 

research. Various spectral, temporal and geometric parameters of echolocation clicks are presently 

considered in determining species-level acoustic signatures. As a classification feature, the fractal 

dimension (FD) has remained notably absent in marine mammal studies. Many useful applications 

of fractal analysis have been developed for signal and image processing problems in fields such as 

biomedical engineering and acoustics (Gómez et al., 2009; Maragos & Potamianos, 1999; Al-Kadi 

& Watson, 2008). Dimension estimates serve as a complexity measure and have been adopted as 

a useful tool for detection and classification problems. In this study, we consider algorithms for 

waveform dimension measure developed by Higuchi (1988), Katz (1988), Henderson (1998), and 

Castiglioni (2010). The fractal measures are tested against the Shannon and Rényi entropies 

(Shannon, 1948; Rényi, 1961), which were introduced as bioacoustic features for classification by 

Han et al. (2011). We also find several spectral and temporal parameters to be useful in 

distinguishing the echolocation clicks. In the interest of scaling acoustic monitoring studies to large 

quantities of long-term data, the cost of classification should be minimal. The developed methods 

use low-dimensional feature vectors. They also perform with higher accuracy and require less 

computation time compared to a basic wavelet decomposition approach to classification that is 

tested. 

Multi-stage classification routines are currently used in processing long-term data by 

LADC. Iteratively lower levels of discrimination (with respect to the taxonomical hierarchy) are 

achieved on resulting subsets of the data. For example, transients from marine mammals may first 

be classified at the family level (beaked whale vs. dolphin); then the family subset is again 
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considered for species-level classification. The species studied here are Gervais’ and Cuvier’s 

beaked whales, as well as a yet unknown species, presumed to be in the beaked whale family, that 

is regularly recorded in the GOM and referred to as BWG (Beaked Whale Gulf) (Baumann-

Pickering et al., 2013). These subsets can then be considered for identification of individual 

whales. 

The range of acoustic encounters in the deep-sea environment has not been thoroughly 

described. Thus, unsupervised classification, or clustering, is of interest for revealing clusters in 

detection results corresponding to distinct species, families, or individuals. Self-organizing maps 

(SOMs) have previously been applied to the problem of unsupervised separation of overlapping 

click trains by clustering (J. Ioup & G. Ioup, 2004). Three algorithms are presently assessed which 

utilize SOMs, k-means, and spectral clustering. On the other hand, neural network classifiers 

trained in a supervised fashion are expected to be more robust to noise, and are capable of 

classification tasks which are not linearly separable. We show that high accuracy classification 

results are given by a feedforward neural network trained under various noise conditions, and that 

the inclusion of the fractal dimension improves performance. 

 

2. Background 

2.1 Passive Acoustic Monitoring 

The clade of Cetaceans, consisting of whales, dolphins, and porpoises, use acoustic signals 

to perceive and interact with their environment, as well as for communication. While significant 

light does not typically penetrate beyond 200 meters (the euphotic zone) in seawater, acoustic 

signals from whales may travel several kilometers before experiencing significant transmission 

loss. Sound speed in the ocean is dominated by the thermocline (decreasing with depth) up to a 
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certain depth, at which point on it is determined by the pressure (increasing with depth). At the 

depth of minimal sound speed, the so-called deep sound channel (DSC) exists due to the downward 

and upward angles of refraction above and below the channel, respectively. Surface and bottom 

reflectivity in the ocean also create a waveguide, preserving much of the propagating acoustic 

energy within the water layer. Considering these characteristics of underwater sound, approaches 

based on acoustic recordings have been widely adopted in deep sea ecology research. Passive 

acoustic monitoring (PAM) concerns the collection of ambient acoustic data for monitoring 

applications, such as logging noise conditions, or relevant acoustic events. PAM methods are being 

increasingly used in ecological studies of regularly vocalizing or echolocating marine species. 

Methods include towed hydrophone arrays (Yack et al., 2013, Holmes et al., 2005), autonomous 

gliders (Baumgartner et al., 2013), and bottom-moored monitoring instruments (Sousa-Lima et al., 

2013), such as the EARS (Environmental Acoustic Recording System) buoys used by LADC. In 

the interest of estimating species abundance, models of acoustic detection probability may be 

developed based on hydrophone sensitivity, oceanographic conditions, and known source 

parameters of target species (such as amplitude and power spectrum) (Frasier et al., 2016). Taking 

into account the geographic area of probable acoustic detection from a single or set of 

hydrophones, detection counts may be used to develop regional density estimates (Thomas et al., 

2012). 

Traditionally during LADC’s research, fixed EARS moorings are deployed in water depths 

between 1 – 2 km. Two hydrophones separated by 1 meter are placed between an anchor and 10 – 

12 glass floats, which allow for positioning in the expected depth range of foraging marine 

mammals. Continuous recordings are made at a 192 kHz sampling rate for approximately 100 days 

(limited by 4 Tb of hard disk storage per channel). The pre-amplifier output of the two 
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hydrophones is passed through a high-pass filter (20 Hz) and anti-aliasing low-pass filter (160 

kHz). Incorporated hydrophones have a typical sensitivity of approximately -170 dB re 1V per 

µPa. Data are converted by ADC and stored as 16-bit integers in a proprietary binary format. For 

recovery, acoustic releases are utilized which detach the recording package from the anchor upon 

receiving a special acoustic message.   

2.2 Beaked Whales 

The beaked whale family, Ziphiidae, currently includes 22 known species, constituting 

nearly one fourth of Cetacean species. They are widespread, ranging from the ice boundaries at 

the poles, to the equator in all oceans (MacLeod et al., 2006). They are difficult to study visually 

due to a deep-sea habitat, and extreme dive profiles. For this reason, only a small subset of these 

species is reasonably well-known thus far, including Baird’s, and Cuvier’s beaked whales.  

The length of beaked whales ranges from 4 to 13 meters, and their weight from 1 to 15 

tons. Distinctive physical features are a protruding snout similar to dolphins, which inspires the 

family’s common name, and the absence of a notch in the tail fluke. Males exhibit a pair of tusk-

like teeth. Dives beyond 500 meters are typically performed by beaked whales to forage using 

echolocation (Zimmer, 2007). Cuvier’s beaked whales have been recorded breaking dive records 

for mammals, surpassing depths of at least 2992 meters, and durations of at least 137.5 minutes 

(Shorr et al., 2014). 

Their biosonar is characterized by high frequency clicks in the approximate range 5-95 

kHz, with a chirp-like frequency upsweep. Inter-pulse-intervals have been recorded to range from 

90 to 435 ms, and click durations from 182 to 779 microseconds (Baumann-Pickering et al., 2013). 
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2.3 Classification 

For long-term studies, automated detection and classification are essential processes, since 

visual surveying of acoustic data becomes inviable. The problems of detecting and classifying 

time-series events are closely related, since detection algorithms generally use temporally local 

features to partition data into two classes: periods of detection and of no detection. In this work, 

the problem of classification is that of automatically grouping echolocation signals which have 

been previously extracted as segments from the hydrophone data.  

Methods of classification can be generalized into two categories: supervised, and 

unsupervised. In the former approach, an algorithmic model is trained to recognize known classes. 

In unsupervised classification, also referred to as cluster analysis or clustering, the algorithm is 

designed to partition the data such as to reveal inherent groups of similar elements. 

2.3.1 Feedforward Neural Network 

Feedforward neural networks (Svozil et al., 1997) were tested as supervised classification 

models in this study. The feedforward neural network (FNN) is a biologically inspired computing 

system in the form of a directed graph, as the example in Fig. 1. 

 

 

Fig. 1. A basic feedforward neural network with three nodes in the hidden layer, and a single output node. 
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The nodes are arranged in layers as shown above; each layer feeds data forward to the next layer 

in sequence. There are no recurrent connections. Variables representing various features of a given 

class are fed to the nodes of the input layer, which forms a complete bipartite graph with the next 

layer, named the ‘hidden layer’. In general, more than one hidden layer may exist, the arrangement 

of connections may differ, and multiple outputs may exist. A single layer was used in this study, 

and a single output node which provided the class estimate.  

In the FNN model, each network link is assigned a weight, which is adjusted during the 

learning process. Each node of the hidden layer models a biological neuron, and is a basic 

processing unit of the network. 

 

 

Fig. 2. An artificial neuron, with the array of inputs (𝑥1, … 𝑥𝑛), their respective weights (𝑤1, … 𝑤𝑛), a bias 

𝑏, and the activation function 𝑓. 

 

 

A neuron of the hidden layer first computes the weighted sum of its inputs and then applies an 

activation function which normalizes the sum. A nonlinear activation function qualifies a 

feedforward neural network with a single hidden layer as a universal function approximator 

(Cybenko, 1989). It also prevents the growth of output values for deep networks, with multiple 

hidden layers. For the model evaluated presently, the hidden layer nodes used a computationally 

efficient approximation of the hyperbolic tangent function: 
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𝑆(𝑛) =
2

1 + e−2n
− 1 

which satisfies the demand for nonlinearity. As depicted in Fig. 2, each neuron in the hidden layer 

is shifted by a bias, which provides a constant value of 1. By adjusting the bias weight, the entire 

output of a neuron may be shifted, which increases the range of possible learned functions for the 

network. It also allows for classification when all inputs are equal to 0. 

For multiclass classification problems such as that faced in this study, a softmax function 

is used by the output node of the network. The softmax function can be defined, for an 𝑁-

dimensional vector 𝒙(𝑛) of real values, 

𝜎(𝒙)𝑚 =
𝑒𝑥𝑚

∑ 𝑒𝑥𝑛𝑁
𝑛=1

     for 𝑚 = 1, … , 𝑁 

It is a generalization of the sigmoid transfer function, and normalizes the N-length array of 

predictions to an equal length array of real values in the range [0, 1] that sum to 1. The class 

corresponding to the largest element of the array is chosen as the predicted class. 

A dataset with known corresponding outputs is prepared for training. The weights 

associated with each link are initially randomized, then inputs are iteratively fed through the 

network to the output layer. In each iteration, the output is compared with the ground-truth output 

by an error function such as the mean squared error (MSE), or cross-entropy. Cross entropy 

between two discrete probability distributions 𝑝, and 𝑞 may be defined 

𝐻(𝑝, 𝑞) = − ∑ 𝑝(𝑥) log 𝑞(𝑥)

𝑥

 

For neural network training, the discrete distributions are the class probability distributions that 

are output by the network. A gradient descent algorithm is then applied in the error function space. 

As mentioned, the weights are iteratively adjusted during the learning process. The total error 𝐸 

has a nested dependency on the weights of the network. The final outputs are dependent on the 
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hidden neuron outputs and weights, which are further dependent on the inputs and input weights. 

Applying the chain rule 

(𝑓 ∘ 𝑔)′ = (𝑓′ ∘ 𝑔) ⋅ 𝑔′ 

the gradient of the error function with respect to each network weight can be computed. Then the 

weights may be adjusted by 

𝛥𝑤𝑖𝑗 = −
𝜂𝜕𝐸

𝜕𝑤𝑖𝑗
 

where 𝑤𝑖𝑗 is the weight of link 𝑖, 𝑗 and 𝐸 is the error. The weight will be adjusted by the product 

of the learning rate 𝜂 and the gradient, multiplied by −1. The parameter 𝜂, the learning rate, may 

be adjusted throughout the learning process for improved optimization. In this way, the gradient 

descent algorithm seeks to find a network weight configuration which minimizes the output of the 

chosen error function. 

2.3.2 Clustering 

Supervised classifiers can only make predictions based on a set of known classes. Cluster 

analysis concerns the general problem of automatically partitioning data in a meaningful way. It 

has been used previously in acoustic monitoring research (Bittle et al., 2013; Stimpert et al., 2011; 

J. Ioup & G. Ioup, 2004). Clustering models are not trained with data of known classes; they are 

designed to partition the data such that members of each class are more similar (by a chosen 

measure) to each other than to members of other classes. This is a useful technique in passive 

acoustic monitoring, since a wide range of acoustic events are expected. Clusters may be 

automatically revealed which correspond to distinct marine mammal families, species, or 

individuals, based on the parameters of the algorithm. Here, we compare three different approaches 

based on their ability to distinguish beaked whale species over a range of ambient noise levels. As 



 10 

a baseline, the most widely used algorithm in data clustering, k-means, is implemented. This is 

compared to approaches based on the self-organizing map, and spectral clustering. 

k-means Algorithm 

The k-means algorithm (MacQueen, 1967) partitions a set of n observations into k classes, 

and requires the parameter k as input. It aims to find 

min
𝑆

∑ ∑‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝑠𝑖

𝑘

𝑖=1

 

for 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} a set of 𝑑-dimensional vectors; 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑘} a set of clusters, each a 

list of which vectors it contains; 𝜇𝑖, the mean of the members of 𝑠𝑖; and  ‖𝑥 − 𝜇𝑖‖
2, the squared 

Euclidean distance between a vector 𝑥 and 𝜇𝑖. In words, it aims to find the set of clusters 𝑆 such  

 

 
begin 

▪ Initialize k cluster centers 𝑐1, 𝑐2, … , 𝑐𝑘 at randomly selected points in the d-dimensional 

space 

▪ Compute pairwise distances between the data vectors and the cluster centers 

▪ Assign each vector to the nearest cluster center 

while (1) { 

▪ Adjust the positions of the cluster centers using 

 

𝑐𝑖 = 𝜇𝑖 =
1

𝑛𝑖
∑ 𝑥𝑖

𝑥∈𝑆𝑖

 

 

where 𝑛𝑖 is the number of vectors in cluster 𝑠𝑖 

▪ Compute pairwise distances between the data vectors and the cluster centers 

▪ Assign each vector to the nearest cluster center 

if (number of re-assigned vectors equals 0) { 

▪ end 

} 

} 

 
Fig. 3. Pseudo-code for the k-means algorithm 
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that the sum of squared Euclidean distances between the observations of each cluster is minimized. 

The algorithm cannot reveal overlapping clusters; each data point belongs to a single class. Pseudo-

code for the algorithm is provided in Fig. 3. 

Self-Organizing Maps 

The self-organizing map (Kohonen, 1982) is a network model which uses unsupervised 

learning to produce a low-dimensional representation of the input data. Graph topology differs 

amongst applications, however a two-dimensional network with a square or hexagonal grid 

topology is common, as shown in Fig. 4. Each node is assigned a weight vector, determining its 

position in the data space. The training algorithm typically iterates over the data points, or, for 

larger datasets, randomly samples them. At each iteration, the weight vector of the nearest node, 

termed the Best Matching Unit (BMU), is updated in a similar way as the cluster centers of the k-

means algorithm. However, as each BMU is adjusted, its neighborhood will also be adjusted. A 

neighborhood function 𝛩 dictates the relationship between the magnitude of adjustment and 

distance from the BMU. The magnitude of adjustment is also typically dependent on a learning 

rate function 𝛼. The adjustment formula for a node n with weight vector 𝑾𝑛(𝑖) at iteration 𝑖 then 

has the form 

𝑾𝑛(𝑖 + 1) = 𝑾𝑛(𝑖) + 𝛩(𝑢, 𝑣, 𝑖)𝛼(𝑖)(𝑫(𝑖) − 𝑾𝑛(𝑖)) 

Here, 𝑫(𝑖) is the input vector of the currently sampled data point, and 𝑢 is the index of the current 

BMU.  

The primary interest in using self-organizing maps for this study is in their ability to 

generate a smaller representation of the input data containing fewer outliers. In the method 

presently evaluated, each input vector is assigned to the nearest map node after mapping, then k-

means is applied to the map nodes. In this way, a two-level hierarchical clustering is formed. The  
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Fig. 4. An example of self-organizing map node positions at various iterations of training. Blue asterisks 

represent the example data points. Over an epoch of training, the entire set of data points is sampled by the 

algorithm. The effect of the learning rate function can be seen in that the adjustments become small after 

many epochs. 
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set of input vectors assigned to nodes within a given k-means cluster are then assigned to that 

cluster. This approach reduces the influence of outlying input vectors on the partitioning compared 

to k-means alone, which we speculate will lead to more meaningful clusters. 

Spectral Clustering 

Spectral graph theory addresses the relationship between graph structure and the 

eigenvectors and eigenvalues of the associated adjacency and Laplacian matrices. For an n-length  

set of data vectors, the 𝑛 × 𝑛 adjacency matrix 𝐴 contains pair-wise distances between the vectors, 

such that 𝐴𝑖𝑗 ≥ 0. The diagonal degree matrix is then defined 

𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗

𝑗

 

The Laplacian matrix of an undirected graph 𝐺 =  (𝑉, 𝐸) can be defined 

𝐿𝐺(𝑢, 𝑣) =  {
𝑑(𝑢)
−1
0

if 𝑢 = 𝑣
   if 𝑢 ≠ 𝑣 and (𝑢, 𝑣) ∈ 𝐸

otherwise

 } 

= 𝐷𝐺 − 𝐴𝐺 

where 𝐷𝐺  and 𝐴𝐺  are the degree and adjacency matrices of the graph, respectively. For an 

undirected graph, the Laplacian matrix will be symmetric and singular. Derived from Cheeger’s 

inequality (1970), the sparsest cut of a graph may be approximated by the second smallest 

eigenvector of the graph Laplacian. A transformed space can be created by the Laplacian 

eigenvectors in which previously non-linearly separable classes may become linearly separable. 

In traditional spectral clustering methods, the first several (𝑑) singular vectors of the graph 

Laplacian are found and used to create an 𝑛 ×  𝑑 matrix as a transformed space (for 𝐺 with 𝑛 

vertices) in which rows are clustered using a partitioning method such as 𝑘-means. 
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3. Objective 

The current goal is to develop and evaluate a set of computational methods for 

distinguishing beaked whale echolocation signals at the species level.  These methods may aid 

future acoustic monitoring research of beaked whale populations. Specifically, we wish to develop 

efficient methods of classifying three beaked whale species regional to the Gulf of Mexico, which 

have been detected in passive acoustic monitoring data. An essential aspect of the development is 

the evaluation of various signal features for their potential in quantifying unique acoustic 

signatures. The most relevant feature sets will be used to assess the performance of feedforward 

neural network classifiers, as well as several unsupervised classification approaches. 

 

4. Methods 

4.1 Data Collection 

More than 32 TB of data were collected from June to October of 2015 at ten locations in 

the northern GOM. Data used for this evaluation were taken from two deployments (Fig. 5). 

Processing routines were developed in MATLAB and Bash. Recordings were made at a 192 kHz 

sampling rate approximately 530 meters above the seafloor. A high-level survey of the entire 2015 

monitoring dataset for transient acoustic events with frequencies within 3-90 kHz has been 

performed by LADC members using a primarily automated routine. Metadata is available for each 

buoy listing files determined to contain clicks spanning any set of three frequency bands. To collect 

signals from each species, server files with bioacoustic events spanning the same bands as a target 

species’ known dominant frequency range were randomly sampled. From these files, events of a 

desired species were automatically detected by matched filtering with a template echolocation 

signal. Specifically, the cross-correlation of the template and the file waveform was taken and 
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segments of the waveform were extracted centered on peaks of the correlation which surpassed a 

visually chosen threshold. The cross-correlation for two discrete functions 𝑓, and 𝑔 is defined 

(𝑓 ⋆ 𝑔)[𝑛] = ∑ 𝑓∗[𝑚]𝑔[𝑚 + 𝑛]

∞

𝑚=−∞

 

where 𝑓∗ denotes the complex conjugate of 𝑓. 

 

 
 

Fig. 5. Locations of EARS buoys from which data were collected (blue tacks), and of Deepwater Horizon 

(red tack). The eastern and western buoys are approximately 27 and 44 miles from the Deepwater Horizon 

site, respectively. 

 

 

 

These templates were processed using the routine explained below. Prior to running the 

detection algorithm, raw files were digitally filtered with a fifth-order Butterworth bandpass filter 

with cutoff frequencies 15 and 95 kHz. This is the expected band of the regional beaked-whale 

echolocation signals as determined by Baumann-Pickering et al. (2013). Using this matched 

filtering method, echolocation patterns could be detected at very low signal-to-noise ratio (SNR). 
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Frames were extracted at a constant buffer length of 2.1 milliseconds, which was expected to 

contain regional biosonar clicks (Baumann-Pickering et al., 2013). Upon the detection of a desired 

species in the sampled files, files with temporally preceding and following data were scanned. 

Programs for efficient visual surveying of time series and spectrogram data (Hann window, 1024-

point FFT, 98% overlap) were developed for validation. The extracted frames were stored in a 

MATLAB structure array with fields containing time, amplitude, and source file information. A 

noise estimate was also recorded for each extraction, which was taken as the first 3-13 milliseconds 

of the respective source file which spans 21.33 seconds. In this format, the size of relevant 

echolocation data for long-term studies at a typical sampling rate (190 – 200 kHz) is easily 

manageable, with files containing hundreds of events being only a few megabytes in size, 

depending on the frame size. 

4.2 Preprocessing 

Data from acoustic encounters of three beaked whale species (Cuvier’s, Gervais’, BWG) 

were used in the evaluation. Quantification of some biosonar source properties requires the range 

and bearing of the source signal from the receiver to be known. These parameters are not assumed 

to be known and are not presently considered in classification. Methods of click localization from 

multiple hydrophone array data are in development and could allow for modeling of source 

properties.  

The extracted frames were Hann windowed, then noise removal was performed by wavelet 

thresholding. Five-level wavelet decomposition coefficients were calculated with the Fejer-

Korovkin length-8 (fk8) wavelet (Nielsen, 2001), and hard minimax thresholding applied (Donoho 

& Johnstone, 1994). Framed signals were normalized by the maximum of their absolute value. 

Further analysis was done on these processed frames. 
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4.3 Signal Features 

4.3.1 Spectral Analysis 

Spectral features were derived from a 1024-point Fast Fourier Transform (FFT) 

periodogram. The FFT is a computationally efficient algorithm for computing the Discrete Fourier 

Transform (DFT) of a complex sequence 𝑥0, … , 𝑥𝑁−1. The DFT is defined 

𝑋𝑘 = ∑ 𝑥𝑛𝑒−𝑖2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

   𝑘 = 0, … , 𝑁 − 1 

Features considered in the evaluation include peak frequency (𝑓𝑝); -10 dB bandwidth (BW−10dB); 

and spectral centroid (𝑓c), calculated as the weighted mean of the FFT spectrum 

𝑓𝑐(𝑥(𝑛)) =
∑ 𝑓(𝑛)𝑥(𝑛)𝑁−1

𝑛=0

∑ 𝑥(𝑛)𝑁−1
𝑛=0

 

where 𝑓(𝑛) is the center frequency of bin 𝑛, and 𝑥(𝑛) is its magnitude. Also tested was the -20 dB 

center frequency (𝑓ctr), taken as the mean of frequencies with magnitude surpassing 20 dB below 

𝑓𝑝. 

4.3.2 Click Duration 

Measures of transient duration have been developed specifically for biosonar research. The 

95% energy duration (𝜏E) was calculated as presented by Madsen & Wahlberg (2007). Prior to the 

calculation of 𝜏𝐸, the signal was interpolated by a factor of 5 using the MATLAB 9.1 low-pass 

interpolation routine with a symmetric filter. The 95% squared-amplitude duration (𝜏A) was 

calculated by taking the end points at 5% of the peak squared amplitude as the onset and offset 

times. The same method was also tested using the absolute value of the Teager-Kaiser energy 

(Kaiser, 1990) in place of the squared-magnitude signal (95% TK amplitude duration, 𝜏TA). The 

Teager-Kaiser energy operator 𝛹[𝑥[𝑛]] is a non-linear operator which provides nearly 
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instantaneous tracking of high-amplitude, high-frequency events. The operator is defined, for 

discrete signals 

𝛹[𝑥[𝑛]] = 𝑥2[𝑛] − 𝑥[𝑛 − 1]𝑥[𝑛 + 1] 

The -10 dB duration (𝜏−10dB) was found to be the most useful for this study. The -10 dB end points 

relative to the envelope peak were taken as the onset and offset times (Moehl et al., 1990). The 

envelope of the framed click was taken as the absolute value of its analytical signal – consisting 

of the raw signal as its real part and the Hilbert-transformed signal as its imaginary part (Fig. 6). 

 

 

Fig. 6. An example Cuvier’s beaked whale click (interpolated by a factor of 5) with the signal envelope 

(dotted line) and -10 dB threshold (dashed line). 

 

 

4.3.3 Fractal Dimension and Entropy 

Dimension estimates tested included that of Higuchi, Katz, Castiglioni, and Henderson. 

Applications of the fractal dimension include approaches in the time and phase-space domains. 

The former regards the time series itself as a geometric object. In the phase-space approach, the 

time series is considered as a set of observations of a dynamical system, and is embedded in an 

approximated phase-space domain. This constructed trajectory is then the geometric object 

considered. Estimates made directly in the time-domain are generally less computationally costly. 

In either case the FD characterizes the complexity of the set as a ratio of the change in detail to the 
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change in measuring resolution, or scale. The methods tested here used the waveform directly. FD 

estimates were computed for the processed frames after interpolation by a factor of 5. The accuracy 

of the FD algorithms in approximating theoretical values such as for Weierstrass functions is 

dependent on the number of samples of the curve. The 2.1 millisecond frames consisted of 401 

samples without interpolation, which resulted in higher variance of the FD measurements than for 

the interpolated signals, and in more cases values slightly exceeding the theoretical limit for curves 

of topological dimension 1 (a fractal dimension of 2). 

Higuchi’s Algorithm 

Consider the time series to be analyzed 

𝑥(1), 𝑥(2), … , 𝑥(𝑁) 

Create 𝑘 new time series 𝑥𝑚
𝑘  as 

𝑥𝑚
𝑘 = {𝑥(𝑚), 𝑥(𝑚 + 𝑘), 𝑥(𝑚 + 2𝑘), … , 𝑥 (𝑚 + ⌊

𝑁 − 𝑚

𝑘
⌋ 𝑘)} ,      for 𝑚 = 1, 2, … , 𝑘 

Here, 𝑚 is the initial time value, and 𝑘 is the discrete time interval, or scale. The effective 

measurement resolution is determined by 𝑘. For each 𝑥𝑚
𝑘  constructed, the average length 𝐿𝑚(𝑘) is 

computed as 

𝐿𝑚(𝑘) =
𝛽

𝑘
∑ |𝑥(𝑚 + 𝑖𝑘) − 𝑥(𝑚 + (𝑖 − 1)𝑘)|

⌊
𝑁−𝑚

𝑘
⌋

𝑖=1

 

where 𝛽 = (𝑁 − 1)/⌊(𝑁 − 𝑚)/𝑘⌋𝑘 is a normalization factor. The average value 〈𝐿(𝑘)〉 of the 𝑘 

lengths 𝐿𝑚(𝑘) is taken. This is repeated for a set of varying time intervals. If the average value 

follows a power law: 

〈𝐿(𝑘)〉 ∝ 𝑘−𝐷 
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then the curve is said to be fractal with dimension 𝐷. To observe the relationship between time 

interval 𝑘 and the curve length 𝐿(𝑘), 𝑘 was varied from 1 to a chosen value 𝑘max. The slope of the 

least squares linear best fit of the ln(𝐿(𝑘)) vs. ln(1/𝑘 ) curve is taken as the dimension estimate. 

To choose 𝑘max for this study, the value was varied from 10 to 100 in intervals of 5, and k-

means clustering purity (Zhao & Karypis, 2002) was calculated for each. Peaks in clustering purity 

were observed at values of 40 and 60. Between these values there was an approximate 2% increase 

in purity and 36% increase in computation time, thus a value of 𝑘max = 40 was chosen for this 

study. 

Katz’s Algorithm 

The fractal dimension as proposed by Katz (1988) can be expressed 

𝐷 =
log

10
(𝑛)

log
10

(𝑛) + log
10

(𝑑/𝐿)
 

where the number of points in the sequence is 𝑁 = 𝑛 + 1, and 

𝐿 =  ∑ 𝑙𝑖,𝑖+1

𝑛

𝑖=1

 

𝑑 =  max{𝑙1,𝑗} 

for 

𝑙𝑖,𝑗 =  √(𝑦𝑖 − 𝑦𝑗)
2

+ (𝑥𝑖 − 𝑥𝑗)
2
 

where 𝐿 is the sum of distances between successive points in the waveform and 𝑑 is called the 

diameter, defined as the maximum of distances between the first point of the sequence and all other 

points.  
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Castiglioni’s Algorithm 

Castiglioni (2010) claimed that Katz’s algorithm is flawed in that it is influenced by the 

unit of measurement. He proposed a variation in which 𝑑 and 𝐿 are redefined: 

𝐿 =  ∑|𝑦𝑖+1 − 𝑦𝑖|

𝑛

𝑖=1

 

𝑑 = max{𝑦𝑘} − min{𝑦𝑘} 

Notice that 𝑑 is now simply the range of the set, and the sampling interval is not involved in the 

calculation of 𝐿. 

Adapted Box Dimension 

The adapted box dimension (ABD) developed by Henderson et al. (1998) is found by 

dividing a time series of 𝑁 samples into sets of ∆𝑡 samples. The range (“extent”) of each segment 

is calculated. The mean extent 𝐸(∆𝑡) is then taken over a range of ∆𝑡. The dimension is then 

computed by finding the best fit to the following equation: 

𝐴(∆𝑡) = 𝑁𝐸(∆𝑡) ≈ 𝐴0∆𝑡2−𝐷 

Shannon and Rényi Entropy 

Han et al. (2011) introduced the Shannon and Rényi entropy information as bioacoustic 

features for frog classification. The Shannon entropy can be expressed as 

𝐻 = − ∑ 𝑝𝑖log2

𝑖

𝑝𝑖 

where 𝑝𝑖 is the probability of occurrence of element 𝑖 in the set of unique values in the sequence 

or signal (unique voltage readings for EARS signals). It is the expected information content of a 

sequence or signal. Similarly, the Rényi entropy of order 𝛼 ≥ 0 is defined as 

𝐻𝛼 =
1

1 − 𝛼
log2 (∑ 𝑝𝑖

𝛼

𝑖

) 
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Following the study of Han et al., an order of 𝛼 = 3 is chosen for the Rényi entropy estimation. 

The Rényi entropy generalizes the Shannon entropy and as the order is increased, the value is 

increasingly dependent on the highest probability events. 

4.3.4 Wavelet Decomposition 

A common representation of data for feature selection is given by the discrete wavelet 

transform, which decomposes a signal into an approximation (low) and detail (high) frequency 

band representation by a quadrature mirror filter pair. Wavelet packet decomposition (WPD) refers 

to the iterative application of a wavelet transform to each resulting sub-band representation, 

creating a binary tree. Energy maps of the WPD tree were tested against other feature vectors as 

input for feedforward neural networks. Here, the energy map refers to the percentages of energy 

contained in the terminal nodes of the decomposition tree relative to the sum of their energies. Six-

level trees were computed using a length-4 Daubechies, or D4 wavelet. 

4.4 Feature Subset Selection 

In the interest of minimizing the computational cost of feature extraction necessary for high 

accuracy classification, a subset of the investigated features with relative predictive power was 

chosen. The strengths of individual features in their ability to isolate pairs of species were 

investigated using unpaired two-tail 𝑡-tests assuming unequal variances. Data visualization tools 

were also developed for this purpose. To quantitatively validate the choice of features, a sequential 

forward selection (SFS) algorithm was applied, which maximized the classification accuracy 

determined by fitting multivariate normal distributions to each class. The algorithm iteratively 

adds to an empty set of features those which increase the accuracy by the maximum amount at 

each step. Termination occurs when no further features increase the accuracy. To quantify the 
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response of individual features to noise, feedforward neural networks as described in the above 

section were trained using individual features and tested on datasets of various mean SNR. 

4.5 Clustering Algorithms 

The three methods evaluated made use of k-means, spectral clustering, and self-organizing 

maps. Cluster purity was used to quantify the accuracy of the clustering. In computing cluster 

purity, the value for each cluster is often weighted by its size: the number of data points in the 

cluster. However, assuming that each cluster has a unique modal class, the unweighted cluster 

purity will give the fraction of observations that are correctly assigned. Here, the correct class 

assignment of an observation is defined as the cluster’s mode class. Unweighted cluster purity can 

be expressed 

purity(ℚ, ℂ) =
1

𝑛
∑ max𝑖

𝑗

|𝜔𝑗 ∩ 𝑐𝑖| 

where ℚ =  {ω1, ω2, … , ωm} is the set of clusters, and ℂ = {𝑐1, 𝑐2, … , 𝑐𝐼} is the set of classes. To 

compute purity, each cluster is assigned to the most frequent class of its objects, then the number 

of correctly assigned objects is divided by 𝑛. The implementations developed for this study check 

for unique modal classes of the clusters. Non-unique modal classes indicate a poor clustering job, 

yet can result in relatively good purity and entropy values. Validity measures are only reported 

here for results in which the clusters have unique modal classes. 

Although the appropriate number of clusters 𝑘 was known to be three for this study, 

automated selection of this value is of interest for mining passive acoustic data. The appropriate 

number was chosen by sweeping 𝑘 from 2 to 10, and selecting the value which yields the minimum 

Davies-Bouldin index (Davies & Bouldin, 1979). 

For spectral clustering, 15 neighbors were used in the generation of a 𝑘-nearest neighbors 

similarity graph, and the normalized graph Laplacian was calculated as  
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𝐿 = 𝐷−1(𝐷 − 𝑊) 

where 𝐷 is the degree matrix, and 𝑊 the 𝑘-NN similarity graph. Eigenvectors corresponding to 

the 𝑘 smallest eigenvalues of the graph Laplacian were concatenated to form the space 𝑈 ∈ ℝ𝑛×𝑘. 

Here, 𝑘 is the number of clusters. Rows of 𝑈 were then considered as transformed data vectors and 

clustered using k-means. Initialization of centroid positions for k-means was done by the k-

means++ algorithm (Arthur & Vassilvitskii, 2007), and a squared Euclidean distance measure was 

used. 

Self-organizing maps of dimensions 10×10 were applied to the data. The networks had 

grid topology, and a Manhattan distance metric with MSE performance was used for the mapping. 

The nodes come to represent local averages of the data, and are thus less sensitive to random 

variations than the original data (Vesanto & Alhoniemi, 2000). Resulting node positions were then 

considered for clustering by k-means. Map nodes with no assigned data points were removed. 

4.6 Feedforward Neural Network 

Feedforward neural networks with a single hidden layer were trained on randomized 

subsets of the data using scaled conjugate gradient backpropagation (Møller, 1993). Cross-entropy 

was used to measure performance. The training data spanned different levels of simulated noise. 

Several hidden layer sizes were tested with the feature vectors. A size of twenty nodes was chosen. 

Input and hidden layers each used a hyperbolic tangent sigmoid transfer function with biasing. A 

softmax transfer function was used by the output node for classification purposes. The accuracy 

was taken as the percent of correctly classified observations in the test data. 

Training data were feature vectors computed from 250 processed clicks. Fifty were taken 

randomly from the original data and from data at each simulated noise level. Training data were 
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excluded from subsequent testing, which consisted of classifying the remaining 290 clicks for each 

dataset and computing accuracy as the percentage of correctly classified data vectors. 

4.7 Noise Simulation 

There are inherent signal-to-noise ratio differences in the observations dependent on the 

ambient noise, source bearing and range, and amplitude. To measure performance under a 

controlled range of noise conditions, simulated noise was added to the extractions (Fig. 7). This 

was done by filtering the source file noise estimate through a band-pass filter of cutoff frequencies 

 

 

Fig. 7. An example BWG click with two levels of simulated noise corruption and computed SNR. 
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15 and 95 kHz, and calculating the standard deviation. Then random Gaussian noise of equal 

standard deviation was added to the click and to the filtered noise estimate. Signal-to-noise ratio 

(SNR) was computed as the ratio of the summed squared magnitude of the signal to that of an 

equal length segment of the noise estimate.  

The original dataset of clicks was duplicated, and the clicks of the copied dataset were 

corrupted with noise using the process described above. A second copy was then made of the noise 

corrupted clicks, which was further corrupted. This process was iterated four times to create 

datasets of different average noise level.  

 

5. Results 

For the analysis, 111 BWG clicks, 110 Cuvier’s BW clicks, and 119 Gervais’ BW clicks 

were extracted from the EARS data. See Table 2 for a summary of the computed biosonar 

parameter statistics for each species. Except for the Castiglioni fractal dimensions (CFD) 

calculated for Gervais’ and Cuvier’s whales, the fractal dimension measures differed significantly 

for each pair of species (p < 0.05) as determined by the unpaired 𝑡-tests (Table 1). This supports 

the potential usefulness of fractal dimension measures as signal classification features.  

 

 Higuchi FD Castiglioni 
FD 

Adapted 
Box FD 

Katz FD Shannon 
Entropy 

Rényi 
Entropy 

BWG vs. 
Cuvier's 

5.13E-87 6.71E-93 9.56E-07 3.19E-44 2.95E-63 1.46E-33 

BWG vs. 
Gervais' 

2.38E-35 2.51E-99 2.76E-27 2.17E-41 1.31E-83 5.20E-57 

Gervais' vs 
Cuvier's 

2.04E-58 9.64E-01 3.03E-54 4.93E-22 2.30E-14 3.76E-09 

 

Table 1. p-values for each fractal dimension measure between species pairs. 
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Parameter BWG 

 

Mean (S.E.; Range; N=111) 

Cuvier’s BW 

 

Mean (S.E.; Range; N=110) 

Gervais’ BW 

 

Mean (S.E.; Range; N=119) 

-10 dB bandwidth (Hz) 217.49 (5.01; 106-322) 138.82 (1.53; 92-174) 165.50 (5.42; 73-305) 

-20 dB center freq. (kHz) 50.33 (0.270; 43.7-56.6) 35.03 (0.250; 30.2-43.0) 53.05 (0.435; 41.4-62.0) 

Spectral centroid (kHz) 48.21 (0.365; 40.3-58.1) 36.66 (0.170; 32.8-40.7) 49.27 (0.307; 43.9-56.8) 

-10 dB duration (𝝁s) 840 (11.72; 505-1093) 198 (7.98; 99-500) 130 (4.17; 57-333) 

95% energy duration (𝝁s) 766 (9.86; 473-960) 303 (12.2; 168-731) 191 (10.3; 108-573) 

95% TK amplitude duration 

(𝝁s) 

925.16 (11.94; 583-1151) 246 (11.48; 141-823) 163 (6.02; 94-401) 

Higuchi FD 1.82 (0.0032; 1.71-1.88) 1.65 (0.0037; 1.57-1.74) 1.76 (0.0021; 1.69-1.82) 

Castiglioni FD 2.05 (0.011; 1.79-2.27) 1.48 (0.004; 1.41-1.65) 1.48 (0.006; 1.41-1.69) 

Adapted Box FD 1.60 (0.005; 1.48-1.69) 1.63 (0.003; 1.51-1.69) 1.52 (0.004; 1.45-1.64) 

Katz FD 1+5.08e-4 (1.89e-5; 

1+1.59e-4 – 1+9.57e-4) 

1+7.11e-5 (1.14e-6; 

1+4.08e-5 – 1+1.15e-4) 

1+1.05e-4 (2.78e-6; 

1+6.03e-5 – 1+2.12e-4) 

Shannon Entropy (bits) 3.68 (0.018; 3.20-4.05) 2.32 (0.043; 1.38-3.62) 1.82 (0.043; 0.99-2.95) 

Rényi Entropy (bits) 1.65 (0.017; 1.23-2.07) 1.09 (0.032; 0.41-1.99) 0.82 (0.031; 0.26-1.55) 

 

Table 2. Summary of click parameter statistics: mean, standard error (S.E.) and range. Standard error is of 

the mean, computed as the sample standard deviation divided by the square root of the sample size. 
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Fig. 8. FNN classification performances using individual features; (A) spectral parameters, (B) duration 

measures, (C) fractal dimensions, and Shannon and Rényi entropies. 

 

B
 

A 

C 
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As described previously, simulated noise was added to the original dataset of 340 clicks, 

and the resulting dataset was again corrupted with noise. This was done iteratively to create four 

additional datasets with progressively decreasing SNR (datasets 2-5). Including the original 

dataset, mean SNR values of the datasets spanned roughly 5.1 – 12.6 dB. See Fig. 8 for a summary 

of the individual feature performances in classifying observations of decreasing mean SNR. 

Click spectra and duration have no practical correlation in this case, and vary amongst 

species. Waveform fractal dimensions generally have some correlation with central frequency 

measures. However, they will deviate in their correlation depending on the frequency distribution 

of the waveform and the FD algorithm. Pearson correlation coefficients amongst FD measures and 

spectral features range from 0.23 to 0.88. The Shannon and Rényi entropy show less correlation 

with coefficients spanning 0.04 to 0.33. However, Katz’ and Higuchi’s measures yield better 

accuracy as individual features for the trained networks. The sequential forward selection 

algorithm returned, as the optimal feature set, the parameters spectral centroid 𝑓𝑐, -10 dB duration 

𝜏−10dB, and the Higuchi fractal dimension (HFD). The main disadvantage of the SFS algorithm is 

the inability to remove features from the set that become dispensable after the addition of other 

features. For this reason, networks were trained and tested using various combinations of these 

three parameters. The highest accuracy was still provided by the set chosen by SFS. A network 

was also tested using the Shannon entropy in place of the HFD, since the Shannon entropy showed 

little correlation with 𝑓𝑐 and strong performance as an individual feature.  

Clicks recorded at angles off-axis from the whale’s forward bearing may increase variance 

in duration and central frequency measures. Madsen et al. (2004) reported recordings of Risso’s 

dolphins at various angles off the presumed zero-degree axis (aligned with the dolphin’s bearing) 

and observed a positive correlation between the angle and 𝜏𝐸. Decaying low-frequency oscillations 
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were observed at the tail of the off-axis click recordings which increased 𝜏𝐸 and reduced 𝑓𝑐. Similar 

patterns are noticed in the collected Cuvier’s data, yet source range and bearing are not known. 

There is an apparent negative correlation between peak received amplitude and this effect. The 

biosonar characteristics of Cuvier’s beaked whales may be more similar to that of Risso’s dolphins 

than other beaked whale species. The effect is not seen in low-SNR Gervais or BWG clicks. The 

𝜏−10dB measure is more robust to the effect than 𝜏𝐸 (Fig. 9). The -10 dB duration significantly 

outperformed the other duration measures as an individual feature.  

 
Fig. 9. Three clicks from a Cuvier’s beaked whale click train, presumably received at varying off-axis 

angles. Decaying oscillations of lower frequency appear at the tail of the click. 
 

 

 

The -20 dB center frequency performed marginally better than the spectral centroid as an 

individual feature, but the spectral centroid separated the Gervais’ and Cuvier’s observations more 

strongly, complementing the strong separation of BWG from the other species provided by 𝜏−10dB. 

Katz’ method yields slightly higher accuracy than Higuchi’s as an individual feature, yet it strongly 
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separates BWG from the other species, which correlates with the contribution of 𝜏−10dB as a 

feature. The HFD on the other hand separates the species relatively evenly, and is thus more 

valuable in combination with 𝑓𝑐 and 𝜏−10dB. 

For the evaluation of clustering algorithms, the HFD, 𝜏−10dB, and 𝑓𝑐 were used together as 

features. The results shown in Fig. 10 are average values over 10 trials of clustering the datasets. 

All algorithms yielded a purity of 1 for the first two datasets, with mean SNR values of 12.63 and 

10.34 dB, respectively. That is, the algorithms completely isolated the species based on the three 

click features. Differences in performance between algorithms were marginal for all noise 

conditions except the last dataset, with a mean SNR of 5.05 dB. The SOM method outperformed 

the others in this case with a purity of 0.937, followed by spectral clustering at 0.921, and k-means 

at 0.909. Thus, for all noise conditions purity values were above 0.9, which corresponds to 90% 

accurate unsupervised classification. See Fig. 11 for a visualization of the feature space computed 

for dataset 1. 

Results for FNNs trained using various feature sets are shown in Fig. 12. Results are shown 

for four networks. The first (N1) was trained using 𝑓𝑐, 𝜏−10dB, and HFD, which was compared to 

another that substituted the Shannon entropy for the HFD (N2), and another which did not include 

either (N3). A fourth network (N4) was trained using the WPD energy map. Results shown in Fig. 

12 are averaged over five trails of training and testing. Notable improvement of classification 

accuracy is seen with the inclusion of the HFD as a feature. N1 yielded the highest accuracy in all 

cases. All feature sets result in a similar trend of accuracy with increasing noise. A small rise in 

performance between trial 1 and 2 or 3 is seen for all networks, which is a consequence of most of 

the training data consisting of feature vectors from transients of non-optimal SNR. For all noise 
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conditions, N1, N2, and N3 show accuracy above 93%. N4 which used the WPD energy map as 

input was outperformed by the other networks in all cases. 

 

5. Conclusions 

     High accuracy classification of several beaked whale species regional to the northern 

Gulf of Mexico is achieved by using spectral, temporal, and geometric features of recorded 

echolocation waveforms. The spectral centroid, -10 dB duration, and Higuchi’s fractal dimension 

determine a strong acoustic signature. Katz’s approach to measuring fractal dimension competes  

 

 

Fig. 10. Performance of clustering methods using three features: Higuchi FD, spectral centroid 𝑓𝑐, and -10 

dB duration 𝜏−10dB. Purity is unweighted and corresponds to the fraction of correctly assigned data 

points, where the correct class of a data point is defined as the mode class of its cluster. 
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Fig. 11. Feature space visualization of 𝑓𝑐, 𝜏−10dB, and HFD computed from the original, non-corrupted 

data. The clusters corresponding to each species are easily discerned. 

 

 

 
 

Fig. 12. Classification performance of feedforward neural networks trained using various inputs. The 

features are Higuchi’s fractal dimension (HFD), spectral centroid (𝑓𝑐), -10 dB duration (𝜏−10dB), Shannon 

entropy, and wavelet packet decomposition (WPD) energy map. 
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with Higuchi’s method as an individual feature, yet separates BWG strongly from the other 

species. The spectral clustering and self-organizing map routines partition observations of the 

species with slightly higher accuracy than k-means for low SNR conditions. These methods have 

potential for automatically isolating observations of multiple species or individuals in acoustic 

data. Measured click duration and central frequency are dependent on source bearing. The 

dependency was observed most prominently for Cuvier’s beaked whale clicks. Although signal 

source bearings were not known in this study, the wave behavior of Cuvier’s beaked whale clicks 

at off-axis angles is hypothesized to have a stronger similarity to that of Risso’s dolphins as 

compared to Gervais’ and Cuvier’s whales. FNNs trained under various noise conditions can 

classify the species effectively using 𝑓𝑐, 𝜏−10dB, and HFD as features, with average accuracy over 

five test trials ranging from 96.0 – 99.9 % correct classification of datasets with mean SNR 

estimates spanning 5.05 – 12.6 dB. The inclusion of the Higuchi fractal dimension with the spectral 

centroid and -10 dB duration measure improved performance of the neural network classifiers 

compared to the Shannon entropy. Computing these features is less costly in terms of space usage 

and time than the WPD energy map, and using them for training resulted in classifiers with greater 

performance. 
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