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Abstract

The concept of using aluminum as the primary construction material for high speed ships and

the hydroelastic behavior of the structure is widely gaining importance as a significant research topic

in naval architecture. Aluminum is lighter than steel and hence can be predominantly used in high

speed crafts which experiences significant slamming.

This thesis work is focused on wedge shaped models. Free fall wedge impact is studied and

a FORTRAN 90 computer program is developed to estimate the structural response of the wedge

experiencing slamming by the use of matrix methods, finite element techniques and Newmark-Beta

numerical time integration methods.

The numerical solution is validated by comparison with the static solution. The theoretical

hydrodynamic pressures which are used as input for this work was originally developed by using a

flat cylinder theory [26]. The wedge drop at 0.6096 m (24 inch) drop height with an impact veloc-

ity of v=3.05 m/s is based as the premise and the experimental pressure distributions measured by

the pressure-transducers and the theoretical pressure predictions are used as inputs and the structural

response is derived.

Additionally, the response is compared for three different plate thicknesses and the results are

compared against each other. The maximum deflection is comparable to the deflection evaluated from

the experiment and tends to attain convergence as well. As the plate thickness reduces there tends to

be a significant rise in the deflection values for the wedge plate, in the manner that when the plate

thickness is halved there is a deviation of more than 75% in the deflection values as such.

Key words : Structural Response, Added mass, Plate element, Matrix methods, Finite Element

Technique, Newmark-Beta Numerical Method, Slamming, Deflection

xi



Chapter 1

INTRODUCTION

1.1 Slamming

Slamming in ship structures is an age-old topic spanning at least 82 years and is still of interest.

The topic has still not yet been solved for a complete understanding; however, the work done until

this point is exemplary nonetheless. The Classification Societies still consider the maximum bending

moment is estimated as a factor for the dynamic effects and that slamming or whipping loads are still

not yet soundly incorporated [10]. Numerous people from the academic, scientific and the research

community have made significant strides and this thesis work just follows in the same footsteps.

Slamming can be expressed as sudden high hydrodynamic force resulting from accelerated

pressures, impinging on the structure for a fleeting time instant which results in appreciable structural

response. This happens when a body enters a fluid with a small relative angle between the body surface

and free surface. In this case, the contact surface area between the fluid and the body expands at a

high speed which gives rise to sudden acceleration of the fluid close to the interface, which results in

high pressure.

Slamming is so critical that even mild slamming can introduce a whipping response of the ship’s

hull. During slamming, the fluid experiences high accelerations thereby creating a significant high-

frequency contribution to the bending moment. This high frequency phenomenon leads to fatigue
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induced stresses on the structure. The phenomenon of slamming is quite detrimental for the integrity

of the ship’s structure.

Slamming can have undesirable effects on the ship structure as it produces a huge impact force

which acts repeatedly and impulsively and is usually oscillatory in nature. This is usually the case

with a displacement craft where the bow of the ship rises and falls consequentially into the waves and

because of the above said characteristics of the load the structure experiences failure.

The impact pressures depend heavily on the relative angle between the body and the fluid sur-

face. From extensive research, experiments and the drop tests carried out it is understood that the

pressure rises sharply for when the relative angle becomes small [10]. For relatively low deadrise an-

gles it is found that the impact becomes more complex as air is being compressed in the phase before

the impact. This high pressure region causes a depression of the fluid surface and allows the fluid to

escape in the form of a jet at the ends of the body. This phenomenon actually gave a different insight

to slamming as it was not just restricted to an impact but was also considered a planing phenomenon

from then on as referenced from [12].

The slamming loads and its effects on the structure are investigated taking into consideration

that the response to these loads are of hydroelastic nature, this phenomena also be expressed as fluid

structure interactions. As the phenomenon of slamming is repeated and time-dependent it may lead to

fatigue loads, hull whipping loads on the structure when exposed to long periods of time. It is not just

restricted to fatigue loads, but because of the impulses involved, may lead to vibrational effects on the

structure which is of transient nature.

1.2 Purpose and Motivation of the study

High speed crafts move by planing on the surface of water. This is possible because the boat

trims by aft and the bow portion protrudes above the water surface. While traveling at high speeds,

the fore end of the boat may experience slamming because of the frequency of wave encounter while
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traveling in high seas.

The hull tends to deflect as the slamming pressures act on the hull. The deflection of hull plating

changes the pressure gradient in a very complex manner which has undesirable effects on the structural

response [10]. In order to solve an implicit equation of motion, the velocity or displacement vectors

should be determined at an instant under impact loads. Then, the structural response of the hull can

be estimated in consequential time instances.

As slamming is such a complex phenomenon, it has to be simplified into linear natured by

assuming linearization and non-dimensionalities. The objective of this thesis is to develop a program

to estimate the structural response of the plate panel experienced during one-way coupling by using

the finite element method. Studies are performed to validate the stability and accuracy of the solution

as well. The above said work is based on existing theories and concepts and these are explained

thoroughly in the following chapter.

Overview

The 3D wedge hull is a homogeneous, prismatic planing hull of specific dimensions used for

evaluating the structural behavior of the bottom plate during slamming. The 3D hull wedge entirely

cannot be evaluated for deflections, hence the bottom plate panel is the one under consideration and

that is to be evaluated for the structural behavior. The bottom plate panel is treated as a rectangular

plate fixed-fixed across all the edges. The pressure distribution is variable across the breadth of the

plate and considered constant across the length of the plate. There is a variation in the hydrodynamic

loading because of the change in the wetted lengths as the section is immersed in the water. End

effects are ignored for the purpose of this thesis work.
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Scope

The scope of this thesis is to build, develop and validate a computer program to compute the

transient structural response of the plate panel. The scope also includes comparison of the results

derived from theoretical pressure prediction, experimental pressure prediction and the stereoscopic

digital image correlation technique used for determining plate deflections. In addition, the scope of

the thesis work includes the comparison between different plate thicknesses as well.

4



Chapter 2

LITERATURE REVIEW - EVOLUTION

Slamming has been investigated from various points of interest by using disparate methods for

analysis such as the momentum theory, boundary element methods, statistical methods, analytical

methods, computational fluid dynamics, structural aspects- hydroelasticity, experimental techniques,

full scale measurements from the time it started with subsequent improvement in the results and the

methods adopted.

The earliest work for understanding hydroelasticity was done by Bishop and Price in their pub-

lication [2] by investigation of the dry and wet elastic responses of the hull structure. This work serves

as the beginning for understanding slamming.

2.1 Slamming - Momentum Approach

From a theoretical point of view, slamming loads have been mostly studied within the frame-

work of potential flow theory, assuming blunt and rigid body and planar flow. The problem has been

investigated from the impact approach since the beginning of the 20th century. The first investigations

into the wave impact problem were made by Von Kármán [12] and Wagner [27] following which

plenty of theories, publications and research have shaped the way the academic and the scientific

community has responded to the slamming phenomenon.
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Momentum theory [12] is the oldest theory to tackle the problem of slamming. The theory was

initially applied to estimate the forces on the floats of the landing of sea planes. The forces acting on

the planing hulls was first recognized as an impact problem in addition to the planing problem by Von

Kármán in the National Advisory Committee for Aeronautics Technical Note No.321.

Von Kármán was the first to use the change in the added mass of the floats as an estimate of the

impulsive force. He based the added mass of the sea plane float as that of a flat plate with finite width.

The planing problem was idealized as an impact problem. The application of force on the planing hull

was calculated by application of the momentum theory and the asymptotic solution.

The Von Kármán theory was developed based on the assumptions that the effects of gravity are

neglected. The impact actually causes the fluid to accelerate thereby giving rise to added mass. The

added mass is smaller than half of the apparent increase of mass owing to the wedge shaped bottom

of the boat. As the plate wetting is considered only up to the waterline as a pioneering step the wetted

length Zwl is lesser than the wetted lengths as in the subsequent developments. The added mass and

the impact loads are underestimated for small deadrise angles as the von Kármán’s impact theory is

based on momentum conservation.

The momentum approach was recently adopted by Kaspenburg and Thornhill [11] to calculate

added-mass for a ship using a 3D panel at infinite frequency from which spatial added mass derivatives

were developed. These added mass derivatives were multiplied by the relative velocity to find the

impulsive force.

2.2 Slamming - Asymptotic Approach

Wagner [27] used potential flow theory to estimate the pressure distribution on wedges for

understanding the constant velocity impact. His approach was mathematical and analytical. The

impact of the float was linked to a planing hull thereby. The flow under the hull is idealized as

equivalent to the flow around an expanding infinite flat plate with no chine. The impact pressures were
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calculated by using modified Bernoulli’s equation. The most significant feature to the solution of the

impact problem of planing hulls was proposed by Wagner [27] when the jet rise-(the development

of spray root) was incorporated in the estimation of the added mass, which was more accurate and

realistic than that of the solution developed by Von Kármán.

The wetting factor π/2 is included as the theory proposed includes not just the waterline but the

wave rise/spray root as well. This leads to interesting observations and results, which hold significance

even today.

2.3 Slamming - Alternative Hydrodynamic Approach

Vorus [26] developed an alternative hydrodynamic theory for analysis of the slamming loads

on the conventional hull sections operating in waves and the sections similar to the hydrodynamic

planing hulls operating in calm waters. The new theory referenced by [26] is a hybrid method as it

is considered a credible compromise between the asymptotic solutions pioneered by Herbert Wagner

and the exact governing differential equations.

The impact pressures of slamming were well investigated by Vorus wherein the theory he devel-

oped approximates the geometry using linear approximations and performs the hydrodynamic analysis

as a non-linear problem. Vorus proposed a boundary element method which takes a unified approach

to the flow. The method proposed in this theory is a mixed theory. It is geometrically linear in the flat

cylinder boundary conditions but it is hydrodynamically non-linear thereby fully retaining the large

flow perturbation produced by the interacting cylinder in the axis boundary conditions.

2.4 Slamming - Analytical Approach

The analytical methods can help us reach the exact solution for a simplified impact problem.

They serve to be the basis for the other tools such as boundary element methods to arrive at an appre-
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ciable solution. Wagner pioneered in developing an analytical method for calculation of the impact

problem solution.

The approximate solution for the free surface was refined by Dobroval’skaya [5] who developed

an exact method for the similarity solution for the specific case of a wedge entering water vertically at

a constant speed which dealt with impacting wedges. The solution is valid for any deadrise which has

to be solved numerically proving to be an exact method for solving wedge impact problems.

Korobkin [13] also used Wagner’s analysis with included higher order terms in the modified

Bernoulli’s equation in order to improve the quality of results of the theoretical predictions in compar-

ison to the experimental results.

This method was extended to 3D applications by Scolan & Korokbin. A solution for axisym-

metric bodies were found by their work. Cointe and Armand [1] studied the impact problem with an

analytical approach where they considered the immersion depth must be comparable to the width of

the section,which yielded very promising results.

2.5 Slamming - Hydroelastic Approach

Pabst [18] attempted to initially understand the structural behavior of the plate and investigated

on making assumptions that the plate is stiff and that water is incompressible. His work proved that

those assumptions weren’t correct otherwise the structure should experience infinitely great forces

thereby concluding that the plate has the property of elasticity. This lead to the fact that the seaplane

floats could actually show different structural characteristics based on the boundary conditions of the

plate. This showed the importance of flexible supports for the landing craft was.

Kvasvold and Faltinsen [9] reduced the problem of the plate with stiffeners to that of the flexible

beam impacting on a wave crest in two dimensions. This beam was modeled as a Timoshenko beam

and this was coupled to the simplified solution for the fluid flow in the impact region. An analytical

solution was found but the work on numerical solutions (BEMs) failed for stability and convergence
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reasons.

Kvalsvold, Faltinsen and Haugen [9] studied the local response induced because of slamming.

This method is based on two dimensional analysis. Boundary element method was used and upon

realization very large numerical errors were introduced. However, analytical based methods were

used to calculate the slamming loads. The local slamming induced response was found to be governed

by the relative impact velocity, the deadrise angle and the structural bending stiffness.

2.6 Slamming - Other Theoretical Approaches

It was well known that Wagner’s solution had a singularity at the intersection between the body

surface and the water surface. This singularity makes the solution very difficult to understand for a

general shape of body. Yettou et al. [28] aimed at developing a better understanding of water loading

and hull pressures experienced by a planing hull/wedge. Upon investigations, Yettou [28] found that

the physical parameters such as drop height, deadrise angle and the weight actually influence the

pressure distribution on the hull.

A method using strip theory was used to predict the slamming load which was developed by

Carlos Guedes Soares [8] to determine the relative motion between the wedge/hull and the water

surface and the rate of change in the momentum of the fluid to calculate the impact force. Timoshenko

beam finite elements with a consistent mass formulation was implemented by the above investigator

and the response was obtained using a Newmark integration scheme. The method proposed was an

uncoupled solution combining Wagner theory and finite element analysis.

Zhao et al. [30] presented non-linear boundary element method to solve the water entry problem

and verified the results with experimental drop tests of a wedge and a bow flare section. Zhao Rui and

Faltinsen [30] studied the slamming load on hull cross-sections using a boundary element method

and got an asymptotic solution for wetdeck slamming. The results from this were restricted by the

limitation of the deadrise angle of the wedges. The results showed the importance of wave slope to
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the slamming loads.

The results developed by the theories above said had been validated by numerous experiments

conducted by Chuang [3], Fontaine and Cointe [7] in case of wedges, Cointe and Armand [1] in case of

cylinders, Zhao et al., Maggie and Fontaine in case of realistic ship sections. The asymptotic solution

from the theoretical prediction over predicts the max peak pressure.

Peseux [20] used finite element analysis technique to solve the impact problem in slamming

which is of a non-linear nature. The experimental results were validated with the finite element anal-

ysis and were to be of an approvable value. Slamming loads are studied numerically wherein finite

element analysis is used to solve the fluid domain. A coupling matrix between fluid and structure part

is used to solve the hydroelastic impact problem as part of the method.

Different methods for fluid structure interactions have been developed by the academic and

scientific community. Korobkin developed a theory to include the coupled equations to solve for the

wedge impacts. A generalized Wagner theory is coupled with a finite element (FE) solution for the

structure. Lu et al. [15] also presented a non-linear boundary element method for the water entry of

the wedge and a finite element technique is applied for the coupled,structural response.

Datta [4] developed a method to provide the dynamic response spectra to study the transient

fluid-structure dynamics representative of impact loads and slamming pressures. The plate deflections

were derived both in space and time by modeling the plate as a beam and then implementing the time

integration 4th order Runge-Kutta technique and Galerkin methods for finite elements. The study

also includes the structural response with respect to various physical parameters such as aspect ratio,

damping ratio, boundary conditions and deadrise.

Panciroli et al. [19] presented a fully coupled solution for a hydroelastic entering water by ap-

plying the smooth particle hydrodynamics method with a finite element code. Piro and Maki [21] im-

plemented a modified Reynolds Average Navier Stokes formulation for the water entry of the wedge,

coupled with a finite element analysis technique.
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Jian Lv and Grenetstedt [16] developed a theory in which the deformation of the boat hull during

the slamming phenomenon is studied analytically by using a Euler-Bernoulli beam as a representation

of the bottom panel of the boat. Koyyappu developed a numerical tool for calculating and estimating

the 2 dimensional wedge deflection in his thesis work at the University of New Orleans, Fall 2016 [14].

The current work is an extension to that.

Eastridge measured the bottom plate deflection by conducting wedge-drop experiments,using

strain gauges and stereoscopic digital image correlation technique and compared the results between

those in his work [6] which acted as a precursor for the comparison performed in this thesis work. The

above said references provide the necessary background upon which the following thesis has been

developed.

The fixed-fixed end condition of the bottom wedge plate panel is taken into account and hydro-

dynamic loads are applied on the wetted nodes along the breadth of the plate panel. This is explained

in detail in Chapter 4. The slamming pressures are impulsive and act for a fleeting time instant. The

response to this forces can be generated by developing a numerical code to calculate the deflection

of the plate panel. The methodology used for developing the code is presented in Chapter 4. The

numerical method used for the code has been validated by means of static solutions in Chapter 6 and

the results are discussed in Chapter 7. Ultimately, the conclusions and future work are presented in

Chapter 8 to give a comprehensive understanding.
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Chapter 3

BACKGROUND

The slender planing 3D aluminum wedge model is built to perform wedge-drop slamming ex-

periments to understand the structural response of the bottom panel to slamming. An insight into the

3D wedge model, the problem and the background work for the same is presented in this chapter. The

assumptions and simplifications are explained here.

3.1 Wedge Model

An aluminum wedge hull of constant cross section with the following principal particulars is

considered. Simplifications and idealizations are made in order to calculate the deflection of the plate

which ensues further into the thesis. The transverse view and the boundary conditions of the wedge

follows later for better understanding. The wedge has the following dimensions and particulars:
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Parameter Value Unit

Length of the wedge 1.450 m

Beam of the wedge 0.600 m

Depth of the wedge 0.5334 m

Density of aluminum 2700 kg/m3

Thickness of the bottom plate 0.00635 m

Thickness of the side plate 0.00375 m

Damping factor of aluminum 0.002

Modulus of elasticity of aluminum 69x109 N/m2

The weight of the wedge 1153.60 N/m

Poisson’s ratio of aluminum 0.33

Dead rise angle 20 deg

Table 3.1: Wedge Particulars

The transverse section of the wedge is shown below:

Figure 3.1: Transverse view of the wedge

3.2 Boundary Condition

As the slamming impact is very significant on the bottom plating of the model when compared

to the sides, the bottom plating of the highly complex 3-D wedge model is simplified to a rectangular

plate for the purpose of this thesis. The area of interest is not the whole model of the wedge however
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it is only the bottom plate that is under consideration. The bottom panel is considered as a flat plate,

and the hydrodynamic loading occurs on the flat plate. The nature of the hydrodynamic loading is

impulsive. The fixed-fixed end conditions for the flat plate is shown in figure 3.2 below.

Figure 3.2: Wedge plate - Fixed-fixed boundary conditions

3.3 Governing Equation

Each structural finite element problem is defined by stiffness[K], mass[M] and damping[C].

These parameters are imparted to the finite elements which actually make it suitable to be solved by

the ordinary differential equation mẍ+ cẋ+ kx = f(t) as a function of time.

Each physical process is governed by an equation to understand the engineering sense behind
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it. As the process is dynamic here and is time dependent the process can be explained by basing it on

the classical ordinary differential equation of mechanical vibration as explained below:

[M(t)]{Ẍ(t)}+ [C]{Ẋ(t)}+ [K]{X(t)} = F{t} (3.1)

where,

– [K] - Stiffness matrices of each finite element of the bottom plate (size - degrees of freedom x

degrees of freedom)

– [C] - Structural damping matrices of the finite elements (size - degrees of freedom x degrees of

freedom)

– [M] - The total mass matrix of the plate upon wedge drop which is the sum of the mass matrices

and the hydrodynamic added mass matrices of the finite elements concentrated at the nodes.

(size - degrees of freedom x degrees of freedom)

– F - Force vector which includes the forces and the moments terms alternatively in the force

vector. (size - degrees of freedom x 1)

– Ẍ - Acceleration vector (size - degrees of freedom x 1)

– Ẋ - Velocity vector (size - degrees of freedom x 1)

– X - Displacement vector (size - degrees of freedom x 1)

The solution of the above said time-dependent dynamic equation can be obtained by solving the

equation 3.1 by means of a time stepping technique where the stiffness matrix [K] of size(degree of

freedom x degree of freedom), damping matrix [C] of size(degree of freedom x degree of freedom),

mass matrix [M(t)] of size(degree of freedom x degree of freedom) and the force vector {F} of size
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(degree of freedom x 1) is passed as inputs to the time stepping technique and the displacement {X} ,

velocity {Ẋ} and the acceleration {Ẍ} is found as a result of that at each defined time step. The

process of solving this equation using the explicit time-stepping numerical method is extensively

written in the following chapter.
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Chapter 4

METHODOLOGY

Hull slamming and planing is widely regarded as an impact problem for wedge shaped struc-

tures. As explained in the previous sections, it is understood that the structure experiences a very high

magnitude excitation force for a very short interval of time. The structural response experienced is

transient in nature as it involves loads as a function of time. This kind of a response is called as tran-

sient response. The hydrodynamic pressure distribution varies non-linearly in both space and time.

This response is dependent on the initial conditions and the response is solved using the stable time

stepping Newmark-Beta method in the following thesis work [17].

4.1 Physical Methodology

Stiffness is the rigidity of an object to resist deformation and this property for the plate panel is

represented by the pre-defined stiffness matrix as referred from [23]. The local stiffness matrix that is

used for this purpose is explained in Chapter 5. The stiffness matrix has to be developed for the whole

plate by assembling elemental stiffness matrices. The mass is represented by the mass matrix and that

the mass is not static and the matrix keeps changing with each time step as the wetted length keeps

changing. These above said matrices are built to form the equation 3.1.

In order to solve the equation, the right hand side force vector is actually developed from the
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variable pressure distribution that is fed into the equation. As it is a time dependent process, the

equation has to be solved by making use of the implicit numerical method as in this case the Newmark-

Beta numerical method. This is used for solving the system of equations at each time step thereby

finding out the unknowns displacement, velocity and acceleration at each time step.

4.2 Local Stiffness Matrix

The selected local stiffness matrix as referred from [23]. The elemental stiffness matrix is built

Figure 4.1: Individual stiffness matrices - [Ka], [Kb], [Kc], [Kd] (Ian.R.Stubbs, 1966)

up from four individual matrices Ka,Kb,Kc and Kd as shown in figure 4.1. The sum of these individual

stiffness matrices actually give rise to the individual submatrix Ki which arranged to form the 12x12
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local stiffness matrix [K] as shown in figure 4.2.

Figure 4.2: The Local Stiffness Matrix based on dynamic response of blasts for box-type structures

4.3 Development of Matrices

Stiffness and Damping Matrices

Each matrix that constitutes the governing equation has a distinctive structure of its own. All the

matrices share a common thread that all are diagonally symmetric in nature. The elemental stiffness

matrix of a plate element is of size 12×12. It is very cumbersome to build a stiffness matrix for the

plate element and quite advisable to make use of the previously developed matrices by the scientists

and engineers all around until now. Upon trials and tribulations it was found that the stiffness matrix

for the Adini-Clough element [23] was the most suitable for this case like a dynamic process. The

stiffness matrix is diagonally symmetrical and represented as below:
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Elemental Stiffness Matrix:

[K12x12] =



K11

K21 K22

K31 K32 K33

K41 K42 K43 K11

...
...

...
...

. . .
...

...
...

... . . .
. . .

...
...

...
... . . . . . . K33



(4.1)

This local stiffness matrix is intuitively assembled to develop the global stiffness matrix for the

whole plate with the matrix size depending upon the number of elements discretized. The size of the

matrix size would be (N+1)×(N+1)×3 which is actually the number of degrees of freedom of the plate

where actually N represents the number of elements for the mesh. Each plate node has three degrees

of freedom with one linear and two rotational degrees of freedom. The generic plate element is shown

in figure 4.3.

Figure 4.3: Rectangular plate element with three degrees of freedom at each plate node
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The structural damping matrix [C] is an extension to the stiffness matrix in the sense that it is

developed by taking the product of the damping factor to the global stiffness matrix [K]. The damping

factor is multiplied with each and every term in the global stiffness matrix to develop the global

damping matrix [C].

4.3.1 Global Stiffness Matrix

The bottom plate panel is discretized arbitrarily into 4 noded rectangular elements. Each node

for the element has 3 degrees of freedom, which results in the local stiffness, damping and mass

matrices to be of 12×12 sizes.

The elemental 12×12 stiffness matrix for a rectangular element is essentially linked to the plate

by making use of the connectivity matrix which results from the CONNECTIVITY SUBROUTINE in

the case of the program. Initially, connectivity matrices are formed which relate the local to the global

system. An example is cited below to understand the method in a better manner.

Consider the bottom plate panel to be arbitrarily discretized into 2x2 elements (totally 4 rect-

angular elements). For this arbitrary discretization the degree of freedom for the plate is computed

to be 27 degrees of freedom, thereby the connectivity matrix(dof,12) is of size Bmat(27,12). The

connectivity matrix is built up as follows. The quasi-global [Kq] matrix is developed from the :



1 0 . . . . . . . . . . . . 0

0 1 0 . . . . . . . . . 0

0 0 1 0 . . . . . . 0

0 0 0 BMAT 0 . . . 0

0 0 0 (27 × 12)
. . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 0 . . . . . . 0

0 0 0 0 . . . . . . 0

0 0 0 0 . . . . . . 0



×



k1,1 k1,2 k1,3 . . . . . . k1,12

k2,1 k2,2 k2,3 . . . . . . k2,12

k3,1 k3,2 k3,3 . . . . . . k3,12

k4,1 k4,2 k4,3 Local − k . . . k4,12

k5,1 k5,2 k5,3 (12 × 12)
. . . k5,12

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

k10,1 k10,2 k10,3 . . .
. . . k10,12

k11,1 k11,2 k11,3 . . . . . . k11,12

k12,1 k12,2 k12,3 . . . . . . k12,12



=



Kq − QuasiGlobal

(27 × 12)
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[BMAT ]
27×12

× [Elemental − k]
12×12

= [Kq]
27×12

(4.2)

The quasi-global matrix shall be converted to the global matrix by multiplying the quasi-global

matrix with the transpose of the connectivity matrix.



Kq − QuasiGlobal

(27 × 12)



×



1 0 . . . . . . . . . . . . 0

0 1 0 . . . . . . . . . 0

0 0 1 0 . . . . . . 0

0 0 0 BMAT
T 0 . . . 0

0 0 0 (12 × 27)
. . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 0 . . . . . . 0

0 0 0 0 . . . . . . 0

0 0 0 0 . . . . . . 0



=



K − GlobalStiffness

(27 × 27)



[Kq]
27×12

× [BMAT ]
12×27

T = [K]
27×27

(4.3)

The global matrix developed as a result of this is the global stiffness matrix based on one

discretized plate element. As discussed earlier, N x N number of global stiffness matrices shall be

developed and all these global matrices are assembled to form the final global matrix [K] as shown in

equation 4.4

[Ktotal] =

N∑
i=1

[Ki] (4.4)

Mass and addedmass matrix

A matrix of size 12x12 is built to describe the elemental mass matrix. As discussed earlier, the

local mass matrix is combined together and summed up which results in a global mass matrix of the

size degree of freedom x degree of freedom.
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Elemental Mass Matrix:

[M12x12] =



Mxx

0 Iyz

0 0 Izx

0 0 0 Myy

...
...

...
...

. . .
...

...
...

... . . .
. . .

...
...

...
... . . . . . . Ixy



(4.5)

There is an inertial component added to the highly accelerating wedge as some volume of

fluid is displaced when the process is carried out through a range of time steps. This hydrodynamic

mass matrix is added to the already static mass matrix thereby resulting in the final mass matrix for

each individual time step. This apparent mass is called the added mass which is computed at each

independent time step based on the wetted length of the wedge and this added mass is added to that

particular static mass thereby resulting in the total mass matrix ie. [M]+[Am] = Total Mass Matrix.

4.3.2 Mass Global Matrix

This section includes the manner in which the final mass global matrix is developed for the

bottom plate panel for the same case as discussed in sec 4.3.1. The quasi-global mass matrix is as

follows.
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1 0 . . . . . . . . . . . . 0

0 1 0 . . . . . . . . . 0

0 0 1 0 . . . . . . 0

0 0 0 BMAT 0 . . . 0

0 0 0 (27 × 12)
. . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 0 . . . . . . 0

0 0 0 0 . . . . . . 0

0 0 0 0 . . . . . . 0



×



M1,1 0 0 . . . . . . . . . 0

0 M2,2 0 . . . . . . . . . 0

0 k0 M3,3 . . . . . . . . . 0

0 0 0 M4,4 Local − Mass . . . 0

0 0 0 0 (12 × 12)
. . . 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 . . . M10,10 0 0

0 0 0 . . . . . . M11,11 0

0 0 0 . . . . . . . . . M12,12



=



Mq − QuasiGlobal

(27 × 12)



[BMAT ]
27×12

× [Elemental −M ]
12×12

= [Mq]
27×12

(4.6)

The quasi-global matrix shall be converted to the global matrix by multiplying the quasi-global

matrix with the transpose of the connectivity matrix.



Mq − QuasiGlobal

(27 × 12)



×



1 0 . . . . . . . . . . . . 0

0 1 0 . . . . . . . . . 0

0 0 1 0 . . . . . . 0

0 0 0 BMAT
T 0 . . . 0

0 0 0 (12 × 27)
. . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 0 . . . . . . 0

0 0 0 0 . . . . . . 0

0 0 0 0 . . . . . . 0



=



M − GlobalMass

(27 × 27)



[Mq]
27×12

× [BMAT ]
12×27

T = [M ]
27×27

(4.7)

The global matrix developed as a result of this is the global mass matrix based on one discretized

plate element. As discussed earlier, N x N number of global mass matrices shall be developed and all

these global matrices are assembled to form the final global matrix [M] as shown in equation 4.5.

[Mtotal] =
N∑
i=1

[Mi] (4.8)
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4.4 Program - Building Blocks

The program begins with the principal parameters of the hull as inputs followed by which the

arbitrary number of mesh elements is specified. This in turn leads to finding out the matrix sizes

and building them accordingly based on the arbitrary number of elements. The program is built in

a manner that the [K], [C] and [M] matrices for the local element is written down as local 12×12

matrix based on the discretized rectangular plate element. These matrices are combined together by

the principle of finite element analysis to develop the large global matrix based on the arbitrary number

of the elements.

Consequentially, the hydrodynamic pressures are read from an output file, generated by an

external hydrodynamic code developed for [25]. These pressures are integrated over the plate surface

to find the external excitation forces at the arbitrary locations. These excitation forces are resolved into

the nodal reactions and distributed across all the nodes of the plate. Finite element analysis requires

the nodal forces to be evaluated which are done subsequently.

However, as the process is dynamic and that added mass keeps changing hence the above said

ordinary differential equation needs to be solved by developing the total mass matrix. This is done by

updating the added mass matrix at each time instant and summed up with the static mass matrix at each

instant. This equation 3.1 is solved by a time stepping method thereby yielding deflection,velocity and

acceleration of the plate nodes.

4.5 Finite Element Modeling

The bottom plate is discretized into arbitrary number of elements based on the accuracy and

the convergence of the solution.The rectangular plate is a member which has homogeneous physical

parameters such as mass,stiffness and damping acting throughout the member. Each node is consid-

ered to have 3 degrees of freedom, for a plate having mesh size N×N, the number of nodes would be
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(N+1)x(N+1) or if the plate has mesh size then can be adjusted accordingly and the size of [K], [C]

and [M] matrices would be [K/C/M] = ((N+1)×(N+1))×3 according to the degrees of freedom. The

mesh size is not restricted only to N×N, but M×N is applicable as well.

4.6 FORTRAN PROGRAM - OVERVIEW

This section describes the working procedure of the code in a very coherent and conclusive

manner.

– The following input parameters for the wedge hull are initialized and declared which include

the dimensions of the plate L and B , Poisson’s ratio ν, Damping Coefficient γ and Young’s

Modulus E.

– It has to be noted that all the matrices and vectors are of dynamic allocation.

– The stiffness matrix for the plate is formulated based on the above said.

– A rectangular plate element has four nodes and each node has three degrees of freedom which

leads to developing a local stiffness matrix of size 12x12 (4 nodes x 3 degrees of freedom).

– The process for developing a stiffness matrix of size 12x12, is not regular as in the case of the

beam and hence Adini-Clough plate element stiffness matrix which has greater suitability to

time stepping methods had to be programmed.

– The SUBROUTINE ‘STIFFELE’ is the one in which the 12x12 local stiffness matrix for a plate

element is defined.

– The local stiffness matrix can be converted into the global stiffness matrix by making use of the

subroutine ‘CONNECTIVITY’. This actually combines the local stiffness matrices to develop

a global matrix based on the arbitrary size of the degree of freedom based on the mesh size.
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– The local damping matrix for the plate is developed along with the local mass matrix for the

plate and as discussed earlier the matrices are developed globally by using the ‘CONNECTIV-

ITY’ SUBROUTINE.

– At this stage the global matrices of stiffness matrix [K],damping matrix [C] and the mass matrix

[M] is developed.

– The three matrices are of the sizes degree of freedom x degree of freedom however, based on

the nature of the plate restraints it has to be recognized that these matrices need to be reduced

in size only to the number of the remaining degrees of freedom as against the restrained nodes

and its degrees of freedom.

– Hence, the matrices are reduced in size arbitrarily based on the boundary conditions.

– The force vector to solve the equation of motion is developed from the input hydrocode where

the hydrodynamic pressures for the wedge plate are integrated numerically through each time

instant thereby yielding a force vector at each time instant (ts).

– The total force vector at each time instant needs to be distributed across the nodes on the arbi-

trarily sized finite element mesh. The above said force vector is developed by making use of the

‘INPUT’ SUBROUTINE.

– As the wedge drop is a dynamic process the drop tends to lead to the fluid particles being

accelerated under the action of the drop thereby giving rise to the concept of added masses

which acts on the bottom surface of the hull.

– The fluid particles under acceleration/deceleration imparts a virtual mass to the body as the body

moves through the volume of the fluid around it.

– The added mass is computed by using the empirical formula and in this programming model it

is computed by using the ‘UDLAREA’ SUBROUTINE.
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– These added mass needs to be added to the original mass matrix of the plate there by giving rise

to the final mass matrix [Mfinal] = [M] + [∆M].

– The added mass matrix is dynamic in nature as well and needs to be updated for each time step

in a specific time interval.

– Now all the matrices for the time stepping technique have been formulated and the equation is

ready to be solved with the time stepping technique.

– The transient response of the plate can be computed by using the ‘NEWMARK’ SUBROUTINE

where the deflections,velocities and the accelerations of the plate at each and every node can

be calculated. This gives us the structural behaviour of the plate dynamically through each

timestep.

– The flowchart for the entire working program is shown subsequently.
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4.7 Wedge impact - flow physics

The hydrodynamic model obeys the laws of potential flow physics thereby rendering it to be in-

compressible, irrotational and inviscid. Gravity is neglected as well in understanding the flow physics.

An impacting flat cylinder model is considered for investigation and the hydrodynamic solution is de-

veloped for the same wherein the cylinder model actually experiences complete penetration i.e. chine

wetted flow into the water surface as shown below.

The point where there is a discontinuity in the hull structure, termed as chine is the point where

the flow tends to separate in most cases unless and until there is a premature separation attributing to

some other cause. In case of premature separation, there would be no further advance of the point

at which the flow contour has zero pressure. The theory is built on the assumption of the symmetry

about the Y-axis, the vertical plane of the cylinder.

Figure 4.4: (a) Cylinder impact - Chine Unwetted Flow(Vorus,1996)

Upon the cylinder impacting against the free surface, it is found that the free surface returns

back forming a jet in the beginning of the impact as shown in figure 4.4(a). The ‘spray root’ rapidly

advances along the cylinder profile followed by point C. It is realized that the contour pressure be-
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comes zero at pt. C and beyond. Point C keeps on moving outward till it reaches the chine.

Initially there is a point B past point C and this as well continues to advance further outward than

the chine leaving behind point C. Point C is where the last pressure point in the pressure distribution

acts whereas the point B lies outside of this pressure distribution.

Point C is the point where the flow detaches itself from the cylinder profile as shown in figure

4.5(b). On the region of fluid flow indicated by B the flow velocity is higher than the impact velocity

where as in the lower region the flow velocity is lower than the impact velocity.

For analysis, the cylinder is collapsed onto the z-axis. The interesting character of the flow is that

the tangential velocity drops in the region Zc <= Z <= Zb by an order of magnitude on the flow

becoming a chine wetted flow.

Figure 4.5: (b) Cylinder Impact-Chine Wetted Flow (Vorus,1996)

4.8 Pressure Distributions to Forces and Moments

The pressure distribution referenced from the output of the theoretical pressure prediction hy-

drodynamic code written for [25], is made use of to convert the pressures into nodal forces and mo-

ments to make use of in the application for the finite element technique.
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4.8.1 Theoretical Pressure Distribution

The theoretical pressure distribution varies impulsively on the wedge plate and it is shown as

below:

Figure 4.6: Variable Pressure distribution on the bottom plate

As already stated, the program works in such a manner that the pressure distribution evalu-

ated over a fixed number of discretizations for the wedge plate needs to be suitably juxtaposed in

correspondence with the arbitrary number of discretizations.

Figure 4.7: Pressure distribution evaluated over discretized elements

These pressure distributions at each time instant are integrated over the breadth and that the
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force per unit length is calculated. For all simplification this case has been discussed only as a beam

as shown below, but in reality the pressure distribution is across the rectangular bottom plate where the

pressure distribution in the other axis is considered can be interpreted as uniformly loaded distribution.

For all practical purposes, in the scope of this thesis work the 3D flow effects shall be neglected. The

Figure 4.8: Integration of pressure distribution across the side of the bottom plate

conversion of the pressure distributions to the nodal forces and moments requires the integration of the

force/length uniform distribution across the other axis of the rectangular plate. This is done by taking

the product of the elemental length and the force/length distribution at each time step and across all

distributions.

Figure 4.9: Nodal forces and moments
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4.9 Time Stepping Technique

Time stepping methods/techniques are algorithms that are used to compute the numerical solu-

tion of the ordinary/partial differential equations in varying time. The time stepping technique used

here is the Newmark - Beta method as referenced from [17] which is a second order accurate time

stepping and computationally stable technique. It is implicit and non-conditionally stable in nature.

Choice of the technique

There are plenty of time stepping techniques available which are of higher order accuracy such

as Runge-Kutta fourth order method, Newton-Raphson method, Euler method, etc. However upon

analysis it was found that the stiffness quotient of the equation increases unrealistically, the equation

becomes unstable and the solution for the equation blows up. It should also be noted that upon reduc-

ing the time interval between consecutive time steps still the solution was found to be diverging for all

of the above said methods than Newmark-Beta [17] time stepping technique. Hence, this method is

chosen.

4.9.1 NEWMARK BETA METHOD

The average constant acceleration scheme with coefficient values γ = 1/2 and β = 1/4 is used.

The Newmark-Beta method for direct integration implemented in the program is developed from the

following steps:

Initial Calculation

a. Static stiffness matrix [K], mass matrix [M] and damping matrix [C] needs to be formed.

b. Integration parameters such as β and γ needs to be specified for the operation.

c. Integration constants such as b1, b2, b3, b4, b5 and b6 needs to be calculated which will be used
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effectively to develop the effective stiffness matrix K̄ = K + b1M + b4C.

d. The inverse of the effective stiffness matrix is to be taken and then the initial conditions for the

equation are to be specified such as u0, u̇0, ü0.

Each Time Step, t = ∆t, 2∆t, 3∆t.....

a. The effective load/force vector for each time step is calculated by :

F t = Ft +M(b1ut−∆t − b2u̇t−∆t − b3üt−∆t) + C(b4ut−∆t − b5u̇t−∆t − b6üt−∆t)

b. The node displacement vector can be solved at time t by using the triangularization of the inverse

matrices by forward and backward substitution as shown in the following equation.

[L][D][L]Tut = F t

c. The node velocities and the accelerations at a time instant t can be calculated by,

u̇t = b4(ut − ut−∆t + b5u̇t−∆t + b6üt−∆t) =⇒ Nodal Velocity

üt = b1(ut − ut−∆t + b2u̇t−∆t + b3üt−∆t) =⇒ Nodal Acceleration

Go back to calculating the effective force vector with each incrementing step.
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Chapter 5

SELECTIONS AND REJECTIONS

The above said programming model could not have been achieved without numerous trials and

test cases before the working model was finalized. The unsuitable choices were filtered out and in this

chapter it is explained in detail as to why the methods, techniques, matrices that were finalized were

selected to build this programming model.

5.1 Failure of stiffness matrices

Upon an extensive search for using a pre-defined stiffness matrix, it was found that nearly

there were 4 varieties of stiffness matrices that were chosen programmed and tried to build the global

stiffness matrix and the governing equation. The four stiffness matrices that were considered were :

– Non - Compatible Preziemiencki Stiffness Matrix

– Compatible Preziemiencki Stiffness Matrix

– Rudolph-Szilard Stiffness Matrix

– Adini-Clough Stiffness Matrix

The local 12x12 non-compatible stiffness matrix developed by Preziemiecki as ref. in [22]
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was first programmed into the coding model. It was found that as the matrix was non-compatible to

deflection, hence the matrix could not be used to solve for delfections as such.

The compatible Preziemiencki stiffness matrix as ref. in [22] was coded and the tests runs were

made for the simple static solution with a ramped-up force varying in time. It came to knowledge

that this matrix failed on two different fronts. The first being, the deflection values took long time

to converge and that as the mesh sizes kept on increasing as well the solution obtained was not still

comparably close to the static solution as well. Even though this was a significant improvement over

the previous stiffness matrix, it was decided that if an improvement could be found this could be

supplanted with a better one.

Rudolph-Szilard stiffness matrix as ref. from [24] tackled the problem of mesh sizes,in the

sense that the even as the mesh sizes became larger and larger still the system of equations were stable

and the deflection values were found however it was realized that the deflection values found were not

closely comparable with the static solution.

5.2 Selected Stiffness Matrix

The stiffness-matrix based on Adini-Clough finite plate element was referred from [23]. The

author had developed a stiffness matrix highly suitable for time dependent phenomenon such as ex-

plosion, blasts and it was found really suitable when the same was employed for hull slamming. The

difference was that, this stiffness matrix was built in consideration with the nodes and their stiffness

parameter along with the joints of the plate elements to the other finite plate elements thereby tacking

the conversion of the local to the global matrices.
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Figure 5.1: Individual stiffness matrices (Ian R.Stubbs,1966)

The sum of the individual stiffness matrices Ka, Kb, Kc and Kd actually give rise to the indi-

vidual submatrix Ki which arranged to form the 12x12 local stiffness matrix [K] as shown in figure

5.2

5.3 Rejected Numerical Methods

Numerical methods aplenty were coded and tested to solve for the dynamic process but it came

to knowledge that only one of the numerical method which could satisfy the conditions were chosen

from the lot. The numerical methods that were tested included:
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Figure 5.2: The Local Stiffness Matrix based on dynamic response of blasts for box-type structures
(Ian R.Stubbs,1966)

– Forward Euler method

– Newton-Raphson method

– Fourth-Order Runge Kutta Method

– Second order-Newmark Beta Method

The forward Euler method was programmed and the system of equations were attempted to be solved

by this method. As the method required a great initial value to start with and as well lacked stability,

hence the equation grew stiff and the solution started to diverge. Newton-Raphson numerical method

was programmed however it was found that the convergence with the static solution lacked stability

and hence the solution diverged. The higher-order/fourth order Runge-Kutta method was able to

tackle the problem of convergence and it was found that the solution tends to converge however the
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detrimental aspect was that the governing equation grew stiff and that the solution lacked stability,

hence the solution started to diverge.

5.4 Selected Numerical Method

As referenced from [16], the most suitable method that could provide convergence and retain

the stability for a dynamic process such as slamming was the second-order Newmark-beta numerical

method. This method was highly stable and the unconditional stability was dependent on the select

few coefficients as explained below. This method could provide highly appreciable results and could

still retain the stability even if the mesh sizes were to increase to a large number of elements.

Figure 5.3: Summary of the Newmark numerical method (Newmark, 1959)
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Chapter 6

VALIDATIONS

The solution for determining the deflection of a flat plate is evaluated empirically by Roark’s

Formulas for Stress and Strain [29]. A validation can be performed in the manner that the conver-

gence in deflection could be achieved when the solution is evaluated using many different mesh sizes

dynamically.

Roark’s Solution : The deflection of the rectangular plate in the Roark’s solution is given by the

empirical formula based on the boundary conditions. The empirical formulations for rectangular plate

with fixed-fixed and simply supported are totally different. The formualations are as following:

6.1 Fixed Supported Boundary Condition

ymax =
α ∗ q ∗ b4

E ∗ t3
(6.1)

where,

α - Coefficient based on the aspect ratio

q - Static Pressure

b - Smaller dimension of the plate

E - Young’s modulus
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t - Thickness of the plate

a/b 1.0 1.2 1.4 1.6 1.8 2.0 ∞

α 0.0138 0.0188 0.0226 0.0251 0.0267 0.0277 0.0284

The above said formulation yields the result ymax = 0.06249 mm with α = 0.0284 and q =

0.0003 N/mm2.

An uniform pressure distribution is acted upon uniformly along the plate surface and the deflection is

evaluated for the same. The ramped force distribution is as shown below:

Figure 6.1: Uniform Ramp Force Distribution

6.2 Temporal Convergence

The Newmark-Beta numerical method is included into the existing program for comparing the

closed form of [29] with the Newmark solution obtained numerically. The Newmark-Beta scheme

provides the scope for understanding the transient solution over a period of time in comparison with

the static solution obtained by the Roark’s empirical formulation.

A programming model for the static solution is developed and the solution is derived for the
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same case where a uniform pressure q = 0.0003 N/mm2 acts upon the entire plate. The plate is

discretized based upon the arbitrary mesh sizes and the Roark’s solution is compared to them. The

results are shown in table 6.1.

Mesh Size Newmark Solution Static Roark Solution

6x6 0.0642 0.06249

8x8 0.0637 0.06249

10x10 0.0633 0.06249

12x12 0.0631 0.06249

14x14 0.0629 0.06249

16x16 0.06287 0.06249

18x18 0.06284 0.06249

20x20 0.0628 0.06249

22x22 0.06274 0.06249

24x24 0.06272 0.06249

26x26 0.06271 0.06249

Table 6.1: Newmark’s solution vs Static Roark Solution

The deflection vs time values are plotted one against the other after the above said steady-ramp

force is applied to the plate. The plot shows the deflection profile of a central node having the fixed-

fixed end conditions. This simulates a steady-state input and the result shows a convergence. The

green line shows the static solution as calculated by the Roark formulations. The red line shows the

oscillating deflection solution as derived by the Newmark-Beta scheme. The plot is as shown in figure

6.2.

The velocity of the central node is calculated by means of the Newmark-beta method and it is

found to be converging as well. The same applies in the case of acceleration of the central node.
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Figure 6.2: Convergence of the Newmark solution with Static Roark solution - Deflection
Fixed - Fixed end plate

Figure 6.3: Convergence of the Newmark solution with Static Roark solution - Velocity
Fixed - Fixed end plate

The following figures 6.5(a & b) show the convergence of the transient solution with the deflec-

tion obtained by the statical solution. The mesh density determines the accuracy of the solution.
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Figure 6.4: Convergence of the Newmark solution with Static Roark solution - Acceleration
Fixed - Fixed end plate

6.3 Mesh size - Spatial Convergence

The meshsize is increased in a hierarchial number to achieve better accuracy for the deflection

results of the plate. Higher the mesh size, the solution achieves a highly accurate value.

Spatial convergence is attained when there is no change in the accuracy of the solution when the mesh

size is increased no matter what. This convergence shows that the solution is appreciable and can be

considered for further application. The figure 6.6 shows the spatial convergence.
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(a) Deflection Convergence

(b) Surface Deflection Contour - Uniform Pressure Distribution

Figure 6.5: Temporal Convergence
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(a) Mesh Size - 20x20 - 400 elements (b) Mesh size - 22x22 - 484 elements

(c) Mesh Size - 24x24 - 576 elements (d) Mesh Size - 26x26 - 676 elements

Figure 6.6: Spatial Convergence
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Chapter 7

RESULTS

The analysis was carried out for the wedge shaped hull with the mentioned geometric dimen-

sions. The results from the theoretical predictions and the experimental runs are discussed in this

chapter. Spatial and temporal convergence tests are carried out to find out the accuracy and credibility

of the solution. The analysis was carried out with different time intervals ∆T = 0.00001 secs, 0.00005

secs and 0.0001 secs. The results were compared and the convergence was evaluated.

The theoretical predictions and the wedge-drop experimental output files were used to compute

the deflection of the wedge plate. The surface deflection contours for the above said processes are

compared here. There is a comparison of the deflections from either of these processes along with

the deflections from the S-DIC (Standard Digital Image Co-relation) technique. The deflection for

different plate thicknesses are evaluated and compared as well.
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Principal Parameters

The principal parameters of the wedge hull are as follows:

Material Aluminum

Youngs’ Modulus 69×109 N/m2

Structural damping factor 0.002

Wedge Weight 1153.60 N/m

Bottom plate thickness 0.00635 m

Maximum length 1.450 m

Half-beam 0.60 m

Depth 0.533 m

Deadrise angle 20 deg

Poisson’s ratio 0.33

The program was tested for universality and applicability by changing the mesh sizes, time in-

tervals, theoretical and experimental pressure distributions. It has to be noted that spatial convergence

requires an appreciable mesh size and temporal convergence is independent of the mesh size. In the

theoretical pressure predictions it was found that the process to achieve convergence was computation-

ally intensive and expensive in terms of time and power. In spite of all this, the program was tested

with the Newmark-Beta numerical method yielding credible results which are as follows.

The maximum deflection for the theoretical pressure prediction was evaluated to be at 2.8 mm

which was achieved to be at a mesh size of 8×8,10×10,12×12 number of elements for the time

interval ∆T = 0.0001 secs.
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7.1 Tests for Variation and Convergence

Specific tests were carried out on the test case to ascertain the universality of the imposed condi-

tions of nodal forces, added mass, deflection convergence and the like. The tests are shown performed

very coherently and their results are displayed to understand the way in which the wedge plate be-

haves. The wedge model has a vertical drop velocity of 3.05 m/s and all the inputs used for the code

are based on this condition.

7.1.1 Time Convergence Test

The program was checked for the application of the external force on the mid node at three

different time intervals to investigate the convergence of the force distribution for the wedge plate

under fixed-fixed end boundary conditions. The excitation at three different time steps at the mid-

node is shown below and the deflection for the same is shown subsequently later.

Figure 7.1: Time based convergence for nodal force on the central node of the wedge plate at V =
3.05 m/s across ∆T=0.00001,0.00005 and 0.0001 secs - Theoretical Pressure Predictions

The above plot actually shows that the application of forces are still stable even during different
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time steps. The stability of the system under investigation holds stead and the plot also shows that the

transient nature of the solution can be studied. The transient solutions were very well captured for the

above said timesteps, indicating the non-conditional stability of the Newmark-Beta numerical method.

The excitation force values mostly overlap through the time range across varied time intervals as seen.

This restraint holds good for the experimental wedge drop as well and the evaluation of an

imposed force on a central node is shown as in figure 7.2.

Figure 7.2: Time based convergence for nodal force on the central node of the wedge plate at V =
2.94 m/s across ∆T=0.00001,0.00005 and 0.0001 secs - Experimental wedge drop results

Added mass when compared across the three time steps also was found to obey convergence

thereby reiterating the universality of this technique.

51



Figure 7.3: Time based convergence for added masses on the wedge plate at V = 3.05 m/s across
∆T=0.00001,0.00005 and 0.0001 secs - Theoretical Pressure Predictions

7.1.2 Pressure Distribution

The theoretical and experimental pressure distribution which yields the maximum deflection is

compared as shown below. The experimental pressures were measured at 8 distinct locations along

the bottom plate from the keel to chine. The pressures were measured discreetly and under credible

assumption it was developed into a distribution on the basis that the pressure measured at location 1

will be the same along the half of the distance between 1 and 2. Based on this assumption, the step

like pressure distribution was developed taking into account the pressures being measured at all the

discrete locations.

The deflection was maximum at t = 0.0183 secs in case of theoretical pressure distribution

and at t = 0.0227 secs in case of experimental pressure distribution. The following plot shows that

even though the wetted length at t = 0.0183 secs is very less, the maximum pressure value touches

nearly 60000 N/m2 as against the experimental pressure distribution which experiences a maximum

instantaneous pressure of nearly 47000 N/m2 when the pressure is measured at 8 different locations

by the use of pressure transducers from keel to chine.
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Figure 7.4: Pressure distributions - Theoretical vs Experimental-Peak pressure time instants

7.1.3 Deflection Convergence Test

The deflection is evaluated at the central node for the theoretical pressure prediction distribution

output and the experimental wedge-drop runs.

Deflection Convergence - Theoretical Pressure Prediction

The mid-node experiences maximum deflection at a particular time step and this is evaluated

for different time intervals ∆T = 0.00001, 0.00005 and 0.0001 secs. The accuracy of the solution is

improved as the number of mesh elements are continuously increased till it reaches the maximum de-

flection value. Ideally, the whole deflection pattern of the central node should have converged/followed

the same pattern, however even after a very appreciable mesh size it was found that only the maximum

deflection converged and that the pattern didn’t observe convergence.

The reason being that the pressures, wetted lengths and forces measured from the output file seemed

to be very fine nearly to the point of 5/6th, hence the time and the effort for computation and running

the program was quite long. This actually slowed down the progress of evaluating the results and it

was decided that the trial runs can be stalled when the mesh size reached 26x26 elements, since the
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dynamic test solution converged well enough at that point.

(a) 10x10-Mesh elements (b) 12x12-Mesh elements (c) 16x16-Mesh elements

Figure 7.5: Max. deflection convergence surface contour - Experimental Pressure
distributions-∆T=0.0001 secs

Deflection Convergence - Experimental Wedge drop

The deflection convergence pattern and contour of the mid node for the rectangular wedge plate

under fixed-fixed end condition is evaluated. Upon analysis it is found that the maximum deflection

occurs at a particular time step for all different mesh sizes and time intervals, the deflection conver-

gence pattern is observed as well. The maximum deflection is of 2mm. This is considered to be

an adequate value since the maximum deflection observed during the wedge drop experiment under

different boundary conditions from the pinned-pinned at the keel and fixed-fixed at the chine with a

test velocity of v=2.94 m/s, for a 0.6096 m (24 inch) drop-height wedge-drop experiment yields δ =

0.125 inch u 3.175 mm.

As the bottom plate panel under study is considered to be fixed-fixed, the deflection is much more

lesser than the experimental wedge-drop case. The deflection of the central node and the surface

contour at the maximum time instant is shown in figure 7.7.

The max.deflection values for ∆T = 0.00001, 0.00005 and 0.0001 secs was found to be at
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Figure 7.6: Convergence of deflection of the mid-node varying in different time intervals ∆T=0.00005
and 0.0001 secs with different mesh sizes - Experimental Wedge Drop results.

t=0.00183 secs for the above said three runs.

(a) 10x10-Mesh elements-
∆T=0.0001 secs

(b) 12x12-Mesh elements-
∆T=0.0001 secs

(c) 14x14-Mesh elements-
∆T=0.0001 secs

Figure 7.7: Max. deflection convergence surface contour - Experimental Pressure
distributions-∆T=0.0001 secs

The convergence for mesh sizes and no. of elements is evaluated and it was observed that the

maximum deflection was occurring at the same time instant t=0.0192 secs for all the mesh sizes in
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addition to the deflection profile pattern of the different number of mesh elements as seen in figure 7.9

Figure 7.8: The deflection convergence of the various mesh sizes with the same ∆T = 0.0001 secs -
Experimental Pressure Distributions

7.2 Panel deflections

The deflection of the wedge plate during the time of wedge-drop being tested for various veloc-

ities and boundary conditions is explained below. This provides a very hollistic and erudite manner of

the presentation of the whole process and the deflection of the bottom plate.

The deflection profile experiences a steady peak and hits the maximum at ts = 0.00183 secs and

then starts to waywardly follow the path and damps down irregularly, goes to a minimum at about t =

0.06 secs in a complete range of t = 0.08 secs.

56



Figure 7.9: Experimental pressure distribution and wedge panel deflection for t=0.0002 secs

Figure 7.10: Experimental pressure distribution and wedge panel deflection for t=0.0049 secs
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Figure 7.11: Experimental pressure distribution and wedge panel deflection for t=0.0099 secs

Figure 7.12: Experimental pressure distribution and wedge panel deflection for t=0.0149 secs
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Figure 7.13: Experimental pressure distribution and wedge panel maximum deflection for t=0.0182
secs

Figure 7.14: Experimental pressure distribution and wedge panel deflection for t=0.0349 secs
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Figure 7.15: Experimental pressure distribution and wedge panel deflection for t=0.0499 secs

Figure 7.16: Experimental pressure distribution and wedge panel deflection for t=0.0599 secs

The above shown surface contour plots illustrate the deflection profile of the bottom wedge

plate under slamming taken over a range of 0.08 secs for the experimental pressure distributions with

time interval ∆T = 0.0001 secs.

7.3 Plate deflection symmetry

It was observed that the plate deflection at a particular time step in the time range was observed

to be asymmetrical instead of the anticipated symmetrical deflection pattern. Numerous tests varying

the mesh sizes, the added masses formulation, the loading force vector, stiffness matrices, mass ma-
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Figure 7.17: Symmetrical Plate Deflection - Force vector distributed transversely throughout
the plate

trices etc. were conducted to find out the root cause behind this. After numerous practical attempts it

was decided to forcibly simulate a uniformly distributed force vector ranging entirely over the trans-

verse width(complete wetting of the nodes) of the plate compared to the partial wetting of the nodes,

as seen from the input file generated from the wedge drop experiment.

The results of this test proved that the symmetrical deflection as visible in figure 7.17, was

observed as opposed to the asymmetrical deflection pattern observed previously as in figure 7.18,

when the nodes were partially wetted. As the plate nodes are partially wetted, it means that at a

certain time instant the pressure distribution does not act entirely on the transverse width of the plate,

rather only till an arbitrary point ie., the force vector becomes zero after that point till the end of the

plate nodes. This reason was attributed to the asymmetrical deflection as this seemed to be the most

appreciable reason that could validate this occurrence.
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Figure 7.18: Asymmetrical Plate Deflection - Force vector not occurring transversely through-
out the plate

7.4 Thickness variation test

The deflection was computed for three different wedge plate thicknesses which was : 3.175mm,

4.7265mm and 6.35mm. The default thickness of the plate was 6.35mm and until now all the results

were based on that. As the plate thicknesses were reduced, larger deflections were expected as the

flexural rigidity of the plate depends on the cubic factor of the thickness of the plate.

D =
E ∗ h3

12 ∗ (1− ν2)
(7.1)

where, E - Youngs’ Modulus, h - plate thickness and ν - Poisson’s ratio

The flexural rigidity is directly related to the plate thickness, which implies that as per our

expectation the deflection will be more when the plate thickness is less. A plot of fixed-fixed plate

with different plate thicknesses showing the maximum deflection is shown below.
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Figure 7.19: Maximum Deflection of fixed-fixed plate with fixed-fixed end conditions for ∆T=0.0001
secs

As expected for a rectangular plate with thickness t = 6.35 mm , the maximum deflection was

computed to be δ = 2 mm, however when tested for t = 4.7625 mm the maximum deflection was

computed be around δ = 4.5mm and for t = 3.175 mm it resulted in δ = 15 mm.

This shows that the thickness of the plate can significantly affect the deflection profile of the

plate.

S No. Plate Thickness(mm) Deflection(mm)

1 3.175 15.027

2 4.7625 4.533

3 6.350 2.012

Table 7.1: Wedge Plate Deflections for various plate thicknesses

There seems to be a 86.6 % and a 55.6 % deviation in the deflection results of t=3.175 mm,

t=4.7625 mm when compared with base plate thickness t=6.350 mm. This is quite a significant
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deviation and has to be noted that just the change in plate thickness alone influences this deviation.

7.5 Deflection Comparisons-Theoretical,Experimental and S-

DIC

S-DIC or Stereoscopic Digital Image correlation is a contact-free method for measuring the

surface strain and deformation experienced by a material under stress. It works by analyzing variations

in a series of images taken from a fixed location and is most suitable for flat, planar surfaces. The S-

DIC technique utilizes two cameras for stereovision. These cameras must be calibrated to perform the

triangulation of points. By calibration it means that the focal length of the camera and its positioned

needs to be fixed and regulated. This inturn helps for performing the triangulation of points in space

to determine the deflection of the plate.
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The deflection response of the bottom wedge plate measured by strain gauges during the wedge

drop experimental procedure, the response derived by utilizing the output of the theoretical pressure

prediction and the results from the S-DIC (Stereoscopic Digital Image Correlation) are compared to

find out the deflection results of the bottom plate and the optimum is chosen. The comparison between

the responses of the three techniques are shown below:

Figure 7.20: Deflection Comparisons

As shown in figure 7.18, it can be understood that we get different maximum values of deflection

when the responses from different inputs were compared and evaluated. Upon analysis it was found

that, the maximum peak value from experimental pressures was found to be 2mm when compared

to theoretical pressures which yielded 2.6mm and response from SDIC which resulted in 2.5mm.

There seems to be a 20% deviation in the maximum deflection from SDIC and a 24% deviation in

the maximum deflection from theoretical pressures as compared against the experimental pressure

response.
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Chapter 8

CONCLUSIONS

A FORTRAN 90 program has been developed to predict the deflection of the wedge plate by

theoretical pressure prediction methods by making use of the dynamic numerical time-integration

methods like the Second Order Newmark-Beta method. Various tests have been performed to validate

the accuracy, stability, applicability and the universality of the output solution.

The program was tested for three different time intervals ∆T = 0.00001, 0.00005 and 0.0001

secs. The program was tested for an arbitrary mesh size tending to the order of maximum being

28x28 mesh elements for theoretical pressure prediction outputs. The program runs were expensive in

terms of effort, time and computational capabilities. However, the results from the theoretical pressure

distribution were found to be in convergence at the maximum deflection yielding δ = 2.8mm, however

the pattern didn’t converge for ∆T = 0.00001 secs. When tested for the time intervals ∆T = 0.00005

and 0.0001 secs, the solutions were found more convergent than the previous time step. It was realized

that as the time interval becomes really small there is an issue of convergence as the equation becomes

stiff.

The program was validated with a simple Newmark-beta dynamic solution. The solution was

checked for convergence with the static solution for validation. The principal problem for the thesis

work is solved by providing an output as input from the hydrodynamic code which had pressure dis-

tribution generated from the theoretical pressure predictions. In addition to this, the output pressures
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recorded from the wedge-drop experiment measured by strain gauges and the S-DIC(Stereoscopic

Digital Image Co-relation) are used for comparing and contrasting with the above said methods.

The nodal forces are evaluated for the entire process, in all the above said methods. The deflec-

tion profiles and the responses from the above said methods are compared to in the results chapter of

this thesis work. The deflection for three different thicknesses were evaluated and it was found that as

the plate becomes lighter the deflection becomes higher as expected.

The program developed can actually be used to study the hydroelastic nature of the bottom

wedge plate and to estimate the maximum deflection suffered by the plate panel during bottom slam-

ming. The time interval for the test process has to selected cautiously as this can influence the equation

to become stiff and thereby suffer a numerical breakdown as well. However, as Newmark - Beta is

non-conditionally stable this happens seldom but still care has to be taken in this regard as the time

and effort for the computational process depends on this as well.

8.1 Limitations and shortcomings

The shortcoming of this thesis work was that, despite innumerable attempts, it proved futile as

the simply supported end conditions could not be realized in contrast to the fixed-fixed end conditions.

It was understood later after the whole trial run that, there seems to be an unknown relationship

between the mesh size of the plate and the time interval. This fell beyond the scope of the current

thesis work and was left partly explored. The time and effort spent on the same was not significant

enough though.

The scope of the thesis work restricted itself to N×N mesh sizes, whereas M×N mesh sizes was

remotely explored since time, computational effort became a constraint. The computational time can

be reduced by using Iterative method solver such as QR decomposition or LU decomposition in order

to solve AX=B, as opposed to the currently used Doo-Little method or the Gauss-Jordan elimination

technique. As the mass matrix is sparsely populated effective numerical methods that are precisely
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efficient in solving sparsely populated matrices can be used to solve the system of equations much

quicker perhaps.

8.2 Future Work

Further analysis can be performed by incorporating or simulating the simply-supported bound-

ary conditions to understand the deflection behavior of the plate. In addition to this the wedge plate

can be made of a different composite material as well and can be evaluated for the response.

It was found in the experimental wedge-drop that for all practical purposes even as the bottom

plate is considered fixed, that was not the case to be. The portion of the plate near the keel deflects as

well and this condition needs to be included in the boundary conditions for the same.
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