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Abstract

Most SCADA devices have a few built-in self-defence mechanisms and tend to implicitly trust

communications received over the network. Therefore, monitoring and forensic analysis of net-

work traffic is a critical prerequisite for building an effective defense around SCADA units. In

this thesis work, We provide a comprehensive forensic analysis of network traffic generated by the

PCCC(Programmable Controller Communication Commands) protocol and present a prototype

tool capable of extracting both updates to programmable logic and crucial configuration informa-

tion. The results of our analysis shows that more than 30 files are transferred to/from the PLC

when downloading/uplloading a ladder logic program using RSLogix programming software includ-

ing configuration and data files. Interestingly, when RSLogix compiles a ladder-logic program, it

does not create any lo-level representation of a ladder-logic file. However the low-level ladder logic

is present and can be extracted from the network traffic log using our prototype tool. the tool ex-

tracts SMTP configuration from the network log and parses it to obtain email addresses, username

and password. The network log contains password in plain text.

KEY WORDS

SCADA forensics, SCADA protocol, PCCC, network traffic analysis, programmable logic controller
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Chapter 1

Introduction

Supervisor Control And Data Acquisition (SCADA) systems are used to automate industrial phys-

ical processes, such as power generation and distribution, gas and oil pipelines, and water and

waste management. Their primary design requirement is safety, which typically requires real-time

response to changes in the monitored processes, and an ability to handle harsh working environ-

ment; they were never designed to withstand cyber attacks of any kind. Early SCADA systems

were deployed in specialized isolated networks, which are not connected with corporate networks,

or the Internet. Thus, they were protected from remote attacks by virtue of not being accessible

over the network.

Over the last two decades, with the increased convergence of data networks SCADA systems

are ever more tightly integrated with the TCP/IP infrastructure [2]. Although this standardization

of all communication brings substantial economic advantages, it also brings the potential of remote

attackers gaining access to inherently insecure devices, and to execute attacks on the physical

infrastructure with potentially catastrophic consequences [3,4]. Stuxnet, for instance, is a malware

that specifically targets industrial automation systems [5].

SCADA systems generally consist of sensors, actuators, Programmable Logic Controllers (PLCs),

and a Human Machine Interface (HMI) [6,7]. A PLC is located at a remote field site to monitor and

control a physical process locally. HMI and other SCADA services (such as engineering workstation

and historian) run at a control center for remote monitoring and control of physical process.

A PLC communicates with its respective control center to send the current state of physical

process, which is then displayed by HMI graphically for control operators. It uses sensors to obtain

the current state of physical process (such as pressure of the gas in pipeline), and actuators (such

as solenoid valve) to alter the current state depending on the logic in the PLC. For example, a

PLC may be programmed to maintain pressure in a gas pipeline between 40 and 50 PSI. Based

on readings from the pressure sensor, if the gas pressure is more than 50 PSI, the PLC opens the
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solenoid valve to release some gas until the pressure is reduced to 40 PSI.

An engineering workstation at the control center runs a PLC programming software, which is

used by control engineers to program and transfer the control logic to a PLC over the network.

Unfortunately, an attacker can also acquire and utilize the software to create a malicious control

logic program, and download it to a PLC after establishing a communication with the PLC. At

worst, an attacker can compromise an engineering workstation and utilize its programming software

to re-program the PLCs, or to modifying the current logic in the PLCs. The Stuxnet malware is a

pertinent example that mainly targets engineering workstation running Windows operating system,

and compromises Siemens STEP7 programming software to further infect the Siemens PLCs.

The most direct approach to investigating a potential breach is to attempt to acquire the current

logic from PLCs using the programming software for further analysis. However, this method is

not viable if the communication between the PLC and control center is disrupted. Also, the

communication with the PLCs may not be reliable if the system is under a cyber attack and the

attacker may manipulate the communication such as through man-in the middle attack.

Therefore, to reliably investigate these kind of attacks, SCADA network traffic log must be

kept and analyzed to identify unauthorized transfer of control logic to PLCs including extracting

relevant forensic artifacts. A first step in this direction is to understand how a programming

software transfers the PLC control logic over the network using a SCADA protocol.

In this thesis work, we have presented a comprehensive analysis of PCCC (Programmable

Controller Communication Commands) protocol for transferring control logic to a PLC. We use

Allen-Bradley’s RSLogix 500 programming software [8] and Micrologix 1400 PLC [9] for experi-

ments. The analysis results show that when the programming software downloads or uploads a

control logic program to and from the PLC, the network traffic not only contains the control logic

but also system configuration and other data (such as counter, input, output, timer etc.). The

PCCC message has file type and file number fields that we use to extract and store different type

of information into files. Prior to this work, most of these file types had remained undocumented

even in vendor specifications.

Using differential analysis, we performed a comprehensive set of experiments to understand the

type of contents in the files and further classify unknown file types accordingly. One of the first

observations is that, whenever RSLogix compiles the control logic, it does not create any output file
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on the workstation. In other words, there is no observable low-level representation of control logic,

data or configuration file that is suppose to be transferred to and run by the PLC. This program,

however, can be extracted from the network traffic; the first sign of logic transfer (in the log) is

that the PLC is switched from RUN to PROGRAM mode, and back to RUN upon completion of the

transfer.

Based on our findings, we developed a proof-of-concept prototype tool, called Cutter, to perform

the forensic analysis of SCADA network traffic. Cutter is useful for identifying any transfer of

logic program and configuration files to/from a PLC in a network packet capture, and further

extracting them for forensic analysis. It parses the PCCC message format, identifies the boundary

of the messages representing start and end of the transfer of logic program in a network traffic

capture, filters out irrelevant messages within the boundary, and assembles the relevant messages

(containing the program and other data files) in a correct sequence, and stores the assembled data

in files on disk. It is also capable of parsing input, output and configuration files and presenting

the content in a readable format for further analysis. The input and output files contain sensor

readings and the state of other input devices (such as on or off in toggle switches), and actuator

state respectively. The configuration files include SMTP client and network configurations such as

username/password, email addresses, and IP/Subnet mask.

We evaluate the Cutter in two distinct scenarios. The first one simulates an attacker modifying

the control logic of a PLC. When the logic is transferred to a PLC, it is captured in a network

traffic log; Cutter analyzes the log and identifies the evidence of logic transfer successfully. It

further extracts the transferred logic from the log and compares it with the original logic for

integrity checking. In the second scenario, attackers modify the SMTP client configuration of a

PLC by adding their email address to receive the copy of notifications. Cutter extracts the SMTP

configuration from the log, compares it with the original, and identifies the attacker email address

successfully.

In sum, this work makes the following contributions to the field:

• We performed a detailed analysis of the network traffic of PCCC protocol and discover the

entire process of transferring a control logic program to a PLC.

• We exposed several unknown file types (in PCCC traffic) containing significant information of
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forensic relevance such as SMTP client configuration, ladder logic program, and other system

and network configurations. We have classified these file types according to their content.

• The techniques are realized in a network forensic tool - Cutter, that is able to extract forensic

artifacts (or files of different types) from a PCCC network traffic log, and further parse them

to extract information mostly in human readable form.

The rest of the document is organized as follows: Chapter 2 presents a detailed analysis of

transferring control logic via PCCC protocol. Chapter 3 presents a framework and implementation

details of our prototype tool - Cutter, followed by chapter 4 that presents the evaluation results.

Chapter 5 presents the related work followed by a conclusion in Chapter 6.
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Chapter 2

Control Logic Transfer via PCCC

This chapter explores the transfer process of a control logic to a PLC using PCCC protocol. The

goal is to identify digital artifacts of forensic relevance in PCCC network traffic log.

PCCC protocol The PCCC is a command/reply protocol and provides several operational func-

tions, such as diagnostic status, change mode, and echo. It is supported by many popular PLCs

including PLC-5, SLC500, and Logix family (such as Micrologix and Controllogix). The PCCC

message is transported as an embedded object in EtherNet/IP (EIP) protocol, which is an adaption

of Common Industrial Protocol (CIP) over Ethernet.

2.1 Analysis of PCCC Network Traffic

Unfortunately, common network analysis tools, such as Wireshark, do not support PCCC protocol.

There is a vendor document that describes the format of PCCC message; however, it is valid when

the PCCC is used with DF1 link layer protocol (or for serial communication) [1]. As it turns out,

the format is not completely aligned with the traffic observed over Ethernet. The focus of our

research is to develop a forensic tool for Ethernet and IP infrastructure. Our lab has a licensed

software, NetDecoder [10] commonly used in the industry for debugging. NetDecoder supports

PCCC and can parse its messages. We use it to understand the fields of a PCCC message and the

messages involving in the transfer of control logic.

2.1.1 Data Collection

We use the Allen Bradley Micrologix 1400 PLC that supports PCCC protocol, and the RSLogix

programming software to create a control logic program and transfer it to the PLC. The software

is installed in a Windows 7 computer, which is directly connected to the PLC. We use NetDecoder

to capture the network traffic in promiscuous mode for analysis.
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2.1.2 PCCC Message Fields

Table 2.1: Description of the fields of PCCC message

Field Name Size (bytes) Description
Requestor ID 1 Requestor ID
Vendor ID 2 Vendor ID
Serial Number 4 Serial Number
CMD 1 Command Code
STS 1 Status
TNSW 2 Transaction ID
FNC 1 Function code
PCCC Data Variable Data relevant to FNC

Table 2.1 lists the name and size of fields of a PCCC message over Ethernet. The first three

fields represent requestor identification for Execute PCCC service used to process PCCC commands;

the fields are Requestor ID, Vendor ID and Serial Number.

The rest of the fields are CMD, STS, TNSW, FNC, and PCCC data related to FNC that is analogous

to operand and opcode in assembly languages, respectively. CMD contains code for command type,

and FNC is a specific function under a command type. In some cases, CMD does not have FNC such

as 0x01 for unprotected read, and 0x08 for unprotected write. STS (1-byte) is a status field. A

request message always has 0x00 STS value. TNSW is a (2-byte) transaction identifier. Request and

corresponding reply messages share a same TNSW value. PCCC data is optional depending on FNC

code. For instance, FNC code 0x03 request diagnostic status to the PLC and does not require any

PCCC data. Table 2.2 lists CMD and FNC codes that are pertinent to our analysis.

Table 2.2: Command and Function Codes

Command
Code

Function
Code

Description

0x0F 0x80 Change Mode

0x0F 0xAA Protected typed logical
write with three ad-
dress fields

0x0F 0xA2 Protected typed logical
read with three address
fields

0x0F 0x8F
Apply Port Configura-
tion

0x06 0x03 Diagnostic Status
0x0F 0x52 Download Completed

0x06 0x00 Echo

0x0F 0x11 Get edit resource
0x0F 0x12 Return edit resource
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2.1.3 Change of Operational Mode

A PLC supports different modes of operation such as PROGRAM, RUN and TEST [11]. When a PLC

is operating in RUN mode, the physical input, output, and program logic are scanned continuously

in a defined rate to control its respective physical process. In the PROGRAM, PLC stops executing

the program logic and disables the scanning or modifying of the state of output ports. In the TEST

mode, the program is executed but does not affect the output ports.

Our next observation is that, in order to transfer a control logic to/from the PLC, the pro-

gramming software changes the mode of the PLC from RUN to PROGRAM mode. When the transfer

is completed, the mode is switched back to RUN. FNC code 0x80 is used to change the mode of PLC

to PROGRAM, RUN, or TEST. It only requires one field in PCCC data to mention the code of the mode

to change. We find that 0x01 and 0x06 are used for PROGRAM and RUN modes respectively. The

mode-change is particularly useful to delimit the start and end of a logic transfer. Clearly, it could

also be used as an indication of logic transfer, however, more scrutiny is required for a forensic

evidence since it is possible to switch the modes without transferring any logic.

2.1.4 Control Logic Program

PLC logic programs are written using the programming languages defined in

IEC 61131-3 [12], such as Ladder Logic, and Instruction List. RSLogix supports only Ladder

Logic programming. To download a control logic to a PLC, RSLogix writes to the PLC. Similarly,

it reads from the PLC to upload a logic. In PCCC protocol, FNC code 0xA2 and 0xAA are used for

reading from and writing to a PLC respectively. These FNC codes require multiple fields in PCCC

data to be properly set, file type and file number (Table 2.3). Both downloading and uploading

Table 2.3: Sub-fields of PCCC data field for FNC code 0xA2 and 0xAA to read from and write to a
PLC

Field Name Size (bytes) Description
Byte Size 1 Number of bytes to read/write
File Number 1 File ID
File Type 1 Represent the file content
Element No. 1 elements within a file
Sub-element No. 1 sub-elements within an element

processes involves transfer of multiple files of different types, such as low-level representation of

ladder logic, counter, timer, and configuration files. As already mentioned, the compilation of
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ladder logic program does not produce local output on the engineering workstation. However,

when the program is downloaded/uploaded to/from the PLC, we analyze the file type field in the

messages and find that almost 30 types of files are transferred to the PLC.

Unfortunately, most of these file types (including ladder logic) are not publicly documented

(Table 2.4). The known file types are described in [1], and contain the data on input/output

physical ports, and the data in-use by the program logic such as timer, and counter.

Table 2.4: Association of file-types and their respective codes mentioned in the vendor’s manual [1].

File Type Description
0x03
0x22
0x24
0x47
0x49
0x4C
0x4D
0x60
0x69
0x91 Unknown Type
0x92
0x93
0x94
0x95
0x96
0xA1
0xA2
0xE0
0xED
0x82 Output
0x83 Input
0x84 Status
0x85 Binary bit
0x86 Timer
0x87 Counter
0x88 Control bit
0x89 Integer
0x8A Floating point
0x8E ASCII
0x8D String

2.2 Analysis of Unknown File Types

The goal of this section is to analyze and document the files of unknown type (Table 2.4) based on

their contents.
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2.2.1 Differential Analysis

The approach we took to classify the files of unknown types is differential analysis [13]. First, we

create a baseline where the traffic of a program being transferred is captured and then, processed

to extract files. In the next iteration, we make only one change either in ladder logic, configuration,

or data in the RSLogix programming software and then, transfer the whole program to the PLC

again while capturing the traffic. We extract the files again from the network traffic and compare

them with the baseline files using diff utility from GNU Diffutils [14]. The file that has been

changed should have been identified when comparing with its corresponding baseline file, and the

rest of the files should be the same.

2.2.2 Test Cases

We apply our approach to several test cases composed of making changes in many different types

of configuration options and data values in RSLogix such as configuration of IP address, enabling

DHCP service, name of the processor, and the data values in input, output, timer, counter etc.

Table 2.5: Example test-cases for file type classification

Test Cases
Data Path Original

Data
Value

Modified
Data Value

Classified
File-
type

Data Files/New/select Type:Binary - New file B9 0x85
Data Files/New/select Type:Integer - New file N10 0x89
Data Files/New/select Type:Long - New file L11 0x91
Data Files/New/select Type:Message - New file

MSG12
0x92

Data Files/New/select Type:PID - New file PI13 0x93
Data Files/New/select Type:Programmable Limit Switch - New file

PLS14
0x94

Data Files/New/select Type:Routing Information - New file RI 0x95
Data Files/New/select Type:Extended Routing Information - New file RIX 0x96
Controller/Channel Configuration/Channel 1 (tab)/DNP3 over IP Enable
(Checkbox)

Unchecked Checked 0x4D

Controller/Channel Configuration/Channel 0 (tab)/Driver(drop down menu) DF1 Full
Duplex

Shutdown 0x47

Controller/Channel Configuration/Channel 1 (tab)/SMTP Client Enable (Check-
box)/Chan. 1 SMTP

- SMTP Con-
figuration

0x4C

Controller/Channel Configuration/Channel 1 (tab)/Modbus TCP Enable
(Checkbox)

Unchecked Checked 0x49

Controller/Channel Configuration/Channel 1 - Modbus (tab)/Coils 0 3 0x49
Controller/Channel Configuration/Channel 1 (tab)/SNMP Server Enable
(Checkbox)

Unchecked Checked 0x49

Add New Rung in Ladder Logic (LAD) I:0/0 and
O:0/0

New Timer
(T4)

0x03,
0x24,
0x22

Program Files/New/Create Program File - New File
Number

0x22
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Table 2.5 presents some examples of the test cases. It shows the complete path of a value that

is modified along with the original and modified values. In some cases, the original values do not

exist because they are generating new information such as creating new data file. Also, sometimes

a single change may alter multiple files of different file types. For example, when a ladder rung is

added to an existing program, we notice the change into the following three file types: 0x03, 0x24,

and 0x22.

2.2.3 Results

Table 2.6 presents the results of our findings; file type 0x22 contains low-level representation of

ladder logic, while the 0x47, 0x49, 0x4C and 0x4D contain system configurations. For instance,

0x4C stores email server name/IP, and user authentication details (i.e. username and password).

Our further analysis shows that these details are transferred as plain text over the network, and

thus, are prone to eavesdropping.

Table 2.6: Classification of unknown file types

File Type Classification (based-on content)
0x22 Ladder Logic - Control Logic Program
0x47 DF1 (channel 0) Configuration
0x49 Ethernet Configuration
0x4D DNP3 Configuration
0x4C SMTP Configuration
0x92 Message
0x93 PID
0x94 Programmable Limit Switch
0x95 Routing Information
0x96 Extended Routing Information

2.3 Parsing of the Files

To create a parsing tool for the extracted files, we further use differential analysis to examine the

file contents closely and identify how the contents are organized in the files. With respect to file

size, data files vary significantly from 2 bytes to 512 bytes, while the configuration files always have

a fixed size. Table 2.7 shows the observed average file sizes of different types.
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Table 2.7: Average size of the files (in Bytes) captured during the control logic transfer

File
Type

Description
Average
Size in
bytes

0x22 Ladder Logic 90
0x47 DF1 (channel 0) Configuration 180

0x49 Ethernet Configuration 532
0x4D DNP3 Configuration 204
0x4C SMTP Configuration 1800

Data
Files

Input, Output, Timer,
Counter, Integer, Status
etc.

2 to 512
bytes

2.3.1 Main Configuration File

The file type 0x03 is the main configuration file containing information about the other files being

transferred to a PLC. Figure 2.1 presents (in hexadecimal) the content of an example configuration

file. The first two bytes provide the length of the configuration, followed by the PLC processor

name (UNTITLED in this case) and the information about ladder file 0x22, other configuration files

such as 0x49, 0x4C, 0x4D, 0x47 and the data files.

Length of the Configuration File 

File	  Type	  

File	  Size	  

Starting	  Offset	  

Zero	  Padding	  

Start of 10-byte tuples;  
each tuple represents a file 

An Example of a Tuple 

Figure 2.1: Configuration file field format
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A 10-byte structure stores information about each file. The first 2-bytes identify the file type,

such as 0x82, 0x83, 0x84, and 0x85; the third and fourth bytes give the size of the file, followed

by two bytes containing the starting offset of the file used with the ladder logic instructions in the

file 0x22. The remaining bytes 7-10 are filled with zeroes.

2.3.2 SMTP File

The file type 0x4C is the SMTP configuration file; Figure 2.2 shows an example SMTP file, which

has a fixed size of 1800 bytes. The first 16 bytes contain the signature bits followed by fourteen

64-byte fields. Each field is organized into two sub-fields: length and data. The length field consists

of two bytes containing the size of the data in the data field. Since the data in the data field may

vary, the record is padded with zeros. The SMTP fields appear in the following sequence in the

file: Username, Password, SMTP Server, From Address, and 10 To Address fields.

Field Length 
(2-bytes)

Field Data 
(62-bytes)

Figure 2.2: SMTP field format

2.3.3 Data Files

Several data files are transferred while uploading/downloading a logic program. Figure 2.3 shows

the content of an example Binary file with a type of 0x85; it has 12 elements from (B3:0/1 to

B3:0/11). Similarly, Figure 2.4 shows the content of an Integer file: its type is 0x89, and has ten

elements from N7:0/1 to N7:0/9.

Figure 2.5 shows an example Timer file, type 0x86. The file contains 4 timers; each timer is

configured with the parameters, Base, Preset (Pre), and Accumulator (ACC).

12



B3:0	  

B3:11	  

Figure 2.3: Binary File - Hex Format

N7:0/1	  

N7:0/9	  

Figure 2.4: Integer File - Hex Format

T4:0	  
T4:1	  
T4:2	  

T4:3	  

Base	   Pre	   Acc	  

Figure 2.5: Timer File - Hex Format
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Chapter 3

Cutter - A Prototype Network

Forensic Tool

Based on our findings in the last chapter, we built a prototype tool Cutter to extract digital

artifacts from a PCCC network traffic log. The tool is implemented in Python using the PyShark

package, which allows the use of Wireshark dissectors for decoding packet content. The tool consists

of five functional modules: parsing of PCCC messages, identification of the boundary of a logic

transfer, message filtering, reassembling of the messages into files, and analyzing/parsing files to

extract information.Figure 3.1 shows the working mechanism of Cutter. The tool will be available

at [15].

Parse 
PCCC 

messages

Identify the 
boundary of 

Logic 
Transfer

Filter 
irrelevant 
messages 

Assemble 
the 

messages 
into files

Analyze 
files to 
extract 

information

PCCC 
Network 

Log

Analyzing PCCC Messages Creating and 
Processing of Files

Forensic 
Evidence

Figure 3.1: The working mechanism of Cutter.

3.1 Goal and Assumptions

Given a network packet capture, our goal is to identify the traces of logic transfer to PLC, and

further extract the whole logic program and relevant data to files on disk, if the traces are found.

To achieve my goal, we made the following assumptions about the network capture, We analyze.

• PCCC protocol is used for transferring the logic program to PLC. Cutter is a prototype tool

to demonstrate network forensic capability for a SCADA protocol. For this work, we use

PCCC protocol but the tool can further be extended to support other protocols in similar

14



fashion.

• PLCs change their mode of operation when downloading logic program. This assumption

is often valid because PLCs maintain separate mode of operations for running normally,

debugging, and updating firmware.

• PLCs implement the PCCC message format correctly. This assumption must generally hold

true to avoid any confusions in communication among PLCs and SCADA services at control

center. If variants of a protocol exist, a fingerprinting technique may be used to identify the

version of the protocol to parse the network traffic correctly. However, it is not in the scope

of our work to develop a fingerprinting technique for PCCC.

3.2 Implementation

3.2.1 PCCC message parsing

The PCCC message is located at the application layer in TCP/IP stack along with EtherNet/IP

and CIP headers. In order to reach to the PCCC message content, the tool skips the packet headers

of lower layers and the EtherNet/IP and CIP headers in the application layer. Since Wireshark

lacks the dissector for PCCC, the tool implements its own parser to process the PCCC message

contents.

3.2.2 Identifying the boundary of control logic transfer

The tool starts from the first packet in the network traffic log, and searches for specific PCCC

messages used for changing the mode of PLC from PROGRAM to RUN, and vice versa. Specifically, the

PCCC uses CMD code 0x0F, and FNC code 0x80 for changing the mode. The first message during

the search represents start of the transfer, and the occurrence of the second message depicts end of

the transfer. Listing 3.1 presents the pseudocode for identifying the boundary of logic transfer.

3.2.3 Message filtering

Within the boundary, a number of PCCC messages exists that are irrelevant to the recovery of

files. These are mostly read and echo commands for retrieving updated data from the PLC. The

15



1 f o r j = 0 to req pktcount do
2 i f r eq pkt s [ j ] [ 5 ] == ”0x80” then
3 chng mode detect < - - r eq pkt s [ j ] [ 0 ]
4 end i f
5 end f o r

Listing 3.1: Pseudocode of identification of boundary of logic transfer

tool filters out these messages, and only focuses on the messages that are writing to the PLC.

Listing 3.2 presents the pseudo-code of the filtering process. It shows that the packets starting

with the command code 0x0F, request message, are discarded, as are the corresponding response

messages (0x4F). 0x06 and 0x46 are echo and echo response packets, respectively, and are also

dismissed.

1 f o r i = 0 to pktcount do
2 i f a l l p k t s [ i ] [ 0 ] == ' 0x0F ' then
3 r eq pkt s < - - a l l p k t s [ i ]
4 e l s e i f a l l p k t s [ i ] [ 0 ] == ' 0x4F ' then
5 r e s pk t s < - - a l l p k t s [ i ]
6 e l s e i f a l l p k t s [ i ] [ 0 ] == ' 0x06 ' then
7 echo pkts < - - a l l p k t s [ i ]
8 e l s e a l l p k t s [ i ] [ 0 ] == ' 0x46 ' then
9 e cho r e s pk t s < - - a l l p k t s [ i ]

10 end i f
11 end f o r

Listing 3.2: Pseudocode of packet filtering

3.2.4 Assembling of packets into files

Cutter considers the packets for further processing that has CMD code 0x0F, and FNC code 0xAA

and are used for (protected-typed logical) write operations. The file type and file number fields are

used to represent a unique file for writing. Cutter uses these fields to assemble the data into their

respective files. While processing the packets, when Cutter finds a new combination, it creates a

new file on disk with the name containing file type and number. If the tool encounters a packet

for a file already existed, it appends the packet contents in the relevant file on disk. Listing 3.3

presents the pseudocode of the assembling process.
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1 void p r i n t d e t a i l s ( req pkt , r e s pkt , pkt boundary , f i l e p a t h ) {
2 i f r eq pkt [ 5 ] == ”0xAA” then
3 f i l ename = f i l e p a t h+”/download - ”+
4 s t r ( pkt boundary )+
5 s t r ( r eq pkt [ 7 ] )+” -Type : ”+
6 s t r ( r eq pkt [ 8 ] )
7 i f not p a t h e x i s t s ( f i l ename ) then
8 makedirectory ( f i l ename )
9 end i f

10 end i f
11

12 with open ( f i l ename , ' append ' )
13 f o r bu f f e r in req pkt [ 1 1 : ]
14 f i l ename . wr i t e ( bu f f e r . decode ( ' hex ' ) )
15 end f o r
16 }

Listing 3.3: Pseudocode of assembling of packets into files

3.2.5 Analyzing files to extract information

Cutter parses each file and extract any useful information based on the analysis discussed in the

prior chapter.
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Chapter 4

Evaluation

4.1 Experimental Settings

Figure 4.1 illustrates the experimental environment. It consists of an Allen Bradley’s PLC, Mi-

crologix 1400 series B, and four virtual machines (VMs). The PLC has input and output physical

ports. The input ports connect with two push buttons and two toggle switches to provide digital

inputs to the PLC. The output ports are connected with four different color LEDs: red, orange,

green, and blue.

Security Monitoring

Engineering

WorkstationHMI

Attacker

Programmable 

Logic Controller

LEDs

Toggle 

Switches 

and Buttons

Virtual Machines

VMware Workstation

Hardware

Ethernet

Switch

Figure 4.1: The experimental setup for the evaluation of Cutter.

The PLC and the physical computer are connected via an Ethernet switch. Two VMs are

running SCADA services – human machine interface software, and engineering workstation running

RSLogix. One of the VMs is for security monitoring and is running Wireshark to capture all network

traffic (in promiscuous mode); the last VM is a simulated attacker’s machine that can communicate

with the PLC and send messages to transfer logic program and alter physical process state (LEDs
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in this case).

Table 4.1 shows the system configuration of VMs and host machine used in the evaluation

Table 4.1: System Configuration of virtual machines (VM) and host physical machine used in
evaluation

System OS
Machine
Type

Bits/Cores/
RAM/HDD

Host Machine Win 10
Physical Ma-
chine

64Bit/4/8GB/420GB

Engineering
Workstation

Lubuntu
VM for Cutter
and Wireshark

64Bit/1/4GB/50GB

Security
Monitoring

Win 7
VM for
RSLogix

64Bit/4/2GB/40GB

4.2 Comparing two Ladder-logic files

SCADA owners/operators can use Cutter to maintain baseline original files, which can later be

used to facilitate a forensic investigation. For instance, if a an engineering workstation on control

network is compromised, and the PLC programming software installed on it is used to modify the

control-logic of a remote PLC, the captured network traffic can be analyzed with Cutter to extract

files, and compare them with the baseline files. Any deviation can be used as potential indicator

of compromise.

To evaluate this scenario, we create a legitimate control logic program in RSLogix and transfer

it to the PLC from the engineering workstation while capturing the packets. Cutter takes the

network log as an input and extracts the original files. Later, we transfer a completely different

control logic from an attacker’s machine to PLC, and capture the network traffic.

Cutter analyzed the network traffic, extracted the files, and then compared them with the

baseline files obtained initially from the normal network traffic. It correctly identified that files of

types Ox03, 0x24, 0x02, 0x49, 0x83, 0x22, 0x84, and 0x86 has been modified.

In other words, Cutter is able to detect the attack effectively by: a) identifying the transfer of

control logic in the network traffic, and b) showing the file differences with respect to the baseline

capture.
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4.3 Comparing two SMTP Files

We evaluate the Cutter’s parsing ability for an SMTP file. We enable the SMTP option and transfer

the program to the PLC and capture the network traffic. The evaluation results are tabulated in

Table 4.2. It shows that Cutter is able to parse the SMTP file accurately.

Field Name Given Value
Parsed
Cor-
rectly?

Email Server smtp.gmail.com Yes

From Address saranprojecttest@gmail.com Yes
Username saranprojecttest@gmail.com Yes

Password ************************** Yes

To Address[0] xyztest@gmail.com Yes
To Address[1] somebigemailaddress@gmail.com Yes

To Address[2] someducationinstitueaddress@uno.edu Yes
To Address[3] testuno@uno.edu Yes
To Address[4] testsyahoo@yahoo.co.us Yes

To Address[5] thesmallemail@hotmail.com Yes
To Address[6] test1@aol.com Yes
To Address[7] test2@drmcet.ac.in Yes

To Address[8] test2scada@gmail.com Yes
To Address[9] tester@outlook.com Yes

Table 4.2: Accuracy of Cutter for parsing an SMTP file

We further use the Cutter to compare two similar SMTP files in a scenario where an attacker

adds his email address in the SMTP configuration and download it to the PLC. As a result, the

PLC starts sending email notifications to the attacker.

To create the scenario, we modify the SMTP configuration, add a different email address, and

transfer the program to the PLC. While transferring the configuration to the PLC, the network

packets are captured and processed by Cutter. By comparing the SMTP entries with original

baseline entries, we are able to identify the different (suspicious) email entry in SMTP configuration

file.

4.4 Performance Evaluation

This section discusses the processing speed, CPU and memory usage of Cutter. Figures 4.2a, 4.2b, 4.2c,

and 4.2d present the evaluation results. The packets are captured while transferring a logic program

to the PLC. Multiple network dumps are created with increasing number of control logic programs

to be transferred to the PLC.
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(a) Memory usage of Cutter when
processing network packet capture files
containing different number of logic-
program transfers.
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(b) CPU usage of Cutter when process-
ing network packet capture files contain-
ing different number of logic-program
transfers.
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containing different number of logic-
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Figure 4.2: Performance Evaluation of Cutter

Cutter takes around three to eight seconds to process a network capture of size around 100 to

450 kilobytes. Also, Cutter is not a resource-intensive tool, which has a small memory footprint

and consumes around 15 to 60% CPU. It is worth mentioning that the current implementation

of Cutter does not support multi-threading, and thus, the performance of Cutter can further be

improved.

21



Chapter 5

Related Work

As early as 2006, Igure et al. [16] analyzed the emergent landscape of security challenges for SCADA

systems in the face of accelerating integration with TCP/IP networks: a) access control–it is difficult

to enforce define and enforce access control policies for resource-constrained devices; b) firewalls and

IDS–developing protocol-aware firewall and IDS rules requires detailed knowledge of the operation

and vulnerabilities of the protocol; c) protocol vulnerability assessment requires scarce domain

knowledge and judgement; d) cryptography and key management–it is a challenge to reconcile the

use of strong cryptographic mechanisms with the overriding safety priority of SCADA devices; e)

device and OS security–the limited capabilities of the employed hardware make it inherently less

capable of handling denial-of-service attacks that can have catastrophic consequences; f) security

management–SCADA systems tend to have a much longer (15-20 year) life cycle, which makes it

challenging to maintain up-to-date firmware, especially for devices no longer in production.

The Distributed Network Protocol (DNP3) is the predominant SCADA protocol in the North

American energy sector and is in used by more than 75% of utilities. East et al. [17] provide a

detailed analysis of the DNP3 protocol layers with respect to threats and targets, and identifies

28 attacks and 91 attack instances. The effects of the attacks range from obtaining network or

device configuration data to corrupting outstation devices and seizing control of the master unit.

The developed taxonomy considers attacks that are common to the three layers common to all

implementations–the data link, pseudo-transport, and application. The impact of the attacks can

be loss of confidentiality, loss of awareness, and loss of control.

The Modbus family of protocols is widely used in industrial control applications, especially

for pipeline operations in the oil and gas sector. Modbus defines the message structure and com-

munication rules used by process control systems to exchange SCADA information for operating

and controlling industrial processes. [18] built an attack taxonomy and, similar to [17], classify

the impact into loss of confidentiality/awareness/control. In particular, the authors developed 20
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distinct attacks against the Modbus serial variant of the protocol, and 28 distinct attacks against

the Modbus TCP version.

Kleinmann and Wool [19] present a DFA (Deterministic Finite Automaton) based intrusion

detection system for the network traffic of S7comm (S7 Communication). S7comm [20] is a propri-

etary protocol for Siemens S7-300/400 family. The IDS is designed based on the observation that

S7 traffic that is coming to/from a PLC is highly periodic. It acheives the accuracy of 99.26%.

Wireshark [21] is the leading tools for interactive network packet analysis. It can parse packets

from numerous network protocols and can reconstruct protocol conversations, such as TCP streams.

The data can be viewed in variety of formats like ASCII, EBCDIC, HEX Dump, C Arrays and

Raw.

For industrial networks, NetDecoder [10] is among the most popular analytical tools. It is

designed to diagnose and troubleshoot communication problems in industrial Networks. Some of

the Ethernet protocols supported by NetDecoder are Modbus/TCP, EtherNet/IP (CIP and PCCC)

[22], Allen-Bradley’s CSP/PCCC, DNP3 over Ethernet [23], IEC 60870-5-104 [12], PROFINET [24],

CC-Link IE.
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Chapter 6

Conclusion and Future work

In this work, we presented a detailed analysis of the PCCC protocol employed by SCADA net-

works. Prior to this effort, only partial information was made available by the vendors, which was

insufficient to build meaningful security and forensics applications. Starting with incomplete infor-

mation, we systematically applied a differential analysis technique to reverse engineer the structure

and format of the protocol messages to the point where useful information can be extracted from

the network capture. Specifically, our proof-of-concept tool, Cutter, can parse the content of PCCC

messages, extract digital artifacts and present them in human-readable form such as SMTP con-

figuration. The evaluation results show that Cutter is useful in identifying any transfer of control

logic to the PLCs, extract and store digital artifacts into files on disk and compare them from

previously-stored normal files. Cutter is lightweight that does not require significant memory and

CPU to work effectively.

6.1 Limitations

• Cutter can be used to do forensic analysis on PCCC only

• Parsing of ladder program is not programmed to support the relative addressing.

6.2 Future work

In addition to the parsing of relative addressing capabilities as a future work we are planning to

take Cutter to support other industrial protocols like Modbus, DNP3 etc., This can be achieved

by reverse engineering the protocols and educating Cutter

24



Bibliography

[1] Allen Bradley’s DF1 protocol and command set, reference manual, http://literature.

rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.

pdf (2017).

[2] I. Ahmed, S. Obermeier, M. Naedele, G. G. Richard III, SCADA Systems: Challenges for

Forensic Investigators, Computer 45 (2012) 44–51. doi:doi.ieeecomputersociety.org/10.

1109/MC.2012.325.

[3] S. McLaughlin, C. Konstantinou, X. Wang, L. Davi, A.-R. Sadeghi, M. Maniatakos, R. Karri,

The Cybersecurity Landscape in Industrial Control Systems, Proceedings of the IEEE 104 (5)

(2016) 1039–1057.

URL http://dblp.uni-trier.de/db/journals/pieee/pieee104.html#

McLaughlinKWDSM16

[4] M. Robinson, The SCADA Threat Landscape, in: Proceedings of the 1st International Sym-

posium on ICS & SCADA Cyber Security Research 2013, ICS-CSR 2013, BCS, UK, 2013, pp.

30–41.

URL http://dl.acm.org/citation.cfm?id=2735338.2735342

[5] R. Langne, To Kill a Centrifuge - A Technical Analysis of What Stuxnet’s Creators Tried to

Achieve, Tech. rep. (2013).

[6] K. A. Stouffer, J. A. Falco, K. A. Scarfone, SP 800-82. Guide to Industrial Control Systems

(ICS) Security: Supervisory Control and Data Acquisition (SCADA) Systems, Distributed

Control Systems (DCS), and Other Control System Configurations Such As Programmable

Logic Controllers (PLC), Tech. rep., Gaithersburg, MD, United States (2011).

[7] T. Macaulay, Cybersecurity for Industrial Control Systems: SCADA, DCS, PLC, HMI, and

SIS, 1st Edition, Auerbach Publications, Boston, MA, USA, 2012.

25

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/MC.2012.325
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/MC.2012.325
http://dblp.uni-trier.de/db/journals/pieee/pieee104.html#McLaughlinKWDSM16
http://dblp.uni-trier.de/db/journals/pieee/pieee104.html#McLaughlinKWDSM16
http://dblp.uni-trier.de/db/journals/pieee/pieee104.html#McLaughlinKWDSM16
http://dl.acm.org/citation.cfm?id=2735338.2735342
http://dl.acm.org/citation.cfm?id=2735338.2735342


[8] RSLogix500, http://www.rockwellautomation.com/rockwellsoftware/products/

rslogix500.page (2017).

[9] MicroLogix 1400 Series B, http://ab.rockwellautomation.com/

Programmable-Controllers/MicroLogix-1400 (2017).

[10] NetDecoder, http://www.fte.com/products/NetDecoder.aspx.

[11] F. Swainston, A Systems Approach to Programmable Controllers, Butterworth-Heinemann,

Newton, MA, USA, 1991.

[12] IEC 61131-3:2013, https://webstore.iec.ch/publication/4552.

[13] S. Garfinkel, A. J. Nelson, J. Young, A general strategy for differential forensic analysis,

Elsevier (2012) S50 – S59doi:10.1016/j.diin.2012.05.003.

[14] GNU Diffutils, https://www.gnu.org/software/diffutils/ (2017).

[15] Cutter tool, https://github.com/ahmirf/cutter (2017).

[16] V. M. Igure, S. A. Laughter, R. D. Williams, Security issues in SCADA networks, Computers

& Security 25 (7) (2006) 498 – 506. doi:http://dx.doi.org/10.1016/j.cose.2006.03.001.

URL http://www.sciencedirect.com/science/article/pii/S0167404806000514

[17] S. East, J. Butts, M. Papa, S. Shenoi, A Taxonomy of Attacks on the DNP3 Protocol, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 67–81. doi:10.1007/978-3-642-04798-5_5.

URL http://dx.doi.org/10.1007/978-3-642-04798-5_5

[18] P. Huitsing, R. Chandia, M. Papa, S. Shenoi, Attack taxonomies for the Modbus protocols,

International Journal of Critical Infrastructure Protection 1 (2008) 37 – 44. doi:http://dx.

doi.org/10.1016/j.ijcip.2008.08.003.

URL http://www.sciencedirect.com/science/article/pii/S187454820800005X

[19] A. Kleinmann, A. Wool, Accurate modeling of the siemens S7 SCADA protocol for intrusion

detection and digital forensics, Journal of Digital Forensics, Security and Law (JDFSL) 9 (2)

(2014) 37 – 50.

URL http://ojs.jdfsl.org/index.php/jdfsl/article/view/262

26

http://www.rockwellautomation.com/rockwellsoftware/products/rslogix500.page
http://www.rockwellautomation.com/rockwellsoftware/products/rslogix500.page
http://ab.rockwellautomation.com/Programmable-Controllers/MicroLogix-1400
http://ab.rockwellautomation.com/Programmable-Controllers/MicroLogix-1400
http://www.fte.com/products/NetDecoder.aspx
https://webstore.iec.ch/publication/4552
http://dx.doi.org/10.1016/j.diin.2012.05.003
https://www.gnu.org/software/diffutils/
https://github.com/ahmirf/cutter
http://www.sciencedirect.com/science/article/pii/S0167404806000514
http://dx.doi.org/http://dx.doi.org/10.1016/j.cose.2006.03.001
http://www.sciencedirect.com/science/article/pii/S0167404806000514
http://dx.doi.org/10.1007/978-3-642-04798-5_5
http://dx.doi.org/10.1007/978-3-642-04798-5_5
http://dx.doi.org/10.1007/978-3-642-04798-5_5
http://www.sciencedirect.com/science/article/pii/S187454820800005X
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijcip.2008.08.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijcip.2008.08.003
http://www.sciencedirect.com/science/article/pii/S187454820800005X
http://ojs.jdfsl.org/index.php/jdfsl/article/view/262
http://ojs.jdfsl.org/index.php/jdfsl/article/view/262
http://ojs.jdfsl.org/index.php/jdfsl/article/view/262


[20] S7comm wire-shark dissector plugin, (http://sourceforge.net/projects/

s7commwireshark).

[21] Wireshark, https://www.wireshark.org/ (2017).

[22] EtherNet/IP, https://www.odva.org/Technology-Standards/EtherNet-IP/Overview

(2017).

[23] DNP3, http://us.profinet.com/technology/profinet/.

[24] PROFINET, http://us.profinet.com/technology/profinet/.

27

(http://sourceforge.net/projects/s7commwireshark)
(http://sourceforge.net/projects/s7commwireshark)
https://www.wireshark.org/
https://www.odva.org/Technology-Standards/EtherNet-IP/Overview
http://us.profinet.com/technology/profinet/
http://us.profinet.com/technology/profinet/


Vita

Saranyan Senthivel received his Bachelor Degree in Information Technology from Anna University,

India in 2012. He joined the University of New Orleans for Computer Science Master of Science

program in Fall 2015. He started working as a Research Assistant in Cy-Phy Laboratory at Univer-

sity of New Orleans under the supervision of Dr. Irfan Ahmed. He have been doing active research

in Cyber Physical Systems and analysing on the Network protocols used by these systems. His

research interest includes SCADA Forensics, Network Forensics, Memory Analysis, and Reverse

Engineering.

28


	Automatic Forensic Analysis of PCCC Network Traffic Log
	Recommended Citation

	List of Figures
	List of Tables
	List of Code Listings
	Abstract
	1 Introduction
	2  Control Logic Transfer via PCCC
	2.1 Analysis of PCCC Network Traffic
	2.1.1 Data Collection
	2.1.2 PCCC Message Fields
	2.1.3 Change of Operational Mode 
	2.1.4 Control Logic Program

	2.2 Analysis of Unknown File Types
	2.2.1 Differential Analysis
	2.2.2 Test Cases
	2.2.3 Results

	2.3 Parsing of the Files
	2.3.1 Main Configuration File
	2.3.2 SMTP File
	2.3.3 Data Files


	3  Cutter - A Prototype Network Forensic Tool
	3.1 Goal and Assumptions
	3.2 Implementation
	3.2.1 PCCC message parsing
	3.2.2 Identifying the boundary of control logic transfer
	3.2.3 Message filtering
	3.2.4 Assembling of packets into files
	3.2.5 Analyzing files to extract information


	4 Evaluation
	4.1 Experimental Settings
	4.2 Comparing two Ladder-logic files
	4.3 Comparing two SMTP Files
	4.4 Performance Evaluation

	5  Related Work
	6 Conclusion and Future work
	6.1 Limitations
	6.2 Future work

	Bibilography
	Vita

