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Abstract

Widespread adoption of cloud services is fundamentally changing the way IT services
are delivered and how data is stored. Current forensic tools and techniques have been
slow to adapt to new challenges and demands of collecting and analyzing cloud artifacts.
Traditional methods focusing only on client data collection are incomplete, as the client
may have only a (partial) snapshot and misses cloud-native artifacts that may contain

valuable historical information.

In this work, we demonstrate the importance of recovering and analyzing cloud-native
artifacts using G Suite as a case study. We develop a tool that extracts and processes
the history of Google Documents and Google Slides by reverse engineering the web appli-
cations private protocol. Combined with previous work that has focused on API-based
acquisition of cloud drives, this presents a more complete solution to cloud forensics, and

is generalizable to any cloud service that maintains a detailed log of revisions.
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Chapter 1

Introduction

In the past few years, cloud computing has rapidly changed from an emerging technology
with great promise to the preferred method of delivering IT services, with nearly 95% of
businesses adopting cloud solutions [12]. This has been led by a surge in cloud services,
which surpassed cloud infrastructure in sales for the first time in 2016, growing at 3 times

the rate of cloud infrastructure hardware and software.

The leader in cloud services is software as a service (SaaS), which accounts for the largest
segment of cloud services [6]. In SaaS, the provider manages all aspects of deployment, and
applications provided are accessible from a web browser or intermediate interface. This
permits customers to delegate control over infrastructure and applications to the cloud

service provider in exchange for ease of use, reduced maintenance costs, and scalability.

This has major implications for digital forensics, as the norm shifts from using software
products to using software services. The distributed nature of these cloud services intro-
duces many barriers to identification, preservation, acquisition, and analysis of evidence.
Physical media no longer contains only a single user’s data, and artifacts of interest are
spread across multiple servers and locations. As cloud storage becomes cheaper, more
data is migrating from hard drives to cloud drives like OneDrive, included with Windows,
and Google Drive, a complete office and storage solution available anywhere. Features
unique to cloud environments like multi-tenancy and data replication exacerbate existing
technological, legal, and organizational challenges in data acquisition. Cloud forensics
emerges as an important subfield to address these problems, with early efforts focusing

on adapting traditional application forensics tools and techniques.
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The traditional analytical model of digital forensics has primarily focused on working with
physical media to recover all traces of activity and remnant processing data from both
applications and OS. The SaaS model disrupts this view, as the investigator no longer has
full control over sources of forensic evidence. Since code and data are delivered on demand,
these artifacts become moving forensic targets. For example, a Google Docs document
is represented on the local machine by a text document containing its url, document
ID, and email address; the content may only be viewed or edited by using the browser.
This shift in the way IT services are developed, maintained, and delivered necessitates
a complementary shift in forensics, where the validity and reliability of forensic science
is crucial in this new context and requires new methodologies for identifying, collecting,
preserving, and analyzing evidence in multi-tenant cloud environments that offer rapid

provisioning, global elasticity and broad-network accessibility. [9]

This paradigm shift requires substantial changes to the entire forensic process. Methods
focused on low-level physical acquisition are becoming irrelevant — logical acquisition is
becoming the norm. In particular, data acquisition in cloud drives introduces a number
of challenges for client-centric analysis. Primary computation records and user history
are no longer stored on the local machine, but reside in the cloud. Residual artifacts on
the client are temporary with unknown provenance, as the cloud is the authoritative data
source. As shown in figure 1.1, the client is used mainly as a cache for SaaS applications,
and is not guaranteed to have a complete or updated copy of the data. Most cloud drive
services provide some sort of revision history, but clients only maintain a single version on
the local machine. Thus a client-centric approach to cloud drive acquisition is inherently

unsound and incomplete.
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The move from a standalone device to the cloud is accompanied by an exponential increase
in the amount of data as it becomes the primary delivery method of IT services. This is
exacerbated by the presence of multiple revisions for each file. The sheer volume of data

requires new methods to identify, acquire, and analyze relevant evidence.

One promising area of analysis includes cloud-native artifacts, data objects that maintain
the persistent state of web/Saas applications [14]. These artifacts are downloaded as
needed by the application and have no serialized representation on the client. For example,
a document or slide from G Suite does not maintain a permanent presence on the local
machine. Each time it is opened, the state of the document is interpreted by the browser
after receiving a cloud-native artifact. This is simultaneously a new problem and a new
opportunity, as a large part of forensics involves reasoning about prior states and the
effects of user actions. Direct access to the source of state change for an application
would give us a clear picture of user actions and document evolution. This requires
solving the problem of acquiring, storing, and standardizing a local representation of

cloud-natives for analysis.

Though these are big challenges to overcome, cloud-native artifacts show great promise
for forensic analysis. We find that in Google Docs and Google Slides, these internal data
structures are requested in terms of document revisions, comprising a chunked snapshot
object and an append-only changelog of user edits. The snapshot contains text and

necessary styles needed to produce the document as of the starting revision, followed by



a list of actions in the order they were performed. These logs contain the entire editing
history of a document or presentation, which is perfect for forensics — the document
can be examined at any point in time. Instead of piecing together history from a series
of (possibly incomplete) snapshots, we have the full revision history available. This is a
wealth of information which is unusual for traditional forensics, which has few analogs;
most forensic tools are developed to handle a single version of an artifact. Asthe changelog
is append-only, there is no chance of spoiling the history of the artifact. Clearly, there is
a need to develop forensic tools that can acquire, process, and store cloud-native artifacts

as well as development of new models that incorporate these artifacts.

Previous work on API-based acquisition from cloud drives approaches these problems by
working directly with the authoritative data source. Relying on the provider’s public
interface has many advantages, such as ease of use, access to file metadata, and avoid-
ing the necessity of reverse engineering each cloud drive servicee. These API calls have
well-defined semantics and detailed specifications which lends itself to forensic tool de-
velopment. The proof-of-concept tool kumodd [13] showcases these features, enabling
total or partial acquisition of cloud drive data, including revisions. However, cloud-native
artifacts such as Google Docs and Google Slides are only available as snapshots converted
to standard document formats. This provides a forensically sound solution to basic ac-
quisition challenges, but it also omits a significant amount of information of forensic

interest.

To address the shortcomings of the public API-based approach, we examine the private
communication protocols used by these services. With persistent state being maintained
in the cloud and the browser performing mostly user interaction functions, we target
these private calls through which the browser sends and receives updates. We provide
a baseline forensic analysis of cloud-native artifacts, using G Suite as a case study to

discuss the issues and approaches on working with these artifacts. Specifically, we:

e Analyze the shortcomings of traditional client-based forensic approaches and ex-

pand upon previous API-based acquisition and analysis by targeting cloud-native



artifacts. We analyze and document G Suite collaboration protocols with a focus

on the internal changelog of Google Docs and Google Slides.

e Develop a prototype, kumodocs, that acquires cloud-native artifacts for Google
Docs and Google Slides for any revision range, allowing us to extract plain text, im-
ages, comments, and suggestions from the document at any point in time. Kumodocs
also recovers deleted images as well as resolved comments and suggestions no longer
visible on the document, and provides a means to store and interpret these artifacts

independently of G Suite.

e Present an intermediate format for changelog storage in an effort to standardize
tools and methods for cloud-native artifacts analysis. This modular approach facil-
itates tool reuse, as artifacts from new services only need to be translated into this
intermediate format. Any changes in the internal data structure can also be fixed

quickly by addressing the parser for that particular service.

The remainder of this work is organized as follows: Chapter 2 provides an overview
of traditional client-based cloud forensics and improvements made through API-based
methods; Chapter 3 presents our analysis of G Suite collaboration protocols; Chapter 4
details our proof-of-concept tool, kumodocs, and our challenges in creating it. Chapter

5 and 6 include our discussion and conclusions.



Chapter 2

Related Work

Previous research in cloud storage forensics has consisted mainly of adapting traditional
application forensics to finding artifacts remaining on the client after using cloud services.
Disk and memory images of the client are taken before and after some particular use case,
and differential analysis is applied to locate every trace of computation and activity left

by popular services.

Section 2.1 provides a review of several representative studies of client-side acquisition and
analysis. Section 2.2 summarizes inherent flaws in the client-side approach. Section 2.3
presents newer work that suggests solutions to these shortcomings by utilizing APIs in a

service-centric approach.

2.1 Client acquisition and analysis

Chung et al. [2] examined popular cloud service providers among a range of services,
including Amazon S3, Google Docs, Box, and FEvernote to determine artifacts left on
systems running Windows, MacOS, Android, and i{0OS. They proposed a process model
for forensic investigation of cloud storage services based on artifact analysis on the client
to determine what kind of data exists, where this data is located, and how it can be
utilized. Key areas targeted include physical memory (if available), internet history, log
files, and directories. Android phones were rooted to provide backup information and

iPhone data was obtained from iTunes and iPhone backup files.



Accessing Google Docs through a web browser created temporary files with the content of
current documents and presentations open. Once the browser was closed, these files were
deleted. This lack of permanent data on the client demonstrates one of the shortcomings

of client-based analysis.

Hale [7] analyzed digital artifacts left behind after Amazon Cloud Services been accessed
or manipulated from a Windows machine. Like Google Drive, Amazon Cloud Services
can be accessed through a standalone application, a web browser, or a mobile device;
however, mobile devices were not explored in this study. Using the browser, artifacts were
found in browser history and cache files. He analyzed traces left from the installation
and usage of the client application, finding artifacts in the Windows registry, application
installation files, SQLite database, and an append-only transaction log. The database
contained records of pending upload/download operations, which were moved to the log

after completion or interruption.

Quick and Choo [10] analyzed data remnants on a Windows 7 computer and an Apple
iPhone after accessing a Dropboz account to store, upload, and access data. Hash analysis,
common file locations, and keyword searches were used to determine if a Dropbox account
has been active. They found evidence of usage including usernames in browser history
after web access from Mozilla Firefox, Google Chrome, and Microsoft Internet Explorer.
Further artifacts were found in directory listings, prefetch files, link files, thumbnails,
registry, and memory captures. The same methodology was applied by Quick and Choo
to Google Drive [11] in a follow-up work that documented client-side operations and

artifacts useful as a starting point for investigators.

Martini and Choo [8] researched ownCloud, a self-hosted open source file sync and share
server. OwnCloud offers a unique solution and opportunity of study, as both the server
and client are under control of the user. They were able to extract sync and file manage-
ment metadata, cached files, authentication data, browser, and mobile client artifacts.
Client analysis revealed artifacts able to link a user to a particular ownCloud instance,
even after deletion of evidence on the client. They argued the open-source nature of own-

Cloud is likely to influence future developments in open source cloud storage products,



which may include similar artifacts.

2.2 Limitations of client-side acquisition and analysis

The approaches so far involve extensive analysis of the client in search of artifacts left by
cloud services. The key assumption underlying these studies is that all artifacts of interest
can be obtained from the client. However, the client is not the authoritative source of
data; there is no guarantee the client has the latest data, or that the client contains a
complete record of activies. In addition, application artifacts are not persistently stored
on the client, and web applications tend to use local storage as a cache with no guarantees
to its completeness or accuracy. There are three major inherent shortcomings in client

acquisition and analysis of artifacts [14]:

2.2.1 Partial replication

In the studies listed above, researchers were able to find evidence of cloud-specific usage,
and occasionally which files were accessed or modified. However, they were unable to find
these files on the client. As cloud storage is a distributed storage solution, it makes sense
that none of the clients would have a complete copy of the data. Selective replication
of data is necessary to allow access to mobile devices with small local storage. Current
trends show exponential growth in digital content, a conclusion that is unlikely to change
in the future as cloud storage becomes cheaper and users generate even more data. In
addition, metadata artifacts recovered from the client are only relevant to transient local
data, and tell us little about what artifacts are available in the cloud. It is necessary to
have direct access to the cloud drive’s metadata in order to identify missing artifacts and
verify integrity; without this information, the completeness and accuracy of client-side

data acquisition cannot be assured.



2.2.2 Artifact revisions

Most cloud service providers, especially offering collaborative services, have some provi-
sion for accessing previous versions of files for editing or recovery. While the user rarely
has control over when and how revisions are stored, it does offer a small means of version
control and the ability to revert major mistakes, a feature users have come to expect.
These file revisions are a particularly interesting source of forensic data, which has few
analogs in traditional forensic targets. The ability to view a document’s evolution over
time directly instead of composing a best guess from scraps of user actions gleaned from
log and timestamp data is invaluable, and reduces the chance of evidence deletion if these
revision artifacts can be recovered. However, the client has only one revision at best,
usually the latest version. Client-side acquisition will miss these revisions, and as men-
tioned previously the lack of metadata means it is impossible to know what revisions are

available or missing.

2.2.3 Cloud-native artifacts

Web applications rarely store persistent state on the client. As code and data are sent
as needed, the cloud must maintain this state information in cloud-native artifacts, data
objects that have no serialized representation in the local filesystem. [14] This is a new
problem for forensics, as there is no way to obtain these artifacts from the client; they
must be requested from the cloud service itself or captured in private communication
protocols as the browser sends and receives updates. In G Suite collaboration services,
we find that these internal data structures are append-only revision logs that contain the
entire history of a document. API support for these artifacts is limited — for example,
Google Docs and Google Slides presents a method for downloading a snapshot of these
artifacts at some point in time in PDF or standard file formats, but this misses the rich

revision history that is of forensic interest.



2.3 API-based acquisition

The key to a forensically sound acquisition of data relies on targeting the source of data —
namely, the cloud service provider. The most direct way involves utilizing the provider’s
infrastructure through the publically offered API. This is the lowest available level of
abstraction for forensic acquisition. Methods are often provided for metadata access,
giving a wealth of information of how and when data was accessed or modified as well as
integrity guarantees for acquisition. Cloud service providers offer well-defined mechanisms
for access through the API, which is the same mechanism that web applications use (with
the exception of private/undocumented calls). These can be modeled and tested, allowing

a formal and precise approach tool development.

2.3.1 Kumodd and motivation for G-Suite Study

In [13], Roussev et al. demonstrate the feasibility of an API-based approach through the
development of kumodd, an API-based acquisition tool that works with Google Drive,
Dropbox, OneDrive, and Box. Public API methods are utilized to perform content dis-
covery, target selection, and target acquisition. Kumodd acquires files and associated
metadata, with filtering options based on targets of interest. These filtering options
can be used to obtain a subset of the cloud drive, or the entire drive may be requested
for a complete acquisition. Revisions are also enumerated and downloaded for all files
requested, with creation timestamps appended to the filenames for distinction. It can

also obtain snapshots of cloud-native artifacts in standard formats such as PDF, ODT,

DOCX, etc.

Kumodd fully addresses 2 of the major problems with client-side acquisition — that of
partial replication and revisions. However, kumodd only partially addresses the third
challenge, as is only able to obtain snapshots of documents and not cloud-native artifacts
themselves. Since these artifacts are internal data structures utilized by the the browser
to communicate state information, there is no reason to expose these artifacts via the
public API. These artifacts are communicated through private internal protocols to the

10



web applications as noted in figure 1.1. Thus, any acquisition and analysis efforts would
involve reverse engineering these private protocols, which motivates our case study of G

Suite collaborative protocols in order to fully address the issue of cloud-native artifacts.
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Chapter 3

G Suite Analysis

Our study of G Suite protocols is partially motivated by Draftback, a browser extension
that allows character-by-character playback of Google Docs history. This extension, cre-
ated by writer and programmer James Somers [15], was developed to study how writing
documents evolve over time. Specifically, by knowing where and when edits occur in a
document, the entire document history can be replayed from any point. The history of
each character is recorded and assigned a unique persistent 1D, allowing a user to follow
the history of particular sections of a document over time. Mapping this data to a chart

creates a visual representation of edited history.

3.1 Draftback

Being able to rewind a document to any point in time — even to the beginning — is
exactly the kind of information forensic examiners are interested in. Google records and
preserves elementary actions used in building up a document in a revision log, which is
used to power Draftback’s functionality. While intending to be a tool for analyzing and
improving writing, this is likely the first cloud-native tool with forensic applications. All
plain-text from a document can be replayed in the browser with real-time delays, or at
super speed, with detailed statistical visualizations mapping those changes to document
location. The extension is started from within a Google Document, which retrieves and
processes the revision log; this process took 6 minutes for a x-page document with 7600

revisions.

12
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FIGURE 3.1: DraftBack edit visualization

For large documents such a history is invaluable, enabling focused investigation of relevant
sections. The revision log is obtained by (partially) reverse engineering web protocols —
no client-side data collection is performed. The only requirement consists of valid user
credentials; with this in hand, examination can be performed anywhere with Internet
access. Draftback’s major drawback is its incomplete handling of the Docs protocol —

reverting to a prior version breaks all functionality past that point.

While not motivated by forensics, this is an example of SaaS analysis that showcases
the kind of interesting and useful cloud-native artifacts that can be obtained by going
directly to the data source. Recall that we defined cloud-native artifacts as data objects
that maintain the persistent state of web/Saas applications and have no serialized rep-
resentation on the client. The forensic application of these results served as a starting
point for our work in reverse engineering G Suite collaborative protocols to acquire and

analyze these cloud natives.

3.2 Background

Most online text editors use contentEditable, the native browser widget for editing rich
text. An application notifies the browser to make a string of text editable and lets the
browser handle the specific details. When a user types, requests a style change, or changes

13



the layout of text, the browser interprets these commands and changes the page’s HIT'ML
accordingly. This delegation means creating behaviors consistent across all browsers is

exceedingly difficult.

Advantages to using native browser rendering include ease of implementation and op-
timization. Layout performance is heavily optimized in modern web browsers, freeing
apps from handling the most resource-intensive task. However, this comes at a cost of
limited control over document behavior and feature implementation. Bugs arising from
browser interactions are unable to be fixed, and a consistent user experience cannot be
guaranteed. This motivated Google to create an editor that keeps full layout control and

bypasses the browser itself.

3.3 Documents

In 2010, Google revealed a new version of Google Docs [3] showcasing greater real-time
online collaboration. The new Google Docs editor, codenamed kiz, was custom-built to
look and feel like a traditional word processor. This was achieved by avoiding the con-
tentFEditable field, bypassing the browser completely by developing a new editing surface
and layout engine in JavaScript. All text entered is captured and displayed on a dynami-
cally changing surface according to kiz’s layout manager. Even the cursor is a simulated
element, a 2-pixel-wide div manually placed on the screen at the appropriate coordinates.
This allows multiple concurrent users to each have their own cursor displayed on the
screen, giving visual cues that aid in collaboration by indicating areas currently being
edited. These changes also allow simple features like, tab stops, floating images, and
a ruler to be added, which were impossible to support with a browser’s native HTML

layout engine at the time. [5]

Determining the location of elements on the editing surface is the most difficult thing
the kiz editor does. Typing a single letter goes through several steps before appearing
on screen. First, the letter is drawn off-screen, measured for size, and the screen location

is determined for placement. If this letter appears before other words, everything is

14



pushed forward with boundary checking creating new lines as appropriate. Once the new
character positions are determined, the page is updated with dynamic HTML elements
and filled with content. Due to the efficiency and optimizations of an engine built from
scratch this happens at an incredible speed, giving the look and feel of a desktop word

Processor.

3.3.1 Google’s collaboration technologies

The kix editor is not just an online clone of existing standalone word processors. It
was “designed specifically for character-by-character real time collaboration” [5]. By
writing their editor from the ground up, Google solved two major problems of real-time

collaboration:

1. Maintaining consistency when multiple users edit the same area of a document, and

2. Properly merging multiple simultaneous edits.

The key technology enabling the first point is operational transformation(OT)[4], a con-
sistency and concurrency management solution that avoids locking by transforming edits
relative to each other. Each change in a document involves one of three elementary ac-
tions: inserting text, deleting text, or applying styles to text. These actions occur at
specific indices in a document, which can be transformed against prior edits to achieve
a consistent version for every user. The second issue is solved by Google’s collaboration
protocol, which allows rapid communication between clients and determines when OT is

used.

To see how these elementary actions can be transformed against each other, consider a
document with the text “OT preserve intent” being edited simultaneously by two users,
Alice and Bob. The document contains a grammar error that can be fixed two ways
— “OT preserves intent” or “OT can preserve intent”. Alice adds "s" to preserve,

which ends at index 11. The corresponding primitive sent to the editor is {insert "s"
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@11}. At the same time, Bob writes "can_" before preserve, which the editor interprets

as {insert "can"_ @3}.

Alice
Index: {0 [1 |12 (3|4 |5(6|7 |89 [10|11(12(13]|14(15|16|17(18]|19]20(21|22
Text: (O[T | _|[p|rlels|e|r|v]e ilnjtle|n]|t

Index: {0 |1[2|3|4|5(6|7 (8|9 ([10|11|12(13]|14|15|16(17|18|19|20 (21|22

insert's' @11 Text: [O|T ]| _|(p|rlel|ls|e|rf|fv]els|_|i|n|t]e|n|t
Bob
Index: |0 |12 (3|4 |5([6 |7 |89 (10{11|12(13|14]|15|16(17|18]|19]|20(21|22
Text: (O[T | _|[p|rlefs]|e|r|v]e ilnjtle|n]|t

Index:|0 |1]12|3[4|5([6|7|8]|9|10({11{12]{13|14(15|16|17|18]|19|20|21 (22
insert'can_' @3 Text: |O|T cla|n plrle|s|eflr|v]e ifn|tljefn]|t

Ficure 3.2: Each view with only local changes applied.

Without operational transformation, each user would apply their own changes locally,
and then receive the other’s change from the server. Alice’s client would apply ‘s’ at
index 11 and then receive an action from the server instructing his client to insert ‘can_’

at index 3, ending in “OT can preserves intent”.

Simultaneously, Bob’s client inserts "can_" at index 3, giving “OT can preserve intent”.
The server sends Alice’s edit as {insert "s" @11}. Since the index sent to Bob from
Alice’s update is not relative to local changes made, the final version on Bob’s client is
“OT can presserve intent”. The order in which the operations are applied result in two

different outcomes and an inconsistent document.

OT fixes this problem by translating the indices based on local changes when an edit
is received from the server. In the first case, inserting text at index 11 does not effect
the position of characters before it — so no change is necessary. In the second case when
Bob’s client inserts “can.” at index 3, each character’s new position is increased by 4,
the length of the string inserted. Any changes Bob’s client receives referencing old index
positions must be shifted by 4 to account for the local changes that Alice’s client was

unaware of. Once this transformation is applied, the new instruction becomes {insert
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Alice
Index: |0 |12 (3(4|5|6]|7|8(9](10|11]{12]|13(14[{15|16(17]18|19(20]21 (22|23

insert's' @11 Text: |O|T|_|p|rfle|s|e|r|v]els|_|i|n|[t]e|[n]t
Index: {0 |1]2]3 5|6 |7|8|9(10|11({12]13|14|15]|16|17|18|19]|20 (21 (22|23
insert'can_'@3 Text: |O|T|_|[cla|n|_|p|r|e|s|e|r|v]e|ls]|_|i|n|t|le|n]t
Bob
Index: |0 |1]|2|3|4|5|6 (7 (8|9 ([10(11]12|13]|14|15(16(17[18(19(20|21|22|23
insert'can_'@3 Text: |O|T|_|fclafn|_|p|rje|s|efrf|fvi|fe|_Ji|n]t]e]|n]|t
Index: |0 |1|2|3|4|5|6 (7 (8|9 ([10(11]12|13|14|15(16(17[18(19(20|21|22|23
insert's' @11 Text: |O|T|_|clafn]|_|p|rf|le]|s|s|e|r|vi|fe|_|i|n|ft]e|n]t

FI1GURE 3.3: Inconsistent documents after all edits applied.

"s" @15}. The letter inserts at the correct position, and both users see the same final

product — “OT can preserves intent”

Correct implementation of operational transformation assures every collaborator will have
a consistent document once all changes have been applied. The basic process involves
edits being applied locally and then sent to a server, which is then distributed to all
collaborators. Actions are transformed relative to the local document when incoming
edits are received. For instance, a style change of {italicize @10-20} transformed
against {insert "key" @15} would result in {italicize @10-23}. If there are
no conflicts, the actions are applied without transformation - such as in the first case
of our example. This technology allows real-time collaboration in the same area of a

document without conflicts.

While operational transformation is the mechanism that unifies primitive actions sent
and received from users, the collaboration protocol is what enables and determines when
it is used. Collaboration consists of a series of edits being sent from a client to the server,
and those changes being transmitted from the server to other collaborators. This protocol
outlines what data clients and servers are responsible for maintaining, how this data is
updated, and when these updates are communicated. The client tracks four key elements

of the document[4]:
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1. The most recent revision number received from the server.
2. Local changes queued to be sent to the server.
3. Local changes sent to the server but not acknowledged.

4. The current state of the document with local changes applied.

The server is responsible for maintaining the internal representation of the document,
which is a complete history of all processed changes called a revision log. When edits are
made in the document, the client sends these changes to the server. The client waits for
the server to acknowledge processing the changes; until then, all local changes are saved

in a pending log. Only one pending change is sent to the server at a time.

The server also has a queue of pending changes yet to be processed and applied to the
document. Once an update is accepted into the revision log, the server informs the client.
The client now repeats this process from the beginning, sending the contents of its pending
log, erasing the pending log, and storing new changes until the next acknowledgement.
The differences in pending logs between client and server result in two separate views of
the document. The client views the document’s state with all local changes applied, and

from the server’s perspective the document state consists of the last processed change.

When changes get processed, the server updates all other clients with the accepted edit
and the corresponding edit number. These incoming changes are compared to the list of
pending changes the client maintains. In the case of simultaneous or conflicting edits,
operational transformation is used to change the pending actions. The client applies these
transformed changes along with the server’s edits, and the revision number is updated to
match the server’s version. The server processes changes in the other in which they are
received, informing clients of the current “official” state and the revision number after

each change.

To see how this process works, consider the following example with 2 users editing a
shared document, Luiz and John. The server is represented in the middle, while Luiz
and John’s editors are represented on the left and right sides, respectively. User edits are
represented in ovals, which are sent between the server and other clients.
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The document starts empty, with Luiz typing "Hello". These edits are added to the
pending list to be sent to the server, and the local document is updated immediately.
Luiz’s client has no sent changes awaiting confirmation, so the pending log is sent to the
server. The edits are moved to the sent list, and any new changes will remain in the

pending list until confirmation of the last update.

Client: Luiz Client: John
/ Last synced revision: 0 \ Server / Last synced revision: 0 \
Sent changes Pending changes Revision log Pending changes Sent changes Pending changes
Current document Current document Current document
\ <empty> / <empty> \ <empty> /
Client: Luiz
/ Last synced revision: 0 \
Sent changes Pending changes ' :
Idle Idle
InsertText: "Hello" @1 . .
Current document
g Hello J :
Send Change
{InsertText: 'Hello' @1 :
Revision: 0} :
v
Client: Luiz
/ Last synced revision: 0 \ S
Sent changes Pending changes Revision log Pending changes
InsertText: 'Hello' @1 g:\slfsrg:xa ‘Hello' @1
Client: Luiz}
Current document Current document
\ Hello / <empty>
FIGURE 3.4: Luiz types "Hello" into his browser[4]
" " ] o " " ] 3
Next, John enters " ! " as Luiz simultaneously types "worl1d". At this point, the server

has Luiz’s first edit in its list of pending changes. Luiz’s view of the document includes
all local changes made, and reads Hello world. Luiz’s client has sent Hel1lo to the server,
and all further changes will go into the pending list until receiving acknowledgement from
the server. John types "!"; his client has not received any changes from the server, so

his document view is a single exclamation point.

The server has a single edit in its pending changes, so this is applied to the document.
The document is now at revision 1, and every client is notified to sync with the new

version. For Luiz, this confirms his change has been accepted; the edit is removed from
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Client: Luiz
/ Last synced revision: 0 \

Sent changes Pending changes

InsertText: 'Hello' @1

Server

Revision log Pending changes

InsertText: 'Hello' @1
Revision: 0
Client: Luiz}

Current document

k He;lo /

f Client: Luiz \

Last synced revision: 0

Current document
<empty>

Sent changes Pending changes

Server

Revision log

Pending changes

InsertText: 'Hello' @1

InsertText: ' world' @6

\ Hello

Current document

1. InsertText: 'Hello' @1

world /

Current document
Hello

Idle

InsertText: ' @1

-

Client: John \

Last synced revision: 0

Sentchanges

Pending changes

InsertText: "' @1

N

Current document

: J/

FIGURE 3.5: Luiz writes "world", and John writes " ! " simultaneously.[4]

the list of sent changes, and the document updates to revision 1. John’s client receives the

revision as an instruction: {insert "Hello" @1, revision 1}. Pending changes

are transformed against the incoming changes - since "Hello" is 5 characters long,

John’s edit of "!" should be transformed to index 6. John’s document now reads Hello!

at revision 1, and there is a pending change to send to the server.

Client: Luiz
/ Last synced revision: 0 \

Sent changes

Pending changes

InsertText: 'Hello' @1

InsertText: * world' @6

Server

Revision log Pending changes
1. InsertText: 'Hello' @1

/ Client: John \
Last synced revision: 0
Sent changes Pending changes

InsertText: " @1

Current document Current document Current document
\ Hello world / Hello \ I j
Send Change :
{;;?g:;’-r\]c.lq} {InsertText: Hello' @1 Idie
! Revision: 1} :
\J
Idle 1) Transforming pending
: changes against incoming
changes to get {InsertText I @6}
2) Apply {InsertText Hello' @1}
3) Update synced revision
Idle
v
/ Client: Luiz / Client: John \
Last synced revision: 1 Last synced revision: 1
Sent changes Pending changes Sent changes Pending changes

InsertText: * world' @6

Current document

InsertText: *I" @6

Current document

\ Hello world / \ ~ Hellol /

FIGURE 3.6: Luiz receives server ack, and John receives Luiz’s first change.[4]

Both clients now send their pending changes to the server, locally moving the change
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from the pending list to the sent list. The server receives each change and places it
into the pending queue. Since Luiz’s message {insert "world" @6} was received
first, the server processes this request and sends an update to all clients. John’s client
receives the new edit; since John’s edit has not been processed, {insert "!" @6} is
still pending. Pending changes are again transformed with operational transformation,
and John’s insertion is moved from index 6 to index 12, as wor1d occupies indices 7-11.

John’s client now reads Hello world!, and Luiz sees Hello world, with both clients

updating to revision 2.

Client: John
Last synced revision: 1

Client: Luiz
Last synced revision: 1

a N - N

Sent changes Pending changes Sent changes Pending changes

InsertText: * world' @6 InsertText: 1" @6

Idie
Current document : Current document
\ Hello world j \ Hello! j
Send Change Send Change
{InsertText: " world' @6 {InsertText: "I" @6
Revision: 2} : Revision: 2}
A
e Client: Luiz \ Server e Client: John \
Last synced revision: 1 Last synced revision: 1
Sent changes Pending changes Revision log Pending changes Sent changes Pending changes
= g {insertText: " world @6 e
InsertText: ' world' @6 1. InsertText: Hello @1 | & icion: 2 InsertText: ' @6
Client: Luiz}
{InsertText: "' @6
Revision: 2
Client: John}
Current document Current document Current document
\ Hello world / Hello \ Hello! /
Server
Revision log Pending changes
1. InsertText: 'Hello' @1 {InsertText: "' @6
2. InsertText: ' ™ Revision: 2 :
- InsertText: "world" @5 | ¢jient: John} Idl
e
Current document
Hello world
Idle
. Send Change
Rsee\;';[ﬁsz {InsertText: ' world' @6
{ J Revision: 2}
1) Transforming pending
changes against incoming
changes to get {InsertText I' @12}
2) Apply {InsertText orld’ @
3) Update synced revision
v
/ Client: Luiz \ / Client: John \
Last synced revision: 2 Last synced revision: 2
Sent changes Pending changes Sent changes Pending changes
InsertText: 'I' @6
Current document Current document
Hello world - \ Hello world! /

o

FIGURE 3.7: Both clients send a new edit and receive the latest revision {insert
"world" @6}[4]
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The server now has one final edit to process, {insert "!" @6} from John as revision

2. A previous change was already entered as revision 2, so this edit must be transformed

against previous changes.

This results in the same edit John’s client applied locally,

{insert "!" @12} and is sent to each client as revision 3. Luiz’s client updates the

view to Hello world! and John’s client removes the change from the sent list. Both

clients now update their last synced version to revision 3 and have a consistent view now

that all changes have been applied.

/

Client: John
Last synced revision: 2

\

Client: Luiz \ S
Tt erver
/ Last synced revision: 2
Sent changes Pending changes Revision log Pending changes
1. InsertText: Hello' @1 | UnsertText: ' @6

2. InsertText: ' world' @6

Revision: 2
Client: John}

Sent changes Pending changes

InsertText: ' @6

Current document
Hello world

o /

Current document

Hello world

\-

Current document
Hello world!

J

Idle

Transforming pending
changes against all
changes since revision 1
to get {InsertText: "I' @12}

|

Server

Revision log

Pending changes

1. InsertText: 'Hello® @1
2. InsertText: ' world' @6
3. InsertText: I' @12

Current document
Hello world!

Send Change
{InsertText: I' @12

Revision: 3}

1) No pending changes so
nothing to transform

2) Apply {InsertText 'I' @12}
3) Update synced revision

Idie

Client: Luiz
Last synced revision: 3

\

Pending changes

-

Sent changes

Current document
Hello world!

. J

FiGURE 3.8: After all edits have been received, both clients have a
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Send Ack
{Revision: 3}

Idle

v

/

Client: John
Last synced revision: 3

\

Sent changes Pending changes

\-

Current document
Hello world!

J

consistent view|[4]



3.3.2 Revisions

Google’s approach to storing revisions is motivated by the desire for fast and efficient
communication between client and server. Rather than revisions being stored as snapshots
and compared with previous versions, the complete editing history of a document is kept.
The revision log is populated by a series of updates from each editing client as mentioned
above. The client sends an update using the save method, where the new revision

number and edit are sent as form data in JSON encoding:

{rev:254
bundles: [{"commands":[{ "ty":"is","ibi":11645,"s":"ten" }1],

"sid":"7c0694922e589fca", "reqId":164}]

This example shows a user typing the word ten, which is inserted before index 11645.
The current session is marked by the sid (session ID), which has submitted 164 revisions.
As a whole, this is the document’s 254" revision as noted by rev. A new session could be
started by closing the browser, and reopening the same document; the first edit would then
be issued a new sid and reqId would be reset at 0. While waiting for acknowledgement,
the client will collect all further edits into the pending log as described above. The
server commits the change to the revision log after processing, and attaches a server-side

timestamp.

This revision log is the internal representation of a document’s state, requested by the
client whenever a document is displayed. There is no permanent record of the log on the
local machine after processing, an example of a cloud-native artifact. Any range in the
document may be requested by specifying a starting and ending revision number to view
prior versions. The general structure of the revision log consists of a chunked snapshot
followed by a changelog, which are deeply nested JSON structures consisting of arrays
and objects with key /value pairs. The keys are abbreviated, with most of them being 2-4

characters long.
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The chunked snapshot contains all information required to create the document as of
the starting revision. Length varies greatly, depending upon the number of embedded
kix objects and paragraphs, as well as the starting revision. The first revision of a page,
before any user edits, consists of applying default text and paragraph styles. A chunked
snapshot from revision 1 contains only 2 objects representing the application of text and

paragraph styles.

For documents containing text, the first element of the snapshot consists of a plaintext
string of all text in the document. This is followed by several style definitions that hold
over the entire document, such as margins, language, and default heading styles for title,
subtitle, and headings H1 through H6. Inserted elements are listed by referring to their
kixz anchor ID and associated styles. Following this is a list of contiguous format areas
and associated styles, as well as any comments or suggestions that appear in between. A
new format area is created whenever a character contains some text style differing from
the previous character; the associated change and the index are noted as a new span.
New paragraphs have a list of style modifiers to denote any paragraph changes, such as
indentation or alignment, as well as IDs that can be associated with a table of contents for
quick navigation. Extremely long documents have the snapshot broken up into multiple
sections, with plaintext strings of approximately 4100 characters. After the first object,
they all follow the same form - the plaintext string comes first, followed by the list of
spans and paragraphs with associated styles. The browser then constructs the snapshot

by pasting the given plaintext and applying styles over indicated ranges.

The changelog contains a list of arrays of each elementary action performed on the doc-
ument, allowing any revision to be viewed. The basic form of each revision contains
a dictionary of attribute styles to apply, an action (insert, delete, or apply style), any
inserted text and indices for the action, followed by identifying information. The iden-
tifying information consists of an epoch timestamp in Unix format, the Google ID of
the author, revision number, session ID, session revision number, and the revision itself.
Every time the document is opened, a new session is generated and given a unique ID;

the number of revisions submitted under this session are counted in the session revision
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number. Some revisions, such as inserting objects, appear as a single "entry”, a transac-
tion consisting of several actions that were applied at the same time. A version requested
from revision 200-300 would contain a chunked snapshot as of revision 200, followed by
100 arrays in the changelog for each revision. The ability to request exact ranges allows
kix to present detailed revision history in the browser with minimal effort, avoiding the

need to constantly replay the same history.

To display a specific version in the browser, the log is played from the beginning until the
requested revision is reached; replaying the entire log produces the most recent version.
This greatly reduces the amount of storage for each file and communication overhead, and
allows for edits from multiple users to be integrated seamlessly due to the granularity of
the changes. When viewing the history in the browser, each revision is accompanied by a
revisions/load request from the client, specifying a start and end revision. insert picture

This load request can be used to access the changelog directly, which is sent as a JSON

file.

Collaborative editing is supported by quick client updates, with a new revision being
saved as often as every 150 ms under constant input. This update time depends upon
several factors, including the minimum update time, speed of user input, and the amount
of time the client spends waiting for the server to acknowledge the last update. Most
revisions consist of adding or deleting 1-3 characters at a time. While collaborating,
the granularity of these changes together with operational transformations result in a
consistent document, able to handle multiple simultaneous edits in the same location

from different users.

Revisions can be accessed through the browser and retrieved through the public API,
although the options presented are limited. Only major revisions are presented to the
user. The mechanism behind major revision creation is unclear; however, major style
changes and length of time since last update seem to be major factors. For example, a
document tracking experiments with over 7600 revision actions has 20 major revisions,
while another used for reverse engineering purposes has 30 major revisions with only 750

revision actions. A major revision seems more likely to occur if the time since last edit
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has been a day or longer. Creating a new session by exiting the browser and accessing

Google Docs again was not enough to trigger a major revision.

As the revision log contains the internal state of a document, it is sent to the browser upon
loading or after requesting a revision. This network traffic can be viewed by using devel-
oper tools that come with most modern browsers. Upon loading a specific revision, the
client sends a request of the form https://docs.google.com/document /d/<doc_id>
/revisions/load?id=<doc_id>&start=<start_rev>&end=<end_rev>&token=<auth__
token>. The doc_id is the unique document identifier, which is part of the standard
URL for editing a document; start_rev and end_rev denote the start and end revision
number, and auth_token is an OAuth2 authentication token. Requests must be well
formed; the starting revision can not be less than 1 or greater than the ending revision,

and the ending revision cannot exceed the most recent revision number of the document.

This request can be manually copied and pasted into the browser, editing the starting and
ending revision ranges as required. Chrome and Firefox also provide a “save as cURL”
option in developer tools, which can be entered into the command line. The response to
this request is a standard JSON file as described above, which begins with the closing

braces ) ]}, likely a safety closure or requirement of some internal protocol.

3.3.3 Changelog data

Each revision in the changelog corresponds to a single JSON array, where the first element
of the array is a JSON object, which is represented as key/value pairs. The structure
becomes deeply nested when values contain further arrays, with even more objects con-
tained within them. The keys are abbreviated, most likely due to performance reasons,
and not easily readable by humans. Revisions in the changelog have a similar structure
to the chunked snapshot, with the addition of identifying information. Elementary ac-
tions consist of insert, delete, adjust style actions, followed by a dictionary of parameters

associated with the action type.
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Occasionally, revisions will contain multiple elementary actions to be performed simulta-
neously. These actions are wrapped in an overall type of m1ti (multiaction), a trans-
actional action allowing several insert or delete edits to occur with the same timestamp.
Multiactions most commonly occur with manipulating page objects, but can also be found
when a single revision update contains both an insert and a delete action. Any updates

that contain multiple differing actions will be resolved into a single transaction.

Due to the append-only nature of the changelog, we were able to map each possible action
in the document to a corresponding revision. While this gave a list of keys associated
with each action, deciphering the meaning of each key was not as straightforward. Text
and paragraph styles were the most common style keys, each being prefixed by ts_ or
ps_, respectively. Text keys consisted mostly of straightforward abbreviations — ts_ff
for text style font family, ts_bf for bold font, and ts_it for italic. Each paragraph and
text style has a corresponding flag key ending in _1i, such as ts_bf_i for bold font.
This flag denotes whether the style continues to be inherited from the preceding span;

false indicates a change, true continues the implied style.

Paragraph styles include default header settings for title, subtitle, and custom headers H1
through H6. Each header provides settings for alignment, indentation, line spacing, spaces
before and after paragraph, and several unknown keys. Text styles include parameters
for bold, italic, strike-through, underline, background and foreground color, font family,
font size, vertical alignment, and small caps. A full listing of key mappings can be found

in the appendix.

Actions that manipulate page elements, such as inserting or deleting tables, equations,
pictures, etc., are bundled as a transaction of multiple elementary actions. The first action
inserts a placeholder character at the appropriate index, usually a star (*). Element
properties are modified through an adjust element (ae) action, which sets values
such as margins, width and height, title, and ID. The remainder involves adjusting page
and text styles as necessary. Inserted objects are associated with a kiz ”anchor” and
ID by the tether element (te) action. Deleting an object requires a combination of

delete element (de) with the appropriate ID, followed by a string deletion of the
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placeholder value.

{ "ty": "ae",
"et": "inline",
"id": "kix.iz8zrpzcxarv",
"epm": {
"ee_eo": {
"eo_ml":

4

"eo_mt":

9
"eo_mr": 9,
9,
9

"eo_mb": ,

"i_cid": "fee3481971000e.0",

"eo_at": "Points scored",

"i_wth": 450,
"i_ht": 278.25
138
{

"ty": "te",
"id": "kix.iz8zrpzcxarv",
"spi": 2

LisTING 3.1: Example element actions, adjust (ae) and tether (te)

Picture elements may be inserted from a given URL, uploaded from the local file system,
or taken from the user’s Google Drive. Insertion is similar to other page elements, con-
taining a string placeholder, element properties, and a tether. Picture properties noted
in the changelog include margins, width, height, source, ID, and element type. Contents
of image source vary with the method of insertion: for local files, it is blank; for URL
uploads, the external address is listed; and for drive uploads, source points to a tem-
porary googleusercontent.com address. The temporary link hosted by Google’s
content delivery network(CDN) requires authorization to view, showing a forbidden 403
error otherwise. This URL saved to the changelog is only valid for about an hour until
deactivation.
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Suggestions are recorded in the changelog as regular revisions. Changing the edit mode
to suggesting creates suggestions when altering the page. Each suggestion has a unique
ID associated to it, and is recorded as a regular revision. Actions are tagged with s for
suggestion types, such as ste (suggestion tether element) instead of te or iss (insert
string suggestion) for is. All text entered or deleted in suggesting mode becomes a part

of the permanent record of the document.

The layout engine colors any suggestion text, and text deletion ranges are indicated by a
strike-through. Element insertion or removal contains colored borders, with the suggested
action listed on the right side of the screen. Each collaborator has an associated color
marking their changes. Suggestions are resolved by accepting or rejecting them on the
page. Resolving a suggestion with either choice removes the it permanently, adding the
necessary actions to the changelog for removal. Text ranges marked for deletion are
unmarked, suggested insertion text is deleted, and any manipulated objects are returned
to the original state. Upon accepting a suggestion, the actions are replayed in the log

"normally” without the suggestion tag on each action.

Comments are the last embedded object with specific changelog behavior. Similar to
suggestions, comments are considered page elements and are tethered to the page with
an anchor and unique ID. However, the changelog contains only this reference to the kiz
object. Any comments and replies made on the page are not sent to the revision log.
The editor sends a POST /document/d/:1id/save request when adding revisions to
the log, where :id is the unique document ID and edits are sent as form data. When
adding comments or replies, however, a POST /document/d/:1id/sync request adds
the comments directly to the page using the comment API, without any trace left in
the changelog. The server’s response to a sync update is a list of all suggestions and

comments associated with the current document.

While viewing revision history in the browser, users are given an option to "restore” a
previous revision. This does not change any previous history in the changelog. Rather,
the necessary steps to create a snapshot as of the reverted version are combined in a large

transaction consisting of the type rvrt. This revert action contains a snapshot of the
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same format as chunked snapshot, a list of instructions required to create the document

as of the listed revision.

3.3.4 Retrieval and processing

To facilitate acquisition of this revision log, we built a tool in Python, called kumodocs,
which acquires the revision logs for a given document. The tool requires a user to sign in
to a Google account, which creates the necessary OAuth2 authentication tokens required.
The Google Drive API is then used to list all available documents, along with the available
number of revisions. Revision logs are then retrieved using a revisions/load request

as above with the authenticated process.

In order to simplify processing with existing tools, kumodocs parses the nested JSON
result into a flat CSV format. Nested style dictionaries are merged into a single dictionary
object. Each line contains a timestamp, user id, revision number, session id, session
revision, action type, followed by the merged dictionary of key/value pairs involved in
any modifications. Transactions are decomposed into separate actions, with each sharing
the same identification information. This format is human-readable and easier to use
text processing tools via the command line. The style modifications are encoded in
dictionaries, which are easily parsed by Python or JavaScript to replay the events in a

different editor.

The second benefit to creating an intermediate log format is an attempt at standard-
ization. By writing tools that process this CSV instead of the raw revision JSON, we
can generalize the process to any service that records fine-grain revisions. New services
would require only a parsing tool to convert their protocol to the intermediate standard.
This format we have suggested contains an arbitrary number of identification elements,

followed by some action and a dictionary of instructions.
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3.4 Images

Examining the HTML elements themselves in the page, we discovered some interesting
behavior associated with images. The image element loaded on the page did not use the
corresponding source URL in the changelog, but a different CDN link. Local uploads were
referenced using HTML5’s FileSystem API as (filesystem:https://docs.google.
com/persistent/docs/documents/:id/image/:i_cid), where :id is the document
ID and :i_cid is the image Cosmo ID. However, when viewed on another client, a similar
link from googleusercontent.com was generated. The CDN link referenced by the
image element did not require permission to view and seemed to be permanent, in contrast
to the temporary link requiring authorization in the changelog. This link persisted even
after the image was deleted from the document, with the image being available to anyone

with the appropriate CDN address.

Image insertions were found to involve an API call to createphoto, which returns an
image ID along with height and width parameters. An image copy is created in Google’s
CDN by Cosmo, the storage backend for G Suite. Another private API method was
discovered with a document containing images - renderData. This request is similar

to the 1oad method used to retrieve the changelog:
https://docs.google.com/document/d/:id/renderdata?id=:1id

The request body for this renderData call contains image Cosmo IDs in the form:
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renderOps: {"r0": ["image", {"cosmoId":"laC ... LTJs",

"container":"1UP ... uxk"}],
"r1": ["image", {"cosmoId":"1MS ... HGM",
"container":"1UP ... uxk"}],
}
response:
)1}
{"rO":"https://1h4. googleusercontent .com/kk15-B6fEX2i29PZs_uEh ... 2Cu",
"r1":"https://1h4. googleusercontent .com/njSAZEAvVDS2AAYaoPhMlY ... Wdl"}

LisTiNnG 3.2: Renderdata request body and response

CosmoId corresponds to the changelog field i_cid for every embedded image, and the
container value was the same as the document ID. The renderData response con-
tained a list of the same CDN links referenced by the inserted image HTML elements.

We found these links to be accessible by anyone regardless of authorization.

We then tested access to these private API calls with Cosmo IDs obtained from the
changelog. Posting a generic HT'TP request was insufficient; redirection to a sign-in page
was received. Using Google’s API through Python, we were able to send a renderData
request with an authorized service, returning a list of accessible image URLs. Editing
access to a document was found to be sufficient to access the CDN links, and once the

URLSs were obtained they could be viewed by anyone.

Since the image links returned were visible without authentication, we tested various
configurations of the request to see if there were any security holes. Pictures were inserted
into 2 documents; our test account had editing access to the first but no permissions for the
second. Calling renderdata without access gave no results as expected. However, we
found that replacing the container and :id to the authorized document but requesting

unauthorized cosmoIds yielded a CDN link. Accessing this URL resulted in an ACL
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denied error, even for the account that uploaded the image; we were unable to find
any meaningful use for this link, but its existance is strange. Following this test, used
authorized an container and :id to obtain images from a different document; this
was successful, returning the expected CDN-hosted images. This shows the origin is
unimportant as long as the account sending the renderdata request has editing access

to the document containing the cosmoId.

We conducted several experiments to determine the nature of the CDN links, as the
permanent ones persisted even after image deletion. T'wo new photos were taken, ensuring
no possibility of Google having previously cached these images. One photo was uploaded
to Google Drive, and then added to a document; the other was embedded directly in
the page from the local file system. Both images were deleted in the document, and the

CDN-hosted links continued to be available without authentication for over a month.

The second experiment involved uploading two images in the same way, from Google Drive
and the local system. However, instead of deleting the images within the document, the
entire document was deleted. The images were no longer available through the CDN link

after approximately 1 hour.

Our experiments show that, as long as at least one revision has a reference to an image,
this link remains. They are accessible through renderData and the response is viewable
by anyone. This behavior is forensically interesting, as recovering images thought long-
deleted is possible while the original document remains. However, users generally expect

that objects deleted from a document do not remain indefinitely.

The CDN links have extremely long identifiers of over 100 characters. The size and appar-
ent randomness of the identifier makes it extremely unlikely to be guessed; renderData
requires authorization to access the CDN links. This feature seems reasonable from a
security standpoint, as images need to be kept as long as a user can restore a previous
version containing that image. The identifier has no obvious relation to its container 1D

or user ID.
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3.5 Slides/Drawings

Slides and Drawings utilize the same internal API as Docs, which transmits state through
revision logs. The client interprets and renders these logs with a JavaScript layout engine
similar to kixz to produce each presentation or drawing. Using the same private load
request as before, the logs were accessible. The overall structure was similar, with each
revision corresponding to a single "action” array (which may be a transaction of several

simultaneous actions).

{ "changelog":

[(r4,I # 4: transaction
[12 ,"gle...b_0_5",2,0,[1,"simple-1ight-2"]], # 12: Create slide/theme
[18 ,["gle...b_0_5"1,[1,[2,"TITLE_AND_BODY"]], # 18: Set layout
[3,"gle...b_0_6",108, # 3: create text box

[2.8402,0.0,0.0,0.1909,12468.0,17801.0], [55,0,54,15],"gle...b_0_5"1},
[3,"gle...b_0_7",108,

[2.8402,0.0,0.0,1.1388,12468.0,46099.01,[55,0,54,1]1,"gle...b_0_5"1,
[3,"gle...b_0_8",158,

[2.032,0.0,0.0,1.143,15252.0,27432.01, [55,0,54,16],"gle...b_0_5:notes"],
[3,"gle...b_0_9",108,

[1.8288,0.0,0.0,1.3716,27432.0,1736.01,[55,1,54,1]1,"gle...b_0_5:notes"]111,

148...381,"138...163",35,"10b...bb0",15,nulll, ]

LisTING 3.3: Creating a new slide, revision 35

The most important structural difference from previous revision logs is the lack of key
values. Instead of being an array of JSON objects (key:value pairs), these logs are an
array of arrays — further increasing the ambiguity of each value. Each array ended with
the same identifying information: an epoch timestamp in Unix format, a unique 20-digit
Google account ID, revision number, session ID, session number, and the same ending null
value. We also found the granularity of changes to be higher, with each typed character
having its own revision; pasted data would appear as a single revision, but regular typing

was insufficient to produce insertion/deletion of 2+ characters in the same revision.
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Using differential analysis, we examined how each value changed with varying page ac-
tions. The first value in each array corresponds to a type field, with major types noted

as follows:

15 : inserting text in the box with the given 1D

16 : deleting a range of text in the box with the given ID

3 : Text box creation with coordinate data for positioning

e 12 : slide creation

4 : Transaction operation (multiple elementary actions)

Listing 3.3 and Listing 3.4 show several entries in a Slides revision log from version 36 to
44. A new slide is created, causing a transaction ([4]) of simultaneous actions. Revision
35 is a single array with type 4 containing 6 nested actions. Types 12 and 18 initialize
the slide canvas with the corresponding theme (12) and layout (18), followed by creation
of the default text boxes with action 3. The last element denotes the parent of each
object, which is the slide ID gle...b_0_5 in this case. Title and subtitle boxes are the
first two text boxes created, followed by text box creation for speaker notes; default boxes

created vary depending on layout selected.

Each slide and text box has a unique ID associated with it, as well as a parent container.
Text or objects are inserted directly using this ID. Actions creating or moving objects
with size contain a 6-element array describing the (z,y) position, orientation (text boxes

may be rotated), and scalar size.
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[[15,"gle...b_0_7",null, 0, "A" ], 36 1

[[15,"gle...b_0_7",null, 1, "d" 1, 37 15,
[[15,"gle...b_0_7",null,2, "d" ], 38 1},
[[15,"gle...b_0_7",null, 1, ], 39 1},
[[15,"gle...b_0_7",null, 2, "n" 1, 40 1},
[[16,"gle...b_0_7",null, 2,31, 41 1},

[[16,"gle...b_0_7",null,|[1,2]], 42 1},

[[15,"gle...b_0O_7",null,1, "e" ], 43 1},
[[15,"gle...b_0_7",null, 2, "d" 1, 44 11}

LisTiNnG 3.4: Typing Added with 2 backspaces into gle...b_0_7; ID data trimmed

In Listing 3.4, we have a user typing "Addin", followed by 2 backspaces and then
"ed". Inserted text is highlighted in yellow, and deletion ranges are highlighted in red.
The second value of the array, gle...b_0_7, is the target container; this corresponds to the
subtitle box, as it was the second text box created in slide creation transaction. Insertion
does not require the slide ID which holds the container, as membership is established at

time of creation or when an object is moved.

Duplicating slides is a large transaction; there is no single ”copy” command. Rather, the
entire page is recreated in the same theme and layout, followed by text box creations for
each text box on the old slide. Any text currently displayed is pasted into the boxes in
the appropriate format. These new objects are given unique IDs and the new slide is

added to the list of top-level slides in the correct order.

Theme modification is a similar transaction to duplication; however, the creation of each
element involves style changes consistent with the requested theme. After each element
is duplicated in the new theme, the old page has every existing text box deleted, and
then the slide itself is removed. Deleting a slide follows this same procedure, where the
slide itself is cleared of all contained objects before being removed itself. The slide itself
is recreated in the requested layout and theme, followed by construction of each existing

text box and insertion of existing text. These new objects are assigned unique IDs; in
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[[3,"g27 “4 0 0",108,[2.292,0.0,0.0,0.2674,63984.0,37722. O] [44,0,45 11,"p"1,
1444063509783 "08413168629
-0 0",null,0,"T"],1444063511799,"08

0",null,l,"e"],1444063512119,"

56cc71754",0,nulll,
71754",1,nulll,
54",2,null],

[[15,"g27
[[15,"g2

[[15,"g2 -0 0",null,2,"s"],1444063512448," 71754",3,null],

[[15,"g2 -0 0",null,3,"t"1,1444063512448,"0841316862943"/C 00 cc71754",3,nulll,

[[3,"g27 C l" 99,[0.1432,0.0,0.0,0.3263,174285.0,78309.01,[22,381,15,"#CFE2F3",19,"#000000"],"p"1,
1444063520352 "08413168629437028300", 12 "fllf 456 ‘**l 54" ,7,null]ll

,"chunkedSnapshot": [

[[1,[365760,274320]1,[302400,42768011, [45,I1,[0,"en"11,113,0,0,null,"p"1,113,0,1,"n","1"1,[13,0,2,null,"n"1,
[12,"m”,0,2,[]],[12,"1",0.1,[]],llzf”p",O,O,[]]]

1}

FIGURE 3.9: Drawings revision log excerpt, single text box after "Test" is typed

the case of layout or theme change, this sequence involves deleting all previous elements

of the old style.

We found Drawings revision logs to be a simplified version of Slides as shown on Figure 3.9
These logs were available through a similar 1o0ad request. Each drawing is built up from
a series of elementary actions like both documents and presentations. Drawing a line or
curve is represented by vector instructions in the log, and previous versions are available
for viewing or reverting. Drawings provides the same drawing functionality available

within Slides.

3.6 Sheets

Repeating our methodology with Sheets, we monitored client /server network interactions
to model the behavior and dissect the underlying protocol. When working with a spread-
sheet, the client can be seen to communicate with the server after every entry into a
cell. Revisions are updated and the saving process is visible; indeed, Sheets supports a
similar versioning system to Google Docs and Slides. Save and bind requests following
each transaction were observed similar to earlier protocols. We also observed noticeably

different methods for obtaining specific revisions from the server.

Instead of obtaining the revision log and processing it locally, the client obtains a browser-
ready HTML document through a showrevision request. This document contains the
value of every cell to be displayed, without any underlying equation or structural ele-
ments; in other words, a snapshot of values as of that revision. As spreadsheets might
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contain complex equations, this architecture makes sense to ensure a speedy and respon-
sive product. Replicating this revision request from start to finish would result in a series
of snapshots that give adequate history, but ultimately cell relations would have to be

inferred with no equation data.

The Sheets protocol still retained many of the functions of the previous services we
studied, including incremental saving and sending what appeared to be revision updates.
Using the same load request on a spreadsheet did result in a revision log. Like all G-
suite revision logs we discovered, each revision contains a single object with the standard
identifying information. This object, like the Docs log, contains key-value pairs; however,

the keys are simply enumerated, resulting in a form similar to Slides filled with unknown

values.
21299578 6,7, B Test D7
6
21299578 6, RS Test E7
7

LISTING 3.5: Sheets revision log, typing Test D7 and Test E7

Like the other logs, the first value (21299578) in each revision corresponds to a type.
The highlighted area denotes coordinates as cell ranges. Each pair denotes the starting
cell (inclusive), and the ending cell (not inclusive) for rows and columns; numbering starts
at 0. Both revisions occur on row (6,7), which is a 1-cell-wide entry at row 7. The column
range is in blue; for the first revision, (3,4) indicates the D column and (4,5) the E column.
Together, this indicates the first revision occurs at cell D7 and the second at E7. Many

of the null values are placeholders for equation data, arguments, and target ranges.
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4,5,5,6

AVERAGE

SISN, EESPEll

LI1STING 3.6: F5=AVERAGE(C4:D9) entered in a spreadsheet

In Listing 3.6, the equation AVERAGE has been entered into cell (4,5,5,6), which is F5.
The equation targets noted in yellow and blue are relative distances from the source.
Yellow denotes the row range, and blue denotes the column range as before; (-1,5) is a
6-row range starting 1 cell above F5 (4) and ending 5 cells below F5 (10), corresponding
to rows 4-10. Highlighted in blue, (-3, -1) is a 2-column span starting 3 cells to the left
(column C) and ending 1 cell to the left (column E). As the ending points are not inclusive,

the column ends at D and the row ends at 9. This translates to AVERAGE (C4:D9).

The granularity is extremely low; to keep communication to a minimum, revisions are only
updated after each text box changes. Typing or deleting characters within a cell do not
trigger any actions. This simplifies the client/server API, as the main communication is
simply which ranges need to be updated and the new values instead of granular character

deltas.

3.7 Forms

Forms is Google’s collaborative platform for creating online surveys, quizzes, and web
input forms. We were able to recover revision logs in the same manner as the other
services. The structure remained similar with a chunkedSnapshot and changelog;
however, the protocol was quite different. Each question is sent as a bundle - like sheets,
commit revisions are stored rather than incremental revisions. Questions are bundled

together with all components; any edit in the question has the entire bundle sent. When
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any part of a question is edited, the entire self-contained bundle is sent. All revisions

become a part of the permanent history.

Test question

Option 1

Test question

Option 1

Test question
Option 1

Option 2

Test question
Option 1
Option 2

Option 3

Testing question
Option 1
Option 2

Option 3

LisTING 3.7: Forms revision log; identification data omitted for brevity

In Listing 3.7, we have a question titled Test question, to which answers are being
added. Like other services, the beginning of each revision consists of a coded action type,
followed by the same identification data at the end. Each answer is titled Option x;
every time a new answer is added, the entire question bundle is sent again. While other
services had various methods to view prior revisions or revert to earlier versions, forms

has no revision information in the editing section.

The log is recoverable in the same fashion as with other services, using a private API:
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https://docs.google.com/forms/d/<form_ID>/revisions/load?start=<start>

&end=<end>&token=<auth_token>

For Forms, this information on how the questions evolve over time is unavailable anywhere
else. Google’s Forms API is limited to basic actions like creating new forms and adding

questions of various types. There are no means to revert to previous revisions.

Responses are viewable as a Sheets spreadsheet, which tracks responses and questions
over time. This gives a weak version history, as every sheet revision contains a full list
of questions as of the time of the answers. However, the way in which the questions
change over time is only obtainable from the revision log. This gives roundabout access
to “major” revisions; however, intermediate changes that occur between two responses

are lost.

3.8 Sites

Sites is the first collaboration solution Google offers that shows a major break from the
API underlying all other services. We were not able to recover a revision log in the same
fashion; however, this was available through the public API as an Atom XML feed. Sites
offers easy creation and management of websites hosted by Google. This complexity

necessitates being developed from the ground up, with functionality unique to websites.

Sites offers commit versioning, with each edit in a webpage being saved as a separate
version. Granularity is low, only ”snapshots” of each edit are saved. However, it offers
availability to all "minor” revisions, unlike most other services. Each page contains its
own revision history, which can be easily controlled from the admin panel. Any revision
may be reverted to easily. Functionality is similar; in effect, the revision log is available
from your admin panel. Any reverts are appended to the list, ensuring permanency of

any completely saved page edits.

Sites does borrow the comment backend from the other G Suite products. Each page

has an optional comment section, which is updated in the same way as others - a bind
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request. There is an extensive public API available, allowing access control changes,
content modification, site modification, and listing revisions. Comments are not available
through the public API; however, we were able to reverse engineer the protocols used
by Sites to access the comments. When a Sites page is retrieved, a comment pane is

created at the bottom of the page:

new sites.CommentPane (’//docs.google.com/comments/u/0/d/:id/api/Jjs...)

LisTING 3.8: Comment pane creation in Sites response

This :id is a container which holds the comments for that page. When used in place of
the £11e1ID in the Google Drive API, comments and replies were available. The comment
resource returned is the same as the other services. This was not a real file; trying to

access the metadata of this :id returned nothing.

3.9 Suggestions and comments

Docs presents 2 options for collaboration - editing mode, in which changes are instantly
applied and recorded in the revision log, and suggestion mode. Each collaborator has an
associated color; their suggestions are colored edits made directly in the page. Deletion
is represented by a strikethrough style in the personal color. These edits are recorded
in the changelog similar to regular revisions with special suggestion insert and delete
actions. Collaborators with commenting or editing permission may make suggestions;

viewing access is insufficient to make suggestions or comments.

In Listing 3.9, Tesr is typed in suggestion mode at index 13 in the document. A single
character is deleted (dss @15-15), and t is added to form Test. This is followed by
a non-suggestion delete (ds) from index 627 to 723. Mark section for delete (msfd) is
a suggestion to delete existing text in the document, which appears as a strikethrough

markup on the page. Docs is currently the only service that supports suggestions.
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"changelog": [

[{"ty":"iss", "sugid":"suggest.b5e3j06tc287", "s":["Te" ,"ibi":13},
148...779,"030...951",291, "4a9...sc98",2,null],

[{"ty":"iss", "sugid":"suggest.b5e3j06tc287","s": "sx" ,"ibi":15},
148...522,"030...951",292,"439...sc98",3,null],

ey aser, EEIFISIVEENAIS]).
148...831,"030...951",293,"4a9...sc98",4,null],

[{"ty":"iss", "sugid":"suggest.b5e3j06tc287", "s": "t" ,"ibi":15},
148...462,"030...951",294,"4539...sc98",5,null],

rey: o, )

148...146,"181...856",295,"6c5...5s413",0,null],

{"ty": "msfd",_, "sugid":"suggest .no82u2ec09kqg"},

148...864,"181...856",296,"6c5...413",1,null]]

LisTING 3.9: Suggestion example, revisions 291-296. Insert in yellow, delete in red

Comments are supported by all collaborative services offered by G Suite except Forms.
Each service interacts with the internal comment API backend in the same manner. There

are slight differences in how the initial comment is registered in the revision log:

Docs— Anchor is noted along with the corresponding kiz ID.

Sheets— The comment is noted by cell location, no ID information is sent.

Slides— No revision log change.

Forms— No revision log change.

43



{"ty": "as",

"st": "doco_anchor",

"si": 275,

"fm": false,

"sm": { "das_a": { "cv": {"op": "insert", "opIndex": 0,

"opValue": "kix.b2nji6écpuond"}

y
"ei": 289

LisTING 3.10: Creating a new comment in Docs

For all services, comments are not tied to any revisions; they are simply attached to
some resource. Direct comment access is provided through the public API for Docs,
Sheets, and Slides; Forms is the only service that has no comment support. As noted in
section 3.8, we were able to retrieve comments from Sites by discovering the comment
pane is virtualized as a Google Drive file, which contains all of the page’s comments.

Attempting to create new replies or comments was met with authorization issues.

3.10 Recoverable Information

Since the revision log contains a complete and detailed history, a wealth of information is
recoverable. Even when reverting to previous versions, the old history is left intact due
to the append-only nature of the log. Sharing a G Suite application for collaboration is,
in effect, revealing the entire history. Images thought long-deleted are recoverable as long

as the document exists; anyone with editing permission may recover these images.

In documents, suggestions are merely direct document edits that have been marked-up;
there is no API support for retrieving or viewing past suggestions. Once they are accepted
or rejected, that piece of history is lost from any document snapshot. The change becomes
a part of the document, and details about which user made the suggestion and how that
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suggestion evolved over time are lost. However, this becomes a permanent part of the

revision log, which our tool can reconstruct any suggestion history.

Comments are supported among all of the G Suite services except Forms; they all use
the same backend. Updates are sent through the API, which returns a list of all com-
ments existing for that application. These updates largely bypass the revision log; initial
comment creation behavior is described in section 3.9. The drive API, however, provides
a way to recover all comments on files with at least commenting permissions. Deleted
comments are stripped of content but all metadata remains, including time of deletion,

creation time, and author.

Listing 3.11 shows an example of deleted comment metadata. Creation and modification
(deletion) times are noted in bold. Words highlighted on the page when creating the
comment remain even after deletion. The resolved field shows this comment was initially
resolved, and then deleted at a later time; this would be false if the comment was deleted
before being resolved. Active comments have the same form, with the content of the

comment and replies appearing in the highlighted areas.
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"modifiedTime": "2017-03-19T21:57:54.732Z2"

"quotedFileContent": "value": "on to google dr"
"modifiedTime": "2017-03-19T21:41:53.1962"
"createdTime": "2017-03-19T21:41:53.1962"

"createdTime": "2017-03-19T21:41:23.1152"

LisTING 3.11: Deleted comment metadata

Sharing any document for collaboration effectively shares the entire history. Even partial
permissions, like comment-only, reveal all comments made or deleted since creation. Im-
ages and Drawings are able to be recovered for as long as the original file exists. The only
way to permanently erase previous history is by cloning, which creates a new file and
inserts the most recent snapshot. This allows collaboration on a file containing sensitive

history; however, erasing the revision log also removes the ability to revert to previous
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revisions. Any new edits made in the cloned document become a part of the revision log

as normal.
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Chapter 4

Kumodocs

Our proof-of-concept tool, kumodocs, was designed to acquire, process, and store G
Suite cloud-native artifacts. These artifacts are retrieved using private API calls and
transformed into a standardized log format. Plain text, images, Drawings, comments,
and suggestions are extracted from the intermediate log. New services tare easily added,

requiring only a module to retrieve and parse logs.

4.1 Installation

Installation and use has been tested on Windows 7, Windows 10, Ubuntu 14.04 LTS,
and Ubuntu 16.10 LTS. The source code is platform independent; it should work on any
operating system that supports Python 2.7. Python comes installed on many Linux
distributions and Mac OS X Sierra. Installers are provided for other Mac OS X and

Windows operating systems. [13]

4.1.1 Requirements

e Windows or Linux machine
e Python 2.7.x
e Python packages:

— Pip
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— google-api-python-client 1.6.2
— httplib 0.10.3

— oauth2client 4.0.0
° A{n)reg$tenxifor(}oogkaAIﬂﬁuseaI https://console.developers.google.com

e Google account credentials

4.1.2 Python 2.7

Many Linux distributions come with Python27. The exact version of Python can be

checked with the command line for any OS:

shane@ubuntu: “$ python --version

Python 2.7.12

LisTING 4.1: Checking python version

If the proper version of Python is not available, download the latest 2.7.x installer for
Mac OS X or Windows from https://www.python.org/downloads/. Any minor
version of Python will suffice; the latest version of 2.7.x will contain the most up-to-date

bug fixes. For older Ubuntu systems with Python < 2.6:

# Install dependencies
sudo apt-get install build-essential checkinstall
sudo apt-get install libreadline-gplv2-dev libncurseswb-dev libssl-dev

libsglite3-dev tk-dev libgdbm-dev libcé6-dev libbz2-dev

# Download Python2.7
cd “/Downloads/

wget https://www.python.org/ftp/python/2.7.12/Python-2.7.12.tgz

# Extract

tar —-xvf Python-2.7.12.tgz
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cd Python-2.7.12

# Install
./configure
make

sudo checkinstall

LisTING 4.2: Installing Python 2.7 on Ubuntu

4.1.3 Kumodocs

Kumodocs is available at the following Github repository:

git clone https://github.com/kumofx/kumodocs.git

LisTING 4.3: Cloning kumodocs repository

The code can also be downloaded as a zip file if Git is unavailable:

https://github.com/kumofx/kumodocs/archive/master.zip

LISTING 4.4: Downloading zipped contents without Git

4.1.4 Python packages

The text file requirements.txt contains all necessary packages. This can be installed

with the python package manager pip:

pip install -r requirements.txt
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4.1.5 Configuration

Kumodocs requires a client ID and client secret to be saved in config/gdrive_config
These can be obtained by creating a project at https://console.developers.
google.com. Once a project is created, OAuth client ID can be generated on the

credentials tab as shown in figure 4.1.

API API Manager Credentials

»
a1 Dashboard Credentials OAuth consent screen Domain verification

i Librar
i y Create credentials ~ Delete

o~ Credentials API key

Identifies your project using a simple API key to check quota and access

OAuth client ID
Requests user consent so your app can access the user's data

FI1GURE 4.1: Creating OAuth client ID and secret

Choose "other” for app type, name the client, and click create to generate the creden-
tials. Figure 4.2 shows a successful creation. The secret and ID need to be added to
kumodocs/config/gdrive_config. json to allow the client API access. Running
kumodocs without the appropriate configuration will prompt the user to enter this client

secret and ID.

OAuth client

Here is your client 1D

553469422945-de2f512ss8prk6igr3245it2bm6lubi4. apps. googleusercontent. col |r;|

Here is your client secret
a5CZL6W8B418nxHyMIqwVPOM 0

OK

FIGURE 4.2: Successful creation screen

o1

. Jjson.


https://console.developers.google.com
https://console.developers.google.com

4.2 Use

Once kumodocs is configured, it may be used from the command line.

python kumodocs.py

When kumodocs launches, it checks for any saved Google credentials. If none are found,

the authentication process will open a browser and ask the user to sign in to their account.

python kumodocs.py

Your browser has been opened to visit:

https://accounts.google.com/o/ocauth2/auth?scope=https%$3A%2F%2Fwww. . .

Figure 4.3 shows the browser request. Once verified, the appropriate tokens are saved
in the config/ folder for future use. Used without any arguments, kumodocs will
guide the user to choosing a Document or Slide. A file dialog is opened, virtualizing the
contents of the user’s Google Drive. Each service is a folder, which contains the file names

of all files within that service.

~ Kumodocs would like to:
L View and manage the files in your Google Drive

By clicking Allow, you allow this app and Google to use your information in
accordance with their respective terms of service and privacy policies. You can

change this and other Account Permissions at any time.

FI1GURE 4.3: Requesting authorization

Choosing a file will start the appropriate service and retrieve the revision log according

to user input. The user choses a revision range, with the maximum number of revisions

52



being displayed. Once a range is chosen, the revision log is fetched, parsed, and the

output is saved in ./downloaded/gdocs/<file> <start>-<end>/.

Chose file: test-doc
Start from revision(max 108): 1
End at revision(max 108): 50

Finished with output in directory ./downloaded/gdocs/test-doc_1-50/

LisTING 4.5: Example use case, selecting file test-doc from revision 1 to 50

The output directory contains several files depending on the service —

e Docs: Any deleted images or Drawings, comments, suggestions, and a plain-text

snapshot as of the ending revision.

o Slides: Any deleted images or Drawings, comments, and a plain-text snapshot as
of the ending revision. This snapshot is rendered as a tree structure, with a folder

for each slide and a text file for each text box.

e Sites, Forms, and Sheets: Only the revision log is obtained.

While kumodocs can acquire the revision log for any collaborative service saved in Google
Drive, we currently only fully process artifacts obtained from Docs and Slides. Once a
parser is finished for the other services, we can obtain any deleted images, Drawings, and

comments in the same manner.

4.3 Quill playback

In order to support independent playback and archival of Docs artifacts, we developed
a playback feature using the Quill[l] open-source editor. This web app, written in
JavaScript, takes a revision log in intermediate format as input. Each line of the log
is replayed in the editor, showing how the document evolved over time. Varying speeds
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are supported for playback, and a slider allows jumping to any revision. Since this only
needs an intermediate log as input, any service could be used as long as the format is

properly followed.

4.4 Google Drive API

Our tool uses a number of Google Drive’s public and private calls to retrieve data. Un-

documented methods are used to retrieve images and revision logs.

4.4.1 Public Drive API

Each requires an authenticated service object, and returns a resource that must be sent

by appending .execute ().

e Build service: service = build(”drive”, ”v2”, http=http)

Builds an authenticated drive service for API calls.

o list files: files().list(q=search_param|drive_type], fields="‘items(title, id)’)
The fields parameter filters any response to the specified fields, reducing un-
necessary data being sent. The g parameter specifies which drive type should be
listed.

e list revisions: revisions().list(fileld=file_id, fields=‘items(id)’)
This lists the major revisions of a file; the last major revision denotes the upper
limit for log requests.

e list comments: comments().list(**params)

Params is a dictionary containing fileld, includeDeleted, and fields=‘comment _fields’.

e File title: files().get(fileld=file_id, fields="'title’)

Get returns all metadata associated with file_id filtered to items listed in fields.
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4.4.2 Private Drive API

Kumodocs uses private calls to obtain logs and images not available through public

means.

e Revision log: /{service}/d/{file_.id} /revisions/load?start={start } &end={end}

Returns the log as described in subsection 3.3.2, consisting of a chunkedSnapshot

and changelog

e Image URLs: /{service}/d/{file_id} /renderdata?id={file_id }

Requires authorization to execute; returns image URLs accessible to anyone.

Renderdata requires the following form data:

renderOps: {"r0": ["image", {"cosmoId":"laC ... LTJs",
"container":"1UP ... uxk"}],

"r1": ["image", {"cosmoId":"1MS ... HGM",
"container":"1UP ... uxk"}],

LISTING 4.6: Renderdata form data

These requests are sent by accessing the httplib2 object attached to the authenticated

service.

service._http.request (render_url, method=‘POST’, body=body, headers=headers
)

LisTING 4.7: Constructing a renderdata request
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4.5 Intermediate format

Each revision log contains transactions, groups of elementary actions simultaneously ex-

ecuted, which create deeply nested structures. The intermediate format flattens this log,

separating each transaction component into its own line and given the same identification

data. Keys are substituted to a somewhat human-readable form; this mapping can be

changed as desired. A vertical bar (|) is used to separate values due to the appearance of

other common delimiters in the source data; this is an optional parameter to the parser

that can be changed. The first field contains a timestamp, followed by a Google ID, re-

vision number, session ID, session revision, and action type. The last line of the revision

log contains a dictionary of style modifications and indices to be used to carry out the

requested action.

144...029]181...856]403|3el|...c20|46|ins|{ "ins_index": 131,

"string": " two" , "type": "is"}
144...029|181...856|403|3el]|...c20]|47]ins|{ "ins_index": 135,

"string": "n", "type": "is"}
144...029]1181...856|403|3el|...c20]47]adj|{"end_index": 135, "type": "as",

"style_type":
144...029]181...
"style_type":
144...029|181...
"end_index":
144...029]181...

"end_index":

"paragraph", "start_index": 135, "style_mod": {...}
856]1403|3el]|...c20|47]ad]j|{"end_index": 135, "type": "as",

"list", "start_index": 135, "style_mod": {...}

856|403|3e1|...c20|47|del|{"start_index": 135,
135, "type": "ds"}

856|403|3el|...c20]47|del|{ "start index": 133,
134, "type": "ds"}

LISTING 4.8: Transaction of 5 actions at revision 403

Each timestamp is the same, ending in ...029. Insert actions are highlighted in yellow,

while delete is in red. All actions occur in the transaction containing revision 403, and

this is the 47" edit in session 3el...c20. The style modification dictionaries were

shortened due to size constraints, with each containing 11-20 key-value pairs.
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4.6 Summary

Kumodocs was designed with abstraction in mind in order to accomodate any collab-
orative service that stores fine-grain revisions. Other services such as Zoho Writer
or Dropbox Paper would only need a driver to retrieve the revision log and a parser
converting this log to the intermediate format used by kumodocs. Any revision log

converted to the intermediate format will also have playback support.
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Chapter 5

Discussion

Our study of G Suite protocols was motivated by the shortcomings of adapting traditional
forensics to the cloud. Previous work focusing on recovery of trace client data had found
mostly evidence of cloud use and occasionally cached data, but few artifacts of actual
use. We were able to obtain cloud-native artifacts in the form of revision logs from
every service except for Sites; however, similar information is available in the admin
control panel. These cloud natives contain the entire editing history in an append-only
form, which prevents spoiling of evidence. In addition to the revision logs, we were able
to recover deleted images, Drawings, and comment information. These artifacts were

available by any user given editing permission to a file.

Even when reverting to previous versions, the old history is left intact due to the append-
only nature of the log. Sharing a G Suite application for collaboration is, in effect,
revealing the entire history. Even partial permissions, like comment-only, reveal all com-
ments made or deleted since creation. Images and Drawings are able to be recovered for
as long as the original file exists. The only way to permanently erase previous history is
by cloning, which creates a new file and inserts a snapshot of the most recent revision.
This allows collaboration on a file containing sensitive history; however, erasing the revi-
sion log also removes the ability to revert to previous revisions. Any new edits made in

the cloned document become a part of the revision log as normal.

We found many commonalities in the underlying internal API used by each of the col-
laborative services. The overall structure of the append-only revision logs was similar in

each case: a single array for each revision (which could be nested with multiple actions in
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a single transaction), ending with a timestamp, the editor’s Google account 1D, revision
number, session ID, session revision number. Each array begins with an action type,
which indicates how to process the rest of the revision. Differing services handled the rest
of the protocol implementation in varying methods; Docs, contains abbreviated key-value

pairs, while other services are cryptic lists of numbers.

The granularity of changes varies between committed revisions and incremental revisions.
In Slides, revisions are stored as often as each character; Docs often contains clusters of 1-
3 characters in revisions. The remaining services have some method of editing fields (cells
for Sheets, questions for Forms, website for Sites) that are only saved upon committing

changes.

We noted unexpected behavior in the way Google stores images. Any images or Drawings
that are deleted from a file are still recoverable as long as the file still exists. From an
application design perspective, some reference would need to be kept in case of reverting
to a version before deletion. However, most users would not expect these images to stay
forever; even less would expect the entire editing history being shared upon collaboration,
including the ability to recover these lost images. These images are also available without
authentication; retrieving the CDN links requires proper permission, but may be shared
with anyone once obtained. Cloning or deleting a file effectively clears the history and
all references to previous images. Even in this case, we found images to remain available
in Google’s CDN for about an hour before removal. Hastily deleted documents would
also have a narrow window of recovery — these images might be recoverable by combining

memory and browser forensics with our tool.

Our results show that reverse engineering is likely to be a necessary part of future SaaS
analysis, focusing on network protocols. The most important artifacts of cloud services
are unavailable on the client, which further validates our motivating concerns. How-
ever, being able to monitor all network traffic, create JavaScript and XHR breakpoints,
and instrument crucial junctures gives an advantage over traditional reverse engineering.
Public APT acquisition is incomplete without the acquisition of cloud-native artifacts that

contain valuable state data unavailable otherwise.
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Complexity increases when private calls obfuscate inner workings and the client is pre-
sented with the result of server computation. Offloading much of the computation to
a centralized servier is great for offering a consistent experience, increasing browser re-
sponsiveness and speed. As computing power continue to improve, however, we would
expect to see a proportionate amount of work being relegated to browser and client with
the same experience maintained. It is likely that reverse engineering efforts will become

easier as clients shoulder more of the computation.

Recovering these cloud natives also allows archival of evidence. Among the services
we analyzed, there are no reliable means to store files on the local system. Snapshots
are available at certain points in time, but this misses revision history, deleted images,
comments, and suggestions. Protocols may also change over time, and there are currently
no ways to “upload” a revision log to create a new document. Clearly, there is a need
for tools to recover, process, and store, and playback these artifacts independently of the

native SaaS application.

G Suite collaborative services all use the same API backend, as we can see in the shared
behavior in retrieving revision logs and comments. These logs, and the storing of fine-
grain revisions, come about as an optimal collaborative editing solution. Similar patterns
can be seen in each of the collaborative solutions offered in regards to revisions. This can
be seen in other major collaborative services, showing that G Suite is fairly representative.
We find evidence of incremental revisions of similar structure being sent in Zoho Writer,
Dropbox Paper, and Microsoft Word Online. Through a private method, we were able
to obtain 25 revisions at a time from Zoho Writer’s log, which can be used to build the
total contents; however, we did not easily find a means to retrieve editing logs from the

other services.
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Chapter 6

Conclusion

We showed that traditional client-based forensic approaches were insufficient when ap-
plied to cloud environments. Previous work recovered few artifacts of use, as the most
important data structures are internal to the web/SaaS applications. This client-centric
approach is inherently deficient since it cannot account for cloud-native artifacts, internal
data structures that maintain the persistent state of web applications. These artifacts
have no presence on the client, and are maintained solely in the cloud. By reverse en-
gineering G' Suite collaborative protocols, we were able to recover these cloud natives in

the form of revision logs detailing the complete editing history of a file.

We analyzed protocols in the five online collaboration services offered by Google: Docs,
Slides, Forms, Sheets, and Sites. Strong commonalities were found in all services, storing
a log of complete editing history. Recovering these revision logs, combined with API-based
acquisition, produces a more complete solution for cloud drive forensics. Our proof-of-
concept tool, kumodocs, is able to acquire, process, store these logs with playback

support for Docs.

We greatly expanded Somer’s initial work on Google Docs protocols, analyzing the nature
of the chunked snapshot and changelog in great detail. This was extended to all collabo-
rative services offered by Google, in which we found great similarities in the structure of
these revision logs and the internal protocols used by these services. By processing these
logs, we were able to recover vast amounts of deleted data from Docs and Slides, including
evidence of previous suggestions and any comments made. Deleted comments have their

content stripped, but still contain a wealth of metadata — any conversations occurring
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through comments and replies can be associated to each author with timestamps given
for creation and deletion. Other SaaS/web applications are likely to contain much more

detailed artifacts in this manner than standalone client applications.

Kumodocs was developed to be easily generalizable to other collaborative services. Re-
vision logs are transformed into an intermediate format, which are processed for artifact
recovery. Any new services can be added by the addition of a simple log acquisition and
parsing module. We also created a playback mechanism for Docs which uses the interme-
diate format, making this compatible with any logs obtained from other word processing
apps, such as Zoho Writer. In addition, kumodocs can be used as a privacy auditing
tool, allowing one to view all recoverable images, comments, and suggestions associated

with their Google Drive.

By combining private and public API, kumodocs is able to obtain artifacts unavailable by
other means. Forms, which has no native revision functionality, still maintains a revision
log that we can recover, showing in far greater detail a form’s evolution over time. Even
though major revisions are available through the public API and browser interface, we are
able to obtain a snapshot at any point in time. We are also able to access comment data
from Sites, which is not supported in other means; deleted comments or replies contain

the same metadata as the other services, as it uses the same underlying back end.

We found that G Suite collaboration exposes the complete editing history — a feature most
users would not expect. Even partial commenting permissions allows every comment to
be retrieved. Deleted comments and replies contain creation and deletion times as well as
authorship information, with the ability to link others in conversation at specific points
in time. Any images inserted become a part of the permanent history as well, being
accessible to anyone with editing permission. The only reliable way to collaborate on a
work in progress without exposing history is to clone the document; however, this erases

the ability to revert to prior versions.
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Appendix: Changelog keys

This appendix lists known keys found to appear in the changelog; Unknown keys will be
listed in the following table.
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TABLE 1: Docs changelog keys

Key Interpretation

operations
mlti multi-operation (transaction)
is, ds insert/delete string

ae, de, ue, te  embedded elements:  adjust,

delete, update, tether (to an-

chor)
rvrt revert to earlier revision
op (kix) operation: add/remove

anchors, embed objects, etc.

sdef_ps, set default paragraph/text style
sdef_ts

as, sm adjust style/style modifications
msfd suggestion delete range (mark

string for delete)

usfd undo suggestion delete range
(undo string for delete)

sas suggestion adjust style

sugid suggestion id

operation attributes

mts multi-operation description
S string argument

si, ei starting/ending index

ibi insert before index

tbs_al, ths_of  table alignment /offset

das_a doc adj style anchor

document attributes

ds_pw, ds_ph  page width/height
ds_mt, ds_-mb  top/bottom margin
ds.ml, ds.mr left/right margin
lgs_1 language
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TABLE 2: Docs style keys

Key Interpretation

header styles

hs_t, hs_st title, subtitle
hs_nt normal text
hs_hl hl

hs_h6 h6

paragraph style

ps_hdid, heading id/style

ps-hd

ps_al, ps_s horizontal alignment line space
psl, ps_ifl indent line/first line (amount)

ps_sb, ps_sa space before/after paragraph

(amount)

text style

ts_ff, ts_fs font family /size

ts_fge, ts_bge  foreground/background color
ts_bd, ts_it bold/italic

ts_un, ts_st underline/strikethrough

ts_sc, ts_va small caps, vertical alignment
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TABLE 3: Slides changelog codes

Code Interpretation
operations
0 delete box
3 add box
4 transaction
5 modify box
6 adjust page element
9 adjust page style
12 add slide
13 delete slide
14 move slide
15 add text
16 delete text
17 adjust text style
18 set slide attributes
22 insert table
43 transition
44 insert image
style modifications

[0, 1] bold flag

[1,1] italics flag

2,1] underline

[4, hexvalue] color

[5, ffamily] font family

[6, fontsize] font size (6..400)

[7, fontmod] super/subscript font (l=super,
2=sub)

[11, spacing] line spacing (100/115/150/200)

[12, halign]  horizontal alignment (1=left (de-
fault), 2=center, 3=right, 4=jus-

tified)
[20, 1] strikethrough flag
[44,valign]  vertical  alignment  (O=top,

1=middle, 2=bottom)
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