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Abstract:  To assess possible impacts on Lake Pontchartrain fishes from the 2005 hurricanes, we 45 

compared trawl, beach seine, and gillnet collections taken before (2000-2003, 2005) and after 46 

(2006-2009) to determine if significant assemblage changes occurred.  We also compared basic 47 

environmental variables to test for hurricane-related changes.  Significant post-hurricane changes 48 

in fish assemblages occurred in trawl (ANOSIM, R < 0.090, p < 0.05) and beach seine 49 

(ANOSIM, R < 0.120, p < 0.05) collections across all seasons.  Gillnet assemblages exhibited 50 

changes in only one season (ANOSIM, R = 0.045, p < 0.05).  These consistently low global R 51 

values (all R < 0.120) across all gears suggest only minor compositional changes in species.  52 

When peak abundance periods were compared for individual species, Gulf menhaden 53 

(Brevoortia patronus) declined in trawl collections after the hurricanes (Friedman’s test, χ
2 
= 54 

6.00, p = 0.014) but increased in gillnet collections (Friedman’s test, χ
2
=5.00, p = 0.025).  55 

Hardhead catfish (Ariopsis felis) increased in trawl collections, but  Gulf pipefish (Syngnathus 56 

scovelli), naked gobies (Gobiosoma bosc), and rough silverside (Membras martinica) all 57 

declined in beach seine samples and Atlantic croakers (M. undulatus), Spanish mackerel 58 

(Scomberomorus maculatus), and sand seatrout (Cynoscion arenarius) all declined in gillnet 59 

samples.  In general, salinity increased and water clarity and dissolved oxygen decreased after 60 

the hurricanes.  While the overall composition of Lake Pontchartrain fish assemblages remains 61 

stable, the significant decline of some species and changes in certain environmental variables are 62 

cause for concern.  Future monitoring should determine if all elements of this estuary will 63 

recover from these impacts. 64 

 65 

 66 
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 81 

Introduction 82 

 Estuarine fish assemblages typically exhibit resilience to large-scale natural disturbances 83 

such as hurricanes (Greenwood et al. 2006; Stevens et al. 2006; Switzer et al. 2006).  While 84 

acute assemblage impacts may occur in the short-term due to hypoxic conditions (Stevens et al. 85 

2006) or other immediate changes in water quality (Greening et al. 2006), for the most part 86 

estuarine fish populations recover by the following season if not sooner.  Unlike less mobile 87 

estuarine organisms such as benthic infauna (Poirrier et al. 2008), adult fishes can actively swim 88 

to avoid hazardous conditions and re-colonize affected habitats soon after disturbances 89 

(Greenwood et al. 2006).  More severe hurricane assemblage impacts have been observed in 90 

physically restricted estuarine habitats such as coastal streams (Van Vrancken and O’Connell 91 

2010) and tidal freshwater marshes (Piazza and La Peyre 2009) where extensive habitat damage 92 

occurs.  Fish assemblage recovery in these habitats is also slower because their hydrologically 93 

isolated nature precludes rapid recolonization. 94 

 Although estuarine fishes in the southeastern United States have evolved resiliency to 95 

hurricanes, their ability to recover may be reduced in systems where anthropogenic disturbances 96 

occur alongside natural disturbances (Mallin and Corbett 2006).  Short-term resiliency to 97 

disturbances by estuarine fishes may hide significant long-term impacts associated with 98 

artificially altered habitats.  For example, in Lake Pontchartrain (a large oligohaline embayment 99 

that borders New Orleans in southeastern Louisiana) we observed little to no year-to-year fish 100 

assemblage change in a short term (three years) study (O’Connell et al. 2006).  When we used a 101 

larger data set that ranged over the last half century, though, we identified marked declines in a 102 

common benthic fish species (Atlantic croaker, Micropogonias undulatus) and these impacts 103 
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were associated with extensive habitat destruction (i.e., shell dredging) in Lake Pontchartrain 104 

(O’Connell et al. 2004).  We recognize, though, that hurricane impacts may not actually be 105 

responsible for observed fish declines, especially when data are not analyzed thoroughly.  A 106 

decline in species richness, total fish abundance, and abundances of select species on a coral reef 107 

in St. Croix were initially assumed to be caused by Hurricane Marilyn in 1995.  On further 108 

analysis, though, these impacts were found to be unrelated to the storm and indicated that other 109 

forces (e.g., fishing pressure) were responsible (Adams 2001).  As in other estuary and marine 110 

habitats, there is a need in Lake Pontchartrain to better understand the relationships between 111 

anthropogenic effects and the innate resiliency of the aquatic ecosystem to natural disturbances 112 

(Greening et al. 2006; Poirrier et al. 2008). 113 

 Hurricanes Katrina and Rita struck southeastern Louisiana in autumn 2005 causing a 114 

unique combination of both natural and anthropogenic impacts for the Lake Pontchartrain 115 

ecosystem.  Natural impacts from both storms included large storm surges (2 - 4 m) which 116 

inundated the estuary and caused extensive infauna mortality (Poirrier et al. 2008).  The most 117 

prominent anthropogenic impact associated with the 2005 storms was the discharge of 118 

floodwaters from inundated New Orleans into Lake Pontchartrain (Hoe et al. 2006; Van Metre et 119 

al. 2006).  These stagnant floodwaters had remained in the flooded city for three weeks after 120 

Hurricane Katrina struck and were assumed to be a highly toxic combination of biological and 121 

chemical components (Farris et al. 2007).  To assess possible impacts on Lake Pontchartrain fish 122 

assemblage due either to natural or anthropogenic impacts associated with the 2005 hurricanes, 123 

we compared monthly trawl, beach seine, and gillnet collections taken at six sites before (2000-124 

2003, 2005) and after (2006-2009) to determine if significant assemblage changes occurred.  We 125 

also tested for significant post-hurricane declines or increases in abundant or influential fish 126 
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species.  To better understand whether natural or anthropogenic impacts drove assemblage 127 

change, we also compared pre- and post-hurricane measurements of basic water quality 128 

parameters. 129 

 130 

 131 

Materials and Methods 132 

Study location  133 

 Lake Pontchartrain is a semi-enclosed oligohaline estuary with a surface area of 1,630 134 

km
2
 and a mean depth of 3.7 m (Sikora and Kjerfve 1985).  It experiences low tidal ranges 135 

(Swenson 1980) and receives fresh water input from Lake Maurepas to the west and numerous 136 

rivers and streams along its northern shore.  During periods of extremely high discharge (e.g., 137 

2008, 2011), Mississippi River water is diverted into the Lake via the Bonnet Carre Spillway 138 

which is located in the southwest region of the Lake.  Sources of pollution include urban runoff 139 

from the Greater New Orleans Metropolitan Area (GNOMA) and agricultural runoff from rivers 140 

and streams along the northern shore (Penland et al. 2002).  Much of the southern shore is 141 

armored and limited beds of submersed aquatic vegetation (SAV) still occur, mostly along shore 142 

in the northeast region of the Lake.  Until recently, there was an artificial connection between 143 

Lake Pontchartrain and the Gulf of Mexico via connections with the Mississippi River Gulf 144 

Outlet (MRGO).  This connection allowed higher salinity water to enter the southeastern region 145 

of the Lake.  When New Orleans was pumped dry after the 2005 hurricanes, the storm water was 146 

released into the estuary through outfall canals on the southern shore.   147 

 148 

 149 
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Data Collection 150 

 For both pre- and post-hurricane sampling, fishes were collected using three gear types: 151 

trawls, beach seines, and gillnets.  Trawl sampling in demersal habitats involved using a 4.9 m 152 

otter trawl, consisting of a 16 mm bar mesh body and a 6.3 mm bar mesh tail.  Since Lake 153 

Pontchartrain has an average depth of 4.27 m, the standard scope ratio of 7:1 was maintained by 154 

using 30.5 m warps connected to the standard 40 cm X 76 cm wooden doors.  The tow duration 155 

was maintained at 10 minutes and the speed kept at a constant 1.83 m/s using a GPS receiver.  156 

For shallow nearshore habitats, we used a 15.25 m X 1.83 m bag seine with 0.95 cm mesh which 157 

was pulled to sample 50 m X 15.25 m of habitat at each site.  In deeper pelagic habitats, we 158 

fished a 250 m X 3.66 m gillnet with different mesh sizes: bar measurement was 5.08, 6.35, 7.62, 159 

8.89, and 10.16 cm for five equally sized panels.  Gillnets were fished using the strike method 160 

which involves setting the net and circling it three times with a boat to drive fishes into the 161 

panels.  162 

 All three gear types were fished on a monthly basis both prior to the 2005 hurricanes 163 

(2000-2003, 2005) and after (2006-2009) at five sites in Lake Pontchartrain, with an extra mid-164 

lake trawl sample also included in the analyses (Fig 1).  A total of 1,674 collections were made: 165 

787 pre-hurricane collections (410 trawls, 224 beach seines hauls, and 153 gillnet sets) and 887 166 

post-hurricane collections (455 trawls, 252 beach seines hauls, and 180 gillnet sets; Table 1).  167 

Fishes were either counted, identified, and released in the field or anesthetized with sodium 168 

bicarbonate (UNO-IACUC Protocol # 09-016), fixed with 10% formalin, and processed back in 169 

the laboratory.  For each collection, salinity, dissolved oxygen (ppm), Secchi depth (m), and 170 

surface water temperature (
o
C) were measured.  171 

 172 
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 173 

Data Analyses 174 

 Prior to assessing possible long-term assemblage changes, we tested for short-term, acute 175 

assemblage changes immediately following the hurricanes.  We pooled the data by year and for 176 

all gear types and performed non-metric multidimensional scaling (MDS) plots to determine if 177 

2006 assemblages (those collected in the year following the hurricanes) differed from those in 178 

subsequent years.  In these plots, multi-dimensional relationships are represented in a two 179 

dimensional graph and assemblages that are more similar in species composition appear closer 180 

together.  The resulting MDS plots showed no evidence that 2006 assemblages were different 181 

from subsequent years for all gear types.  Based on these results, we included data from 2006 in 182 

all of our analyses.  183 

 To determine if fish assemblages changed after the 2005 hurricanes, we conducted 184 

analysis of similarity (ANOSIM) to compare species composition using PRIMER v6 software 185 

(Clarke and Warwick 2001).  This multivariate method compares multiple assemblages and 186 

establishes if statistically significant differences exist among them.  Because estuarine fish 187 

assemblages change seasonally (e.g., influx of marine species), we minimized this potential 188 

influence by only comparing collections made in the same time period or season.  We 189 

determined seasons for each gear type by using agglomerative hierarchical clustering with group-190 

average linking (Kaufman and Rousseeuw 1990, Clarke and Warwick 2001) to group months 191 

containing similar fish assemblages into seasonal groups (Idelberger and Greenwood 2005).  192 

After determining seasons for each gear type, we compared collections taken before 2005 in a 193 

given season with collections taken after 2005 in the same season, and so on.  We repeated this 194 

for all seasons and for all three gear types.  For each analysis, seasonal collections taken at either 195 
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five (beach seine and gillnet) or six (trawl) sites were used such that each ANOSIM typically 196 

compared from 60 to 168 pre-2005 collections with 60 to 168 post-2005 collections, with 60 197 

representing the shortest calculated season (beach seine collections from April to June: 3 months 198 

X 5 sites X 4 years) and 168 representing the longest calculated season (trawl collections from 199 

November to May: 7 months X 6 sites X 4 years).  Seasonal data were analyzed using a two-way 200 

crossed ANOSIM design with site and pre/post 2005 as factors.  If a collection contained no 201 

fishes, it was omitted from the analysis.  While these omissions sometimes generated unequal 202 

sample sizes, two-way crossed ANOSIM is robust to minor amounts of missing data (Clarke and 203 

Warwick 2001).  To minimize the influence of rarer species, all abundance data were square root 204 

transformed prior to analysis.  If a significant difference was detected, we used the PRIMER 205 

similarity percentages routine (SIMPER) to determine which species contributed most to the 206 

observed change in species composition. We also generated MDS plots to present the 207 

relationships between pre- and post-hurricanes assemblages for each season and each gear type.   208 

  To test for possible significant post-hurricane declines or increases in those fish species 209 

that were determined to contribute to assemblage dissimilarity based on the SIMPER results or 210 

those that were the top 15 most common species collected by each gear type, we used multiple 211 

Friedman’s tests.  To account for seasonality, we limited our analyses to the 1-7 month 212 

abundance peak for each individual species for each gear type.  This peak was determined by 213 

comparing mean monthly abundances for each species and choosing the multi-month period with 214 

the highest abundances.  With this non-parametric rank-based procedure, we assessed the 215 

species’ data using site averages as the block (that is, the average abundance of a species at one 216 

site over the four year pre/post period) and pre/post 2005 as the factor.   217 
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 We compared pre- and post-hurricane measurements of salinity, dissolved oxygen, 218 

Secchi depth, and surface water temperature to determine if they possibly influenced observed 219 

fish assemblage changes.  We used multivariate analysis of variance (MANOVA) on these 220 

variables only for seasons (determined previously by agglomerative hierarchical clustering) and 221 

gear types when a significant assemblage change was measured using ANOSIM.  For example, 222 

for a given trawl season data were compared using measurements collected from the six sites 223 

before (2000-2003, 2005) and six sites after (2006-2009) the hurricanes.  For each set of seasons 224 

analyzed, data were organized with individual sites as factors and multiple years as replicates.  If 225 

tests for homogeneity of variances could not be met (even with severe transformations), then 226 

those single variables causing the lack of homogeneity were removed and a MANOVA was 227 

conducted on the remaining variables.  If only one variable exhibited homogeneity of variances, 228 

then an ANOVA was used to compare pre/post 2005 data.  Those single variables that exhibited 229 

no homogeneity of variances were compared using Friedman’s test (as explained above).      230 

 231 

  232 

Results 233 

 For trawl data, two seasons were identified by cluster analysis: November through May 234 

(Season I) and June through October (Season II).  Benthic fish assemblages (those collected by 235 

trawls) exhibited significant post-hurricane changes in both seasons (ANOSIM, R < 0.09, p < 236 

0.05).  It should be noted, though, that this low global R value suggests only minor changes in 237 

species composition between periods, with pre/post- assemblages exhibiting little to no 238 

multivariate separation in the generated MDS ordination (Fig. 2).  In both seasons, SIMPER 239 

analyses revealed that bay anchovies (Anchoa mitchilli) and Atlantic croaker (Micropogonias 240 
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undulatus) were more numerous after the hurricanes, while in both seasons Gulf menhaden 241 

(Brevoortia patronus) were less numerous in post-hurricane trawls (Table 2).  For both seasons, 242 

SIMPER analyses also revealed that A. mitchilli contributed most to the observed fish 243 

assemblage changes with M. undulatus the being the second-most influential species (Table 2).   244 

 Beach seine data were more distinctly clustered into three seasonal groupings:  December 245 

through March (Season I), April through June (Season II), and July through November (Season 246 

III).  Inshore fish assemblages (those collected by beach seines) also exhibited significant post-247 

hurricane changes in all three pre-determined seasons (ANOSIM, R < 0.12, p < 0.05).  Again, 248 

the low global-R value suggests minor changes in species composition between periods and 249 

assemblages showed little to no multivariate separation in the MDS ordination (Fig. 3).   In all 250 

three  seasons, A. mitchilli and M. beryllina were less numerous after the storms and these 251 

species contributed the most to assemblage differences in two of the seasons.  The change in 252 

assemblage in the remaining season (II) was attributed mostly to a decrease in B. patronus.  253 

While this species and M. undulatus decreased in two seasons, both species experienced 254 

increases in the remaining season.  255 

 As with the trawl data, gillnet data also clustered into two less distinct seasonal groups, 256 

but these consisted of samples collected from April through October (Season I) and November 257 

through March (Season II).  Gillnet collections yielded only one season (Season I) with 258 

significant assemblage differences between the two periods, again with a markedly low global R 259 

value (ANOSIM, R = 0.045, p = 0.004) and little to no multivariate separation in the generated 260 

MDS ordination (Fig. 4).  SIMPER analyses revealed that differences in this season’s collected 261 

assemblages were attributed to post-hurricane decreases in B. patronus along with increases in 262 
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gafftopsail catfish (Bagre marinus) and hardhead catfish (Ariopsis felis), and to a lesser extent 263 

decreases in M. undulatus (Table 2). 264 

 When peak abundance periods were compared for individual fish species, B. patronus 265 

declined significantly (Friedman’s test, χ
2 
= 6.00, p = 0.014) in trawl collections after the 266 

hurricanes but increased significantly (Friedman’s test, χ
2
=5.00, p = 0.025) in gillnet collections 267 

(Figs. 5 and 7).  Trawl data also revealed a significant increase in A. felis after the hurricanes 268 

(Friedman’s test, χ
2 
= 6.00, p = 0.014; Fig. 5).  In beach seine collections, three species exhibited 269 

significant declines:  naked gobies (Gobiosoma bosc; Friedman’s test, χ
2
=5.00, p = 0.025), Gulf 270 

pipefish (Syngnathus scovelli; Friedman’s test, χ
2
=5.00, p = 0.025), and rough silverside 271 

(Membras martinica; Friedman’s test, χ
2
=5.00, p = 0.025; Fig. 6).  In gillnet collections, three 272 

other species exhibited significant declines:  M. undulatus (Friedman’s test, χ
2
=5.00, p = 0.025), 273 

Spanish mackerel (Scomberomorus maculatus; Friedman’s test, χ
2
=4.00, p = 0.046), and sand 274 

seatrout (Cynoscion arenarius; Friedman’s test, χ
2
=4.00, p = 0.046; Fig. 7).  For all remaining 275 

fish species, there were no significant differences in pre/post-hurricane abundances. 276 

 Trends for some species as measured by the SIMPER analyses did not always agree with 277 

those from the Friedman analyses.  For example, while M. undulatus was an important 278 

contributor to assemblage changes in trawl collections, there was no significant change in its 279 

abundance.  Likewise, in beach seine collections none of the species that experienced significant 280 

declines were important in driving pre/post- assemblage changes based on SIMPER analyses 281 

(Table 2).  For the gillnet data, there is an apparent discrepancy between an increase in B. 282 

patronus during its peak abundance period (April-June) and its supposed decrease during Season 283 

I (April-October).  According to the SIMPER results, this latter decrease contributed greatly to 284 

the measured assemblage difference, with B. patronus being the most influential fish species 285 
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(Table 2).  Although the abundance of B. patronus in collections made this species highly 286 

influential to assemblage compositions, the observed discrepancies suggest that pre/post values 287 

were actually similar (pre-hurricane mean abundance per collection = 19.42 and post-hurricane 288 

mean abundance per collection = 19.40; Table 2).  Also, while changes in the abundance of M. 289 

undulatus contributed somewhat to measured assemblage change in Season I (it was the fourth 290 

most influential species), neither S. maculatus nor C. arenarius (both of which experienced 291 

significant changes in abundance), contributed markedly to this assemblage change according to 292 

SIMPER results (Table 2).   293 

 Salinity was significantly lower (ANOVA, p = 0.042) after the 2005 hurricanes as 294 

measured during Season I trawl collections (Table 3) but was significantly higher for 295 

measurements during Season II trawl collections (ANOVA, p = 0.011) and Seasons I 296 

(Friedman’s test, p = 0.025) and II (MANOVA, p = 0.001) beach seine collections.  Dissolved 297 

oxygen was significantly lower after the hurricanes for measurements taken during Seasons I and 298 

II trawl collections (ANOVA, p < 0.001; Table 3), Seasons I (ANOVA, p < 0.001) and II 299 

(MANOVA, p = 0.008) beach seine collections, and Season I gillnet collections (ANOVA, p < 300 

0.001).  Water clarity as measured by Secchi depth was significantly higher prior to the 301 

hurricanes during Season I (ANOVA, p < 0.001) and II (Friedman’s test, p = 0.014) trawl 302 

collections and also during Season I (ANOVA, p = 0.004) seine collections (Table 3).  All other 303 

pre/post comparisons of these variables, along with pre/post comparisons of water temperature, 304 

were non-significant (Table 3). 305 

 306 

 307 

 308 
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Discussion 309 

 Our results suggest that four years after the 2005 hurricanes, Lake Pontchartrain fish 310 

assemblages have mostly recovered.   Benthic assemblages (as measured by trawl sampling) 311 

exhibited changes in both seasons, but these were driven by the two most common species (A. 312 

mitchilli and M. undulatus) increasing after the storms.  It is interesting to note that these same 313 

two species also increased in Chesapeake Bay after Hurricane Isabel struck in 2003 (Houde et al. 314 

2005).  Concerns exist, however, about measured post-hurricane declines in trawl-collected B. 315 

patronus, especially since numbers of this species had remained relatively stable in Lake 316 

Pontchartrain over a half-century of extensive disturbances (O’Connell et al. 2004).  The 317 

abundance of most individual fish species remained unchanged following these disasters.  The 318 

resilience of these fish assemblages is similar to that observed for other estuaries that were 319 

affected by hurricanes (Greenwood et al. 2006; Piazza and La Peyre 2009; Stevens et al. 2006; 320 

Switzer et al. 2006).  In Breton Sound, an estuary southeast of Lake Pontchartrain, the 2005 321 

hurricanes caused extensive habitat damage to tidal freshwater marshes (Piazza and La Peyre 322 

2009).  While this destruction led to a short-term change in the composition of local species, by 323 

spring 2007 the pre-hurricane nekton community had recovered despite the fact that marsh 324 

habitat remained damaged (Piazza and La Peyre 2009).  Similar physical habitat damage 325 

occurred in Charlotte Harbor, Florida during the active 2004 hurricane season and again the local 326 

estuarine fish assemblage structure remained stable (Greenwood et al. 2006; Greenwood et al. 327 

2007).  It should be noted, though, that continued deterioration of mangrove root structure and 328 

the slow rate of mangrove colonization may yet affect fish assemblages on a long-term basis 329 

(Greenwood et al. 2007).  One of these 2004 hurricanes also generated hypoxic conditions in 330 

Charlotte Harbor which led to local fish kills (Stevens et al. 2006).  This impact was also 331 
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temporary in that the local fish assemblages appeared to have recovered in no more than two 332 

weeks following the storm (Stevens et al. 2006).  During the same hurricane season, the St. Lucie 333 

estuary in southeastern Florida also experienced extensive storm-related disturbances such as 334 

increased fresh water input and near hypoxic conditions (Switzer et al. 2006).  Again, local 335 

nekton community recovery was evident after four months (Switzer et al. 2006).  In most of 336 

these examples, assemblage or community recovery is attributed to the ability of adult nekton to 337 

avoid adverse conditions though their mobility (Greenwood et al. 2006; Switzer et al. 2006).  338 

Such mobility is not available to benthic or sedentary organisms and may lead to relatively 339 

higher hurricane-related mortality for these estuarine organisms (Poirrier et al. 2008).  The 340 

positive effects of nekton mobility in response to disturbances may be minimized when escape 341 

corridors are reduced or eliminated in highly modified estuaries. 342 

In trawl collections after the 2005 hurricanes, the ecologically and economically 343 

important species B. patronus decreased significantly during its typical period of peak abundance 344 

(March through May).  This filter-feeding species serves as a prey item for many other fishes and 345 

supports one of the top fisheries by volume in the United States (Smith 2001; Vaughan et al. 346 

2011).  The extent to which B. patronus influences estuarine communities in the northern Gulf of 347 

Mexico makes this species an indicator of the overall health and productivity of these aquatic 348 

systems (Vaughan et al. 2011).  Trawl sampling in Lake Pontchartrain mostly collects juvenile B. 349 

patronus, not adults.  During the spring (again, March through May) juvenile B. patronus 350 

typically use upper estuaries such as Lake Pontchartrain as nurseries.  Higher salinities could 351 

have driven these fish to use other less saline habitats farther up the estuary such as Lake 352 

Maurepas, similar to the results of other studies of Lake Pontchartrain (Cashner et al. 2001) and 353 

elsewhere (Haley et al. 2010; VanderKooy 2011).  But salinities were lower after 2005 during 354 
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Season I (November through May) trawl collections which coincided with the period of peak 355 

abundance of B. patronus in the trawl (March through May), even though salinities were 356 

typically higher in other post-hurricane comparisons (Table 3).  Another explanation for the 357 

decline in B. patronus is that significantly lower dissolved oxygen levels in both trawl seasons 358 

caused these fish to avoid portions of Lake Pontchartrain.  While these lower dissolved oxygen 359 

levels were not hypoxic (lowest measurement = 4.60 mg/l), nearby ‘dead zones’ had been 360 

identified farther down the estuary in Chandeleur Sound during the same period (Lopez et al. 361 

2010).  In avoiding hypoxic or anoxic areas, aquatic organisms (including B. patronus) can 362 

become concentrated in normoxic water, thus making them more vulnerable to fishing effort 363 

(Smith 2001; Burkholder et al. 2004; Breitburg et al. 2009).  Local commercial fishing pressure 364 

on B. patronus has actually been reduced following the 2005 hurricanes due to damage to fishery 365 

infrastructure, but fishing mortality has also increased possibly due to B. patronus displaced 366 

from offshore hypoxic zones being captured more effectively in near shore waters (Vaughan et 367 

al. 2007).  A similar fishery response was observed in the Albemarle–Pamlico Estuarine System 368 

in North Carolina and Virginia after the active 1999 hurricane season which included three 369 

named storms impacting the region (Burkholder et al. 2004).  Hurricane floodwaters displaced 370 

high numbers of blue crabs (Callinectes sapidus) causing them to “hyperaggregate” in areas 371 

where they were exposed to increased commercial fishing pressure (Burkholder et al. 2004).  372 

This, in turn, resulted in a 70% reduction of adult C. sapidus in 1999-2002 (Burkholder et al. 373 

2004).   374 

One benthic species, A. felis, increased in trawl collections after the hurricanes.  This 375 

species may have benefitted from the lack of commercial fishing pressure in Lake Pontchartrain 376 

due to hurricane damage to boats and infrastructure (Buck 2005).  Benthic fin-fishes are 377 
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consistently taken in large numbers as bycatch in trawling conducted by Louisiana commercial 378 

shrimpers (Adkins 1993).  Unlike the purse seines used in the local B. patronus fishery, trawls 379 

not only impact benthic fishes through direct fishery mortality but also severely alter these 380 

animals’ habitats (Watling and Norse 1998).  The reduced trawling in eastern Lake Pontchartrain 381 

and nearby Lake Borgne likely reduced overall mortality for this species in the years following 382 

the 2005 hurricanes.  Significant changes in post-hurricane environmental variables (decreased 383 

dissolved oxygen and water clarity) in trawl Season II (June through October) which coincided 384 

with the peak period of abundance for A. felis (June through October) likely played less of a role 385 

in explaining the increase in this species, unless this known scavenger was consuming other 386 

organisms that may have succumbed to the detrimental local conditions caused by the hurricanes.  387 

For example, A. felis can adjust its foraging behavior and take advantage of discarded bycatch 388 

generated during shrimping season in southeastern Louisiana (Eustis 2011).  As with other 389 

estuaries, long term increases in such scavenger species may reflect an overall decline in trophic 390 

structure and general ecosystem health.  391 

Three small species, G. bosc, S. scovelli, and M. martinica declined after the hurricanes 392 

in beach seine collections.  For G. bosc, this change may have been associated with decreases in 393 

dissolved oxygen and water clarity, while dissolved oxygen decreases during their periods of 394 

abundance may have explained the decreases in the S. scovelli and M. martinica.  The 2005 395 

hurricanes caused extensive damage to Lake Pontchartrain’s benthic community, especially the 396 

ecologically dominant Rangia cuneata clam (Poirrier et al. 2008).  Many benthic invertebrates 397 

died as a result of scouring as surge waters retreated back to the Gulf of Mexico.  The decline of 398 

R. cuneata (a filter feeding organism) likely contributed to poorer water quality in nearshore 399 

habitats where adults of these three species occur.  Scouring may have impacted G. bosc as it did 400 
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benthic invertebrates because this species is a slow-moving, estuarine-resident goby that is 401 

highly associated with benthic habitats, especially bivalve shell material (Ross and Rhode 2004).  402 

Declines in S. scovelli and M. martinica may be linked to these nearshore species being 403 

commonly associated with submersed aquatic vegetation (SAV).  Under normal conditions, S. 404 

scovelli will use SAV as refuge from predators while M. martinica deposits its eggs on SAV.  405 

The decline of R. cuneata since the storms and subsequent decrease in water clarity over time 406 

may have contributed to a decline in the amount of SAV available for S. scovelli and M. 407 

martinica  (i.e., plants need light).  For example, October 2005 surveys discovered major 408 

decreases in SAV aboveground biomass throughout Lake Pontchartrain (Poirrier et al. 2009).   409 

While many SAV species can eventually recover from hurricane impacts (much like estuarine 410 

nekton), the short term (3-4 years) lack of SAV after the 2005 hurricanes may have interfered 411 

with the ability of S. scovelli to avoid predation and with the reproductive success of M. 412 

martinica.  413 

In gillnet collections, B. patronus increased after the hurricanes during its peak 414 

abundance period, yet this result seemed to contradict both an assemblage-driving decrease 415 

reported by the SIMPER results (Table 2) and the significant post-hurricane decline of this 416 

species in trawl collections (Fig. 7).  On closer examination, the SIMPER decline represents an 417 

in-consequential decrease in mean abundance per collection from 19.42 to 19.40 individuals after 418 

the hurricanes.  The discrepancy between the gillnet and trawl results likely represents a 419 

difference in response to the hurricanes by two different life stages of B. patronus.  Adult B. 420 

patronus are typically only collected in gillnets while juveniles are most numerous in trawl 421 

collections.  We suggest that adult B. patronus (age 2-4 years) fared better after the hurricanes 422 

than juveniles because of their superior swimming ability that allows them to avoid hazardous 423 
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conditions.  Not only would juvenile B. patronus lack this escape ability, they would also be 424 

exposed to those degraded nearshore habitat conditions described in the previous paragraph.  425 

Like the juveniles of most estuarine-dependent species, B. patronus occur in large numbers in 426 

nearshore habitats which they use as refugia from predator pressure.  Because of the ecological 427 

and economic importance of this species, it will be necessary to monitor the recovery of B. 428 

patronus juveniles in this estuary. 429 

The declines in gillnet collections of M. undulatus, S. maculatus and C. arenarius may be 430 

cause for concern, although the latter two species did not contribute to the measured pre/post- 431 

assemblage change measured in April through October (gillnet Season I).  In other words, 432 

although the abundance of both S. maculatus and C. arenarius declined significantly, they were 433 

not the drivers of overall assemblage change and, therefore, not representative of a truly 434 

concerning ecological perturbation (Table 2).  Unlike these two species, M. undulatus did 435 

contribute 8.72% to the overall assemblage change measured in Season I gillnet data, with its 436 

mean abundance declining from 2.54 to 0.61 individuals after the hurricanes (Table 2).  The 437 

abundances of the three species that contributed the most to assemblage change during gillnet 438 

Season I (B. patronus, Bagre marinus, and A. felis) either increased or did not change markedly 439 

(Table 2).  However, the increase of the two catfish species (B. marinus and A. felis) and decline 440 

of two drum (family Sciaenidae) species (M. undulatus and C. arenarius) may indicate the 441 

beginning of system-wide environmental stress or trophic shifts.  Similar changes in dominant 442 

fish species in other estuaries have led to the decline of targeted and desirable fishery species, 443 

that are then replaced by less desirable, lower trophic species.  The alteration of the benthos by 444 

the hurricanes (as described above) may have contributed to the decline of M. undulatus and C. 445 

arenarius, both of which are associated with benthic habitats.  The scouring that displaced many 446 



19 

 

R. cuneata, also likely displaced many polychaete worms, a key diet item for M. undulatus.  447 

While C. arenarius feeds more on penaeid shrimp and A. mitchilli, this species is more benthic-448 

oriented than its sister species C. nebulosus and the disruption of the benthic habitat of its prey 449 

may have led to its decline.  Of the three species that declined in gillnet Season I, S. maculatus is 450 

the only truly marine species (compared to the two estuarine dependent drum species).  This 451 

species is an uncommon late-summer visitor to the estuary, typically occurring in drier years 452 

(e.g., 2000 and 2001).  It is possible that their decline is more the reflection of a lack of true 453 

drought years after the hurricanes rather than impacts from the storms themselves. 454 

After the storms, environmental variables were typical of conditions measured 455 

immediately after other hurricanes in the southeastern United States.  Higher salinity, lower 456 

dissolved oxygen, and increased turbidity are common outcomes of hurricane landfalls in 457 

estuaries (Tabb and Jones 1962; Burkholder et al. 2004; Mallin and Corbett 2006; Stevens et al. 458 

2006; Edmiston et al. 2008).  A repeated theme among these studies of immediate hurricane 459 

impacts on estuaries is that conditions quickly return to normal, including the composition of 460 

local fish assemblages (Tabb and Jones 1962; Piazza and La Peyre, 2009; Rodgers et al. 2009).  461 

The changes in fish assemblages after the 2005 hurricanes were often associated with increases 462 

of influential species and in many seasons the abundances of other common species remained 463 

stable (Table 2).  Though there is concern for species that consistently declined over multiple 464 

gear types (e.g., B. patronus) it appears that many of the hurricanes’ impacts on local species are 465 

short-lived.  Even though many water quality parameters were significantly different after the 466 

hurricanes, our post-hurricane period lasted four years beyond the storms, long after 467 

environmental variables should typically revert back to normal.  In some cases, it is possible that 468 
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environmental variables remained changed due to other circumstances (i.e., impacts from newly 469 

constructed hurricane protection structures, closure of the Mississippi River Gulf Outlet, etc.).   470 

As coastal areas in the southeastern United States become more susceptible to projected 471 

increased tropical storm activity, long term data such as we present here will allow 472 

documentation of any effects from both natural and anthropogenic disasters.   While most 473 

estuarine nekton species appear resilient to storms, we did measure significant declines in 474 

important fishery species (e.g., B. patronus) as well as some smaller, inshore species (e.g., S. 475 

scovelli).   Whether these changes are short or long term, can only be determined with future 476 

sampling.  Beyond estuarine nekton, other organisms such as seagrasses can eventually recover 477 

after storms (Byron and Heck 2006, Poirrier et al. 2009), whereas other taxa (e.g., benthic 478 

bivalves) are more susceptible to hurricane impacts (Poirrier et al. 2008).  If these organisms 479 

which have important roles in estuarine ecosystems (e.g., water filtration, prey items) cannot 480 

recover from hurricane damage, then we may expect to experience long-term impacts on other 481 

organisms which rely on them.  For example, the widespread and ecologically dominant R. 482 

cuneata is an important prey item for blue crabs (C. sapidus) which, in turn, are important prey 483 

items for estuarine finfish, including most drums; as go the prey species, so go the predator 484 

species.  These trophic cascades can develop in estuarine ecosystems and advance unnoticed for 485 

years because nekton species are resilient and estuaries themselves are highly variable on a year-486 

to- year basis.  To detect such impacts, it is necessary to continuously collect and evaluate long-487 

term data to effectively measure possible changes to an ecosystem and determine their causes.  488 

These continuous data will be needed to determine long term trends in declining species or 489 

species that may indicate increasing habitat perturbation.  Managers of estuarine resources need 490 

to beware of the apparent short-term recovery of estuarine nekton assemblages after disasters 491 
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which may hide long-term significant declines in species, such as those we have measured in 492 

Lake Pontchartrain (O’Connell et al. 2004; O’Connell et al. 2007).   493 

 494 
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Fig. 1 Sampling sites in Lake Pontchartrain for trawl, beach seine, and gillnet collections.  Mid-lake site (M) was only sampled with   645 

           trawls. 646 

Fig. 2 MDS  plots of pre (black triangles) and post (gray triangles) 2005 hurricane trawl samples collected from Lake 647 

        Pontchartrain during Seasons I (November-May) and II (June-October).  648 

Fig. 3 MDS  plots of pre (black triangles) and post (gray triangles) 2005 hurricane seine samples collected from Lake 649 

        Pontchartrain during Seasons I (December-March), II (April-June), and III (July-November).  650 

Fig. 4 MDS  plots of pre (black triangles) and post (gray triangles) 2005 hurricane gillnet samples collected from Lake 651 

        Pontchartrain during Seasons I (April-October) and II (November-March).  652 

Fig. 5 Mean number of B. patronus and A. felis collected by trawls at six Lake Pontchartrain sites before and after the 2005    653 

 hurricanes.  Collections were made during peak seasons for both species: B. patronus (March-May) and A. felis (June-October).  654 

 In trawl collections taken after the 2005 hurricanes, there were significantly less B. patronus (Friedman’s test, χ
2 
= 6.00, p = 655 

 0.014) and significantly more A. felis (Friedman’s test, χ
2 
= 6.00, p = 0.014).   656 

Fig. 6 Mean number of G. bosc, S. scovelli, and M. martinica collected by beach seines at five Lake Pontchartrain sites before and  657 

 after the 2005 hurricanes.  Collections were made during peak seasons for each species: G. bosc (February-May), S. scovelli 658 

 (April-August), and M. martinica (July-October).  In beach seine collections taken after the 2005 hurricanes, all three species 659 

 declined significantly: G. bosc (Friedman’s test, χ
2
=5.00, p = 0.025), S. scovelli (Friedman’s test, χ

2
=5.00, p = 0.025), and M. 660 

 martinica (Friedman’s test, χ
2
=5.00, p = 0.025). 661 
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Fig. 7 Mean number of B. patronus, M. undulatus, S. maculatus, and C. arenarius collected by gillnets at five Lake Pontchartrain sites 662 

 before and after the 2005 hurricanes.  Collections were made during peak seasons for each species:  B. patronus (April-June) 663 

 M. undulatus (May-September), S. maculatus (August-October), and C. arenarius (June-September).  In gillnet collections 664 

 taken after the 2005 hurricanes, B. patronus increased significantly (Friedman’s test, χ
2
=5.00, p = 0.025) while the other three 665 

 species decreased significantly: M. undulatus (Friedman’s test, χ
2
=5.00, p = 0.025), S. maculatus (Friedman’s test, χ

2
=4.00, p = 666 

 0.046), and C. arenarius (Friedman’s test, χ
2
=4.00, p = 0.046). 667 

 668 

 669 

  670 
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                                                  Table 1  Numbers of nekton collections made from Lake Pontchartrain  671 

                                                  both pre- (2000-2003, 2005) and post-hurricanes (2005-2009) using three  672 

                                                  gear types: trawls, beach seines, and gillnets. 673 

 

 

 

Year 

 

Trawl 

 

Beach Seine 

 

Gillnet 

 

Pre-Hurricanes 

    

 2000 54 30 18 

 2001 125 60 41 

 2002 98 59 47 

 2003 44 27 17 

 2004 20 11 7 

 2005 69 37 23 

 Total 410 224 153 

     

Post-Hurricanes     

 2005 5 13 0 

 2006 96 59 36 

 2007 113 60 47 

 2008 130 60 52 

 2009 111 60 45 

 Total 455 252 180 

 674 

 675 

 676 

 677 
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Table 2 Pre/post mean abundances, contribution percentages, and cumulative percentages for those species that contributed significantly 

to pre/post hurricane differences in assemblages from SIMPER analyses. Results are by season and gear type from trawl (2 seasons), 

beach seine (3 seasons), and gillnet (1 season) collections.  Note that for the sake of clarity in interpretation, we here report actual mean 

abundances per collection whereas typical SIMPER tables reports transformed mean abundances. 

 

Gear-Season Species 

Pre-hurricane mean 

abundance per 

collection 

Post-hurricane 

mean abundance 

per collection 

Percent 

contribution to 

assemblage 

change 

Cumulative 

percent 

contribution to 

assemblage change 

      Trawl-Season I Anchoa mitchilli 154.39 262.81 55.15 55.15 

(Nov.-May) Micropogonias undulatus 14.65 18.26 18.10 73.25 

 
Brevoortia patronus 20.64 4.42 13.19 86.44 

 
Cynoscion arenarius 1.12 0.78 2.89 89.93 

 Ictalurus furcatus 0.25 0.14 1.29 90.61 

      Trawl-Season II Anchoa mitchilli 481.58 853.38 71.48 71.48 

(Jun.-Oct.) Micropogonias undulatus 11.21 12.08 10.68 82.17 

 
Cynoscion arenarius 0.63 2.51 4.22 86.38 

 
Brevoortia patronus 2.20 0.73 2.41 88.79 

 
Anchoa hepsetus  0.38 0.17 1.83 90.62 

      

Seine-Season I Menidia beryllina 61.12 48.60 20.00 20.00 

(Dec.-Mar.) Anchoa mitchilli 72.58 17.65 16.98 36.98 

 Micropogonias undulatus 41.07 13.18 13.78 50.76 

 Brevoortia patronus 112.67 5.05 12.92 63.68 

 Mugil cephalus 7.80 1.24 5.77 69.45 
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 Mugil curema 23.24 2.76 4.55 74.00 

 Leiostomus xanthurus 33.29 4.72 3.86 77.86 

 Fundulus grandis 0.87 2.34 3.48 81.34 

 Cyprinodon variegatus 3.70 1.66 2.89 84.23 

 Gobiosoma bosc 2.88 0.19 2.53 86.76 

 Lucania parva 11.50 0.34 2.01 88.77 

 Fundulus similis 0.17 1.96 1.99 90.76 

      

Seine-Season II Brevoortia patronus 462.79 265.60 25.36 25.36 

(Apr.-Jun.) Anchoa mitchilli 92.76 22.43 11.61 36.97 

 Menidia beryllina 87.93 23.47 11.18 48.16 

 Micropogonias undulatus 18.28 37.90 8.99 57.15 

 
Mugil cephalus 15.95 9.22 5.24 62.39 

 

Leiostomus xanthurus 20.12 5.07 4.40 66.79 

 
Lucania parva 58.41 0.63 3.40 70.19 

 
Fundulus grandis 3.40 2.02 2.60 72.79 

 
Strongylura marina 1.76 1.98 2.52 75.31 

   Elops saurus 1.69 1.03 2.44 77.75 

 
Cyprinodon variegatus 11.26 0.72 2.25 80.00 

 
Gobiosoma bosc 2.33 0.33 2.00 82.00 

 
Lagodon rhomboides 3.24 0.45 1.89 83.89 

 
Syngnathus scovelli 2.76 0.30 1.83 85.72 

 
Membras martinica 2.00 0.27 1.65 87.37 

 Cynoscion arenarius 1.22 0.68 1.65 89.01 

 Fundulus similis 0.78 1.20 1.19 90.20 

      

Seine- Season III Anchoa mitchilli 107.88 62.26 21.88 21.88 

(Jul.-Nov.) Menidia beryllina 97.47 14.48 14.48 36.36 

 Mugil cephalus 4.66 2.34 5.86 42.22 
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 Elops saurus 1.27 4.67 4.87 47.10 

 Micropogonias undulatus 4.49 1.29 4.29 51.39 

 Brevoortia patronus 3.18 16.24 4.17 55.56 

 Cynoscion nebulosus 2.17 1.22 3.94 59.50 

 Strongylura marina 1.24 2.42 3.67 63.17 

 Membras martinica 2.59 1.10 3.38 66.55 

 Gobiosoma bosc 2.99 0.06 2.25 68.80 

 Fundulus grandis 1.12 0.92 2.12 70.92 

 Leiostomus xanthurus 0.92 0.70 2.11 73.03 

 Lagodon rhomboides 0.99 1.17 2.00 75.03 

 Syngnathus scovelli 4.03 0.63 1.93 76.96 

 Oligoplites saurus 0.48 0.79 1.90 78.85 

 Lucania parva 5.04 0.24 1.57 80.42 

 Bairdiella chrysoura 0.80 1.32 1.46 81.88 

 Anchoa hepsetus 1.14 0.91 1.38 83.27 

 Cyprinodon variegatus 4.07 0.08 1.10 84.37 

 Ariopsis felis 0.50 0.49 1.10 85.47 

 Fundulus similis 0.29 0.47 1.02 86.49 

 Mugil curema 0.10 0.35 1.01 87.49 

 Sphoeroides parvus 0.70 0.15 0.94 88.44 

 Sciaenops ocellatus 0.09 0.66 0.88 89.32 

 Gobiesox strumosus 0.42 0.06 0.82 90.14 

      

Gillnet-Season I Brevoortia patronus 19.42 19.40 24.92 24.92 

(Apr.-Oct.) Bagre marinus 2.85 3.69 18.10 43.02 

 Ariopsis felis 1.00 1.43 8.80 51.82 

 Micropogonias undulatus 2.54 0.61 8.72 60.54 

 Leiostomus xanthurus 2.64 0.89 6.17 66.71 
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 Alosa chrysochloris 0.67 0.51 5.45 72.16 

 Dorosoma cepedianum 1.12 0.97 5.30 77.46 

 Cynoscion nebulosus 1.22 0.45 5.23 82.69 

 Mugil cephalus 0.61 0.16 3.00 85.69 

 Elops saurus 0.15 0.17 2.65 88.34 

 Pogonias cromis 0.15 0.38 2.24 90.58 
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Table 3 Mean values and standard errors (S.E.) for environmental variables measured pre- and post-hurricanes by gear and season. 706 

Significance (p) values for the factor Pre/Post hurricanes were calculated from either MANOVA/ANOVA, ANOVA, or Friedman’s 707 

tests.  MANOVA was performed when the test of the preliminary assumption that the covariance matrices of the dependent variables 708 

are the same across groups in the population was met, as indicated by the Box’s test.  For those combinations of environmental 709 

variables that could be tested by MANOVA, this test was performed with the environmental variables as dependent factors and 710 

Pre/Post (shown), Site, and Pre/Post*Site as the independent factors.  For MANOVA, the Overall Pre/Post significance value indicates 711 

the significance of the Pre/Post factor. If this was significant, subsequent ANOVAs were run for each variable, with the post-hoc error 712 

rate adjusted to 0.025.  If the Box’s test was significant or the MANOVA could not be performed, an ANOVA was performed 713 

individually for each variable, without the error rate adjustment.  ANOVAs were performed for those variables that met the 714 

homogeneity of variance test (Levene’s).  If ANOVA could not be performed (i.e., Levene’s test was significant), then Friedman’s test 715 

(a non-parametric rank-based procedure; seasonally, with site averages as the block and Pre/Post as the factor) was performed.  716 

Bolded values indicate significant results and Pre/Post trends in environmental variables are indicated. 717 

 718 

Environmental   

Variable  

Gear / 

Season 

Pre-

Hurricanes 

Post-

Hurricanes 

Overall 

MANOVA 

Pre/Post 

significance 

Individual 

Pre/Post 

significance 

Trend Test Used 

 Trawl/SI       

 (Nov.-May) Mean (S.E.) Mean (S.E.)     

Temperature  18.48(0.36)) 18.24 (0.83)  0.208  ANOVA 

Water Clarity  1.33(0.04) 0.97(0.10)  0.001 pre>post ANOVA 

Salinity  4.92(0.15) 4.80(0.34)  0.042 pre>post ANOVA  

Dissolved O2  8.77(0.09) 8.01(0.21)  0.001 pre>post ANOVA  

 Trawl/SII       

 (Jun.-Oct.)       

Temperature  27.76(0.27) 28.04(0.23)  0.671  ANOVA 

Water Clarity  1.55(0.05) 1.34(0.04)  0.014 pre>post Friedman’s 

Salinity  5.61(0.20) 5.89(0.18)  0.011 pre<post ANOVA 

Dissolved O2  7.04(0.09) 6.57(0.07)  0.001 pre>post ANOVA 

 Seine/SI       

 (Dec.-Mar.)       

Temperature  13.76(0.38) 13.92(0.62)  0.655  Friedman’s 

Water Clarity  0.82(0.05) 0.60(0.07)  0.004 pre>post ANOVA 
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Salinity  4.39(0.25) 4.57(0.42)  0.025 pre<post Friedman’s 

Dissolved O2  9.45(0.16) 8.36(0.26)  0.001 pre>post ANOVA  

 Seine/SII       

 (Apr.-Jun.)       

Temperature  26.12(0.54) 25.45(0.53) 0.001 0.380  MANOVA/ANOVA 

Water Clarity  0.84(0.04) 0.79(0.04) 0.001 0.181  MANOVA/ANOVA 

Salinity  3.51(0.22) 4.56(0.21) 0.001 0.001 pre<post MANOVA/ANOVA 

Dissolved O2  6.89(0.17) 6.25(0.17) 0.001 0.008 pre>post MANOVA/ANOVA 

 Seine/SIII       

 (Jul.-Nov.)       

Temperature  25.90(0.58) 25.68(0.54) 0.053   MANOVA 

Water Clarity  0.89(0.04) 0.84(0.04)  0.655  Friedman’s 

Salinity  5.76(0.30) 6.05(0.28)  0.180  Friedman’s 

Dissolved O2  6.62(0.15) 6.21(0.14) 0.053   MANOVA 

 Gillnet/SI       

 (Apr.-Oct.)       

Temperature  26.76(0.37) 26.47(0.33)  0.493  ANOVA 

Water Clarity  1.26(0.06) 1.13(0.05)  0.180  Friedman’s 

Salinity  4.85(0.25) 5.34(0.23)  0.139  ANOVA 

Dissolved O2  7.10(0.12) 6.45(0.11)  0.001 pre>post ANOVA 
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