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Acclimation to Hypoxia Increases Survival Time of
Zebrafish, Danio rerio, During Lethal Hypoxia

BERNARD B. REES,* FITRI A. SUDRADJAT, AND JOSEPH W. LOVE
Department of Biological Sciences, University of New Orleans, New Orleans,
Louisiana 70148

ABSTRACT Survivorship of zebrafish, Danio rerio, was measured during lethal hypoxic stress
after pretreatment in water at either ambient oxygen or at a lowered, but nonlethal, level of
oxygen. Acclimation to nonlethal hypoxia (pO2 ≅ 15 Torr; ca. 10% air-saturation) for 48 hr signifi-
cantly extended survival time during more severe hypoxia (pO2 ≅ 8 Torr; ca. 5% air-saturation)
compared to survival of individuals with no prior hypoxic exposure. The magnitude of the accli-
mation effect depended upon the sex of the fish: hypoxia pretreatment increased the survival
times of males by a factor of approximately 9 and that of females by a factor of 3 relative to
controls. In addition, survival time of control and hypoxia acclimated fish depended upon when
in the year experiments were conducted. Survival times were 2–3 times longer when measured
in the late fall or winter compared to survival times measured during the spring or summer.
These results demonstrate a direct survival benefit of short-term acclimation to hypoxia in this
genetically tractable fish. The fact that the acclimation effect depended upon the sex of the fish
and the season during which experiments were conducted demonstrates that other genetic and/or
environmental factors affect hypoxia tolerance in this species. J. Exp. Zool. 289:266–272, 2001.
© 2001 Wiley-Liss, Inc.
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When faced with low environmental oxygen
concentrations (hypoxia), teleost fishes respond
with a variety of behavioral, physiological, or bio-
chemical adjustments (Van den Thillart and Van
Waarde, ’85; Kramer, ’87; Jensen et al., ’93).
These responses would be predicted to increase
the survival of fish during prolonged or more ex-
treme hypoxia. Direct tests of this expectation,
however, are limited in number. Shepard (’55)
showed that hypoxic acclimation of juvenile east-
ern brook trout, Salvelinus fontinalis, increased
their survival time during lethal hypoxia, and
Moss and Scott (’61) noted that, in three other
species, hypoxic acclimation lowered the lethal
oxygen level. Kramer and Mehegan (’81) noted be-
havioral changes in the guppy, Poecilia reticulata,
upon hypoxic acclimation, but they did not assess
the effects of acclimation on survival.

Here, we used zebrafish, Danio rerio, to test the
hypothesis that short-term acclimation to hypoxia
increases survivorship of this species during sub-
sequent exposure to more severe hypoxia. The ex-
perimental design we employed was analogous to
that used to demonstrate inducible thermotol-
erance in Drosophila and other organisms (Lind-
quist, ’86), namely, exposure of individuals to a
nonlethal stress and followed by measurement of
mortality during exposure to a lethal stress. We

found that pretreatment of zebrafish with nonle-
thal hypoxia dramatically extended the survival
time in lethal hypoxia. The magnitude of the re-
sponse depended upon the sex of the fish and
when in the year the experiments were performed.
Given the genetic tractability of zebrafish (Wester-
field, ’93; Detrich et al., ’99), this species may rep-
resent a useful model for further investigations
into the genetic and environmental determinants
of inducible hypoxia tolerance in fish and other
organisms.

MATERIALS AND METHODS
Fish maintenance

Zebrafish were obtained from a commercial pet
supplier and kept in aerated, dechlorinated tap wa-
ter at room temperature (21–24°C) in 20- or 40-l
aquariums at a density of approximately 1 fish per
2 l. Fish were fed TetraMin tropical fish food once
a day, and aquarium water was continuously fil-
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tered. Ammonia levels were checked periodically,
and partial water changes were performed as
needed. The room in which the fish were kept had
windows allowing diffuse natural light. Unless
otherwise indicated, the photoperiod was not con-
trolled. Fish were held under these conditions for
at least 2 weeks prior to experiments, and they
were used within 3 months of purchase. Fish were
not fed for 24 hr prior to or during experiments.
Preliminary tests showed that food deprivation for
this period of time did not affect the survival of
control or hypoxia-pretreated fish. Fish were
handled in accordance with appropriate guidelines
for animal care (University of New Orleans
IACUC approval number 5JUN97).

Experimental design
Zebrafish were randomly assigned to control or

hypoxia-pretreated groups (10–13 fish per group)
and placed in 20-l aquariums. At the beginning of
an experiment, filtration was discontinued and the
aquariums were sealed with tight-fitting acrylic cov-
ers. Aquarium covers had two holes through which
air or mixtures of nitrogen and air were introduced
and vented. Over the first 2 days of an experiment,
the control group was gassed with room air. The
hypoxia-pretreated group received a mixture of 10%
air and 90% nitrogen to achieve a pO2 ≅ 15 Torr
(Table 1). After 48 hr, the flow of the hypoxic gas
mixture was split to both aquariums for 1 hr,
thereby lowering the dissolved oxygen concentra-
tion of the control aquarium. The gas mixture was
then changed to 5% air, balance nitrogen, to gener-
ate a pO2 ≅ 8 Torr in both aquariums for the next
48 hr. After the gas mixture was changed to 5% air,
the number of dead fish was counted in control and
hypoxia-pretreated groups at intervals ranging from

15 to 60 min over the first 9 hr and every 3–12 hr
thereafter. Death was judged by the cessation of
opercular movements and the lack of response when
prodded. Dead fish were removed and frozen at
–80°C. Fish alive at the end of the 48-hr exposure
to 5% air were sacrificed by rapid immersion in liq-
uid nitrogen and kept at –80°C.

All mixtures of air and nitrogen were regulated
with precision flow meters (Gilmont) to achieve a
total flow rate of approximately 1 l min–1 to each
tank. Dissolved oxygen and temperature were
measured with a Model 85 Handheld Meter (Yel-
low Springs Instruments). Approximately 50% of
the water in each aquarium was changed every
24 hr. For aquariums exposed to hypoxia, tran-
sients in the dissolved oxygen concentrations due
to water changes were kept to a minimum by us-
ing water that was partially deoxygenated by bub-
bling with nitrogen. Under these conditions, the
desired levels of hypoxia were achieved within 1–
2 hr of initiation of gassing and remained rela-
tively stable during the course of an experiment.

Over the course of 18 months, several experi-
mental replicates were performed following the
above protocol. In other experiments, the duration
of the hypoxia pretreatment or the percentage air
in the hypoxic gas mixture during pretreatment
was varied (see Results). Furthermore, although
results are presented only from experiments done
in dechlorinated tap water, equivalent results were
obtained with fish maintained in deionized water
containing 50 mg l–1 Instant Ocean and equimolar
amounts of NaH2PO4 and Na2HPO4 (0.083 mmol
l–1 each) as pH buffer (Westerfield, ’93).

Morphometric measurements
Fish were thawed, briefly blotted, and measured

for total mass (to the nearest mg) and standard
length (to the nearest 0.01 cm). Condition factor
was calculated as (total mass × standard length–3)
× 100. Sex of the fish was determined by dissec-
tion. For females, gonad mass was determined
(to the nearest 0.1 mg) and the gonadosomatic
index (GSI) was calculated as (gonad mass × to-
tal mass–1) × 100.

Statistical analyses
Analyses of variance were used to compare the

water quality and fish morphometric variables
among treatment groups, experimental replicates,
and for the morphometric variables, between
sexes. The distributions of these variables were
tested against the normal distribution with one
sample Komolgorov–Smirnov tests (Sokal and

TABLE 1. Water quality variables measured during
hypoxia pretreatment experiments1

Pretreatment
Control Hypoxic

pO2 during pretreatment 146 15.5
(Torr) (144–154) (14.9–16.3)

pO2 during lethal exposure 8.1 8.0
(Torr) (7.6–8.9) (7.2–8.6)

Temperature (°C) 22.7 22.7
(21.4–23.7) (21.9–23.8)

1Values of pO2 and temperature were measured regularly during the
48 hr pretreatment period and during the subsequent 48 hr during
which mortality was measured (test period). Mean values for these
variables were calculated for each experiment based upon at least 10
measurements. Averages of these mean values for eight experiments
are presented along with the ranges of the experiment means in pa-
rentheses.
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Rohlf, ’81). Body masses were not normally dis-
tributed and were logarithmically transformed
prior to analysis. Equality of group variances was
confirmed with F-max tests (Sokal and Rohlf, ’81).
These analyses were done with SYSTAT version
8.0 (SPSS, Inc.).

Survival analysis (Dixon and Newman, ’91) was
used to evaluate zebrafish mortality. This statis-
tical approach has certain advantages over the
more traditional LT50 analyses: individuals that
survive the lethal treatment are included as right-
censored data; the effects of covariates can be
evaluated; and the results can used to predict mor-
tality of other individuals with certain covariate
values. For these analyses, the times at which in-
dividual deaths occurred (time to death; TTD)
were fit to models describing the relationship be-
tween mortality and time of exposure to pO2 ≅ 8
Torr. Fish alive at the end of the experiments were
recorded as right-censored. Survival models as-
sumed different distributions of the TTD data
(e.g., exponential, Weibull, log-normal) and in-
cluded covariates of pretreatment, season, body
mass, etc. The goodness of fit of the various can-
didate models was determined by the log-likeli-
hood values associated with the models. For
models with an equal number of parameters, the
one with the greater log-likelihood value fit the
data better. For models with an unequal number
of parameters, Akaike’s Information Criterion
(AIC) was calculated as below:

AIC = –2(log-likelihood)
+ 2(number of parameters)

The model with the lower AIC was judged to fit the
data better (Atkinson, ’80). The effects of covariates

on survival time were tested by likelihood ratio tests
and the results were compared against a χ2 distri-
bution. Survival analyses were done using JMP 3.1
(SAS Institute, Inc.). Throughout, statistical signifi-
cance was assumed at P ≤ 0.05.

RESULTS
Preliminary experiments showed that zebrafish

survive for at least 2 days in water in which the
oxygen content was roughly 10% of the air-satu-
rated value (pO2 ≅ 15 Torr or 0.8–0.9 mg O2 l–1),
whereas ≥80% of the fish died within 12 hr of ex-
posure to water at 5% of the air-saturated oxygen
content (pO2 ≅ 8 Torr or 0.4–0.5 mg O2 l–1). Ac-
cordingly, to evaluate the effects of hypoxia pre-
treatment on zebrafish mortality, groups of 10–13
fish were exposed to water having pO2 ≅ 15 Torr
for 48 hr, followed by 48-hr exposure to pO2 ≅ 8
Torr. In parallel, control groups were held for 48
hr under air-saturated conditions (pO2 ≅ 146
Torr), followed by exposure to pO2 ≅ 8 Torr. Eight
replicate experiments following this design were
performed, and other than the oxygen partial
pressures during the 48-hr pretreatment period,
the conditions of the control and hypoxic treat-
ments did not differ (Table 1).

Zebrafish used in these eight experiments came
from 8 batches of fish purchased over the course
of 18 months, for a total sample size of 178 (Table
2). Males were smaller (both in mass and stan-
dard length) and slimmer (lower condition factors)
than females (ANOVA, P ≤ 0.05). Male and female
condition factor and female GSI varied signifi-
cantly according to when in the year experiments
were performed (ANOVA, P ≤ 0.05). Compared to
experiments done in the fall or winter, fish used

TABLE 2. Morphometric measurements of zebrafish used in hypoxia pretreatment experiments1

Male fish Female fish
Nov.–Feb. March–July Nov.–Feb. March–July

Mass (g)* 0.368 0.391 0.517 0.507
(0.022) (0.029) (0.040) (0.038)

Standard length (cm)* 2.81 2.75 2.98 2.88
(0.05) (0.05) (0.08) (0.06)

Condition factor* 1.57 1.78** 1.83 1.94**
(0.03) (0.05) (0.04) (0.03)

GSI (%) nd2 nd 7.163 9.01**
(0.74) (0.53)

n 55 35 38 50
1Values are means with the standard error of the mean shown in parentheses. Two-way ANOVAs showed no effects of treatment (i.e., control
or hypoxia pretreatment) or interactions between treatment and season for any variable, and treatments have been pooled within seasons.
2Male GSI values were not determined (nd).
3Female GSI was determined for 34 fish from Nov.–Feb. experiments.
*Significantly different between sexes (ANOVA, P ≤ 0.05).
**Significantly different from the corresponding value measured in fish of the same sex during Nov.–Feb. (ANOVA, P ≤ 0.05).
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in experiments done in the spring and summer
had higher condition factors and females had
higher GSI values. There were no differences in
these morphological variables between control and
hypoxia-pretreated fish.

Pretreatment of zebrafish at pO2 ≅ 15 Torr for
48 hr consistently delayed the onset and decreased
the extent of mortality when fish were subse-
quently exposed to pO2 ≅ 8 Torr (Fig. 1). Survival
analysis (Dixon and Newman, ’91) demonstrated
that models assuming a log-normal distribution
of time to death (TTD) fit the data significantly
better than models incorporating exponential,
Weibull or logistic distributions. The effects of hy-
poxia pretreatment differed among males (Fig. 1a)
and females (Fig. 1b) (i.e., there was a significant
interaction between treatment group and sex) and
sexes were analyzed separately. Furthermore, sur-
vival times of both sexes at pO2 ≅ 8 Torr were
greater when experiments were performed be-
tween November and February (Fig. 1, circles)
than during March through July (Fig. 1, squares).
For both sexes, the simplest, most explanatory
survival model included the effects of pretreat-
ment (hypoxia or control) and when the experi-
ments were performed (November–February vs.
March–July) (Table 3). Likelihood ratio tests
showed that both effects were highly significant,
and their inclusion in survival models significantly
improved the fit of the models to the data, as
judged by their lower AIC values. Although there
was seasonal variation in fish morphology (Table
2), models including mass, standard length, con-
dition factor, or female GSI as covariates proved
that these variables were not significantly related
to time to death and including these covariates
did not significantly improve the fits of the mod-
els to the data.

The terms of the survival model from Table 3
can be used to predict the median time-to-death
(MTTD) of zebrafish according to the equation:

ln(MTTD) = µ + (βt)(treatment)
+ (βs)(season) + (σ)(W),

where µ = model intercept, βt = pretreatment effect
(letting control pretreatment = 0, hypoxia pretreat-
ment = 1), βs = season effect (November–February
experiments = 0, March–July experiments = 1), σ
= model scale parameter, W = 50th percentile of
the standardized distribution assumed for the er-
ror (0 for the log-normal distribution).

Calculated MTTD values for male and female
zebrafish are present in Table 4. These values

demonstrate that hypoxia pretreatment increases
survival time by a factor of 9 for males and 3 for
females. Both control and hypoxia-pretreated fish
survive between 2 and 3 times longer when mea-

Fig. 1. Mortality at lethal hypoxia (pO2 ≅ 8 Torr) of male
(A) and female (B) zebrafish after 48 hr normoxic (pO2 ≅ 146
Torr; open symbols) or hypoxic (pO2 ≅ 15 Torr; closed symbols)
pretreatment. The abscissa represents the time of exposure to
pO2 ≅ 8 Torr (i.e., it does not include the 48-hr pretreatment.)
Cumulative mortality (ordinate) was calculated as the num-
ber of fish dead at a particular time divided by the total num-
ber for a given treatment when replicate experiments were
pooled from the months of Nov.–Feb. (circles) or March–July
(squares). There was no mortality during the pretreatment pe-
riod for either controls or hypoxia-pretreated fish.
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sured in the late fall or winter relative to spring
or summer.

It was possible that the seasonal effect on sur-
vival times was explained, in part, by differences
in photoperiod at the different times of year.
Therefore, in one experiment, a batch of fish ob-
tained in June were held under a winter-like pho-
toperiod (10 hr light:14 hr dark) prior to and
during experimentation (a total of 4 weeks). Sur-
vival times at pO2 ≅ 8 Torr after control and hy-
poxia pretreatment (48 hr at pO2 ≅ 15 Torr) were
in the same range as those measured in other ex-
periments performed between March and July
(data not shown). This result suggests that the
seasonal effect was not due to differences in pho-
toperiod during laboratory maintenance.

In separate experiments, zebrafish pretreated
for 12 or 24 hr at pO2 ≅ 15 Torr had rates of mor-
tality during exposure to lethal hypoxia that were
not different from controls. After 36 hr at pO2 ≅
15 Torr, however, mortality at pO2 ≅ 8 Torr was
reduced to the same level as observed with 48-hr
hypoxic pretreatment (data not shown). In another
series of experiments, 48-hr pretreatment of

zebrafish in water having pO2 from 25 to 40 Torr
afforded only modest reductions in mortality dur-
ing lethal exposures compared to normoxic con-
trols (data not shown). On the basis of these
results, it appears that 36 hr at pO2 ≅ 15 Torr are
the minimum conditions necessary to result in an
increased tolerance to pO2 ≅ 8 Torr (at 22–23°C).
Pretreatments longer than 48 hr were not tested.

DISCUSSION
We have demonstrated that short-term exposure

of zebrafish, D. rerio, to nonlethal hypoxia dramati-
cally increased their survival time when exposed
to further reductions in oxygen concentration. Simi-
larly, Shepard (’55) showed that acclimation to
hypoxia of juvenile eastern brook trout, Salvelinus
fontinalis, increased the survival time during le-
thal hypoxia between 3- and 10-fold. Shepard (’55)
noted, however, that the acclimation effect re-
quired several days (4–10 days at 9°C), and ef-
fects were noted even when fish were acclimated
to relatively high levels of oxygen (e.g., 70% of
the air-saturated concentration). The differences
between our study and that of Shepard (’55) in
the conditions that elicit an acclimation response
may be related to different habitats of these two
species (temperate vs. tropical) or developmental
stages studied (juvenile vs. adult). Despite those
differences, the general conclusion is the same.
Acclimation to hypoxia results in a significant sur-
vival benefit at lower levels of oxygen.

While our experiments do not address the
mechanism of acclimation to hypoxia, it is likely
that acclimation resulted in a variety of adjust-
ments, ranging from behavioral to biochemical,
each contributing to the observed increase in hy-
poxia tolerance. For example, zebrafish that were
hypoxia pretreated were less active than controls.
A reduction in activity, coupled with reduced meta-
bolic demands, during the acclimation period may
have provided an advantage when the oxygen was
further lowered. Metabolic rate reduction, prima-
rily due to decreased activity, has been demon-
strated in other fish under hypoxia (Dalla Via et
al., ’94). Other hallmark responses of teleost fishes
to hypoxia include increased ventilation rates, he-
matocrit, and hemoglobin oxygen affinity (Jensen
et al., ’93), responses that would improve the ca-
pacity of acclimated individuals to extract oxygen
from their environment. In this regard, Shepard
(’55) reported that the increase in survival after
acclimation to hypoxia in eastern brook trout was
correlated with an increased capacity for oxygen
uptake. Changes at the biochemical level, e.g., an

TABLE 3. Summary of survival analyses

Parameter Estimate SE χ2 a P

A. Malesb

Intercept (µ) 1.460 0.173
Treatment effect (βt) 2.249 0.212 73.2 <0.0001
Season effect  (βs) –1.078 0.215 22.7 <0.0001
Scale (σ) 0.968 0.085

B. Femalesb

Intercept (µ) 1.918 0.138
Treatment effect (βt) 1.121 0.163 38.2 <0.0001
Season effect (βs) –0.799 0.164 21.3 <0.0001
Scale (σ) 0.753 0.059

aχ2 values are from likelihood-ratio tests of the effect of the covariates
on time-to-death and are associated with the corresponding probabili-
ties based upon 1 degree of freedom each.
bThere was a significant interaction between sex and treatment on
time to mortality, and consequently males and females were ana-
lyzed separately. The log-likelihood value for the complete model for
males was –115. The log-likelihood value for the complete model for
females was –100.

TABLE 4. Calculated median times to death (MTTD) for
zebrafish with and without hypoxia pretreatment1

Male Female
Season Pretreatment MTTD (hr) MTTD (hr)

Nov.–Feb. Control 4.3 6.8
Nov.–Feb. Hypoxia 40.8 20.9
March–July Control 1.5 3.1
March–July Hypoxia 13.9 9.4
1Median times to death were calculated as stated in the text.
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increased reliance upon metabolic pathways of
energy production that do not require oxygen, may
also have occurred during acclimation to hypoxia
(Van den Thillart and Van Waarde, ’85). Greaney
et al. (’80) noted that acclimation of the mummi-
chog, Fundulus heteroclitus, to hypoxia led to in-
creased activities of the glycolytic enzymes glucose
phosphate isomerase and lactate dehydrogenase
in liver tissue.

That the response to hypoxia was dependent
upon the sex of zebrafish was unexpected. The
sex effect was such that, in the control groups,
mortality was more rapid among males than fe-
males, and after hypoxia pretreatment, the con-
verse was true. The causes of this effect, which
were not explained by differences in body size or
condition between sexes, are unknown. Perhaps
males have a greater capacity to suppress metabo-
lism during hypoxia since the metabolic costs of
gonad tissue are likely to be lower in males, or
they have a greater capacity to increase oxygen
extraction or anaerobic metabolism during hypoxic
acclimation.

The fact that time of the year affected survival
of zebrafish during hypoxia was similarly surpris-
ing. This effect could not be explained by differ-
ences in the conditions of laboratory maintenance
(i.e., temperature, dissolved oxygen, photoperiod).
Zebrafish used in this study, however, were ob-
tained from commercial suppliers who generally
raise their fish in outdoor enclosures. It is pos-
sible there were seasonal differences in nutritional
or reproductive status among batches of fish that
persisted during laboratory maintenance and af-
fected hypoxia tolerance. This suggestion is sup-
ported by the observation that the condition factor
(mass relative to length) differed between seasons
for both sexes, as did the female GSI. Both sexes
were heavier relative to their length and females
had larger ovaries during the spring and summer
months, suggesting that reproductive investment
was greater during these months than during win-
ter. When included in survival models, however,
neither condition factor nor GSI explained the
variation in mortality times as well as the post
hoc variable “season.” Reasons for this are two-
fold: first, while there was significant variation
in condition factor and GSI between seasons, these
variables did not correlate well with survival time
within a season; second, it is likely that other un-
known environmental or genetic differences con-
tributed to the season effect.

Because of their facile laboratory maintenance,
short generation times and well-described genet-

ics (Westerfield, ’93; Detrich et al., ’99), zebrafish
may provide a useful model for future experiments
into the genetic and environmental bases of hy-
poxia tolerance. For example, hypoxia-inducible
factor 1 (HIF-1) has been implicated in coordinat-
ing several molecular events during hypoxia in
mammalian tissues (Semenza, ’99). It would be
interesting to ascertain whether transgenic zebra-
fish expressing mutant forms of HIF-1α or its
dimerization partner, the aryl hydrocarbon recep-
tor nuclear translocator (ARNT), both recently
cloned in fish (Pollenz et al., ’96; Soitamo et al.,
’99), display altered hypoxia tolerance. Further-
more, mutagenesis screens, which have been so
successful in the study of zebrafish development
(Fishman, ’99), could be applied to the study of
aspects of their physiology that might influence
hypoxia tolerance (cf. Warren and Fishman, ’98).
Quantitative genetics could be employed to deter-
mine the inheritance of morphological, behavioral
and physiological traits that correlate with hy-
poxia tolerance (Falconer, ’81), and laboratory se-
lection experiments could be used to probe the
evolution of these traits (Garland and Carter, ’94;
Gibbs, ’99). Such approaches could provide insight
into the determinants of hypoxia tolerance in this
fish and other organisms.
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