
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Spring 5-19-2017

Malware Analysis and Privacy Policy Enforcement Techniques for Malware Analysis and Privacy Policy Enforcement Techniques for

Android Applications Android Applications

Aisha Ibrahim Ali-Gombe
University of New Orleans, aaligomb@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Ali-Gombe, Aisha Ibrahim, "Malware Analysis and Privacy Policy Enforcement Techniques for Android
Applications" (2017). University of New Orleans Theses and Dissertations. 2290.
https://scholarworks.uno.edu/td/2290

This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO
with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216845505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uno.edu%2Ftd%2F2290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2290?utm_source=scholarworks.uno.edu%2Ftd%2F2290&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Malware Analysis and Privacy Policy Enforcement Techniques for
Android Applications

A Dissertation

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy
in

Engineering and Applied Sciences
with Concentration in

Computer Science
(Information Assurance)

by

Aisha I. Ali-Gombe

BSc, University of Abuja, 2005
MBA, Bayero University, Kano, 2011
M.S. University of New Orleans, 2012

May 2017

Dedication

In loving memory of my father who taught me hard work, perseverance, and resiliency;

you are my hero. Like you always say success is not an option it is the only choice -

indeed it is. To my husband Ibrahim; for our timeless friendship and deep affection.

Without your endless support, this wouldn’t have been possible. You are my rock. My

mother Hajiya; your love and prayer kept me going through difficult times. Finally

to my babies - Maryam, Fatima, and Mohammad Amin. The journey hasn’t been

easy for all of us, but we made it together. Thank you for all the sacrifices.

ii

Acknowledgement

I would like to express an immense gratitude to my supervisors Dr. Golden G. Richard

III and Dr. Irfan Ahmed for their guidance and mentorship. They have indeed made

a difference in my life, and I will forever be grateful. I want to acknowledge the

funding opportunity they gave me through the NSF (CNS #1409534) and faculty

start-up grant. I would also like to thank members of my dissertation committee Dr.

Vassil Roussev, Dr. Edit Bourgeois and Dr. Juliette Ioup for their time and effort in

making this work a success. I want to thank my husband for all his encouragement

and for giving me a shoulder to lean on when things were rough. To my kids, mom

and my 21 siblings for their unconditional love. Finally, I want to thank my in-laws,

my extended family, and friends for all their support.

iii

Contents

List of Figures . vi

List of Tables . vii

Abstract .viii

1 Introduction 1
1.1 Android Malware Analysis . 2
1.2 Data Privacy . 3
1.3 Contributions and Outline . 4

2 Software Obfuscation 7
2.1 Android Malware Transformation . 8

3 Static Malware Fingerprinting 11
3.1 OpSeq . 11
3.2 Related Work . 12

3.2.1 Opcode-sequence similarity . 12
3.2.2 Semantic-based detection . 14
3.2.3 Permission-based certification . 15

3.3 System Design . 15
3.3.1 Feature extraction . 17
3.3.2 Signature generation . 18
3.3.3 Similarity Matching . 19

3.4 Evaluation . 24
3.4.1 Focus of the Evaluation . 24
3.4.2 Optimum Variables . 26
3.4.3 Empirical Results . 28
3.4.4 Evaluating Resiliency . 32
3.4.5 Measure of Performance . 36

3.5 Discussion . 37
3.6 System Limitations . 38

4 Instrumentation 40
4.0.1 Bytecode Weaving . 42

5 Hybrid Analysis 45
5.1 AspectDroid . 45
5.2 Related Work . 46

5.2.1 Application-level instrumentation . 46
5.2.2 Low-Level Instrumentation . 47

iv

5.3 System Design . 48
5.3.1 Dataflow Analysis . 49
5.3.2 Resource Abuse Tracing . 54
5.3.3 Analytics of Suspicious Behaviors . 55

5.4 Implementation . 56
5.4.1 Prototype implementation . 56

5.5 Testing and Evaluation . 59
5.5.1 Accuracy of Data Flow Algorithm . 59
5.5.2 App Analysis . 61
5.5.3 Runtime Overhead . 64

5.6 Challenges and Discussion . 67
5.6.1 Limitations . 68

6 Android Data Storage 70
6.0.1 SQLite Database . 70
6.0.2 Android Native Providers . 71
6.0.3 Threats and Vulnerabilities . 72

7 Privacy Policy Enforcement Techniques 75
7.1 Fine-grain Access Control . 75
7.2 Related Work . 77

7.2.1 Android SQLite . 77
7.2.2 Instrumentation . 78

7.3 System Design . 79
7.3.1 Controller Stub . 80
7.3.2 Controller App . 91

7.4 Implementation . 94
7.5 Evaluation . 96

7.5.1 App Execution . 97
7.5.2 Static Overhead . 98
7.5.3 Runtime Overhead . 99
7.5.4 Access Policies . 101
7.5.5 Limitations . 102

8 Conclusions 103
8.1 Summary . 103
8.2 Future Work . 105

Bibliography .106

Vita .120

v

List of Figures

Figure Page

3.1 OpSeq Signature Generation Workflow . 16
3.2 Precision & Recall Curve . 30

4.1 OpSeq Signature Generation Workflow . 44

5.1 Parts of a Method Joinpoint . 50
5.2 AspectDroid Implementation architecture . 56
5.3 MemSize Overhead (MB) . 66
5.4 CPU usage Overhead (%) . 66

6.1 CRUD Operation on Android Content Providers . 72

7.1 priVy’s System Architecture. 79
7.2 Advice on a Query Joinpoint that Shows How the Controller Stub

Performs Access Verification . 83
7.3 Schema Restriction Check on a Query Function . 85
7.4 Column-level Restriction with Not-Null Projection 86
7.5 Column-level Restriction with Null Projection . 87
7.6 Code Snippet Showing Entity Restriction for Contacts Provider 88
7.7 Code Snippet Showing Query Re-writing for Delete Function 90
7.8 Instrumentation Code Snippet for Auditing Query Operations 92
7.9 Relationship Between Instrumentation Time and Extra Joinpoints 94

vi

List of Tables

Table Page

3.1 Design Notation Table . 24
3.2 Malware sample distibution as per four obfuscation techniques:

reflection, encryption, code reordering, and junk insertion 26
3.3 Model Selection Result: F-Score, Precision, Recall 28
3.4 Mal/Ben Best Model Confusion Matrix . 29
3.5 Percentage of Mal/Class Prediction Result . 29
3.6 Evaluation results for DroidChameleon’s simple obfuscation. 34
3.7 Evaluation results for DroidChameleon’s complex obfuscation. 35

5.1 Flow rules examples for updating taint/tag map . 54

7.1 Joinpoints Picked by priVy ’s Pointcut Signatures 81
7.2 priVy ’s Average Runtime Overhead Given Various Access Restrictions 100

vii

Abstract

The rapid increase in mobile malware and deployment of over-privileged applications

over the years has been of great concern to the security community. Encroaching on

user’s privacy, mobile applications (apps) increasingly exploit various sensitive data

on mobile devices. The information gathered by these applications is sufficient to

uniquely and accurately profile users and can cause tremendous personal and financial

damage.

On Android specifically, the security and privacy holes in the operating system

and framework code has created a whole new dynamic for malware and privacy

exploitation. This research work seeks to develop novel analysis techniques that

monitor Android applications for possible unwanted behaviors and then suggest

various ways to deal with the privacy leaks associated with them.

Current state-of-the-art static malware analysis techniques on Android focused

mainly on detecting known variants without factoring any kind of software

obfuscation. The dynamic analysis systems on the other hand are heavily dependent

on extending the Android OS and/or runtime virtual machine. These methodologies

often tied the system to a single Android version and/or kernel making it very difficult

to port to a new device. In privacy, access to the database system’s objects are not

controlled by any security check beyond overly-broad read/write permissions. This

flawed model exposes the database contents to abuse by privacy-agnostic apps and

malware. This research addresses the problems above in three ways.

viii

First, we developed a novel static analysis technique that fingerprints known

malware based on three-level similarity matching. It scores similarity as a function of

normalized opcode sequences found in sensitive functional modules and application

permission requests. Our system has an improved detection ratio over current research

tools and top COTS anti-virus products while maintaining a high level of resiliency

to both simple and complex obfuscation.

Next, we augment the signature-related weaknesses of our static classifier with

a hybrid analysis system which incorporates bytecode instrumentation and dynamic

runtime monitoring to examine unknown malware samples. Using the concept of

Aspect-oriented programming, this technique involves recompiling security checking

code into an unknown binary for data flow analysis, resource abuse tracing, and

analytics of other suspicious behaviors. Our system logs all the intercepted activities

dynamically at runtime without the need for building custom kernels.

Finally, we designed a user-level privacy policy enforcement system that gives

users more control over their personal data saved in the SQLite database. Using

bytecode weaving for query re-writing and enforcing access control, our system forces

new policies at the schema, column, and entity levels of databases without rooting or

voiding device warranty.

Android, Malware Analysis, Fingerprinting, Hybrid Analysis, Instrumentation, AspectJ,
Similarity Matching, Privacy, Security, Obfuscation

ix

Chapter 1

Introduction

Smartphones are powerful, high-tech devices designed with an operating system of a

traditional computer. It’s low-level system design together with other sophisticated

hardware and sensor components has completely changed the face of handheld

devices. This technology has not only revolutionized our telephony experience but has

successfully integrated a vast amount of personal data, including our address books,

calendars, diaries, pictures, etc., onto a single device. From a security perspective, the

ease and convenience provided by this integration can have disastrous consequences,

serving as a single point of exposure for a tremendous amount of personal data if not

properly managed.

Android is a smartphone operating system developed by Google in alliance with

15 other tech companies. The objective was to design an open standard operating

system for mobile devices [6]. This operating system, which was unveiled in 2007,

has consistently enjoyed wide acceptance by many high-tech device manufacturers.

According to a report by Statista 2016 [4], Android has maintained dominance in the

global smartphone market for over five years in a row.

The Android system is built on top of a Linux kernel, which provides all the low-

level management and access to the hardware components. Its security framework

is designed to protect data and resources using two important concepts: Application

sandboxing and a permissions model. With the permissions model, access is granted

1

by exclusive consent of the device user at installation time. However, its inflexibility

in choices and irrevocability have left device user’s vulnerable to privacy and security

exposure by both malware and over-privileged or privacy-agnostic applications.

Although the newest versions of Android are not designed with the all-or-nothing

permission model, as of May 2016 [1], they constitute only about 13.1% of all global

Android market share, leaving the remaining 86% vulnerable to extreme data abuse.

This thesis focuses on security monitoring of Android application for possible il-

licit behaviors via malware analysis. It also develops privacy policy enforcement

techniques aimed at limiting access to very important device data.

1.1 Android Malware Analysis

The growing threat to user’s security and privacy by Android applications has

significantly increased the need for more reliable and accessible app analysis systems.

Android apps are well-known for security and privacy violations and data leakage [42].

For instance, they transfer personal data outside the devices of end-users without

their consent. Andrubis [78] performed an analysis on over a million (malicious, and

benign) apps, and found that 38.79% of the apps have data leakage. The percentage

further increases from 13.45% in 2010 to 49.78% in 2014, and is also noted by Yajin

et al. [91].

In 2014, the Android platform is estimated to account for 97% of all malware on

mobile devices [3]. According to GDATA report [71], over 2 million Android malware

samples were detected in 2015, representing over a 50% increase from 2014. Modern

malware is in use on an industrial scale by crime organizations and its development

is often highly professional. In many respects, this presents an even greater threat to

users than before, as mobiles are entrusted with the most private of information and

mobile malware can very effectively spy on users in real time.

2

Traditionally, Android apps are analyzed using either static or dynamic ap-

proaches. Static analysis involves the use of predetermined signatures and/or other

semantic artifacts such as API calls, strings etc. Enck et al. developed Kirin [33]

which evaluates privacy risk based on the set of permissions requested, while [36, 93]

analyzed Android applications by evaluating fine-grained API calls in addition to the

permissions set. Other semantic-based analysis tools [38, 79] examine components

and intents in addition to the permissions and API calls made within the application

binary.

Dynamic analysis, on the other hand, executes a target application in a

contained environment [84, 83, 15, 18, 19, 35, 51, 32, 31, 62] and monitors its

behavior. In general, static analysis has the advantage of high performance and

coverage. Conversely, simple obfuscation can hinder the extraction of important data

such as API names. Dynamic analysis on the other hand provides a better view of an

app’s behavior, although, it is usually limited in scope to observed execution paths.

1.2 Data Privacy

While malware is a significant security threat on Android devices, privacy-related

issues posed by over-privileged applications is equally threatening to mobile device

users.

Android requires third-party applications to make explicit requests for resources

and access to data at installation time and while this mechanism provides a general

idea of what an application can access on a device, it does not provide the ability

to institute fine-grained control over sensitive data. Essentially, it’s an all-or-nothing

model on most versions of Android under which the user has to approve all permissions

or abort the installation of the application. Perhaps more disturbing is that the

approved permissions remain a right of the installed application as long as it remains

3

on the phone.

Android extends the permission model to cover structured data stored in SQLite

databases. However, it does not separate roles and privileges on the database, nor

does it protect content data at the schema or entity levels. In fact, it does very little

to protect the privacy of the stored user data and its associated metadata. Such

a wide level of access is tantamount to giving the application administrative rights

over the target provider. For example, this system does not distinguish accesses to

a contact’s phone number from the email and physical addresses. Other important

information like the “last time contacted” as well as account type and names are

also easily accessible with a simple READ permission. Similarly, write permission on

the contacts provider allows an application to insert, delete and modify any contact

at will. The application can also create groups and make them invisible. Such

“perceived” benign access, however, can lead to malicious contacts being created

and synched to restricted groups in major accounts like Google.

1.3 Contributions and Outline

This research work develops a fast and efficient static fingerprinting algorithm that

can detect obfuscated malware variants with a high degree of accuracy. It scores

similarity as a function of structural and behavioral features which are matched based

on 3-level similarity matching algorithm.

Although fast, accurate, and resilient, this static analyzer is heavily dependent

on known signatures and as such cannot detect unknown samples. To augment this

drawback, we designed an app-level hybrid analysis system that monitors Android

apps for possible illicit activities using bytecode instrumentation. This system

performs taint-tracking, resource abuse tracing and analytics of suspicious activities

independent of the Android runtime and/or kernel.

4

Finally, this thesis also addresses privacy issues on Android SQLite databases

by enforcing access control at schema, column and entity levels, thus giving users

absolute control over their data.

The outline of this work is organized as follows:

• Chapter 2 introduces software obfuscation techniques with emphasis on trans-

formations that can hinder static analysis on Android. This chapter is largely

based on existing work.

• Chapter 3 describes the first contribution of this thesis. OpSeq is a static

malware fingerprinting algorithm based on statistical similarity that includes -

feature extraction, signature generation, and matching processes. The chapter

provides detailed description of its prototype implementation and the evaluation

of the experimental results. The material from this chapter is drawn from a

workshop paper [11] which appeared in the Privacy Protection and Reverse

Engineering Workshop 2015. Since the original publication of this result, other

researchers have proposed several alternatives to this approach [52, 65].

• Chapter 4 provides a brief background of software instrumentation and static

bytecode weaving. It introduces the concept of Aspect-oriented programming

and how it can be used to inject cross-cutting concerns in Android applications.

• Chapter 5 introduces AspectDroid , a hybrid analysis system for Android apps.

This chapter highlights its workflow architecture and detailed implementation

and evaluation of its prototype. The system and experimental results from this

chapter are based on a published conference poster [12] and an extended version,

currently under review by the Journal of Computer Virology and Hacking.

• Chapter 6 introduces SQLite databases as the RDBMS for Android systems.

It also discusses the Android native content provider library as a security and

5

abstraction layer built on top of the SQLite engine.

• Chapter 7 discusses the last component of this thesis, called priVy , a privacy

policy enforcement technique for Android applications that provides low-level

access control for Android SQLite databases. In this chapter we explained how

bytecode weaving can be used for privacy policy enforcement on Android SQLite

database objects through access verification, query rewriting, and auditing. The

prototype discussed here is adapted from a conference paper [13] published in

WiSec 2016.

• Finally, Chapter 8 concludes with a summary of the contributions and possible

future work.

6

Chapter 2

Software Obfuscation

Obfuscation involves the transformation of software code into an ambiguous form to

hinder reverse engineering efforts without losing its functionality. Often obfuscation

techniques are deployed to protect the intellectual propriety of software or by malware

to circumvent static detection or fingerprinting algorithms.

Variants of the same malware can be created using simple or complex obfus-

cation techniques to evade detection. Such techniques make it difficult for analysts

to manually understand the behaviors of a malware by thwarting disassembly and

decompilation processes [68], e.g., through code packing, control flow redirection, etc.

Different obfuscation tools are available either as research prototypes, commer-

cial products, or open source tools. How and where these schemes can be used depends

on a number of factors:

• Software Programming Language: Languages with different intermediate rep-

resentation often require different kinds of tools to obfuscate. Such tools

have to understand the binary structure of the executable and disassembly

representation. For example, tools designed for C/C++ compiled binaries may

not work for Java executables. The former disassembles into assembly code

with different kinds of instruction compositions (opcode and operand), while

the latter disassembles into Java bytecode.

7

• Stealthiness: Depending on the need for obfuscation, malware may employ a

trivial or non-trivial technique to make reverse engineering difficult. Simple

techniques like identifier encryption and null pointer insertion can be used

to deter understanding of the program’s semantics. However, they may not

necessarily make reverse engineering infeasible. Other high-end stealthy tech-

niques use Packers to encrypt the malicious code or employ anti-disassembly

techniques within the executable such as fake jump instructions to confuse

the dissembler. Often the more complex the obfuscation is the more stealthy

the malware will be.

• Cost: Although malware may want to block any access to its underlying code, it

is vital that the program executes on a target system effectively with acceptable

overhead.

• Detection Algorithm: There is always a correlation between the code analysis

technique and obfuscation mechanism, especially in simple obfuscation. For

example, string encryption can hinder semantic based detection algorithms

but not opcode sequence-based tools. On the other hand, code insertion,

substitution, and reordering will not have any devastating effect on semantic-

based systems. However, complex obfuscation that involves more than one

simple technique or employs stealthy code hardening like whole class encryption

may completely hinder any form of static analysis.

2.1 Android Malware Transformation

Android malware are often created by injecting malicious payloads into benign

applications. They employ various forms of obfuscation techniques to hide their

presence from antivirus scanners. Recent studies have shown that common antivirus

8

software and static analysis tools are not resilient to such obfuscation techniques.

Most Android applications are written in Java, which are then compiled into

bytecode in a class file. The compiled class files are further compressed using the

dx utility into a classes.dex file. Although the execution of native code written in

C/C++ is made possible using the Java native interface, very few Android apps use

native code. Important application components such as package name, SDK version,

component names etc., are found in the AndroidManifest.xml.

Various forms of software obfuscation on Android are employed on application

files within the dex file, the Android manifest, resource files or in the native code.

Based on the existing literature on Android obfuscation [63, 87, 58, 27], some of these

schemes can be grouped as:

• Identifier Transformation: This involves a simple change in string identifiers

and names from within the dex file or the xml files packaged in the Android

application.

• Encryption: Algorithms such as simple cryptographic hashes or complex cus-

tomizable algorithms can be employed by malware to deter analysis. Such

encryption can include whole class encryption, identifier encryption (method

names), and string encryption (URL names).

• Code Reordering: In this technique, chunks of code within the program body are

repositioned through control flow changes. In practice, this will not change the

functionality of the malware even though it may change the execution pattern.

• Junk Code Insertion: Null pointers and dead code through unreachable control

flow can be added to the Android dex file to bloat the executable and completely

break hash-based detection algorithms. This may also be employed to make

program comprehension very difficult through manual examination.

9

• Java Reflection: This is a programming practice in Java that allows function

calls to be resolved dynamically at runtime. Using this method, malware

can make API calls inaccessible within the disassembled bytecode and as such

techniques relying on API semantics will be thwarted.

Below is an example of how malware can use string encryption plus Java

reflection to hide its request for Android IMEI.

Listing 2.1: Software Obfuscation

//Getting device ID without obfuscation

TelephonyManager mTelephony = (TelephonyManager)

getSystemService(Context.TELEPHONY_SERVICE);

String imei = mTelephony.getDeviceId();

//Getting Android device ID (IMEI) using encryption and java reflection

//It first use the DecryptName function whose implementation decrypts the

string encryptName to getDeviceId

String methName = DecryptName("encryptName");

Class nullParams []= {};

TelephonyManager mTelephony = (TelephonyManager)

getSystemService(Context.TELEPHONY_SERVICE);

//Get Telephony class object

Class clazz = mTelephony.getClass();

//Initialize a new instance of Telephony object

Object myObj = clazz.newInstance();

//Get method name from Telephony class whose name = getDeviceId

Method meth = clazz.getDeclaredMethod (methName,nullParams);

//invoke getDeviceId on the new Telephony object

Object ret = meth.invoke(myObj, null);

}

10

Chapter 3

Static Malware Fingerprinting

3.1 OpSeq

Signature-based malware detection systems have long been used in identifying known

malicious samples. On Android systems, malware is often introduced by repackaging

benign applications with obfuscated malicious payloads, via a variety of transfor-

mations. These forms of obfuscation have been shown to trick commercial antivirus

products [63, 87] and by extension the methodologies of many other Android research

tools. Most of these common tools use algorithms that search application code for

strings or other signatures, which can easily be subverted. Our aim is to develop

a better system that can detect known malware, which have been obfuscated and

repackaged within a new application.

In this task we present OpSeq–a new malware-variant detection approach that

is resilient against common obfuscation techniques, including reflection, encryption,

code reordering and junk insertion. It scores similarity as a function of normalized

opcode sequences found in sensitive functional modules as well as app permission re-

quests. This combination of structural and behavioral features results in a distinctive

fingerprint for a malware sample, thereby improving our model’s overall recall rate.

Given a malicious application, OpSeq performs static analysis of the application

code and identifies functional level components (Java methods) referred to as sensitive

11

functional modules. These modules invoke vital APIs such as reflective, permission-

guarded, resource/data access and network/file system activities. Based on the

characterization of Android malware in well-known existing work [92], these sensitive

APIs open a channel by which malicious apps can manipulate a victim’s device.

OpSeq extracts the components from a known sample and creates corresponding

signatures, which are used to search for similar components in target applications.

Target applications are then classified as malicious or benign based on this evaluation.

This approach is a significant improvement over existing work that targets opcode-

sequence similarity [44, 90, 66], in that it filters out irrelevant application code

(reducing noise in signatures) and focuses only on a small portion of code that has

high potential to contain malicious code (making signatures more accurate). As

a secondary feature, we use the list of requested permissions to improve detection

accuracy, as app variants tend to have very similar permission sets.

3.2 Related Work

The first large-scale study of Android malware–the Android Malware Genome

Project–was carried out by Zhou and Jiang [92]. Their work was aimed at characteriz-

ing existing Android malware but they did not detail their analysis and classification

methodology. However, the corpus and characterization information they provided

became the basis for a lot of follow up research, including ours. Their work identified

that 86% of the malware is found as repackaged apps.

3.2.1 Opcode-sequence similarity

Santos et al. [66] developed a system of detecting malware using opcode-sequence fre-

quencies on the Intel x86 platform. On Android, Hanna and Zhou [44, 90] developed

12

methodologies for using opcode-sequences to detect repackaged applications in both

primary and secondary app markets. Our work differs from theirs in terms of goals and

approach: theirs is focused on detecting application repackaging in general, whereas

we are interested in detecting malware, in particular. Their opcode-sequence-based

detection can be disturbed with relative ease by injecting small amounts of noise;

in contrast, we explicitly designed our approach to deal with different obfuscation

techniques. Our system normalizes an opcode-sequence both on the known and target

samples before comparison, which significantly reduces the effects of dead and junk

code on our similarity measures.

For example, using the same target code snipped illustrated by [49] in their

evaluation of Android repackaging detection algorithms, the original sequence is

altered with series of junk instructions to form an obfuscated version as shown

with the mnemonics in Listing 3.1. In the worst case, DroidMoss [90] can take the

hash of the entire sequence (i.e., a 4-gram). In such cases, detection can be evaded

completely. Conversely, in its best case, using a 2-gram rest point, DroidMoss can

attain a maximum of ≈15% similarity.

However, our algorithm first normalizes both sequences into 2-gram sub-

sequences, as shown in Listing 3.2. The target-overlap coefficient, which gives

emphasis to the known profile, will be ≈ 67%. Furthermore, our small structured

signatures target only sensitive functions, which can help eliminate most GUI code.

This is useful because GUI code is almost always irrelevant for malware detection.

Listing 3.1: Original and obfuscated sequences

//Original sequence

invoke-static, move-result-object, const-string, invoke-interface

//Obfuscated sequence

invoke-static, move-result-object, move-object, const-string, move,

13

invoke-interface, move, move-object

Listing 3.2: Original and obfuscated sequences

//Original sequence

const-string invoke-interface, invoke-interface invoke-static,

invoke-static move-result-object

//Obfuscated sequence

const-string invoke-interface, invoke-interface invoke-static,

invoke-static move, move move, move move-object, move-object

move-object, move-object move-result-object

3.2.2 Semantic-based detection

Semantic-based detection uses information flows as features to detect similarity

between Android applications [28, 30, 39, 67, 80, 88, 89]. PiggyApps [89] first identifies

the code containing the main functionality (the primary module) in legitimate apps.

Then, it extracts and organizes this semantic information from the module as a

vantage point tree. The resulting signatures are used to search for “piggybacked”

apps in Android markets. Apposcopy [39] provides a specification language that

allows the manual creation of signatures for known malware. To find similarities,

it extracts semantic features of a new app using inter-component call graphs and

performs static taint analysis.

DroidLegacy [30] is an API-based static malware detection system that breaks

an app into sub-modules. The set of API calls made in these modules are compared

against the signatures of known samples. DroidAnalytics [88] uses a three-level

signature that represents API calls made from within apps. API call sequences form

signatures for methods, and the collection of all method signatures forms a signature

14

for each class. The collection of class signatures then forms the signature for the

entire application. All of the techniques discussed above can be easily circumvented

with simple obfuscation. Encryption alone can hinder data flow analyses while

the combination of encryption and reflection will make it difficult to extract any

meaningful information from the application code.

3.2.3 Permission-based certification

Kirin [34] detects dangerous behavior in applications by analyzing their permission

requests. It uses a set of rules that defines which permissions combinations might

be dangerous. Another permission-based behavioral fingerprinting is DroidRanger

[94]. However, as detailed in [37], most Android apps are over-privileged in general

and even benign apps have a tendency to request combinations of permissions that

could be considered dangerous. SCanDroid [41] is a security certification tool that

determines if specifications in the application manifest match what is requested within

the app’s components. RiskRanker [43] provides a systematic approach that measures

the risk of dangerous behavior associated with an application based on native code,

dynamic class loading, and callback handlers. VetDroid [86] uses dynamic analyses

to reconstruct how permissions are used to access resources. All these techniques

attempt to discover if dangerous behavior is present, while OpSeq ’s primary goal is

to measure similarity of unknown apps against known malware.

3.3 System Design

The OpSeq architecture consists of two major components as shown in Figure 3.1:

feature extraction, and signature generation. Feature extraction identifies code in

sensitive functional modules and extracts the corresponding opcode-sequences. It also

15

Classes.dex	

Android	
Manifest.xml	

Opcode	 Opcode	 Extraction
and	 Normalization

Suspicious	 Functional	
Modules	

Permission	 List	

N-‐gram	 Opcode	
Sequence	 Generation	

Set	 of	 Patterns,	 One	
for	 each	 Function	

Signatures	

Android	 App	 Feature	 Extraction	 Signature	 Generation	

Figure 3.1: OpSeq Signature Generation Workflow

extracts the list of permissions used by the app to gain access to system resources.

The signature generation step normalizes the sequences from feature extraction, and

then slices each into a small chunk of n-gram opcodes, which constitute the signature

used for similarity matching.

OpSeq ’s signature matching is a 3-step process, each illustrated in the algorithms

1, 2, and 3, respectively. We use a bottom-up approach consisting of three levels

for similarity detection. First, we determine matches at the opcode level, and then

their aggregate gives the similarity at the functional level. Finally, the result of

functional-level and permission-overlap determines the final index. A similarity score

is computed at each level where a subsequent level takes into account the score of

its immediate last level, achieving substantial improvement in the overall accuracy of

our system.

16

3.3.1 Feature extraction

In the feature extraction phase, permission requests and functional opcodes are

extracted from the app’s manifest and classes.dex files, respectively. The

classes.dex file, denoted by cd, is a set of m Java classes, jc:

cd = {jc1, jc2, . . . , jcm}. (3.3.1)

Each Java class jck, 1 ≤ k ≤ m is made up of n functions.

jck = {fk
1 f

k
2 , . . . , f

k
n}. (3.3.2)

We can simplify the notation by aggregating the set of functions in a dex file as:

cd =
m∑
j=1

n∑
i=1

f j
i . (3.3.3)

An individual function fi consists of set of instructions I: fi = {I1, I2, . . . , Ik}.

Instructions are tuples containing an opcode o and a (potentially empty) list of

operands. For the purposes of our analysis, we focus solely on the opcodes and

we disregard the operands. In other words, we view a function f as a sequence of i

opcodes:

f = o1, o2, . . . , ok. (3.3.4)

To be included in the feature set, we filter the list of functions based on two criteria:

a) the function must invoke at least one method from a sensitive API (a manually

compiled list of selected system APIs); and b) its opcode sequence is not on the list

of the most commonly found opcode sequences FS (determined empirically).

17

3.3.2 Signature generation

Our signatures are formed by taking into account the type of obfuscation that can

affect opcode sequences; these include both junk code insertion and code reordering.

Junk code insertion is an obfuscation technique which embeds pools of instructions

that never execute at run time, such as instructions in an artificial if-else branch

that never triggers. Code reordering permutes instructions that have no ordering

dependencies; the main point is to subvert hash-based detection schemes.

The next step of the process is to normalize the extracted opcodes in each

sequence f. This distorts the order of opcode arrangement and groups similar opcodes

in the same cluster. Next, for each normalized opcode sequence, we generate sub-

sequences of n-gram opcodes. In choosing the best value for n, we run our system

with uni-gram, 2-gram and 3-gram. Empirical results (as shown in section 3.4.3)

indicate that 2-gram gives the best accuracy. From now on, we refer to each sequence

(representing one function) containing k number of 2-gram opcodes as a pattern P.

S = {P 1, P 2, . . . , Pm} (3.3.5)

where each

Pm = {osm1 , osm2 , . . . , osmi } (3.3.6)

Depending on the number of sensitive functions found, a signature for a known profile

S is a set of m patterns P, where each pattern is a set of i 2-gram opcodes, denoted

as os. This forms the structural features for the familial malware.

Our technique allows similarity to be measured from the basic unit of code

upwards. Similarity between apps becomes an aggregate of individual functional

similarities and as such the likelihood of determining relationships between two related

codes increases.

18

We know that malware variants will not be exact copies of one another, but our

assumption is that most of their malicious functionality and code structure remains

similar. Malware can add, remove, or substitute code within a function. However,

for it to retain vital key behaviors, some part of the code has to be consistent across

variants. Thus by carefully analyzing each function as a single unit and normalizing

its opcodes, our algorithm can ascertain whether a relationship exists between two

functions of different applications.

3.3.3 Similarity Matching

Our similarity matching is a 3-step process that begins with Pattern-level similarity,

then Function-level similarity to determine a score for all the matched functions.

Lastly, the Final-similarity index scores similarity as a function of the Function-level

similarity and permissions overlap.

Pattern-level similarity Given a reference piece of malware A with signature SA

and sample application B with signature SB:

SA ={P 1,P 2,. . . ,Pm}

Pm={osm1 ,osm2 ,. . . ,osmi }

SB ={P 1,P 2,. . . ,P n}

P n ={osn1 ,osn2 ,. . . ,osnj }

(3.3.7)

For each Pm in SA , we determine its best match in SB using the Targeted Overlap

Coefficient (TOC) technique[75]. TOC is derived from the Overlap Coefficient

or Szymkiewicz-Simpson coefficient, which is defined as the ratio of the size of the

intersection of two sets to the size of a target set.

In pattern-level similarity, the TOC measures the ratio of common 2-gram

19

opcodes found in the intersection of P n and Pm to the size of Pm, given Pm as

the target set. The result indicates the power of inclusion of Pm in P n. The TOC,

denoted by R(P n, Pm) is:

R(Pm, P n) = |P n ∩ Pm|/|Pm| (3.3.8)

Since our algorithm specifically leverages finding the relationship between a new

pattern and a known target pattern, the TOC is our preferred similarity metric. To

determine how Pm relates to P n, we require a threshold value T define as pattern-level

threshold (PLT). This denotes the minimum acceptable similarity ratio. In this step,

If R (Pm, P n) ≥ T then we write R to a buffer BUF and we eliminate both Pm and

P n. While if R (Pm, P n) < T then Pm is eliminated while P n remains. This loop

continues until all the patterns in SA are compared to patterns in SB (Algorithm 1).

The pattern-level similarity is measured by the value of R, which lies between

0 and 1. As R approaches 1, it means most 2-gram opcodes found in Pm are also

present in P n, hence Pm is similar to P n. However as R approaches 0, the similarity

between Pm and P n diminishes. The similarity score calculated is not transitive–Pm

is a pattern from our known profiles while P n is a pattern in a test sample and the

idea is to calculate how close Pm is to P n and not vice versa. A positive outcome at

this level of matching can be attributed to one of the following reasons. If Pm and P n

are modules with the same functionality then R will be close to 1. It is also possible

P n is a disguised version of Pm that has been obfuscated but still retains most of its

original opcodes. In this situation, we can also derive a match. It is also possible for

Pm and P n to match to a certain degree even though neither is derived from same

functional module, which will create a false positive. Our evaluation results have

shown this is quite rare in practice.

This pattern level-matching algorithm has proven effective in overcoming the

20

effect of junk insertion and reordering obfuscation techniques.

Function-level similarity This step analyzes all the results generated in pattern-

level matching. As shown above, for each matched pattern, the derived coefficient is

stored in a buffer BUF.

BUF = {R1, R2, . . . , Rk} (3.3.9)

The set of ratios represents all the matched functions between SA and SB.

Function-level matching calculates a score between two samples as an aggregate of

their pattern-level matching. As preliminary testing, we tried 4 different similarity

coefficients (Cosine, Jaccard, Edit Distance and Sorensen (Dice) Coefficient) on

sample sets and measured the results. The Dice Coefficient gave us the best result.

Briefly, the Dice coefficient is a measure of the intersection between two given sets

scaled by their size. Although the choice of Dice Coefficient here is basically empirical,

in general, it gives more weight when there is an intersection than the Jaccard thus

strengthening similarity. The Dice Coefficient D is defined as follows:

D(SA, SB) = 2* |SA ∩ Sb|/|SA + SB| (3.3.10)

A value of T (pattern-level threshold) that is close to 1 means each R in BUF

is also close to 1. Thus:

|SA ∩ SB| =
∑

BUF (3.3.11)

And therefore:

D = 2*(
∑

BUF) / |SA + SB| (3.3.12)

The coefficient D (Algorithm 2) denotes structural similarity between extracted

functions found in two applications.

21

Final-similarity index The final similarity score is calculated based on the result

of function-level matching and permissions overlap. We first need to calculate the

permissions overlap using the Targeted Overlap Coefficient:

permA = permission list in A

permB = permission list in B

(3.3.13)

Thus the permission overlap from A to B, called PO, is given as:

PO (A,B) = |permA ∩ PermB|/|permA| (3.3.14)

This gives the ratio of similar permissions found in A and B against the length of set

of permissions for A . The permissions overlap is a weight that strengthens the result

of the function-level matching and indicates (at a coarse-grained level) what behavior

is common between A and B . If two apps contain the same malware footprint, they

normally should have some common permissions. The overlap coefficient is a value

between 0 and 1.

The final similarity index given as SS and is a function of function-level

similarity D and permissions overlap PO. This is defined as:

SS = D * PO (3.3.15)

The value of SS is a coefficient that indicates the strength of similarity between

two applications based on our extracted features. A minimum similarity index MSI

is required to determine if the coefficient SS is good enough. Thus when SS ≥ MSI,

we report that a known footprint for malicious code is present in the target app.

The summary of all the design notation is shown in Table 3.1.

22

Algorithm 1 Pattern-Level Matching

function :(PLM(SA, SB, T))
for Pm in SA do:

for P n in SB do
inter=multi intersect(Pm, P n)
coef = len(inter) / len(Pm)
if coef ≥ T then:

append(coef, BUF)
remove(P n, SB)

end if
end for

end for
return BUF

end function

Algorithm 2 Function-Level Matching - Dice coefficient

function :(FLM(SA, SB, BUF))
suM=sum(BUF)
funAvg= 2/ (len(SA)+len(SB)
D = funcAvg * suM
return D

end function

Algorithm 3 Final-Similarity Index

function :(FSI(permA, permB, D))
inter= multi intersect (permA, permB)
perm = inter/len(permA)
if perm > 0 then

SS=perm*D
end if
return SS

end function

23

Table 3.1: Design Notation Table

Notation Definition
cd classes.dex
jc Java Class
f Java Function
o Instruction opcode
S Signature
P Pattern from a Signature
TOC −R(Pm, P n) Targeted Overlap
BUF Set of Targeted overlap Coefficients
T Threshold
D(SA, SB) Dice Cofficient
PermA Permission list from sample A
P.O(A,B) Targeted Permission Overlap
SS Final Similarity Index
MSI Minimum Similarity Index
PLT Pattern Level Threshold

3.4 Evaluation

We have implemented a prototype of OpSeq in Python to test its efficacy on

obfuscation techniques typically employed by Android malware. This section presents

our empirical results.

3.4.1 Focus of the Evaluation

The focus of the evaluation is twofold: 1) detection of known malware, and 2)

further categorization of detected malware into their respective malware families.

In particular, the evaluation targets the following two research questions:

1. Malware/Benign apps detection (Mal/Ben):

Can OpSeq accurately detect a variant of repackaged malicious code without

confusion with benign applications?

• True Positive (TP): known malware code is correctly detected.

24

• False Positive (FP): benign code wrongly detected as containing malware

code.

• True Negative (TN): benign apps are not flagged as having malware code.

• False Negative (FN): known malware code is not detected.

2. Malware class detection (Mal Class):

Can OpSeq categorize a known repackaged malware code into its respective

family?

• True Positive (TP): all malware code that are correctly categorized.

• False Positive (FP): all malware code that are wrongly categorized as

variants of different family.

• False Negative (FN): all malware code that were not detected.

• True Negative (TN): true negative is eliminated in this test because all the

malware samples belong to at least one known class. The samples used in

this test were derived from the true positives in Mal/Ben above.

Experimental Dataset: We use two datasets for experiments. The first dataset

has 1,551 Android applications consisting of 359 benign applications downloaded from

Google Play, and 1,192 malware samples (of 25 families) from the well-known Android

Genome project [92]. The second dataset has 207 malware samples employing four

obfuscation techniques: reflection, encryption, code reordering and junk insertion.

DroidChameleon [63], and SandMark [45] are used to generate the samples. Specifi-

cally, malware sample distribution of DroidChameleon and SandMark are 167 variants

(of 25 malware classes), and 40 variants (of 20 malware classes) respectively. If only

one obfuscation technique is used by a malware, we refer it as simple obfuscation,

otherwise, it is referred as complex obfuscation. Table 3.2 presents the distribution

25

Table 3.2: Malware sample distibution as per four obfuscation techniques: reflection,
encryption, code reordering, and junk insertion

Obfuscation Obfuscation Number of
Type Techniques Malware Samples

DroidChameleon
Encryption (E) 24

Simple Reflection (R) 25
Obfuscation Reordering (O) 24

Junk (J) 24
E & R 23

Complex E & R & O 24
Obfuscation E & R & J 23

SandMark
Transparent Branches 20
Random DeadCode 20

Total 207

of malware in the dataset in accordance with obfuscation tool and type.

3.4.2 Optimum Variables

As mentioned in the previous section, we chose to slice our normalized sequences

using 2-gram sub-sequences, based on results from empirical studies. The average

accuracy of our approach tested with unigram, 2-gram and 3-gram was 91%, 98.9%

and 96% respectively.

Furthermore, we have identified two variables necessary for our algorithm: 1)

Pattern-level threshold (PLT) - the minimum overlap ratio required to assume simi-

larity between two 2-gram patterns from different apps (in Pattern-level similarity),

and 2) Minimum similarity index (MSI) - the minimum score that determines if a

malware footprint is present in an application (in Final-similarity index). To get

the optimal values of PLT and MSI, we choose arbitrary values and plugged them

into our algorithm. The chosen values for PLT are 70, 80 and 90, all expressed as

a percentage. MSI values are 3, 4, 5, 6, 7, again expressed as a percentage. Our

26

variables are chosen based on the statistics of Mal/Ben detection.

In choosing the optimal values, we use F-Score statistics. The F-Score measures

the overall accuracy of a test, which depends on precision and recall. Recall is the

measure of accuracy that a specific class has been detected (% of correct malware

families detected out of all malware samples), whereas precision is the percentage of

positive prediction (% of all malware detected out of all sample applications).

The combination of PLT and MSI that gives the highest F-score is the optimal

solution for the test data. We ran OpSeq on our dataset using the above combination

of PLT and MSI and the results of our execution is shown in Table 3.3. Each row (a

model) represents one combination. We then calculate the statistics (false positive,

false negative, true positive, true negative, precision, recall and F-score) for each

model. The equation for F-Score statistics is:

F = 2 * ((Precision * Recall)/(Precision + Recall)) (3.4.1)

The results in Table 3.3 above indicate the highest F-Score is attained with PLT

equal to 80% and MSI equal to 3%. This model gives us 99.3% precision, 98.5% recalls

and an F-Score of 98.9% for Mal/Ben detection. Furthermore, the false negative rate

(given as FN/TP+FN) for this model was ≈1.5%. This indicates our system has

a very small probability of “miss” detection for known malicious code. The false

positive rate for the same model is ≈2.2%.

Using the same metrics on Mal/Class, our F-Score accuracy was 97.5%, 98%

recall and 97% precision. Thus overall, our system is capable of accurately detecting

malware 98.9% of the time and can categorize the malware into its correct family

with 97.5% accuracy. The confusion matrix for Mal/Ben and Mal/Class based on the

optimal values is shown in Table 3.4 and Table 3.5, respectively.

27

Table 3.3: Model Selection Result: F-Score, Precision, Recall

Model False False True True Precision Recall Interpolated F-Score
Positive Negative Positive Negative Precision

T 90M 7 0 68 1124 359 1 0.943 1 0.971
T 90M 6 1 63 1129 358 0.999 0.947 1 0.973
T 80M 7 0 63 1129 359 1 0.947 1 0.973
T 90M 5 2 55 1137 357 0.998 0.954 0.998 0.976
T 80M 6 2 54 1138 357 0.998 0.955 0.998 0.976
T 90M 4 2 44 1148 357 0.998 0.963 0.998 0.98
T 80M 5 2 42 1150 357 0.998 0.965 0.998 0.981
T 70M 6 25 31 1161 334 0.98 0.97 0.997 0.983
T 70M 7 10 35 1157 349 0.99 0.97 0.997 0.983
T 80M 4 5 34 1158 354 0.996 0.971 0.997 0.984
T 90M 3 4 34 1158 355 0.997 0.971 0.997 0.984
T 70M 4 108 22 1170 251 0.92 0.98 0.993 0.986
T 70M 5 52 27 1165 307 0.96 0.98 0.993 0.986
T 80M 3 8 18 1174 351 0.993 0.985 0.993 0.989
T 70M 3 192 15 1177 167 0.86 0.987 0.971 0.979

The rationale for choosing our optimal values is to further buttress the preci-

sion/recall curve of our solution as shown in Figure 3.2. With each point representing

one model, the points on the curve where precision and recall are around their

maximum and are nearly equal indicate the point of maximum accuracy (interpolated

precision is used to smooth the PR curve).

3.4.3 Empirical Results

Accuracy: Given the F-Score for Mal/Ben, our system can detect malware footprints

in an app with 98.9% accuracy. However due to some reasons identified below, the

Mal/Class test (i.e., identifying the class category) is slightly lower (97.5%). In

comparison with some recent known malware detection tools, OpSeq ’s Mal/Class

accuracy (97.5%) did better than Apposcopy [39] with 90% accuracy. On the other

hand DroidLegacy [30] recorded a membership test accuracy of 98%, slightly higher

than OpSeq ’s Mal/Class figure of 97.5%.

28

Table 3.4: Mal/Ben Best Model Confusion Matrix

(Positive) (Negative)
Malware Benign Total

(Positive)
Malware 1174 8 1182
(Negative)
Benign 18 351 369
Total 1192 359

Table 3.5: Percentage of Mal/Class Prediction Result

Malware False False True Total

Family Negative Positive Positive

ADRD 0 0 22 22
Anserverbot 7 12 286 305
BeanBot 0 0 8 8
Bgserv 0 0 9 9
CruseWin 0 0 2 2
DroidDream 1 1 14 16
DroidDreamLight 4 0 43 47
DroidKungFu 5 19 418 442
Geinimi 0 0 69 69
GingerMaster 0 0 4 4
GoldDream 0 0 47 47
Gone60 0 0 9 9
GPSSMSSpy 0 0 6 6
HippoSMS 0 0 4 4
jSMSHider 0 0 13 13
KMin 0 0 52 52
Pjapps 1 2 55 58
Plankton 0 1 10 11
RogueLemon 0 0 2 2
RogueSPPush 0 0 9 9
SndApps 0 0 10 10
Tapsnake 0 0 2 2
YZHC 0 0 22 22
zHash 0 0 11 11
Zsone 0 0 12 12
Total 18 35 1139 1192

29

Figure 3.2: Precision & Recall Curve

However, comparing DroidLegacy’s recall rate of 94%, which is the true positive

rate, versus our figure of 98%, indicates our system is capable of better detection.

Furthermore, our system has better coverage in terms of malware families processed

(they processed 11 families against ours with 25 families) and resiliency to different

obfuscators as shown in the next subsection.

False Negative: Eighteen (18) malware were incorrectly categorized as benign

apps. Samples from DroidKungFu, DroidDreamLight and Anserverbot constitute the

bulk of our false negative predictions as shown in Table 3.5. One reason for the false

negatives can be traced to our signature generation process. This process randomly

picks only one sample from a set to create a class signature; it is possible that the

sample might be the oldest, newest, or even a variant that has more inclusion or

exclusion of instructions within the malicious code. For instance, the sample we use

to generate the signature for DroidDreamLight is a newer version than the rest of its

variants. This sample has about 98 functions that were extracted for the signature

30

against 18 for the older version. Thus, since our similarity calculates overlap based

on the target known profile, this sample was a miss.

Another reason for some false negatives can be attributed to native code exploits.

Malware samples that have most of their malicious code written in native code

will often result in a miss detection (e.g., some few variants of DroidKungFu and

Anserverbot). Currently, OpSeq is only designed to handle the dex file (containing

Java bytecode) and handling native code is the subject of ongoing research.

False Positives: For Mal/Ben, 8 applications out of 359 downloaded from

Google Play were detected as malware by OpSeq , as shown in Table 3.4. In order to

confirm the true nature of these 8 applications, we ran them through VirusTotal [7].

The output flagged 3 out the 8 apps as malware, reducing our true false positives to

only 5 apps.

In Mal/Class, the false positives recorded were largely due to the use of common

code snippets. This code ranges from 3rd party libraries to adware. Most of the

malware families originate from the same location and have common targets, so

it is not uncommon to find similar libraries and/or adware packaged within the

applications. For instance, we analyzed one of the Anserverbot samples which OpSeq

miscategorized as DroidKungFu. This miscategorization occurs as a result of the

presence of an adware library called - Adware.waps in the new Anserverbot sample

which was missing in the old version used to generate the familial signature. However,

the adware on its own collects various user data from a device and invokes some

sensitive APIs, like getRunningTask. Thus our system retrieved more features than

were available for its family’s signature. On the other hand, the DroidKungFu sample

for signature generation contains the same adware. Since OpSeq assigned the malware

class based on the strength of the final similarity index, that Anserverbot sample was

flagged as DroidKungFu.

31

3.4.4 Evaluating Resiliency

Our approach can detect known malicious code obfuscated and repackaged within

another app. In other to measure its resiliency, we employ two different open source

obfuscators: DroidChameleon - newer and specifically designed to obfuscate Android

apps and SandMark - a well known and tested Java obfuscator. In both systems, we

gave special emphasis to those modules/algorithms that can severely hinder opcode-

sequence based detection.

Test against DroidChameleon Using DroidChameleon, we generated 167 obfus-

cated variants of the malware in our sample set with varying degrees of transforma-

tions, ranging from simple (one method) to complex (combination of obfuscators). In

this segment of evaluation we choose 4 common obfuscation techniques employed by

Android malware:

1. Encryption: names, strings and field encryption

2. Reflection: permission =-based API calls are changed from direct invocation

to using reflection API in helper classes

3. Junk Insertion: addition of “noise” instructions

4. Code Reordering: altering the flow of program execution by changing the

positions of unrelated instructions

In simple obfuscation, an application is transformed with just one technique e.g.,

getDeviceId is transformed from direct call to invoking a helper class that calls

class.getMethod() and then method.invoke(). In complex obfuscations applications

get obfuscated with two or three techniques e.g., all strings, fields and names are

encrypted and then all permission-based API calls are invoked using the reflection

API.

32

For simple obfuscation, we introduced encryption into 24 samples, 25 samples

had added reflection, junk instructions were added in 24 samples, and code reordering

in 24 samples. For complex obfuscation our samples were transformed with a

minimum of two different techniques. We modified DroidChameleon such that when

an app is unpackaged, it is first encrypted, then the bytecode is run through more

obfuscator modules before repackaging. We successfully repackaged 23 samples with

encryption and reflection, 24 had (encryption, reflection and reordering) combined

and finally 23 had (encryption, reflection and junk) combined. Our results for

simple and complex obfuscation as shown in Table 3.6 and Table 3.7, respectively.

OpSeq scores 100% average detection rate in simple obfuscation and 88% for complex

transformations.

AntiVirus Results Using the same obfuscated samples mentioned above, we

assessed the detection ratio of other antivirus products using the VirusTotal website.

For simple obfuscation, out of the top 14 antivirus products, AVG recorded the

highest detection rate with average detection of 65.83%, followed by Dr. Web, F-

Secure, Kaspersky, AhnLab-V3 with slightly above 50%, and Panda, with the lowest

detection rate of 4%. In the complex obfuscation cases, AhnLab-V3 led other antivirus

products with a detection rate of 49.33%, then AVG with 27%. All the rest recorded

less than 25%.

DroidLegacy Results We also used the same obfuscated variants described above

to evaluate the performance of DroidLegacy. We set the optimum threshold of 0.7

as specified in their paper. For simple obfuscation, DroidLegacy had an average

detection rate of 37% and 0% for complex obfuscation. Like many common malware

detection tools, DroidLegacy depends on API names to create signatures for malware.

In situations where the name is obfuscated using reflection, chances of detection

33

Table 3.6: Evaluation results for DroidChameleon’s simple obfuscation.

Encryption Reflection Reordering Junk Average
Detection Rate

Total No. of Sample 24 25 24 24
Research Tools

OpSeq 24 25 24 24 100
DroidLegacy 6 0 15 15 37.5
AntiVirus Software

AVG 8 20 18 18 65.98
DrWeb 17 5 17 17 57.73
F-Secure 6 16 17 16 56.7
Kaspersky 6 16 16 15 54.64
AhnLab-V3 14 14 10 12 51.55
Avast 6 15 13 14 49.48
Avira 5 7 12 12 37.11
Symantec 4 12 7 11 35.05
Ad-Aware 6 6 7 7 26.8
BitDefender 6 6 7 7 26.8
AVware 5 6 6 6 23.71
McAfee 5 5 5 5 20.62
Panda 2 2 2 2 8.25
Baidu-International 1 1 1 1 4.12

34

Table 3.7: Evaluation results for DroidChameleon’s complex obfuscation.

Encryption & Encryption Encryption Average
Reflection Reflection & Reflection & Detection Rate

Reordering Junk
Total No. of Sample 23 24 23
Research Tools

OpSeq 23 24 15 88.57
DroidLegacy 0 0 0 0
AntiVirus Software

AhnLab-V3 12 13 12 49.33
AVG 6 7 6 27.14
Kaspersky 6 6 4 22.86
Ad-Aware 6 7 3 22.86
BitDefender 6 7 3 22.86
F-Secure 6 7 3 21.33
Avast 6 6 3 21.43
Avira 5 5 3 18.57
AVware 5 5 3 18.57
DrWeb 5 5 3 18.57
McAfee 5 5 3 18.57
Symantec 4 4 2 14.29
Panda 2 1 2 7.14
Baidu-International 1 2 2 7.14

35

become very low. This explains why it recorded 0% for all apps that were repackaged

using reflective method invocation. Furthermore, it performed poorly with encryption

alone, detecting only 6 out of 24 encrypted apps.

Tests against Sandmark To further evaluate the resilience of OpSeq against

major obfuscation techniques, we tested it against SandMark. SandMark is well

known and highly documented tool used for watermarking, tamper-proofing and code

obfuscation of Java bytecode [45]. For the purpose of our analysis, we used only

some specific modules within Obfuscation Executive to transform the application

bytecode. We generated 40 new variants by inserting: Transparent Branches and

Random DeadCode. The resulting new jar files were repackaged, aligned and signed

before analysis.

In this experiment, we tested OpSeq ’s similarity detection capability by per-

forming a one to one comparison between each of the 40 repackaged malware, and

its original sample. The results indicates OpSeq can detect these obfuscations with

100% accuracy.

3.4.5 Measure of Performance

Our experimental system an Ubuntu Linux 64-bit system running on an Intel Xeon

CPU at 2.5 GHz, with 16 GB RAM. We leverage an open source Android reverse

engineering tool called apktool for the conversion of the Android dex file into an

intermediate bytecode representation, called smali. Given a target application with

205 Java functions (28624 lines of Dalvik bytecode), for which 46 of these functions

invokes one or more of the sensitive APIs, it takes an average of 4.5 seconds on our

test machine to perform a one-to-one similarity matching with a known sample that

has 118 Java methods (19307 lines of Dalvik instructions).

36

Furthermore, for detection purposes, it takes an average of 11.6 seconds to

analyze a target app against known profiles of the 25 malware families (classification).

This results outperforms Apposcopy, which took an average of 346 seconds per

analysis of an app with 26786 lines of Dalvik bytecode.

The fact that OpSeq is designed to fingerprint apps based on small structured

signatures extracted from vital points within the program code base helps to eliminate

unnecessary noise in the matching process and thus improves our system’s overall

performance.

3.5 Discussion

The experiments in the previous section illustrate that for a large class of Android

malware, OpSeq significantly outperforms state of the art commercial and research

products that rely on signature-based detection algorithms. Our tests indicate that

OpSeq is effective in detecting malware in the presence of both simple and complex

obfuscation techniques, many of which compromise the accuracy of existing detection

techniques.

In the malware families we analyzed, the largest stored signature has 118

patterns (slices) to be matched while the smallest has 3 patterns. Theoretically,

if we compare OpSeq with other opcode-sequence based detection like [90, 44] which

slice the entire app’s opcode-sequence into n slices, our app’s signature sizes are

guaranteed to be smaller and therefore much more efficient. Furthermore, our average

processing time of 11.6 seconds per 25 family comparison indicates our algorithm is

fairly scalable.

During the course of our analysis, our findings reveal extensive code reuse

amongst some of the malware families. For instance, Zhou et al has categorized

DroidKungFu into 5 major families [92]. However we found malware from these classes

37

to contain a considerable amount of common code segments. Thus we categorize them

as one class.

Also, Anserverbot and Basebridge were found to contain a similar main package

com.keji.danti. They differ slightly where BaseBridge loads an extra payload that

leads to privilege escalation while some Anserverbot variants do not. But since OpSeq

only processes the dex file, our analyses flag one as a variant of the other. Information

from Foresafe encyclopedia [8] and analysis results of some antivirus products in

VirusTotal also affirm their relationship; hence we merge them into one class. Some

common adware and external libraries were also found to be present in malware of

different families. Such instances have increased the rate of our false positives and

affect the overall accuracy for Mal Class detection, but these issues also raise indicate

that OpSeq has significant value in better malware classification as well as detection.

3.6 System Limitations

Like most malware detection schemes based on static analysis, OpSeq can be thwarted

via whole class encryption and extensive dynamic class loading. This is because OpSeq

only extracts features from the available classes.dex file. Extra classes that are fully

encrypted or loaded at runtime cannot be processed.

Code-reordering that can split functions into multiple sub-functions may also

negatively impact our approach. Also, very large numbers of junk instructions can

introduce so much noise that it may affect the quality of our signatures. However

these obfuscation techniques will only be problematic when more than one sensitive

functional module is tampered with, which in practice will require significant human

intervention. Furthermore, since our approach clusters common opcodes together by

normalizing them before we slice the whole sequence into 2-gram patterns, excessive

noise can only affect our signature when unique opcodes are introduced viz-a-viz

38

the normalization pattern. These unique opcodes must vary significantly from those

normally used within the functions.

Finally, like all static fingerprinting algorithms, OpSeq is designed based on

signature of a known sample to detect its variant. This system cannot analyze

unknown samples. Thus in the next two chapters we will discuss a further contribution

of this thesis, involving design of a hybrid analysis system that will augment some of

the limitations of OpSeq .

39

Chapter 4

Instrumentation

Instrumentation is the process of analyzing programs by adding trace code to their

source code, binary code, or execution environment. This provides mechanisms for an

analyst to define concerns related to program verification, enforcement, monitoring,

error-checking, performance, debugging, or tracing. Instrumentation techniques

do not necessarily modify code but rather tamper with the execution or behavior

based on defined constructs. In recent years, instrumentation techniques have

gained momentum in the cybersecurity community for vulnerability [83], malware

[15, 31, 32, 35, 51, 62] and privacy analysis [18, 19, 50, 84].

Aspect oriented programming (AOP), first introduced by [55], is a modularized

programming model allowing the separation of cross cutting concerns [73], which

are difficult to capture in traditional programming models. AOP encapsulates the

concerns, defined as aspects, by instrumenting extra behavior in the existing code.

These aspects are special constructs forming the building blocks of AOP. Their designs

can be generic, which allows for reuse throughout program execution. Implementation

of AOP can be performed in two distinct ways:

1. Static instrumentation allows for code to be injected at compile time. This

technique merges both the aspects and the original code into one binary, which

then executes in the execution environment of the original code.

40

2. Dynamic instrumentation, on the other hand, injects code at runtime. In

most instances, this requires a custom classloader to enable the interpreter to

understand and implement the AOP features.

In 2001 [54], PARC developed an extension for AOP designed specifically for

the Java programming language, called AspectJ. Its Java-like syntax, coupled with

its ease of use, makes AspectJ a very popular instrumentation tool for Java programs.

Aspects in AOP are defined by some key terms:

1. Pointcuts are defined by kinded constructs such as function call, method

execution, within class, cflow etc., which match some specified signatures

or modifiers.

2. Signatures are semantic definitions which can be decoded by the AspectJ

compiler during joinpoint creation. It can encapsulate both broad and narrow

definitions, giving an analyst ample flexibility.

3. Joinpoints are points within the execution of the program that are interesting

and/or defined by the concerns of an analyst. These are chosen based on

constructs defined in a pointcut.

4. Advice is the piece of code that gets executed when a certain joinpoint is reached

during program execution

In addressing security concerns, advice defined for a joinpoint adds some func-

tionalities such as logging, code injection, value manipulations, execution rerouting,

skipping execution, etc. to an instrumented program. Advice to be executed can

target before, after and around the execution of a particular joinpoint. As the

name implies, execution of before advice precedes the execution of the target

joinpoint. In this advice, parameters and the target object can be retrieved, in

41

addition to signatures, source location, etc. For after advice, in addition to

the information extracted in before advice, the return value can also be retrieved

and evaluated. The most interesting is around advice which, although potentially

expensive to use, allows code injection and modification of arguments, variable values,

and return values.

The code snippet in Listing 4.1 shows a sample aspect that defines a pointcut

which picks a joinpoint at the call to getDeviceId. When instrumented, this aspect

will pick the method getDeviceId from the class TelephonyManager. The joinpoint is

picked because the signature matches the method in that class and it is the only class

in the Android SDK with such a method. However, if within the application there

also exists a library class with such a method, our broad signature will automatically

capture such a joinpoint, too.

Listing 4.1: Simple Aspect

public aspect Logger{

pointcut myId():

call(* *..*.getDeviceId());

after()returning(String id): myId(){

log.v("AspectJ", "DeviceId="+id);

}

}

4.0.1 Bytecode Weaving

In the Java compilation process, an intermediate representation called bytecode is

generated when the original source code is compiled. This bytecode is contained in

.class files representing each source class. More specific to Android, the system has

added another level of abstraction to its compilation process, where the class files

42

are further compressed into one dex file. Bytecode weavers are tasked with weaving

together class files (both Java classes and aspect classes). In this research, our chosen

bytecode weaver is AspectJ [55]. Its robust framework allows us to define and inject

security concerns related to Android apps for the purpose of logging and monitoring.

Furthermore, its programming syntax and semantics are identical to that of the Java

language, allowing us to tie and weave the monitoring code into a target Android

application with better precision.

AspectJ compilers (ajc) can accept both raw sources and class files for compile-

time weaving and thus have the capability to compile and weave the aspect/Java

sources and/or class files to produce a new woven class. The resulting merged

Java bytecode has to be compatible with the execution platform’s VM. However, in

load-time weaving AspectJ exposes an interface that facilitates the weaving process

between the target bytecode and a custom classloader.

The requirements of our system involve analyzing unknown binaries where there

is no available source code. Thus we limit the discussions in this thesis to only compile-

time bytecode weaving. This form of static instrumentation takes the advice defined

in an aspect and weaves them at specified jointpoints as ilustrated in Figure 4.1.

For Android apps, the resulting binary is dexed and re-packaged into a new apk.

Since this new application does not need a custom classloader, it has the flexibility

of executing on any device emulator without changes to the underlying OS.

43

Figure 4.1: OpSeq Signature Generation Workflow

44

Chapter 5

Hybrid Analysis

5.1 AspectDroid

As mentioned in the previous chapter, static analysis involves detecting known

malicious applications using predetermined signatures and other semantic artifacts,

while dynamic analysis understands program behavior by executing it in a contained

environment. As malicious apps evolve over time, signature-based static analysis

techniques alone are not sufficient to detect stealthy obfuscated variants and/or new

malware samples. Hence, we explored the concept of bytecode weaving to develop a

better analysis system.

Most comprehensive dynamic analysis techniques either require instrumentation

of the underlaying operating system code [32, 62, 31] or involve virtual machine

introspection [82]. They provide effective sandboxing for the analysis of the target

applications, but unfortunately, such techniques are heavily dependent on OS versions

and the Android runtime. Porting and flashing a new build on real devices for various

versions of Android is not an easy task, which can limit the number and kind of

applications that can be analyzed. Existing application-level techniques like [15, 18,

19, 35, 51] are mostly constrained to performing only API monitoring. Although

systems like Capper[84, 83] can perform app-level taint analysis, the heavy reliance

on static analysis for the extraction of taint slices makes it equally vulnerable to

45

simple obfuscation.

In this chapter, we present AspectDroid , a hybrid analysis system for Android

applications based on the AspectJ instrumentation framework. AspectDroid performs

static bytecode instrumentation at the application level, and does not require any

particular support from the operating system or the Dalvik virtual machine. It weaves

in monitoring code at compile time using a set of predefined security concerns, such as

data/resource abuse and other non-traditional behaviors like reflective calls and native

code execution. The target application is then executed on any Android platform of

choice for which behavioral patterns are monitored and logged dynamically.

5.2 Related Work

5.2.1 Application-level instrumentation

The first application-level dynamic taint tracking on Android was developed by

[84, 83]. Their system (Capper) is designed to monitor exfiltration of sensitive

data from source to sink. However, their work requires significant static analysis

to refactor the Java bytecode and compute taint slices which are used at runtime as

the taint propagation map. This system is prone to most of the inaccuracies of static

taint tracking that can result from simple obfuscation techniques. More so, data

sources, propagation, and sinks that pass through reflective call invocation are not

processed if the invoked class and method names cannot be statically resolved. And

finally, like most app-level analysis systems, Capper does not handle dynamic class

instrumentation. Our system AspectDroid on the other hand can perform better data

flow analysis since it can handle Java reflection and runtime class instrumentation.

Other research efforts that exist which target app-level instrumentation are

[15, 18, 19, 35, 51]. The authors of Droidox developed APImonitor[15] to counter

46

its numerous porting issues. ApiMonitor like [18], [19], RV-Droid [35] and [51] all

use static bytecode instrumentation to analyze method calls in target applications

at runtime. Although they use different instrumentation frameworks, these systems

are all limited to sensitive API monitoring during program execution. In contrast,

AspectDroid is a complete analysis system that targets security concerns such as data

flow analysis, sensitive API monitoring, as well as analytics of suspicious behaviors.

5.2.2 Low-Level Instrumentation

Most Android dynamic analysis tools are developed by instrumenting the operating

system code and/or the underlying framework. TaintDroid [32] is a real time dynamic

taint tracking system that monitors the flow of sensitive data. It uses some basic

data flow rules to track the movement of tainted variables, method files and IPC

messages from sources until they reach a specified Java library sink.

Several extensions to TaintDroid [31, 62, 78] were built with added function-

alities. DroidBox [31], for instance, logs an app’s activities related to starting

services, broadcast receivers, SMS and calls made, cryptography operations performed

using the Android API, and file read/write operations, irrespective of taint marking.

Andrubis [78] is an automated analysis system that combines both static and

dynamic approaches to an app’s analysis. Applications submitted via an online

link are dynamically examined on a QEMU-based emulation environment for method

tracking, system level analysis, and data exfiltration using TaintDroid. Other systems

like AppsPlayground [62] added more functionality such as kernel level-monitoring

and automated testing to TaintDroid. The critical design rule for these approaches

relies on low-level instrumentation, thus making them very OS version-dependent

and in some cases platform-dependent. It is important to note that TaintDroid based

systems depend fully on the Dalvik virtual machine and as such will require a complete

47

make-over to port to the new Android runtime. More so, stealthy malware can often

detect emulation environments which may result in inaccurate analysis. Lastly, due

to significant requirements for expert knowledge to port from version to version, the

capacities of such systems for long term analysis is very limited.

Other host-based dynamic analysis tools are DroidScope, AASandbox and

Crowdroid. DroidScope [82] uses virtual machine introspection to monitor the activity

of untrusted applications. This system performs API tracing, native instruction and

Dalvik tracing, and taint tracking. AASanbox [22], on the other hand, evaluates

system call logs by placing hooks between kernel space and user space. These hooks

hijack the system calls made and log information such as process ID, syscall name and

execution time. CrowDroid [26] analyzes system calls performed by an application

based on logs collected using the strace debugging utility in a lightweight CrowdClient.

This system is limited to extracting only Linux-specific information like open files,

but cannot give broad information on IPC and Android specific data.

Dynamic binary instrumentation (DBI) systems like DynamicRIO [24], PIN

[57], Spike [76], and Dyninst [25] which performs runtime monitoring, are mostly

dependent on low level system C instructions. Furthermore, with the exception of

PIN, the remaining are not applicable to ARM systems. DBI techniques are also

very dependent on the underlying hardware architecture and as such will require

modification of the operating system in the case of Android app analysis.

5.3 System Design

AspectDroid is a hybrid system that uses static instrumentation to inject monitoring

code into the target app based on some specific cross-cutting concerns. A requirement

of our system is the ability to analyze unknown binaries where there is no available

source code. The core of AspectDroid is built based on compile-time bytecode

48

weaving. This form of static instrumentation takes the advice defined in an aspect

and weaves them at specified joinpoints in a target class file. For Android apps, the

resulting binary is dexed and re-packaged into a new apk. Since this new application

does not need a custom classloader, it has the flexibility of executing on any device

emulator without changes to the underlying OS.

With AspectDroid , the new injected code executes alongside the original code

and performs custom logging and other analytical functions. The instrumentation

engine (IE) which is the primary component, forms the backbone of AspectDroid and

is designed to address three objectives:

1. Dataflow Analysis

2. Resource Abuse Tracing

3. Analytics of Suspicious Behavior

Our instrumentation code is encapsulated in an aspect and is tailored for each

of the objectives mentioned above. The aspects are weaved into the target app using

AspectJ’s ajc compiler, producing the instrumented version used to perform the

analysis. The instrumentation process is done in-vitro on a host machine. After

successful re-compilation the target app is then pushed onto the test bed for dynamic

execution.

5.3.1 Dataflow Analysis

AspectDroid performs application-level tainting of target data source(s). Our ap-

proach is built around the fact that standard Java and Android libraries use specific

method naming conventions to express common types of operations. Thus, we utilize

the consistent use of specific verbs, such as read, open, write, put, connect, and

execute, to define broad signatures to capture actions such as file/stream/network

49

Figure 5.1: Parts of a Method Joinpoint

access. More specific signatures, such as getLongitude are used to define narrower

joinpoints. Based on all the signatures, we define pointcuts to select various source,

sink, propagation joinpoints. With the help of AspectJ APIs, a joinpoint’s data,

such as the target object, parameters, return values, etc. (as shown in Figure

5.1) can be extracted at runtime. Java programming semantics categorize data types

as primitive, object, and arrays. Although beyond the scope of this thesis, it is

important to note that the JVM stores and processes these data types very differently.

Therefore, our data sources, propagation and sink for each data type are handled

differently. To simplify the terminology, we refer to primitive data types, such as

string and character, as low-level data types.

Our dataflow analysis is limited to explicit propagation, where the tainted data

must be in the sink call, as shown in Listing 5.1. On the other hand, Listing 5.2

illustrates an example of an implicit flow which exfiltrates inferred data based on the

real tainted data.

Listing 5.1: Explicit Data Flow

TelephonyManager telephonyManager = (TelephonyManager)

getSystemService(Context.TELEPHONY_SERVICE);

String IMEI = telephonyManager.getDeviceId();

50

if (!IMEI.equals("00000000"){

String id = Base64.encodeToString(myString.getBytes(), 0);

SmsManager sms = SmsManager.getDefault();

sms.sendTextMessage("5556", null,id, null, null);

}

Listing 5.2: Implicit Data Flow

TelephonyManager telephonyManager = (TelephonyManager)

getSystemService(Context.TELEPHONY_SERVICE);

String IMEI = telephonyManager.getDeviceId();

if (!IMEI.equals("00000000"){

String val = "Device not emulator";

SmsManager sms = SmsManager.getDefault();

sms.sendTextMessage("5556", null,val, null, null);

}

Although, AspectJ API used by our system is not designed to create joinpoints

on conditional/branch instructions thus making it hard to capture implicit flow.

Nonetheless, in the analysis of Android applications, sensitive data leaving the device

is the real threat, not inferred data. As illustrated in Listing 5.1, the real device IMEI

was exfiltrated compared to “Device not Emulator” in Listing 5.2.

Taint sources

We are interested in sources that are relevant to the privacy and security of the user.

We define vital sources as phone-related data, content provider objects, file reads,

and user input. In Android, most important data are guarded by permissions and

only accessible to the user through specialized Android API calls. Other relevant data

not guarded by permissions, such as data read from files and user input from text

51

boxes, are also accessed via the standard Java/Android APIs. Specialized pointcuts

are created using signatures to intercept these vital API calls. After execution, the

return value is stored as a key in a taint map with a corresponding special tag for

each unique source as the value. Depending on the return type, low-level data types

are stored in raw form, while every other object is stored in hash form. This storage

design is very significant in reducing the overhead associated with checking if tainted

data is part of an object. It allows us to check if the object is tainted using its

hashcode at propagation or sink joinpoints.

Taint sinks

Taint sinks are defined as points where the target application communicates with

an external component, either within the device or the outside world. In our data

flow analysis, we seek to monitor only those sinks that form a possible exfiltration

point for the data sources defined above. The data sinks are broadly categorized as

network, e.g., writing to a Socket, URLConnection, etc.; SMS sends; file writes (both

ordinary files and shared preferences); and IPC. We use the same signature semantics

to pick the sink joinpoints. We also leverage the around advice of such joinpoints

to check if its arguments, or target, contain tainted data.

This process is straightforward for parameters. For example; if the sink call is a

sendTextMessage(..), the tainted data will be checked against the parameters of this

joinpoint. However, for a target object we need to parse it and check the associated

fields against the keys in the taint map. For example; if the tainted data is appended

to a URL, and then a URLConnection is created from that URL object, which then

invokes its getOutputStream() method. Our system parses the URLConnection

object to get the URL field and compare that against the data in our taint map.

Overall, data exfiltration is detected if a tainted piece of data is found either within

52

the sink joinpoint’s parameters/parameter’s fields or within the target/target’s fields.

Taint Propagation

Knowing data sources and sinks alone cannot accurately determine data exfiltration;

we also need to identify the data propagation process as represented by the sequence of

variable assignments along the path from source to sink. The tainted data can be part

of an object’s fields and the object can be manipulated in different ways. For every

joinpoint, we determine if it contains tainted data; if so, the appropriate propagation

rule is picked based on the respective joinpoint’s return type, as enumerated in the 7

point rules below:

1. Rule 1: Joinpoint that returns a low-level data type and contains a tainted

argument.

2. Rule 2: Joinpoint that returns a low-level data type and contains a tainted

target.

3. Rule 3: Joinpoints that convert a tainted array to other data types.

4. Rule 4: Joinpoints that create an array from other tainted data types.

5. Rule 5: Object constructor joinpoint that contains a tainted argument.

6. Rule 6: All joinpoints with object return type that contains tainted arguments.

7. Rule 7: All joinpoints with object return type that contains a tainted target.

For joinpoints targeting low-level data types, their return values and target object

are the same. However, for object joinpoints, the target is always a reference to

the location of the object in memory while the return type could be anything. For

example, an object’s joinpoint could return a Boolean indicating success of a method

53

Table 5.1: Flow rules examples for updating taint/tag map

Rules joinpoint Example Taint Data Taint Tag/Map Update

Rule 1 Int myInt = System.identityHashCode(val) valueOf(val), tag = DeviceID valueOf(myInt), tag = DeviceID

Rule 2 String str1 = myInt.toString() valueOf(myInt), tag = DeviceId valueOf(str1), tag = DeviceID

Rule 3 char arr[] = str1.toCharArray() valueOf(str1), tag = DeviceID Hashcode(arr), tag = DeviceID

Elements of arr, tag = DeviceID

Rule 4 Str str2=Arrays.toString(arr) Hashcode(arr), tag = DeviceID valueOf(str2), tag = DeviceID

Rule 5 StringBuilder stb = new StringBuilder(str2) valueOf(str2), tag = DeviceID Hashcode(stb), tag = DeviceID

Rule 6 stb.append(val2) Hashcode(stb), tag = DeviceID HashCode(stb)

valueOf(val2) tag = LineNum tag = DeviceID and LineNum

Rule 7 Vector vec = new Vector() New empty vector is created

vec.add(str2) valueOf(str2), tag = DeviceID Hashcode(vec), tag = DeviceID

call, void, a low-level data type, or other objects. This distinction forms the basis

of how our taint tag/map is updated after the execution of the joinpoint. Table 5.1

gives a taint propagation example for each of the flow rules, and shows the taint

tag/map update after the joinpoint’s execution. Propagation rule 7 can create a

weaving process that might get out of hand, thus we included some optimizations for

joinpoints associated with that rule, based on the object’s class.

To optimize the weaving process and reduce the complexity of the instrumen-

tation, the propagation’s joinpoints for every source are created along the control

flow path of its enclosing method. For example, if the data source IMEI returned by

getDeviceId is found within the body of an Activity’s onCreate method, then the

propagation joinpoints will only be created for methods that satisfy the propagation

rules above and are in that control flow. This optimization greatly enhances our

weaving process and eliminates the need for redundant joinpoints.

5.3.2 Resource Abuse Tracing

Access to some vital functionalities such as Telephony (SMS and Calls) on the mobile

devices are requested through specialized API calls. According to a 2012 Trend

Micro report [74], resource abuse is the most common category of Android malware.

Thus it is imperative for an analysis system to trace and report such abuse. With

54

AspectDroid , the system instruments the telephony method’s invocations and have

their target object, parameters and return value are logged. This information is

significant in determining the phone number used (premium service or device contact),

the message content, settings, and format.

5.3.3 Analytics of Suspicious Behaviors

Programming practices such as native call invocation, dynamic class loading, native

code execution, and reflective call invocation add flexibility to software development.

Although these concepts may be benign, malware can often hide its behavior using

these practices to hinder static analysis or for malicious purposes such as privilege

escalation.

Reflection, for instance, allows method calls to be resolved dynamically at

runtime. Malware can use this technique to hide calls to sensitive APIs. With

AspectDroid , we instrument reflective calls and analyze the target object at runtime

for possible tainted data sources, propagation, sinks, or any sensitive API calls. We

also check parameter arrays for possible taint propagation.

Android apps can load extra classes at runtime using a dynamic class loading

API. One of the drawbacks of static bytecode instrumentation (and by extension

all static analysis) is that only available classes are processed at compile time;

extra classes loaded at runtime are not affected by the weaving. To address this,

AspectDroid implements dynamic class instrumentation: at the joinpoint where

Dexclassloader loads the new dex file, the weaved advice captures the absolute

path to the file, sends it to the host machine via an Asynchronous task, and waits

for notification to proceed. On the host machine, AspectDroid has a server side

component that receives the dynamic class, instruments it, and pushes it back to its

original path on the testbed. Although this wait time slows down the process, it

55

Figure 5.2: AspectDroid Implementation architecture

considerably expands the code coverage of our analysis.

AspectDroid also logs native code invocation, both for simple processes like

Logcat or through the Java native interface. Although it does not trace the activities

within the native code, it does log the name, object, parameters, and return value.

5.4 Implementation

5.4.1 Prototype implementation

We implemented a working prototype of our system in Python, Java, and PHP. The

instrumentation engine is setup on a host machine (64-bit Ubuntu system) for the

initial dex weaving and dynamic class instrumentation. Our software dependencies

includes external tools; dex2jar[23], AspectJ-ajc [10] compiler version 1.8, and

56

external libraries; Apache Web Server[2], aspectjweaver[10], Apache Commons[9]

and Android SDK[14]. Our experiments were carried out on both a physical device

(a rooted Motorola Droid2 with Android 2.2) and two emulated devices (Android

4.1.2 and 4.4.2). The execution environments are loaded with text messages, calls,

contacts, one Gmail account, and some browser history.

Helper component

AspectDroid includes a “helper” component containing modules that automate key

actions. In particular, it implements unpacking, re-packaging and application signing.

Android applications are written in Java and compiled into a compressed class called

classes.dex. However, the AspectJ compiler does not understand the dex file

format, thus the need for decompression before weaving. We use a popular open

source tool called dex2jar, which takes an application file (.apk) or classes.dex

as input and outputs a jar file containing individual .class files. When the target

application is unpacked, it can be weaved together with desired aspects. After the

instrumentation process, the class files are repackaged (dexed and zipped) and re-

signed into an Android-compatible app using jar2dex and versign respectively.

Automated testing

Unlike many traditional applications, smartphone apps are mostly event-driven and

exhibit their true functionalities based on user interactions and in response to system

events. For example, forcing an SMS to be received so that a broadcast receiver can

be activated is an important system event that needs to triggered for us to observe

SMS abuse.

In the case of bulk analysis, manual execution of apps and triggering such

events can be time-consuming. One of the drawbacks of dynamic analysis is code

57

coverage and a single execution path corresponding to a single app execution, whereby

information obtained may not necessarily represent the complete behavior of the

target app. Our assumption is the more a tool can explore an app, the more

information about the app’s behavior can be obtained. For that reason, we build

into AspectDroid an automated testing module as Python scripts which trigger a

series of system and user events to more fully exercise an app’s functionality. This

module combines some open source tools together with custom-built instrumentation

programs. These events are designed to mirror real-life events on a regular Android

device. They include:

1. App installation and activation of its main activity, as specified in the manifest,

using adb.

2. Random keystrokes that simulate user touch and gestures on the app using

monkey.

3. A user’s input is simulated where necessary within the instrumentation frame-

work. EditText user inputs can be associated with different input types.

Most developers specify input types as provided by the Android API – email,

password, etc. We make a best effort to generate data to match its possible

input type. This program is attached to the body of the instrumentation code.

4. SMS, calls and device settings are generated and manipulated using

uiautomator while GPS coordinates are simulated and triggered on the em-

ulator by telnet.

Independent testing frameworks like Android Monkey are limited to only

random application touches and gestures. With our automated testing, the simulated

user input built on the EditText-SetText method automatically creates the needed

textbox data during analysis, which proves to be very important. For example, if an

58

EditText is expecting an email, if the Ok button is hit using Monkey, the application

may return an error and program execution may not proceed due to an empty text.

But with our injected input text, execution will proceed without an error.

Other vital parts of this testing module built with uiautomator help with forcing

various system’s event like calls, which would otherwise have to be done manually.

5.5 Testing and Evaluation

Our approach seeks to provide analysts with an easier to use and more flexible system

for application analysis. It is capable of examining and monitoring Android appli-

cations without restriction based on version and/or platform while still maintaining

a very high level of accuracy. The objectives of the evaluation were to quantify the

following aspects of the system’s performance:

1. Accuracy. We tested the accuracy of our data flow algorithm on 105 applications

from the DroidBench corpus.

2. App Analysis. We further evaluate the effectiveness of our system by comparing

the behavioral patterns in 100 real malware families from the Drebin dataset and

a set of 100 apps downloaded from Google Play. We examine data exfiltration,

telephony abuse, reflective invocation, dynamic class loading, and native code

execution.

3. Execution overhead. We measured the cost associated with dynamic execution

of the target app post-instrumentation.

5.5.1 Accuracy of Data Flow Algorithm

DroidBench 2.0 [17] is an open source project consisting of 120 simulated Android

applications used for testing analysis tools. These applications evaluate the accuracy

59

of an algorithm in detecting data flow between a source and a sink. The authors

employ different methods of data manipulation, such as callbacks, arrays, application

lifecycle, inter-application communication, loops, reflection, threading, and implicit

flows to hide the flow of sensitive data. The apps are relatively small and they may

not necessarily be representative of real life apps and/or malware in terms of size.

However, they contain a wide spectrum of diverse, tricky data flow paths that can

be employed by malicious and/or over-privileged applications, thus making them a

corpus of interest to test AspectDroid .

Before executing the apps with AspectDroid , we execute the untampered dataset

to determine if they are running correctly and producing expected results. Out of 120,

15 apps failed to execute correctly in our environment due to either permission errors

or other bugs and were excluded from the analysis. The remaining 105 apps were

instrumented using our AspectDroid prototype. All apps were tested on emulator

version 4.4 using the automated testing module except for the three apps from the

emulator detection group, which were retested on the physical phone.

Based on the original source code for the 105 apps, the ground truth indicates

86 apps have data leaks and 19 apps have no leaks. Our experiments show that

AspectDroid yielded 80 true positive (TP) results, 16 true negative, 3 false negative,

and 6 false positive. Thus, the AspectDroid ’s recall is 96.4%, precision is 93.02%,

and the standard F-measure stands at 94.68%. Subsequent analysis showed that

in the three false negative cases, tainted and untainted data were added to a data

structure, then the app sinks only the untainted data. Our algorithm taints an

object that contains a tainted field, entry or element and does not handle removal

of that data/object from the taint map once it is written. Since the untainted data

is still part of a tainted object, we recorded a false positive. With respect to the

six false positives, four were apps with the following propagation paths: Public API

60

Field1, StartProcessWithSecret and Implicit Flows. Our data flow algorithm

taints by means of data comparison (possible taint with items on taint map), thus

data exfiltration that is not explicit cannot be detected. The remaining two under

tainting were a result of an optimization added to our propagation rule in order to

reduce the effect of over-weaving (which results in too much additional code added to

the application). This optimization is a tradeoff between the effect of over-weaving

and a possible false negative; hence, these two false results are avoidable.

5.5.2 App Analysis

To test the effectiveness of AspectDroid for analyzing Android applications for

violations of security and privacy concerns, we used malware samples from the Drebin

[16] dataset, a corpus comprising 179 malware families. In our experiments, we picked

one sample per family from the top 100 families. For the non-malicious samples, we

downloaded 100 Android apps from Google Play. All 200 samples are instrumented,

recompiled and executed using our automated testing module.

In our prototype we tagged 27 important data sources, including phone related

data (IMEI, IMSI, ICCID, line Number and location data), user data (database

queries), and input data. We also created joinpoints on some sensitive APIs that

perform telephony functions, native code execution, dynamic class loading, and

reflection invocation. The data flow and sensitive API traces created after each app

execution are then parsed using a Python script to obtain the aggregated result.

We categorize the analysis result into 4 groups: data exfiltration, telephony abuse,

reflection and dynamic class loading, and native code execution.

61

Data Exfiltration

Malware and to a large extent privacy-agnostic applications often target user and/or

phone related data either with malicious intent, for advertisement or identification

purposes. Most sensitive data are guarded by one-time permissions (for Android

versions 1-5) that gives an app open access to quite a large group of data on a

device e.g., Phone-State permission. We define exfiltration as unauthorized writes of

sensitive data to a file (log, sharedprefs, user-defined files), network, and SMS that

are not explicitly granted by the user at the point of transfer. Our analysis of the 100

malware samples showed 127 explicit data exfiltration paths of the 27 tainted sources

carried out by 23 samples. Our results showed IMEI, IMSI, ICCID, and LN are the

most widely exfiltrated phone data. This is followed by contacts, call logs, and SMS

from user-related data. SharedPref and network are the most common sink calls we

noted while SMS seems to be the least. For the Google Play apps, we observed 25

exfiltration paths, most of which are location and phone IMEI. Network is the sink

path for all these data leaks.

Telephony Abuse

SMS is one of the most widely abused resources on Android smartphones. Out of the

100 malware families we evaluated, 8 families were recorded to have some level of SMS

abuse. The apps in the Pirater family send SMS to all contacts on the user’s phone,

posing as the user. The socially engineered, “friendly” SMS generated by Pirater

contains a link that downloads the same malware to the receiver’s phone if clicked.

The MobileTX family, on the other hand, does not just abuse SMS functionality,

but also transmits the phone’s ICCID to a private number via SMS. The remaining

6 families send specially crafted SMS to premium numbers. We have not recorded

any phone call interceptions, spoofing, or recording in any of the analyzed malware.

62

We observed the use of SMS in 2 apps and CALLs from 3 apps which belong to the

communication category on Google Play. In all these instances, the SMS and CALLs

were authorized by the user, based on user-supplied input.

Reflection and Dynamic Class Loading

The Reflection API is part of the standard Java environment and allows method calls

to be resolved dynamically at runtime. It is a powerful tool that can be employed

by malware to evade static detection. We have observed 5 malware families that

use reflection in different ways. We then examine if such invocation exhibits some

element of malicious intent. The Mobsquz and FakeDoc families reflectively check if

the device has support for telephony-related services (phone calls and SMS). Although

this may not necessarily constitute malicious behavior, given the functionality of the

applications as an antivirus scanner and battery optimizer, it requires further analysis.

The FaceNiff family uses reflection to invoke the methods of a background service that

spoofs user accounts and passwords after it has successfully executed the super user

command. The 2 other remaining families, BaseBridge and DroidDream, are not

suspicious as they both invoke methods from GUI-related classes. We observed 34

instances of reflective call invocation on the Google Play apps. Surprisingly, this

is higher than the malware. However, none of the API calls invoked are from our

sensitive API call list. We also observed that the BaseBridge family dynamically

creates 3 jar files (bootablemodule.jar, moduleconfig.jar, mainmodule.jar) and 2

dex files (mainmodule.dex and bootablemodule.dex). Within the timeframe for our

automated testing and even with an extended manual execution afterwards, the app

did not load these new classes dynamically as expected. Thus, we rewrote the binary

to force the app to load the new dex files. This enables our dynamic instrumentation

to trace the loading joinpoint and the newer classes were instrumented using our

63

dynamic instrumentation engine. For the Google Play apps, 7 dynamic classes were

loaded in 5 apps within our testing time. We were able to successfully instrument

and execute all the dynamic classes.

Native Processes

Android applications are commonly written in pure Java code, although quite a

number of them include an embedded C/C++ binary. Over the years, Android

malware has exploited this capability to embed mostly root exploits that trigger

privilege escalation. In other instances, Linux commands that communicate with the

underlying Android kernel are becoming increasingly common. In our data set, 9

out of the 100 malware families invoke native processes 72 times. Commands like

su, chmod, ps, mount and Android’s logcat are the most widely executed native

processes. We have also noted the execution of an unknown binary (myicon) in

DroidKungFu family. Since AspectDroid does not instrument native code, we log the

code path and then manually extract the code using adb. An Md5Sum later verified

that the native binary is a root exploit belonging to the family RageAgainstTheCage.

We’ve noticed native code execution in 6 out of the 100 Google Play apps. In

comparison with the malware apps, the Google Play apps all executed “.so” libraries

vs. starting other processes like chmod or su. Beyond exploring that a particular

native code has been called within the Java execution, AspectDroid does not monitor

its content as the instrumentation engine works only on Java. Thus it is inconclusive

what some unknown native libraries do.

5.5.3 Runtime Overhead

The most important costs of instrumentation occur at runtime, since both CPU and

memory usage are vital on a resource constrained machine. It is especially important

64

that apps limit their resource usage to avoid possible garbage collection. Though

uncommon in foreground processes, this does occur when apps consume too many

resources.

The CPU usage is the percentage of CPU time used by a process. We measured

the value given the system uptime (uTime), processes start time (startTime) and the

CPU time spent in both user and kernel code for the main process and any of its

child processes (uTime, sTime, cuTime, csTime). The formula is given below:

seconds = upT ime− (startT ime/Hertz)

tTime = uT ime + sT ime + CuTime + csT ime

cpuusage = ((tT ime/Hertz)/seconds) ∗ 100

(5.5.1)

We carried out this experiment by re-running the 100 malware families using

automated testing on the same platform, keystroke seeds, and number/pattern of

system and user events. Using the procrank utility, we obtained the process memory

size from each app both before and after instrumentation as well as the CPU indices

above. The experiment was executed 5 times and an average for each metric (Memory

and CPU) was computed.

The dark portion of the stacked bar chart illustrated in Figure 5.3 shows the

memory usage for each malware pre-instrumentation, while the lighter shade shows

the overhead after instrumentation. The data illustrates that the MemSize difference

is uniform and on average, 1MB of additional memory is required to execute the

instrumented application. This translates to approximately 16% more memory usage

on average. In our tests, this overhead caused no issues with any of the apps.

Figure 5.4 on the other hand shows the percentage of CPU needed to render

and execute each malware. The dark portion indicates the CPU usage before

instrumentation while the lighter portion stacked showed the CPU usage overhead.

65

Figure 5.3: MemSize Overhead (MB)

Figure 5.4: CPU usage Overhead (%)

Although the results are not uniform, the average CPU overhead is approximately

5.91%. Some apps tend to have significantly more overhead than others. We manually

examined these apps and found two important factors: the number of data sources

tagged and the propagation path can have a varied and compounded impact on the

66

CPU usage overhead. CPU intensive apps like games that requested a lot of tagged

data, and especially if the request is along the path of an Activity, tend to require

more CPU time to load the activity, thus increasing the percentage of CPU usage

(e.g., the PJApps and Jifake families). Although the Fujacks malware family has

the highest CPU usage pre-instrumentation, its overhead is negligible since it did not

request any tagged data.

5.6 Challenges and Discussion

In the evaluation section we discussed the accuracy of the AspectDroid algorithm

in detecting data leaks, the importance of tracing resource abuse and detection of

suspicious behaviors like reflection, native code and dynamic class loading. Further-

more, we also highlighted the overhead associated with our system. Naturally, some

challenges remain. In bytecode weaving, the compiler has to make a best effort

adjustment to registers, fields, methods and instructions of the weaved class. Some

applications can be sensitive to this kind of intrusion and as such can pose a setback

in our re-compilation process. We make a best effort to optimize the weaving process,

especially in data flow aspects, while at the same time keeping false negatives as low

as possible. Specifically, we ensure that:

1. Propagation rule 1, which handles primitive returns, excludes void and boolean

values. Allowing boolean values in our taint map significantly increases false

positives.

2. GUI-related classes that handle graphics, views, and activities are also excluded

from propagation in propagation rule 7.

3. Well-known public libraries from Android, Amazon, Google, Samsung, and

Apache are excluded from the scope of weaving, however their calls are included

67

within the signatures, if necessary.

4. We use abstract methods within advices to reduce the number of instructions

added directly to the weaved class.

Overall, our system effectively uses these optimization techniques to boost its accuracy

and performance. In our testing, AspectDroid has proven to be effective in analyzing

data flow paths, sensitive API monitoring, and analysis of suspicious behaviors. It

provides a flexible and efficient system for assessing Android applications and does

so with relatively low overhead.

5.6.1 Limitations

The main limitations of every static bytecode instrumentation are anti-unpacking

and anti-repackaging obfuscation mechanisms. Developers can include obfuscated

bytecode in their compiled dex files that decompilers cannot parse correctly. However,

in most cases this obfuscation does not affect method invocation, which is what As-

pectDroid uses to create joinpoints. Furthermore, malware can detect instrumentation

code and/or change the package signatures, which can negatively affect analysis with

AspectDroid .

As opposed to variable level tainting, AspectDroid’s data flow compares the

hashes of raw data and as such cannot be affected by simple manipulations through

variable re-assignment. However, arithmetic instructions can have an adverse effect

on our taint propagation (though we have not encountered such in our analysis). As

mentioned in Section 3, joinpoints on conditional instructions cannot be created due

to the limitation in the Aspectj’s APIs. This limits our data flow analysis to explicit

data exfiltration.

Another limitation of our approach is analysis of native code. At this point,

AspectDroid can only trace to the point where a native class is loaded and executed

68

and it can return the name and parameters for the execution. However, it cannot

trace inside native code. Very few Android applications use native code and even

with malware, the native code is typically used only for privilege escalation which is

heavily dependent on system vulnerabilities. Addressing this issue is the subject of

future work.

69

Chapter 6

Android Data Storage

6.0.1 SQLite Database

SQLite is a single-user relational database management system (RDMS) used for

storing structured data. Unlike a traditional RDMS, SQLite is a server-less database

engine that stores data in normal files. It manages access and concurrency based on

direct file reads and writes and operating system-level file locks, respectively. SQLite

is lightweight and efficient and requires little configuration, making it the database

engine of choice on many operating systems, such as Android and Apple’s iOS.

On Android, SQLite is used to store both private data at the application level

and system-wide data like contacts and calendars. SQLite does not provide a facility

for enforcing access restrictions on stored data and Android layers security on top of

SQLite by prohibiting applications from directly accessing native databases. Instead,

applications must use the Content Provider library, which enforces mandatory access

control through the permissions model. Read and write access to these content

providers must be explicitly granted at application installation time and permissions

are checked at runtime when the providers are accessed.

70

6.0.2 Android Native Providers

Android offers built-in native content providers that store a variety of user data

maintained by the system. Each is associated with at least one SQLite database that

contains various tables, columns and entities. Some of the Android native providers

are: Contacts, CallLog, VoiceMail, Browser, Settings, Media, and Dictionary.

These providers together with the content resolver provide the basis for Android

CRUD (Create, Read, Update, Delete) operations, corresponding to SQL insert,

query, update, and delete operations on database objects. The chain of events for data

access occurs at two levels. At a high level, access begins with the resolver object’s

invocation of one of the CRUD functions, passing at least a Uri parameter, which

identifies the location of the required data. Other parameters for CRUD functions

include column name(s), a WHERE clause, and order information. The resolver

validates the Uri and then passes the request to its provider. The provider performs

permission checks and if the requesting application has the required permissions, it

uses the function parameters to construct an appropriate SQLiteStatement.

At a lower level, the SQLiteStatement is passed to the native content provider

through the binder parcel. The native library translates the parcel and sends the

request to the database engine, which then performs syntax and semantic checks,

expansion and code generation. The result is sent back through the same route. In

the case of read operations, a database Cursor is returned, For write operations, an

integer indicating the number of entries affected is returned. The diagram in Figure

6.1 illustrates CRUD operations on Android’s native databases.

As discussed above, each of the CRUD operations triggers permission checks

by the content provider. Queries are protected by READ permission while insert,

delete, and update are guarded by WRITE permission. However, these coarse-

grained permissions do not distinguish database roles for applications or privileges

71

Figure 6.1: CRUD Operation on Android Content Providers

for individual data items. A simple READ permission allows access to all the tables,

columns and rows in the entire database, while a simple WRITE permission allows

manipulation or deletion of any database entities.

6.0.3 Threats and Vulnerabilities

The coarse-grained access control for databases under Android has serious security

and privacy implications. In our preliminary research, we analyzed the contacts

database and explored some issues associated with providing arbitrary applications

with READ and WRITE access to this database.

72

Security Implications

Denial of Service: We explored a vulnerability with account types based on a

malformed SQL statement that can crash the acore process, resulting in denial of

service on the phone. A malicious app with WRITE permission can create a new

contact without the user’s knowledge under the “com.google” account type with a

malformed account-name which contains a SQL terminator ”;”. The system will

accept the malformed account name at the time of insertion, but after a while,

Android will try to synchronize and delete bad account names. When this occurs,

the malformed account-name will trigger a SQL exception in the SELECT statement

and crash both the contacts application and the acore process. This key process is

designed to automatically restart after it is killed, however, the malformed name will

cause it to die once again. The repeated restart followed by crash of acore results in

a denial of service attack on the phone and the only solution is to delete the entire

contacts database, causing a loss of all local contacts if the user has no backups at

hand.

Permission Leak: We also discovered that applications with the READ-

CONTACTS permission can infer the user accounts on a device without requesting the

GET-ACCOUNT permission. If a contact belongs to an account, the account name

will be written alongside the contact in the RAW-CONTACTS table. And since there

is no restriction on schema or column, an application can read the account name and

type for all the contacts on the phone.

Malicious Contact: Finally, an application with WRITE access to the contacts can

add a new contact under a particular account and group without restriction. When

that account is synced, the contact gets pushed on to the server. This becomes a

serious problem if, for example, the contact is pushed into an important work group

that shares confidential information or if a contact’s email address is secretly updated,

73

to facilitate a targeted attack.

Privacy and Attribution

Applications with appropriate coarse-grained permissions can read clearly mapped

data containing names, phone numbers, email and physical addresses, and even IM

status. This data can clearly distinguish an individual and be used for annoying

advertisement or targeted social engineering attacks. Worse, information such as “last

time contacted” can provide inferential information about call logs without having

the CALL-LOG permission.

Furthermore, with WRITE permission, update, insert, and delete database

operations can be performed by an application with very little data available to

support attribution, since Android produces no audit logs associated with database

operations. This is primarily because SQLite is a single user system and is not

designed to keep track of who performs which operations on a system. For forensics

investigation, this makes it very hard to ascertain if a particular entry in the database

is added or updated by the user or by a malicious application.

74

Chapter 7

Privacy Policy Enforcement

Techniques

7.1 Fine-grain Access Control

As discussed in the last chapter, Android applications access native SQLite databases

through their Universal Resource Identifiers (URIs), exposed by the Content provider

library. By design, the SQLite engine used in the Android system does not enforce

access restrictions on database content nor does it log database accesses. Instead,

Android enforces read and write permissions on the native providers through which

databases are accessed via the mandatory applications permissions system. This

system is very coarse grained, however, and can allow applications far greater access

to sensitive data than a user might intend. For instance, in the case of the contacts

database, write permission through the associated content provider allows writing

new contacts and manipulating and deleting contacts at will. Of equal concern is

the fact that read permissions allow access to the entire database, including phone

numbers, email addresses, physical addresses, account information, etc. Ultimately,

this large corpus of data that is clearly associated with a particular individual can be

both accessed in malicious fashion and even transferred to a third party server with

almost no restrictions.

75

Looking at the bigger picture, the privacy violation scales beyond the device user

alone. It also exposes data associated with third parties to the prying eyes of malware

and other privacy-violating applications. Clearly mapped information like phone

numbers, email and physical addresses provide sufficient information about third

parties that they could be used to support targeted advertisement, social engineering,

surveillance, data brokerage, and physical attacks.

Furthermore, due to the interconnectivity of the different providers and their

data, we have found the current approach to result in various forms of inferential

permission leaks. Other security breaches like denial of service due to malformed

SQL data as mentioned in the previous chapter are also possible.

To reduce the propensity of these problems and provide users with additional

control over the Android content providers, Mutti et al [59] proposed an integration

of SQLite and SELinux. Based on context security, this system enforces fine grain

access control at the lowest level in the database. Unfortunately, the solution requires

extensive changes in the operating system code to accommodate the security context

schema table and its corresponding library code. Given how long it takes for Android

to effect changes and for manufacturers to integrate such solutions on existing systems,

techniques that require extensive OS modifications are not viable, practical options

for an average user.

To solve these problems, we developed a new privacy enforcement technique that

enforces access restrictions, query-rewriting and database access logging via static

bytecode weaving. Our system, called priVy, does not require any change to the

Android kernel and middleware. Furthermore, priVy does not treat SQLite databases

as a single information store with a single set of access permissions; instead, it enforces

restrictions for different schema and entity levels by re-implementing content provider

library code using instrumentation at the application level, based on user-provided

76

access restrictions. The new weaved checking code forces the application to access

only user-approved schema or entities, while maintaining application integrity.

7.2 Related Work

7.2.1 Android SQLite

The sensitivity of data and the disastrous effect of its breach has led to more rigorous

research on database security in the recent past. Access control, auditing, authenti-

cation and encryption are all paramount at the server, network, and application level.

Object and system privileges ensures users have the right access level to perform both

administrative and simple data access on the system respectively.

Traditional relational database management systems (RDBMSs) has evolve over

the years, incorporating different levels of security granularity at schemas, column,

and entity level. SE-PostgreSQL [56], for instance, integrates PostgreSQL with

SELinux such that every database object has a security context indicating its privilege

and attributes. Oracle’s virtual private database [46] and INGRES [72] on the other

hand support fine grained access through runtime query modification.

SQLite is an RDBMS which by design is a server-less jumbo file attached to an

application. Its security layer is completely provided by the Android OS through the

READ/WRITE permission system on the file. Although the file is protected from

unauthorized access, privileges on the individual objects (schema, column, entities)

are not segregated. SE-SQLite [59] like SEPostgreSQL is developed by integrating

SELinux into Android SQLite. It provides low-level access control on database schema

and tuples. Our work, though very much related in objective, differs completely in

implementation. Theirs integrated the access policies in the database engine, while

we enforced the access constraints at the application level by hooking the CRUD

77

method calls and forcing query-rewriting where necessary. Our system does not

require flashing a customized ROM, thus it is a more accessible and easily deployable

solution.

7.2.2 Instrumentation

Instrumentation has been a vital tool for enforcing secure policies on Android systems

both in static and dynamic contexts. Largely due to ease of application repackaging,

static bytecode weaving at the application level has garnered a lot of attention. Dr.

Android [50] retrofits Android permissions using bytecode instrumentation. Capper

[85] tracks sensitive information flow from source to sink while RetroSkeleton [29]

enforces various flexible security policies at runtime. Appguard [18] and [19] both

provide customizable user-policies through on-the-device application repackaging.

Most of these solutions have the same aim of reducing permissions associated with

an Android app in general, whereas priVy is very specific to access control on SQLite

databases, which permission control alone cannot achieve.

Dynamically, FireDroid [64] and NJAS [21] use ptrace to attach their policy

monitor to the target process. In both of these solutions, security policies are defined

at a lower level by re-mapping the system calls to higher level API calls. The Android

PIN project also supports dynamic binary instrumentation. TISSA [95], Aurasium

[81] Apex [60] all developed different security policies, mostly with respect to reducing

permissions, by extending the Android framework. COMPAC [77] segregates permis-

sions within the components of an application. AdDroid [61] segregates advertisement

and the Android framework by introducing new advertisement APIs and permissions

while AdSplit [69] executes the advertisement code in a different process.

ASM [47], SEAndroid [70], MockDroid [20], and AppFence [48] are operating

system-centric solutions that developed integrated security policies at the kernel and

78

Figure 7.1: priVy’s System Architecture.

Dalvik code. While the security policies suggested above can be used to either allow

or deny access to the database file, they cannot address the issue of access control on

the database object.

7.3 System Design

Our goal is to define low-level access controls for Android’s native content providers

and enforce these access controls for third party applications. This will ensure that

users have tight control over read/write accesses on sensitive data for instrumented

applications.

priVy is comprised of two components, a Controller app and Controller stub.

The Controller app is an independent application running in a different process that

registers an instrumented application and sets up and manages its access levels. The

stub provides the weaved code that forces the instrumented app to verify access levels

79

at startup, enforce access constraints, perform query-rewriting as necessary, and effect

database auditing. The architecture of priVy is illustrated in Figure 7.1.

7.3.1 Controller Stub

Our approach uses the AspectJ instrumentation framework [53] to insert and enforce

fine level access verification, query re-writing and database auditing for Android’s

native providers.

Depending on the cross cutting concern, signatures can be made very broad

using wildcards or specific with direct package names, return types and parameter

types. In priVy, we designed signatures for Android packages related to data access

on SQLite databases. The three most important are Database, Content Provider

and Resolver. The database package hosts the main SQLite database object and

corresponding methods to query it in raw form. It also provides the Cursor interface

for reading the results of database queries. It is important to note that Android does

not support direct raw access for databases associated with an application with a

different uid. Access to such data can only be provided via the Uri of the target

Content provider. The provider classes expose data of one app to the code executing

in a different process.

Generic AspectJ advices were then developed around the methods in the relevant

classes from the packages discussed above. These advices are encapsulated in an

aspect which is then statically recompiled into an Android binary. The result is the

same Android binary extended with our controller stub. This static instrumentation

process intercepts the resolver CRUD functions and inserts the controller code where

necessary. As mentioned in Section 2, direct access to native databases is completely

prohibited by Android and access is only available through the exposed native content.

Thus, it is relatively convenient for us to develop specific signatures corresponding to

80

Table 7.1: Joinpoints Picked by priVy ’s Pointcut Signatures

Target Object Insert Update Query Delete

Content Resolver insert(..) update(..) query(..) delete(..)
Content Resolver bulkInsert(..)

ContentProviderOperation newInsert(..) newUpdate(..) newAssertQuery(..) newDelete(..)

only the resolver and provider packages.

As shown in Table 7.1, insertion operations can be performed in three different

ways, either via a single insert, bulk insert, or using a content provider operation.

Delete, update, and query operations can each be performed in two different ways.

Our signatures take into account all these and we target the respective joinpoints

accordingly.

With the exception of adding auditing log entries, where code is inserted using

“after” advice, all other code that performs constraint checks and query-rewriting uses

“around” advice, which can perform code injection in the middle of method execution

and allows manipulation of target object, parameter(s) and return value. This enables

us to generate the correct return values in case a query is blocked or restricted. It

also allows us to enforce constraints and reflectively perform new method invocation

on an already created object residing in memory.

Access Verification

At runtime, when the instrumented app begins execution, the controller stub performs

the access verification as illustrated in Figure 7.1. It reads and parses the assigned

access control for the target application from the world readable, shared preferences

XML file for the controller app. It sets up the global variables for the access level,

schema, and column as well as entity privileges for each provider. The global variables

are used by the CRUD operation’s joinpoint to determine how the method call will

proceed when invoked.

81

The CRUD function’s access level can be ALL ALLOW, ALL BLOCK and

RESTRICT. The ALL ALLOW access level, as the name implies, does not impose

sanctions on the joinpoint and simply allows it to proceed with its original parameters.

ALL BLOCK, on the other hand, completely blocks the execution of a joinpoint. For

ALL BLOCK, our controller stub must ensure that the query is actually blocked

while not affecting application stability. We are able to achieve this by ensuring

the affected functions return appropriate values as shown in Figure 7.2 for Query

joinpoint. Specifically, depending on the type of access functions, different actions

must be taken:

1. Query and Insert: We transform the given Uri parameter of the function into

an Entity Uri with appended zero. For queries, the system proceeds with this

special entity Uri which in turn will force the return of an empty cursor with

at least header information. For insert operations, the entity Uri gets returned

and the parameters are discarded.

2. Update and Delete: Functions performing update and delete operations expect

an integral return type indicating how many rows were affected. We simply

return 0, indicating that no rows were affected and thus the program will

continue to execute smoothly.

The RESTRICT option regulates access to database schema, columns, and

entities. In a relational database, a schema represents a logical group of objects. In

this paper we restrict the schema definition to the database tables available through

the content Uri, e.g., the contact table in “Contacts.db” or the events table in

“Calendar.db”. Also, we logically include all objects in a table that can be grouped

by the same MIME types, like emails, phone numbers, and addresses, as different

schemas.

82

pointcut getCurObj(Uri uri, String[] Projection,
String Selection, String[] Selection_Args):

 call(*..*Cursor* *..*.query(..))
|| call(*..*Cursor* *..*.*Query(..)))

 && args(uri, Projection, Selection,
Selection_Args,..) && NotNewLogger();

Object around(Object tar, Uri uri, String[] Projection,

String Selection, String[] Selection_Args):
 target(tar) && getCurObj(uri, Projection,

Selection, Selection_Args){
//...
//...

 ContentValues cont = getAccess();//From SharedPrefs
 if (cont.containsKey(uri.getAuthority())){
 start = System.nanoTime();

String level =
cont.get(uri.getAuthority()).toString();

 if (level.equals("ALL_ALLOW")){
 ret = proceed(tar, uri, Projection,

Selection, Selection_Args);
 }else if (level.equals("ALL_BLOCK")){

ret = proceed(tar, getEntityUri(uri),
Projection, Selection, Selection_Args);

 }else if (level.equals("RESTRICT")) {
 checkSRestrict(..);//Schema Restriction

 //...
 checkCRestrict(..);//Column Restriction

 //...
 checkERestrict(..);//Entity Restriction

}else{

 }
 }!

Figure 7.2: Advice on a Query Joinpoint that Shows How the Controller Stub
Performs Access Verification

83

Thus, the schema restriction ensures an app only queries from the approved

tables or MIME type(s). Since most of these MIME types have individual Uris

assigned to them through the CommonKind Uri, their schema restriction must

ensure a entity restriction on the main table as well. The controller stub makes a

decision to ALLOW, BLOCK or REWRITE the query based on the schema restriction

established by the user. For example, if a user has a schema restriction set up to only

allow access to email information and and the app requests both email and phone

numbers, priVy must re-write the query such that only the email table gets projected

on the SQL statement. Furthermore, restrictions can be imposed on database columns

so that certain columns are prohibited from being viewed by apps, e.g., account-type

and name, or an entity based on a column value.

Aside from the two mandates mentioned above for BLOCK option, a third

condition becomes necessary here, specifically, that priVy must ensure that any other

part of the application that depends on the return value of the function does not

crash. This is mostly an issue with query functions, because they return a cursor and

the program may have been designed to access a particular column which may not be

available due to restrictions. To solve this problem, we instrument all the functions

that access cursor information directly. The advice on these joinpoints tests if the

column requested is available and if it isn’t, the column will return a empty string.

This has proven to work well in practice to ensure that applications do not crash due

to the imposed access restrictions.

Query Re-Writing

Android creates a proper SQLstatement after the request has passed the permission

checks. Since our system operates at the highest level, we rewrite the intended query

by altering and/or supplying new CRUD function argument(s). These functions con-

84

// qSRestrict contains list of restricted Uri
public Uri checkSRestrict(ArrayList<String> qSRestrict,

Uri uri, ContentResolver resolver){
 if (qSRestrict.contains(resolver.getType(uri))){
 uri= getEntityUri(uri);
 }else{
 //...
 }
 //...
}!

Figure 7.3: Schema Restriction Check on a Query Function

tains Uri, Projection, Selection, Selection-Arguments and Content Values parameters.

In SCHEMA restriction, priVy compares the query Uri with the restricted

schema; if matched, the query is simply blocked otherwise the system allows it to

execute. The code snippet is shown in Figure 7.3.

The query-rewriting module is triggered when the initial query is projected

on column(s) and/or entities outside its access restrictions. In a query function a

projection argument can take an array of column names or null (indicating all rows

in a table should be returned). Armed with the column-level access restriction, the

Controller stub executes the checkCRestrict function and re-writes the query based

on the following rules;

1. If projection is not null - the stub checks for the intersection of the

projected column(s) and the restricted column(s) and then removes them from

the projection list as shown in Figure 7.4.

2. If the prohibited column is the only column to be projected - the

function will be blocked completely. This is because exchanging the prohibited

list with null will return all the columns including the prohibited ones.

3. If projection is null - For query, the stub checks the intersection of the

columns of the return cursor and the restricted column(s). If found, the

85

 if (Projection!=null){
 if(myMap.keySet().contains(resolver.getType(uri))){
 String val = myMap.get(resolver.getType(uri));
 for(String str: Projection){
 if(!(resolver.getType(uri)+str).equals

(resolver.getType(uri)+val)){
 newProj.add(str);
 }

}finProj = newProj.toArray(new
String[newProj.size()]);

 }else{
 finProj= Projection;
 }

}

Figure 7.4: Column-level Restriction with Not-Null Projection

intersected column(s) are removed and the query continues with the remaining

column as shown in Figure 7.5. For Update and Insert, restricted column are

prevented from database write thus key sets of the content values are compared

against the restricted column and removed if there is an intersection. Delete

operations do not require column projection.

Selection and Selection-Arguments indicate the WHERE clause column(s) and

value(s). The user can restrict access on some predefined values, e.g., to certain

account types, whitelisted contacts, etc. For the most part, we don’t test or nullify

these arguments, but rather we enforce the new specification by concatenating our

restriction to an already established WHERE clause. For instance, an application

might be restricted to only query contacts from account-type “com.google” and

we simply ensure that this is enforced by influencing the WHERE clause. If this

restriction involves only one entity, the controller stub appends it with an “AND”

operator to the function’s WHERE clause, if not null. If the WHERE clause is null,

however, the stub then substitutes the null with the new restriction, and the function

86

 if (ret instanceof Cursor){
 Cursor cur =(Cursor)ret;
 if(cur.getCount()>0){
 String[] pNames = cur.getColumnNames();
 if(myMap.keySet().contains

(resolver.getType(uri))){
String val =
 myMap.get(resolver.getType(uri));

 for(String str: pNames){
 if(!(resolver.getType(uri)

+str).equals(resolver.getType
(uri)+val)){

 newProj.add(str);
}

 }finProj = newProj.toArray(new
 String[newProj.size()]);

}else{
 finProj= null;
 }
 }
 }

Figure 7.5: Column-level Restriction with Null Projection

proceeds with this new value. On the other hand, the situation is more challenging

when there are more than one entity restriction and it applies to different tables (e.g.,

account type (Raw Contacts) and lookup key (Contacts)). In typical SQL we can

perform complex joins on the different tables. However, on content providers such

operations are very limited. To solve this, we extract the primary key (and foreign

key where necessary) from each of the tables and use them as the parameter(s) for

the target query’s WHERE clause as shown in 7.6.

For example, consider the query “ ID from contacts WHERE lookup key =

value” and the query “ ID and RAW CONTACT ID from raw contacts WHERE

account type = value”. The intersection of ID and RAW CONTACT ID in these

query results will be the new WHERE clause for the target CRUD operation.

For delete and update functions, a developer may or may not supply the

WHERE clause and/or its argument. According to a user’s preferences, our system

87

public String checkERestrict(Uri uri, ContentResolver resolver){
 String finSel= null;
 if (uri.getAuthority().contains("contacts")){

 // for each entity restriction,
 // getContactIds(..) gets its primary key column.
 //The intersection of the results is return in fin

 String fin = getContactIds(resolver);
 if(fin!=null){
 if(uri.equals(ContactsContract.Contacts.

CONTENT_URI)){
 finSel = ContactsContract.Contacts._ID +

" IN ("+fin+")";
}else if (uri.equals(ContactsContract.Data.

CONTENT_URI)){
 finSel = ContactsContract.Data.

RAW_CONTACT_ID + " IN ("+fin+")";
 }else{
 finSel = ContactsContract.

RawContactsEntity.CONTACT_ID + " IN (
"+fin+")";

 }
 }
 }
 return finSel;
}!

Figure 7.6: Code Snippet Showing Entity Restriction for Contacts Provider

88

can enforce restrictions on when and where delete operations can occur by reflectively

invoking a new delete function within the joinpoint on the target object. After it

returns, the new return value is supplied as the return value of the joinpoint’s advice

as shown in Figure 7.7.

Database Auditing

SQLite database is a single user RDBMS. But nevertheless, on Android, important

native databases are often accessed by multiple applications which are considered

individual users with different user IDs. It is important to keep track of which appli-

cations perform which actions on system resources, especially since these applications

are typically created by different developers and may manipulate the same data with

few restrictions. Currently, Android does not support this kind of fine-grain auditing.

In our prototype implementation of priVy, we introduce auditing using a file

attached to the Controller app called the auditLog. We implement this by injecting

the auditing function after the CRUD function has executed and returned a desired

result. For insert, an “after” advice will request for the returned Uri and then parse

it get the row id. This package name, row id, together with Uri name, Content Values

and time stamp are written to the auditLog file.

On update, the return value is the number of rows affected rather than the Uri.

Thus, we need a global variable to keep track of the row lookup ids (rowid) affected

by the update function. We use this global rowid, together with package name, Uri

name, selection and its arguments (if any), content values and time stamp as an audit

file entry. This also applies for Delete operations. Query operations return a Cursor,

thus we keep the audit of the query parameters as well as the number of rows in the

cursor. We do not track the IDs of the columns because it may or may not be part of

the projection list. The code snippet for auditing query operations is shown in Figure

89

pointcut deleteInst(Uri uri):call(* *..*.delete(..))
 && NotNewLogger() && args(uri,..);

Object around(Uri uri, ContentResolver tar):
 deleteInst(uri) && target(tar){
 if (access.containsKey(uri.getAuthority())){
 //
 //
 }else if (level.equals("RESTRICT")){
 ContentResolver resolver = null;
 if (tar instanceof ContentResolver){
 resolver = (ContentResolver)tar;
 }
 if (resolver!=null){
 //check Schema Restriction
 uri = checkSRestrict(qSRestrict,
 uri, resolver);
 }
 if (!uri.toString().contains("/0")){
 Log.d(uri.toString(), "here3");
 //check Entity Restriction
 String finSel = checkERestrict(uri,
 resolver);
 if(finSel!=null){
 //populate selection
 }
 String[] selArgs = (String[])args[2];
 Object[] params = new Object[]{uri,
 sel, selArgs};
 Class clazz = thisJoinPoint.getSignature().
 getDeclaringType();
 //Reflectively Recreate Delete
 //function with new selection and
 //return number of rows deleted
 try {
 String methName = thisJoinPoint.
 getSignature().getName();
 Class[] paraTypes
 =getMeth(thisJoinPoint);
 Method method
 =clazz.getDeclaredMethod(methName,
 paraTypes);
 ret = method.invoke(tar, params);
 delRet= true;
 }catch (Exception e){
 delRet=false;
 e.printStackTrace();
 }
 //
 }
 return ret;
}!

//

//

//

true;
e

Figure 7.7: Code Snippet Showing Query Re-writing for Delete Function

90

7.8.

Apart from its major objectives, our controller stub further checks for malformed

strings in arguments passed to the CRUD function. This is important so as to prevent

the denial of service attack mentioned in Section 6.0.3. This functionality checks for

special characters in the content value(s) of an insert or update function. It then

triggers a warning to the user and he/she can opt to remove any special character.

7.3.2 Controller App

The controller app running on a separate process coordinates the content provider

restrictions for targeted applications. Our aspects are written as generically as

possible to integrate into any Android app as well as work for all the native

providers. The controller app provides an interface for choosing the access levels

and further access restrictions on schema, column or entity, thus saving the cost of

re-instrumentation in case changes need to be made. This significantly improves the

usability of our approach.

When an application is installed, the user needs to register it with the controller.

Its user interface (UI) exposes the available access level/restrictions for the user to

choose from. After selection, the values is stored for the target application in a shared

preferences XML file maintained by this controller app. The Controller stub queries

these files at runtime. The controller app maintains three different XML files for the

access level, constraints, and the arguments, as shown in Figure 7.1.

1. Access.xml - this file contains entries for all registered instrumented apps. It

takes the concatenation of package name, provider names, and CRUD function

name as the key which is also the record identifier RID, while the value contains

the access level as ALL ALLOW, ALL BLOCK, or RESTRICT. Listing 7.1

shows an example of a key:value pair in Access.xml file.

91

after(Uri uri, String[] Projection, String Selection,
String[] Selection_Args) returning (Cursor ret):

 getCurObj(uri, Projection, Selection, Selection_Args){
 //...
 if (ret.getCount()>0){
 String vals=null;
 StringBuilder stb = new StringBuilder();
 if(Projection!=null){
 for(String str: Projection){
 stb.append(str);
 stb.append(",");
 }

 }
 vals = stb.toString();
 String args=null;
 stb = new StringBuilder();
 if(Selection_Args!=null){
 for(String str: Selection_Args){
 stb.append(str);
 stb.append(",");
 }
 }
 args = stb.toString();

 String audit = "Time"+Long.toString(System.nanoTime())
+" Uri "+uri.toString() +" Values "+vals + "Selection"
+Selection + " Selection_Args "+ args+

 thisJoinPoint.getSignature().getDeclaringTypeName()+
"."+thisJoinPoint.getSignature().getName();

 Log.d("R-DAC","Query Audit- "+audit);
 //…
}!

Figure 7.8: Instrumentation Code Snippet for Auditing Query Operations

92

2. Constraint.xml - If the access level is set to RESTRICT, the schema, column,

or entity constraint has to be provided. This constraint is registered in

constraint.xml. Its entries are the RID as provided in Access.xml file and

the values are the constraints separated by commas as shown in Listing 7.2.

Empty brackets indicate there is no constraint on the element. The SCHEMA

constraint has to take complete Uri string names, while the COLUMN and

ENTITY constraints contain the Uri and column name, each of which can have

zero or more constraints.

3. Argument.xml - As mentioned above, the ENTITY constraints are enforced

in the WHERE clause of the SQLStatement. Thus for each entry in the

Constraint.xml file that contains a record for an ENTITY constraint, there must

exist an record in the Argument.xml file that provides the argument value(s).

For example, if Constraint.xml contains a record as shown in Listing 7.2, the

Argument.xml file will have a corresponding record as shown in Listing 7.3. This

constraint ensures an app is restricted from querying contacts using clauses like

“WHERE account type is “com.google””.

Listing 7.1: Entry in Access.xml

key - com.bbm:contacts:query:

value <RESTRICT>

Listing 7.2: Entry in Constraint.xml

key - com.bbm:contacts:query:

value < SCHEMA(),

COLUMN(vnd.android.cursor.dir/contact:

display_name),

ENTITY(vnd.android.cursor.dir/raw_contacts:

93

Figure 7.9: Relationship Between Instrumentation Time and Extra Joinpoints

account_type)

>

Listing 7.3: Entry in Arugument.xml

key - com.bbm:contacts.query:

value < ENTITY((vnd.android.cursor.dir/raw_contacts:

account_type) :com.google)>

Apart from creating and managing access verification information, the controller

app also manages the auditLog file.

7.4 Implementation

We implemented the prototype of our approach in Python, Java and AspectJ as

the weaving framework. The Controller app is written as a standalone Android

application with three shared preference files that store the access level, constraints,

and its arguments for an instrumented app. This app does not require any permissions

94

to install. For the Controller stub, the instrumentation process is implemented using

Python scripts which automate application unpacking, repacking and signing, while

the weaving aspect is written using Java/AspectJ.

Android apps are shipped as a single zip file called an apk, which contains the

main classes.dex file and other resource files. The classes.dex is a highly optimized

compressed file that contains the Dalvik bytecode which is parsed and interpreted

by the Dalvik Virtual machine at runtime. It is created by removing redundant

information from the app’s compiled Java classes. The AspectJ framework, on the

other hand, does not understand the Dex file format. Thus, to weave-in the Controller

stub, we need to unpack from Dex to Java class files.

The automated instrumentation processing makes use of an open source Dalvik

translator called “dex2jar” [23] for the unpacking, repackaging, and app signing. This

processing is set up on a Linux system with Java and “ajc” compilers installed and

the AspectJ library and the Android SDK on its class-path. The weaving module

takes the unpacked classes as input and after recompilation executes the repackaging

and resigning modules, respectively.

We developed generic aspects that can be woven into any Android application to

enforce access control on any of the 7 native providers. However we limited our testing

and evaluation to contacts and calendar providers. These two providers contain

valuable and sensitive data for both the device user and any third party associated

with the user. According to [40], the contact information is by far the biggest privacy

concern of all the sensitive data found on smartphones. The contacts provider exposes

different kinds of data via its numerous Uris. These data are contained in three tables

(Contacts, Raw Contacts, Data) under the contacts database, while the calendar

provider exposes five tables (Calendars, Events, Attendees, Reminders, Instance)

from the calendar database through its URIs.

95

Our aspect has a total of 11 pointcuts which corresponds to the 9 method calls

as shown in Table 7.1, one pointcut for application context, and one for the aspect

itself. It also has a total of 16 advices for these pointcuts and numerous Java-related

methods that support the functionality of the advices.

7.5 Evaluation

The target of our evaluation covers two main objectives; overhead and application

crash. priVy is developed as a user-centric solution with the aim of providing a

reliable means of securing and restricting access to native database objects. The goal

is to ensure priVy works on a diverse group of applications with minimal overhead.

Furthermore, we want to ensure the instrumented app does not crash as a result of

the weaved controller stub.

We downloaded the top 350 applications from Google Play [5] and choose 76

apps with read/write permission to either the contacts or calendar providers. Our

samples are instrumented and repackaged with new sign-in keys. We assess their

static overhead in terms of weaving time and number of joinpoints created.

We also measure the runtime overhead, which is the time it takes to execute

each of our joinpoint’s advice. We developed a test application that triggers all the

advices in our aspect (since most of the sample apps trigger only one or two of them)

and measured their execution time. Finally we evaluate app crashes by executing

each of the instrumented applications. Our testbed is a Samsung tablet running

on the Android 4.4.2 kernel. It has some saved contacts under the device’s main

gmail account, local phone numbers, and others imported from one extra Microsoft

Exchange account.

96

7.5.1 App Execution

We then executed all the 76 instrumented apps using a three round testing scheme

(total of 228 executions) on the test bed and monitored them for app crashes that

can be directly linked to the instrumentation stub. The testing involves changing the

different access levels - ALL ALLOW, ALL BLOCK and RESTRICT. Each app is

manually installed, executed and profile created for those requiring one. We interact

with them using touch events, text inputs, and various system events like calls. The

testing period for each app ranges between 15 to 20 minutes, depending on the initial

setup required by the app.

In the first round of testing, we set the access policies for all the 76 apps

to ALL ALLOW. Our first observation is five apps (Chase, SendHub, All State,

BlueBird, Citizens) fail to execute or connect to their server in the first round of

testing. An examination into these groups revealed that mostly they are vendor

apps like mobile banking. Such apps, for security reasons, do not execute when the

signature changes or they have broken resources. They fail to execute not because

of our instrumentation stub but because of a change in the application file, thus we

eliminate these from further testing.

The second group of seven apps (Sirma Bible, Docusign, Autodesk, Faith-

ComesbyHearing, Zillow, Backgrounds, Jiffy) did not make any attempt to query the

contacts or calendar database, even though they requested READ and/or WRITE

permission. Thus, they were eliminated too.

The final group executed correctly in all 3 rounds of testing. We randomly

changes the combination of access restrictions that will trigger the query re-writing

module during manual execution and check for app failure. Within the execution

period, we observed that all the 64 apps in this group invoked one or more of our

joinpoints. For instance, the BBM app requested READ CONTACT permission and

97

it also asks users explicitly for access to contacts on the setup window. When we

BLOCK all contacts, it was not able to access any. Similarly for RESTRICT, it was

only able to view contacts from the gmail account. This is the same for other apps like

KIK, Pinterest, Mr. Number, AVG AntiVirus, AutoCard, Vine etc. The Sunrise app

uses the calendar provider to manage and organize events. We successfully limited

the events that can be viewed by this app based on Event ID.

We have observed that ≈ 82% of the apps in our sample perform only database

read (query) even though 60% of them request both READ and WRITE permissions.

7.5.2 Static Overhead

Instrumentation entails weaving new code into a binary and optimization becomes

essential in order to avoid bloating the existing code. Specifically, the nature of

pointcut signatures can have adverse effects on the number of joinpoints created and

wildcards that designate all (*) either in the parameter(s), names, or return type

broaden the scope of joinpoint matching. Android has restricted native database

access to very few libraries, and as such we avoided using wildcards where necessary

and used more specific signatures instead.

In this test, we measured the time it takes to perform bytecode weaving as well

as the number of joinpoints that are created. The bytecode weaving involves class

parsing, joinpoint matching and insertion of advices for every class on the jar path

as specified by the weaving aspect. On average it takes 15 seconds weaving time on

our test platform to process each sample app, with the highest and lowest being 65.5

and 3.3 seconds respectively. The plot in figure 7.9 showed no correlation between

instrumentation time and the number of joinpoints created. Nevertheless, we can see

from the cluster that almost all the apps are woven in less than 30 seconds. Manual

investigation into the packages of the outlier applications indicates they contain a

98

very large number of classes, thus requiring more time for the compiler to parse and

match the joinpoints. Overall, we find the instrumentation time to be acceptable as

the maximum is slightly above 60 seconds.

In AspectJ weaving, for every matched joinpoint, the compiler adds a call to

its corresponding advice. This is in addition to any Aspect-specific and Java-based

method attached to the aspect class. Based on our sample set, we recorded an average

of 1032 joinpoints created, with the highest being 7407 and the lowest 199. We find

our joinpoint’s overhead of approximately 1000 is on the high side considering there

are about 16 advices. On investigation we find the pointcut that gets application

context is the culprit. Though not part of the main functionality of our aspect, this

pointcut serves as a helper that assigns application context to our query rewriting

joinpoints.

The Aspect class in not part of the traditional Android API and thus cannot

instantiate a context. On the other hand, our advices requires it to get a ContentRe-

solver for nested SQLstatements and the processing of ContentProviderOperations

functions. Thus, we created this pointcut around the onCreate method of every

Activity to get its context. This ensures at every point during the app’s execution,

a context is available to the aspect class. We find this method to be very reliable

since even if one activity dies, the next activity will provide the needed context for

the aspect, but not necessarily efficient.

7.5.3 Runtime Overhead

In this evaluation, we examined the impact of the introduced code on the app

performance on the device at runtime. This is measured as the extra time it takes to

run the advice on a joinpoint. Our advices verify access levels and enforce restrictions

where necessary.

99

Table 7.2: priVy ’s Average Runtime Overhead Given Various Access Restrictions

Restrictions Insert (ns) Update (ns) Query (ns) Delete (ns)
1 Schema 59 40 64 47
1 Column 53 45 62 50
1 Entity 23 38 92 54

1 Schema , 1 Column 57 48 58 49
1 Schema , 1 Entity 76 47 70 69
1 Column , 1 Entity 74 50 73 67

1 Schema, 1 Column , 1 Entity 62 70 75 54

Average 57.71 48.29 70.57 55.71

As mentioned in section 3, priVy provides three access levels, and when the

access level is set to RESTRICT, zero or more schema, column and entity restrictions

can be enforced. Thus, considering all this criteria, we expect different possible

combinations for each of the CRUD functions. It is important to note that this

runtime overhead remains the same irrespective of the application executing because

the advice code does not change. However, it is only affected by the access level

and constraints enforced by the user. The more constraints there are, the more

instructions are traversed and the greater the size of the SQLstatement.

To make this experiment possible we develop a testing app that triggers all our

joinpoints and we run it many times with different combinations as shown in Table

7.2.

Each point on the table represents the average time in nanoseconds (ns) required

to execute each CRUD function based on at least one restriction.

ALL BLOCK and ALL ALLOW incurs zero runtime overhead to process

thus these are excluded from the table. The times are computed by Java’s Sys-

tem.nanoTime(). We set the start time at the beginning of the “around” advice

execution and an end time at the beginning of its “after” advice. This ensures we

take the time after the method has returned and before the next instruction. The

difference between the start and the end time is the runtime overhead per joinpoint.

100

Our experiments indicates it takes an average of 70 nanoseconds to execute

the joinpoint on update, 55 for delete, 48 for insert, and 57 for query, with imposed

restrictions. Overall our joinpoints take an average of 58 nanoseconds to execute any

of their advice.

Since the static overhead gave us an average of 1032 joinpoints created, our

instrumentation can incur a maximum runtime overhead of 0.06 milliseconds if all

the joinpoints are executed in a single app. We find this overhead to be negligible

and not be noticeable by users.

7.5.4 Access Policies

The access policies exposed by our Controller app enable users to protect the security

and privacy of their devices and its data. For instance, entity restrictions can help

protect devices from adding malicious contact on protected account types such as

google.com or Exchange. The entity restriction is set with an appropriate argument

e.g., “com.google”. Denial of service attacks due to malformed SQL can also be

checked and special characters removed in the content values of an insert or update

function.

Both schema and column restrictions can help reduce the exposure of clearly

mapped data, e.g., enforcing schema restrictions on an email Uri can block a target

app with access to Contacts from mapping contacts phone numbers and their email

addresses. However, to attain absolute protection for some chosen contacts, the user

can set up entity restrictions on individual names, IDs or groups. This will completely

safeguard whole record(s).

Column restrictions can also protect against permission leaks. As mentioned in

Section 3, enumerating account names and types can give apps access to all accounts

on the system just like those provided by the getAccount permission. Thus, a user

101

can set a policy to restrict these columns. This policy can be further optimized by

enforcing entity restrictions such that apps can access only their account name and

types.

7.5.5 Limitations

priVy performs instrumentation via application repackaging and thus depends on

the fact that the app will be correctly translated before and after instrumentation.

However this may not be true for apps with:

1. Anti-repackaging techniques that detect and crash the translation process, often

detected at compilation time. To deal with such problems, we use a well

documented and widely used open source utility dex2jar. So far we have not

encountered this issue, but it remains a possibility.

2. Signature verification that detects changes in the developer’s original signature

at runtime. Such an app may not necessarily crash but will fail to either render

its activity or connect to its server. We have encountered some of these apps,

which are mostly banking applications. Support for such applications is outside

the scope of our research.

102

Chapter 8

Conclusions

8.1 Summary

This research work has focused on developing new techniques for static and hybrid

malware analysis. It ends with a user-level privacy policy enforcement system that

can help protect user data on the device which are otherwise not protected by the

current Android system.

We have presented a novel resilient approach for statically detecting Android

malware variants based on three-level similarity matching. This system generates

signatures for known malicious code as a function of the normalized opcode sequence

found in sensitive functional modules and the permissions app requests. Malware

belonging to the same family often reuses considerable portions of their codebase and

possesses common behavioral characteristics. Permissions requested by an application

gives a hint of what the resulting behavior might likely be. Thus the combination

of these two distinctive features creates a unique and robust signature for known

malware.

The result of our analyses illustrated that we can correctly detect and categorize

malware variants with an F-measure of 98.9% and our system is resilient to some

complex obfuscation schemes, such as reflection, name and string encryption, junk

code insertion, and code reordering. In comparison with current state-of-the-art

103

Android malware detection tools, including both commercial antivirus and research

tools, OpSeq ’s outperformed them with an average of 35% detection ratio.

We have also supplement our static analyzer with a hybrid Android app analysis

system that can detect new malware samples. The system, called AspectDroid , pro-

vides an efficient and flexible alternative for detecting suspicious and illicit behavior

independent of Android runtime and or system release. Our goal is to ease analysis

and avoid the numerous problems associated with porting between versions and/or

building customized device kernel. It comprises a primary component called the

instrumentation engine and the secondary components - helper and automated testing

modules.

The instrumentation engine which is at the heart of AspectDroid is designed to

achieve three main objectives: data flow analysis, resource abuse tracing, analytics

of suspicious behavior like native code, and reflective call invocation. AspectDroid

leverages on AspectJ instrumentation framework to inject monitoring code. The

instrumented app is then executed dynamically to trace and log runtime activities at

specific joinpoints. It also has the capability to instrument runtime classes for further

analysis, thus increasing code coverage. We have demonstrated that AspectDroid can

achieve up to 94.68% F-score accuracy in detecting data leaks. Further analysis of

100 malware families for the Drebin dataset and 100 apps from Google Play showed

our system can effectively analyze a diverse set of apps including stealthy malware

with very minimal CPU and memory overhead.

Finally, this research work also presents a privacy policy enforcement technique

via fine-grain access control on the SQLite database. The system called priVy

is a user-centric approach to enforcing object level privilege on Android native

providers. Currently, database objects are not treated differently from their main

source, meaning when access is granted to the SQLite database file, that access

104

extends to all the objects encapsulated within it. The native databases contain very

important sensitive data that should not be lumped together as a single entity, hence

our motivation to segregate their access control. Our system priVy is designed to

guarantee user’s privacy is secured in an accessible and highly usable way. It does

not require operating system extensions nor does it tamper with the framework code,

making it a much more practical solution than its contemporaries like SE-SQLite.

priVy leverages static bytecode instrumentation to weave in controlling code

in database CRUD functions. The controller stub ensures that only user-approved

schema, column, and/or entities are accessed by an instrumented application. When

these CRUD operations are intercepted, the attached stub performs access level

verification, query-rewriting where necessary, and proceeds with the function exe-

cution. It also performs database auditing when the attached app accesses any of the

encapsulated objects. Our evaluation results demonstrated priVy incurs a minimal

overhead of 15 seconds instrumentation time and a very negligible execution time

overhead.

8.2 Future Work

One important area to investigate further in our malware/app analyzers - OpSeq

and AspectDroid is the analysis of native code. Both of these systems are designed to

process only the Dalvik instructions. As part of our future work, we aim to extend the

static analyzer to parse and create signatures for the native code. We also intend to

include a debugging mechanism in a future revision of AspectDroid which gets started

via the bytecode rewriting architecture. During native code execution, a debugger

can be started with the ID of the new process to collect lower level syscalls made by

the native code.

Another area of significant interest in AspectDroid is working to improve the

105

automated testing module such that all control flow paths are forced to execute. As

we have seen from the analysis result of AspectDroid , its taint tracking is limited to

explicit data exfiltration, thus, via code refactoring we intend to inject simple methods

after arithmetic and conditional instructions that take the preceding instructions’

parameters. Then jointpoints will be created for the new method call at weaving

time. This will take care of the possible mis-propagation thereby improving our data

flow analysis.

106

Bibliography

[1] Android Version Market Share 2016. https://www.statista.com/statistics/

271774/share-of-android-platforms-on-mobile-devices-with-android-os/.

[Online; accessed 05-September-2016].

[2] Apache HTTP SERVER PROJECT. [Online; accessed 11-December-2015].

[3] F-Secure Labs H2 2013 Threat Report. [Online; accessed 30-September 2014].

[4] Global Mobile OS Market Share 2009-2016, By Quarter. [Online; accessed 11-

September 2016].

[5] Google Play. [Online; accessed 04-Jan 2013].

[6] Industry Leaders Announce Open Platform for Mobile Devices. http://www.

openhandsetalliance.com/press_110507.html. [Online; accessed 07-June-

2014].

[7] VirusTotal - online malware scan service. [Online; accessed 26-February-2015].

[8] Forsafe Mobile Security - Android Anserver, 2012. [Online; accessed 04-June-

2015].

[9] Apache Commons - Common Lang, 2015. [Online; accessed 30-August-2015].

[10] Eclipse - AspectJ Compiler, 2015. [Online; accessed 26-August-2015].

107

[11] Ali-Gombe, A., Ahmed, I., Richard III, G. G., and Roussev, V. Opseq:

Android malware fingerprinting. In Proceedings of the 5th Program Protection

and Reverse Engineering Workshop (2015), ACM, p. 7.

[12] Ali-Gombe, A., Ahmed, I., Richard III, G. G., and Roussev, V.

Aspectdroid: Android app analysis system. In Proceedings of the Sixth ACM

Conference on Data and Application Security and Privacy (2016), ACM, pp. 145–

147.

[13] Ali-Gombe, A., Richard III, G. G., Ahmed, I., and Roussev, V. Don?t

touch that column: Portable, fine-grained access control for android?s native

content providers. In Proceedings of the 9th ACM Conference on Security &

Privacy in Wireless and Mobile Networks (2016), ACM.

[14] Android Studio. Android developers, 2015. [Online; accessed 11-August-

2015].

[15] APIMonitor. Installation and usage of DroidBox APIMonitor, 2012. [Online;

accessed 14-Dec-2015].

[16] Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K.,

and Siemens, C. Drebin: Effective and explainable detection of android

malware in your pocket. In Proceedings of the Annual Symposium on Network

and Distributed System Security (NDSS) (2014).

[17] at the European Center for Security, S. S. E., and by Design

EC SPRIDE, P. DroidBench Benchmarks Project, 2015. [Online; accessed

02-May-2016].

[18] Backes, M., Gerling, S., Hammer, C., Maffei, M., and von Styp-

Rekowsky, P. Appguard–enforcing user requirements on android apps. In

108

Tools and Algorithms for the Construction and Analysis of Systems. Springer,

2013, pp. 543–548.

[19] Bartel, A., Klein, J., Monperrus, M., Allix, K., and Le Traon, Y.

Improving privacy on android smartphones through in-vivo bytecode instrumen-

tation. Tech. Rep. 978-2-87971-111-9, uni. lu, 2012.

[20] Beresford, A. R., Rice, A., Skehin, N., and Sohan, R. Mockdroid:

Trading privacy for application functionality on smartphones. In Proceedings of

the 12th Workshop on Mobile Computing Systems and Applications (New York,

NY, USA, 2011), HotMobile ’11, ACM, pp. 49–54.

[21] Bianchi, A., Fratantonio, Y., Kruegel, C., and Vigna, G. Njas: Sand-

boxing unmodified applications in non-rooted devices running stock android. In

Proceedings of the 5th Annual ACM CCS Workshop on Security and Privacy in

Smartphones and Mobile Devices (New York, NY, USA, 2015), SPSM ’15, ACM,

pp. 27–38.

[22] Blasing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S. A., and Al-

bayrak, S. An android application sandbox system for suspicious software

detection. In Malicious and unwanted software (MALWARE), 2010 5th interna-

tional conference on (2010), IEEE, pp. 55–62.

[23] Bob, P. Dex2jar, 2014. [Online; accessed 13-December-2014].

[24] Bruening, Derek Zhao, Q., and Amarasinghe, S. Transparent dynamic

instrumentation. In International Conference on Virtual Execution Environ-

ments (March 2012), VEE-12.

[25] Buck, B., and Hollingsworth, J. K. An api for runtime code patching.

Int. J. High Perform. Comput. Appl. 14, 4 (Nov. 2000), 317–329.

109

[26] Burguera, I., Zurutuza, U., and Nadjm-Tehrani, S. Crowdroid:

Behavior-based malware detection system for android. In Proceedings of the 1st

ACM Workshop on Security and Privacy in Smartphones and Mobile Devices

(2011), SPSM ’11, pp. 15–26.

[27] Cai, Z., and Yap, R. H. Inferring the detection logic and evaluating the

effectiveness of android anti-virus apps. In Proceedings of the Sixth ACM

Conference on Data and Application Security and Privacy (New York, NY, USA,

2016), CODASPY ’16, ACM, pp. 172–182.

[28] Crussell, J., Gibler, C., and Chen, H. Attack of the clones: Detecting

cloned applications on android markets. In Computer Security ESORICS 2012,

vol. 7459 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012,

pp. 37–54.

[29] Davis, B., and Chen, H. Retroskeleton: Retrofitting android apps. In

Proceeding of the 11th Annual International Conference on Mobile Systems,

Applications, and Services (New York, NY, USA, 2013), MobiSys ’13, ACM,

pp. 181–192.

[30] Deshotels, L., Notani, V., and Lakhotia, A. Droidlegacy: Auto-

mated familial classification of android malware. In Proceedings of ACM SIG-

PLAN on Program Protection and Reverse Engineering Workshop 2014 (2014),

PPREW’14, pp. 3:1–3:12.

[31] DroidBox. Droidbox - Android Application Sandbox, 2011. [Online; accessed

01-July-2015].

[32] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., McDaniel,

P., and Sheth, A. N. Taintdroid: An information-flow tracking system for

110

realtime privacy monitoring on smartphones. In Proceedings of the 9th USENIX

Conference on Operating Systems Design and Implementation (2010), OSDI’10.

[33] Enck, W., Ongtang, M., and McDaniel, P. On lightweight mobile

phone application certification. In Proceedings of the 16th ACM Conference on

Computer and Communications Security (2009), CCS ’09, pp. 235–245.

[34] Enck, W., Ongtang, M., and McDaniel, P. On lightweight mobile

phone application certification. In Proceedings of the 16th ACM Conference on

Computer and Communications Security (2009), CCS ’09, pp. 235–245.

[35] Falcone, Y., Currea, S., and Jaber, M. Runtime verification and

enforcement for android applications with rv-droid. In Runtime Verification,

vol. 7687 of Lecture Notes in Computer Science. 2013, pp. 88–95.

[36] Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner, D. An-

droid permissions demystified. In Proceedings of the 18th ACM Conference on

Computer and Communications Security (2011), CCS ’11, pp. 627–638.

[37] Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner, D. An-

droid permissions demystified. In Proceedings of the 18th ACM Conference on

Computer and Communications Security (2011), CCS ’11, pp. 627–638.

[38] Feng, Y., Anand, S., Dillig, I., and Aiken, A. Apposcopy: Semantics-

based detection of android malware through static analysis. In Proceedings of

the 22Nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering (2014), FSE 2014, pp. 576–587.

[39] Feng, Y., Anand, S., Dillig, I., and Aiken, A. Apposcopy: Semantics-

based detection of android malware through static analysis. In Proceedings of

111

the 22Nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering (2014), FSE 2014, pp. 576–587.

[40] Ferreira, D., Kostakos, V., Beresford, A. R., Lindqvist, J., and

Dey, A. K. Securacy: An empirical investigation of android applications’

network usage, privacy and security. In Proceedings of the 8th ACM Conference

on Security & Privacy in Wireless and Mobile Networks (New York, NY, USA,

2015), WiSec ’15, ACM, pp. 11:1–11:11.

[41] Fuchs, A. P., Chaudhuri, A., and Foster, J. S. Scandroid: Automated

security certification of android applications. Tech. rep., University of Maryland,

2009.

[42] Gibler, C., Crussell, J., Erickson, J., and Chen, H. Androidleaks:

Automatically detecting potential privacy leaks in android applications on a

large scale. In Trust and Trustworthy Computing, vol. 7344 of Lecture Notes in

Computer Science. 2012, pp. 291–307.

[43] Grace, M., Zhou, Y., Zhang, Q., Zou, S., and Jiang, X. Riskranker:

Scalable and accurate zero-day android malware detection. In Proceedings of the

10th International Conference on Mobile Systems, Applications, and Services

(New York, NY, USA, 2012), MobiSys ’12, pp. 281–294.

[44] Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., and Song, D. Juxtapp:

A scalable system for detecting code reuse among android applications. In

Proceedings of the 9th International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment (Berlin, Heidelberg, 2013), DIMVA’12,

pp. 62–81.

112

[45] Heffner, K., and Collberg, C. The obfuscation executive. In Information

Security, vol. 3225 of Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 2004, pp. 428–440.

[46] Heimann, J., and Needham, P. White paper :the virtual private database

in oracle9ir2 - understanding oracle9i security for service providers. Tech. rep.,

Oracle Corporation, 2002.

[47] Heuser, S., Nadkarni, A., Enck, W., and Sadeghi, A.-R. Asm: A

programmable interface for extending android security. In 23rd USENIX Security

Symposium (USENIX Security 14) (San Diego, CA, Aug. 2014), USENIX

Association, pp. 1005–1019.

[48] Hornyack, P., Han, S., Jung, J., Schechter, S., and Wetherall, D.

These aren’t the droids you’re looking for: Retrofitting android to protect data

from imperious applications. In Proceedings of the 18th ACM Conference on

Computer and Communications Security (New York, NY, USA, 2011), CCS ’11,

ACM, pp. 639–652.

[49] Huang, H., Zhu, S., Liu, P., and Wu, D. A framework for evaluating mobile

app repackaging detection algorithms. In Trust and Trustworthy Computing,

vol. 7904 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2013, pp. 169–186.

[50] Jeon, J., Micinski, K. K., Vaughan, J. A., Fogel, A., Reddy, N.,

Foster, J. S., and Millstein, T. Dr. android and mr. hide: Fine-grained

permissions in android applications. In Proceedings of the Second ACM Workshop

on Security and Privacy in Smartphones and Mobile Devices (New York, NY,

USA, 2012), SPSM ’12, ACM, pp. 3–14.

113

[51] Karami, M., Elsabagh, M., Najafiborazjani, P., and Stavrou, A.

Behavioral analysis of android applications using automated instrumentation.

In Software Security and Reliability-Companion (SERE-C), 2013 IEEE 7th

International Conference on (2013), IEEE, pp. 182–187.

[52] Karbab, E. B., Debbabi, M., and Mouheb, D. Fingerprinting android

packaging: Generating dnas for malware detection. Digital Investigation 18

(2016), S33–S45.

[53] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and

Griswold, W. Getting started with aspectj. Commun. ACM 44, 10 (Oct.

2001), 59–65.

[54] Kiczales, G., Lamping, J., Lopes, C., Hugunin, J., Hilsdale, E.,

and Boyapati, C. Aspect-Oriented Programming, Oct. 15 2002. US Patent

6,467,086.

[55] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Lo-

ingtier, J.-M., and Irwin, J. Aspect-oriented programming. In ECOOP’97 ?

Object-Oriented Programming, vol. 1241 of Lecture Notes in Computer Science.

1997, pp. 220–242.

[56] Kohei, K. Security enhanced postgresql, 2013.

[57] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney,

G., Wallace, S., Reddi, V. J., and Hazelwood, K. Pin: Building

customized program analysis tools with dynamic instrumentation. In Proceedings

of the 2005 ACM SIGPLAN Conference on Programming Language Design and

Implementation (2005), PLDI ’05, pp. 190–200.

114

[58] Maiorca, D., Ariu, D., Corona, I., Aresu, M., and Giacinto, G.

Stealth attacks: An extended insight into the obfuscation effects on android

malware. Computers & Security 51 (2015), 16–31.

[59] Mutti, S., Bacis, E., and Paraboschi, S. Sesqlite: Security enhanced

sqlite: Mandatory access control for android databases. In Proceedings of the

31st Annual Computer Security Applications Conference (New York, NY, USA,

2015), ACSAC 2015, ACM, pp. 411–420.

[60] Nauman, M., Khan, S., and Zhang, X. Apex: Extending android permis-

sion model and enforcement with user-defined runtime constraints. In Proceedings

of the 5th ACM Symposium on Information, Computer and Communications

Security (New York, NY, USA, 2010), ASIACCS ’10, ACM, pp. 328–332.

[61] Pearce, P., Felt, A. P., Nunez, G., and Wagner, D. Addroid: Privilege

separation for applications and advertisers in android. In Proceedings of the

7th ACM Symposium on Information, Computer and Communications Security

(New York, NY, USA, 2012), ASIACCS ’12, ACM, pp. 71–72.

[62] Rastogi, V., Chen, Y., and Enck, W. Appsplayground: Automatic

security analysis of smartphone applications. In Proceedings of the Third ACM

Conference on Data and Application Security and Privacy (2013), CODASPY

’13, pp. 209–220.

[63] Rastogi, V., Chen, Y., and Jiang, X. Catch me if you can: Evaluating

android anti-malware against transformation attacks. Information Forensics and

Security, IEEE Transactions on 9, 1 (Jan 2014), 99–108.

[64] Russello, G., Jimenez, A. B., Naderi, H., and van der Mark, W.

Firedroid: Hardening security in almost-stock android. In Proceedings of the

115

29th Annual Computer Security Applications Conference (New York, NY, USA,

2013), ACSAC ’13, ACM, pp. 319–328.

[65] Sadeghi, A., Bagheri, H., Garcia, J., et al. A taxonomy and qualitative

comparison of program analysis techniques for security assessment of android

software. IEEE Transactions on Software Engineering (2016).

[66] Santos, I., Brezo, F., Nieves, J., Penya, Y., Sanz, B., Laorden, C.,

and Bringas, P. Idea: Opcode-sequence-based malware detection. In Engi-

neering Secure Software and Systems, vol. 5965 of Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2010, pp. 35–43.

[67] Schmidt, A.-D., Bye, R., Schmidt, H.-G., Clausen, J., Kiraz, O.,

Yuksel, K., Camtepe, S., and Albayrak, S. Static analysis of executables

for collaborative malware detection on android. In Communications, 2009. ICC

’09. IEEE International Conference on (June 2009), pp. 1–5.

[68] Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G.,

and Weippl, E. Protecting software through obfuscation: Can it keep pace

with progress in code analysis? ACM Comput. Surv. 49, 1 (Apr. 2016), 4:1–4:37.

[69] Shekhar, S., Dietz, M., and Wallach, D. S. Adsplit: Separating

smartphone advertising from applications. In Presented as part of the 21st

USENIX Security Symposium (USENIX Security 12) (Bellevue, WA, 2012),

USENIX, pp. 553–567.

[70] Smalley, S., and Craig, R. Security enhanced (se) android: Bringing flexible

mac to android. In NDSS (2013), vol. 310, pp. 20–38.

[71] Software, G. GDATA Mobile Malware Report: Q4/2015, 2016. [Online;

accessed 3-October-2016].

116

[72] Stonebraker, M., and Wong, E. Access control in a relational data base

management system by query modification. In Proceedings of the 1974 annual

conference-Volume 1 (1974), ACM, pp. 180–186.

[73] Team, A. The aspectj tm programming guide, 2002-2003. [Online; accessed

21-Jan-2015].

[74] Trend-Micro. Android Malware: How Worried Should You Be?, 2012. [Online;

accessed 4-October-2016].

[75] Tustison, N. J., and Gee, J. C. Introducing dice, jaccard, and other label

overlap measures to itk. The Insight Journal (July-December 2009), 1–4.

[76] Vasudevan, A., and Yerraballi, R. Spike: Engineering malware analysis

tools using unobtrusive binary-instrumentation. In Proceedings of the 29th

Australasian Computer Science Conference - Volume 48 (2006), ACSC ’06,

pp. 311–320.

[77] Wang, Y., Hariharan, S., Zhao, C., Liu, J., and Du, W. Compac:

Enforce component-level access control in android. In Proceedings of the 4th

ACM Conference on Data and Application Security and Privacy (New York,

NY, USA, 2014), CODASPY ’14, ACM, pp. 25–36.

[78] Weichselbaum, L., Neugschwandtner, M., Lindorfer, M., Fratan-

tonio, Y., van der Veen, V., and Platzer, C. Andrubis: Android

malware under the magnifying glass. Vienna University of Technology, Tech.

Rep. TRISECLAB-0414-001 (2014).

[79] Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., and Wu, K.-P.

Droidmat: Android malware detection through manifest and api calls tracing. In

117

Proceedings of the 2012 Seventh Asia Joint Conference on Information Security

(2012), ASIAJCIS ’12, pp. 62–69.

[80] Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., and Wu, K.-P.

Droidmat: Android malware detection through manifest and api calls tracing.

In Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference on

(Aug 2012), pp. 62–69.

[81] Xu, R., Säıdi, H., and Anderson, R. Aurasium: Practical policy enforce-

ment for android applications. In Proceedings of the 21st USENIX Conference

on Security Symposium (Berkeley, CA, USA, 2012), Security’12, USENIX Asso-

ciation, pp. 27–27.

[82] Yan, L.-K., and Yin, H. Droidscope: Seamlessly reconstructing the os

and dalvik semantic views for dynamic android malware analysis. In USENIX

Security Symposium (2012), pp. 569–584.

[83] Zhang, M., and Yin, H. Appsealer: Automatic generation of vulnerability-

specific patches for preventing component hijacking attacks in android applica-

tions. In Proceedings of the 21th Annual Network and Distributed System Security

Symposium (2014), NDSS 2014.

[84] Zhang, M., and Yin, H. Efficient, context-aware privacy leakage confinement

for android applications without firmware modding. In Proceedings of the

9th ACM Symposium on Information, Computer and Communications Security

(2014), ASIA CCS ’14, pp. 259–270.

[85] Zhang, M., and Yin, H. Efficient, context-aware privacy leakage confinement

for android applications without firmware modding. In Proceedings of the

118

9th ACM Symposium on Information, Computer and Communications Security

(New York, NY, USA, 2014), ASIA CCS ’14, ACM, pp. 259–270.

[86] Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., Wang, X. S.,

and Zang, B. Vetting undesirable behaviors in android apps with permission

use analysis. In Proceedings of the 2013 ACM SIGSAC Conference on Computer

& Communications Security (2013), CCS ’13, pp. 611–622.

[87] Zheng, M., Lee, P., and Lui, J. Adam: An automatic and extensible

platform to stress test android anti-virus systems. In Detection of Intrusions and

Malware, and Vulnerability Assessment, vol. 7591 of Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2013, pp. 82–101.

[88] Zheng, M., Sun, M., and Lui, J. C. S. Droid analytics: A signature based

analytic system to collect, extract, analyze and associate android malware. In

Proceedings of the 2013 12th IEEE International Conference on Trust, Security

and Privacy in Computing and Communications (2013), TRUSTCOM ’13,

pp. 163–171.

[89] Zhou, W., Zhou, Y., Grace, M., Jiang, X., and Zou, S. Fast, scalable

detection of ”piggybacked” mobile applications. In Proceedings of the Third ACM

Conference on Data and Application Security and Privacy (2013), CODASPY

’13, pp. 185–196.

[90] Zhou, W., Zhou, Y., Jiang, X., and Ning, P. Detecting repackaged

smartphone applications in third-party android marketplaces. In Proceedings

of the Second ACM Conference on Data and Application Security and Privacy

(2012), CODASPY ’12, pp. 317–326.

119

[91] Zhou, Y., and Jiang, X. Dissecting android malware: Characterization and

evolution. In Security and Privacy (SP), 2012 IEEE Symposium on (May 2012),

pp. 95–109.

[92] Zhou, Y., and Jiang, X. Dissecting android malware: Characterization and

evolution. In Proceedings of the 33rd IEEE Symposium on Security and Privacy

(2012), Oakland ’12.

[93] Zhou, Y., Wang, Z., Zhou, W., and Jiang, X. Hey, you, get off of my

market: Detecting malicious apps in official and alternative android markets. In

Proceedings of the Network and Distributed System Security Symposium (2012),

NDSS2012.

[94] Zhou, Y., Wang, Z., Zhou, W., and Jiang, X. Hey, you, get off of my

market: Detecting malicious apps in official and alternative android markets.

In Proceedings of the 19th Network and Distributed System Security Symposium

(2012), NDSS ’12.

[95] Zhou, Y., Zhang, X., Jiang, X., and Freeh, V. W. Taming information-

stealing smartphone applications (on android). In Proceedings of the 4th Inter-

national Conference on Trust and Trustworthy Computing (Berlin, Heidelberg,

2011), TRUST’11, Springer-Verlag, pp. 93–107.

120

Vita

The author was born and raised in the city of Gombe, Northeastern Nigeria. She

earned a B.Sc. in Computer Science from the University of Abuja in 2005 and an

MBA degree from Bayero University, Kano in 2011. She joined the University of New

Orleans graduate program in 2011, where she earned an M.S degree in Computer

Science in 2012. She continued on to pursue Ph.D. in Engineering and Applied

Science with a concentration in Computer Science and research emphasis in cyber

security and digital forensics.

121

	Malware Analysis and Privacy Policy Enforcement Techniques for Android Applications
	Recommended Citation

	tmp.1493520283.pdf.1dygG

