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Abstract 

Developing new materials with desired properties is a vital component of emerging 

technologies. Functional hybrid compounds make an important class of advanced materials that 

let us synergistically utilize the key features of the organic and inorganic counterparts in a single 

composite, providing a very strong tool to develop new materials with ”engineered” properties. 

The research presented here, summarizes efforts in the development of facile and efficient 

methods for the fabrication of three- and two-dimensional inorganic-organic hybrids based on 

layered oxide perovskites. Microwave radiation was exploited to rapidly fabricate and modify 

new and known materials. Despite the extensive utilization of microwaves in organic syntheses 

as well as the fabrication of the inorganic solids, the work herein was among the first reported 

that used microwaves in topochemical modification of the layered oxide perovskites. Our group 

specifically was the first to perform rapid microwave-assisted reactions in all of the modification 

steps including proton exchange, grafting, intercalation, and exfoliation, which decreased the 

duration of multi-step modification procedures from weeks to only a few hours. Microwave-

assisted grafting and intercalation reactions with n-alkyl alcohols and n-alkylamines, 

respectively, were successfully applied on double-layered Dion-Jacobson and Ruddlesden-

Popper phases (HLaNb2O7, HPrNb2O7, and H2CaTa2O7), and with somewhat more limited 

reactivity, applied to triple-layered perovskites (HCa2Nb3O10 and H2La2Ti3O10). Performing 

neutron diffraction on n-propoxy-LaNb2O7, structure refinement of a layered hybrid oxide 

perovskite was then tried for the first time. Furthermore, two-dimensional hybrid oxides were 

efficiently prepared from HLnNb2O7 (Ln = La, Pr), HCa2Nb3O10, HCa2Nb2FeO9, and 

HLaCaNb2MnO10, employing facile microwave-assisted exfoliation and post-exfoliation surface-

modification reactions for the first time. A variety of surface groups, saturated or unsaturated 

linear and cyclic organics, were successfully anchored onto these oxide nanosheets. Properties of 

various functionalized metal-oxide nanosheets, as well as the polymerization of some monomer-

grafted nanosheets, were then investigated for the two-dimensional hybrid systems.  

 

Keywords: topochemical manipulation, layered oxide perovskites, microwave-assisted 

reactions, inorganic-organic hybrids, structure refinement, surface modification, functionalized 

metal-oxide nanosheets, radical polymerization. 



1 

 

Chapter 1. Introduction  

 

From the electronics to catalysis to medical applications, the search for the new materials, 

ones that can keep up with emerging technologies, has been of great interest these days. The 

discovery of novel materials in turn is fueled by the development of new methods of synthesis. 

The research summarized in the following chapters highlights the development of facile 

synthetic methods to fabricate and modify new and known materials, specifically these involve 

the modification of the interlayer of receptive perovskite hosts and the exfoliation of these layers 

by effective methodologies.  

 

1.1– Layered Materials 

Other than molecular solids with discrete molecules held together via weak 

intermolecular forces, many solids consist of an infinite lattice of atoms networking via ionic or 

covalent bonds; non-molecular solids.1 A two-dimensional (2D) lattice is an arrangement of 

atoms with a repeating pattern throughout the width and length of a single layer with a very 

small thickness. Stacking a large number of 2D arrays results in the formation of a three-

dimensional (3D) layered solid, where the adjacent layers are usually held together via van der 

Waals interactions or electrostatic forces (layered van der Waals solids, or ionic solids, 

respectively).2–4 Typically, when in-plane atomic bonds are much stronger than the interactions 

that the atoms of adjacent layers have with one another, a 3D lattice is considered a layered 

structure (there are some layered materials though with strong bonding in all directions—such as 

La2CuO4).2,5 As shown in Figure 1-1, individual layers in a layered solid can be considered as 

planar “macromolecules” or “lamellas”, where packing many of these macromolecules forms a 

3D “molecular” crystal with a layered structure. Following terms are then demonstrated in a 

layered solid: interlayer region (space confined between two adjacent layers), interlayer spacing 

(measured from the barycenter of one layer to the next one), and the gallery height (the free 

distance between two layers, obtained by subtracting the layer thickness from the interlamellar 

distance).2 
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Layered solids can be classified in three different ways, all of which are based on a 

specific feature of the planar constituent layers: thickness, the organic or inorganic nature, and 

the net charge.2 Since the thickness of the constituent sheets is directly related to their rigidity, a 

key property of the layered structure, the first classification is very useful.2,6,7 Three classes of: 

atomic monolayers, few atoms thick, and many atoms thick, are demonstrated in this case. 

Classification based on the organic / inorganic nature can be confusing in cases where the planar 

layer has a mixed nature (for instance hydrogenated graphite can be considered of organic type 

while graphite fits more to an inorganic class). When organic groups are covalently attached to 

an inorganic backbone, the term “inorgano-organic” can be used to describe the layered material, 

and “organic-inorganic”, or “inorganic-organic” more refers to cases where the planar backbone 

has a mixed nature (according to the organic or inorganic component being prevalent in the 

structure, respectively).2 On the basis of the charge of each layer, the layered materials are either 

electrically neutral (uncharged), or charged.2,3,7 Uncharged layers are subdivided into electronic 

conductors and insulators, such as graphite and hexagonal boron nitride (h-BN, also known as 

white graphite), respectively.2,8–10 The main difference between conductive and insulator neutral 

layered structures is the nature of the interactions between the host and guest in the intercalates 

of these solids; while quite weak dipole-dipole interactions or hydrogen bonding is demonstrated 

Figure 1-1: Illustration of a layered solid formed by stacking single layers.  Important terms 

in characterizing a layered structure are also shown. 
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in the latter, the former exhibits stronger ionic-type interactions with exchangeable interlayer 

ions (due to the ability of gaining or losing electrons in the conduction band).2 Other than 

graphite, some of the very important families of layered materials fall under the conductive 

neutral category, such as layered metal chalcogenides (metal dichalcogenide, trichalcogenide, 

and phosphorous trichalcogenide), transition metal oxyhalides, vanadium pentoxide and 

molybdenum trioxide.2,4,11–13 Charged layers can either be positive or negative, respectively 

forming anionic or cationic layered solids based on the type of the counterions placed in the 

interlayer region neutralizing the fixed charge of each lamella. The interlayer counterions usually 

form a monolayer or a bilayer, causing the adjacent layers linking together via ionic bonds, and 

in some cases through hydrogen bonding.2,3 Layered α-zirconium phosphates and phosphonates, 

double hydroxide (LDH) and hydroxide salts (LHS) are examples of anionic layered solids,3,13–15 

and layered graphite oxide, smectite clay, titanates, niobate, titanoniobate, niobo-tungstate, 

tantalo-tungstate, manganate (birnessite and buserite), and perovskites are important types of 

cationic layered materials.12,13,16,17 Among these layered compounds, perovskites are the main 

focus of this work, which are further discussed in the next section. Figure 1-2 represents the 

structure of a few layered solids introduced above: (a) h-BN as an insulating uncharged atomic 

monolayer,12,18 (b) a brucite LDH as an anionic layered solid,12,19 and (c) montmorillonite (a 

smectite clay mineral) as a cationic layered lattice.12,20,21 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2: Structure of some layered solids: (a) boron nitride, (b) brucite LDH, and (c) montmorillonite. 
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1.1.1 Layered Perovskites 

1.1.1.1 Structure 

CaTiO3 mineral was found in 1839 in the Ural Mountains, and named perovskite by 

Gustav Rose (in honor of a Russian geologist, Lev Aleksevich von Perovski).22 Simple or ideal 

perovskites, with structures similar to that of CaTiO3, are represented with ABX3 general 

formula, where X is an anion surrounding A and B metal cations (A is typically larger in size 

than B).23,24 Even though much of the research on perovskites has involved oxides and halides, 

some carbides, nitrides, and hydrides are also known to form similar crystal structures.23 Figure 

1-3 shows the simple cubic crystal structure of BaTiO3,25 where Ba has a coordination number of 

12 and is surrounded by 8 TiO6 octahedra residing the corners of the unit cell, corner-sharing of 

which will provide an extended lattice.24,26,27  

The structure of the constituent layers of layered perovskites, so called perovskite slabs, 

resembles an extended lattice of ideal perovskite with the general formula of [An-1BnO3n+1], 

where the negative slabs are interlayered with cations or cationic structural units (A is alkali-metal, 

alkaline earth, or rare-earth cations, B is a transition metal cation, and n is the thickness of the 

layers).24,27,28 On the basis of the net charge of the slab, layered perovskites are commonly 

divided into three families: Dion-Jacobson (DJ) structure where the slab has a charge of -1 and the 

overall formula is A'[An-1BnO3n+1], Ruddlesden-Popper (RP) with a net charge of -2 and A'2[An-

1BnO3n+1] formula, and lastly Aurivillius type (AV) with the same structure as Ruddlesden-

Popper and Bi2O2 arrays in the interlayer (usually shown as Bi2O2[An-1BnO3n+1]).24,27–29 Figure 1-

Figure 1-3: Crystal structure of  BaTiO3 

simple perovskite with ABX3 general formula. 
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4 provides the crystal structure of two layered perovskites, RbCa2Nb3O10
30 and Li2CaTa2O7,31 

with Dion-Jacobson and Ruddlesden-Popper structures, respectively. 

 

1.1.1.2 Synthesis 

Non-molecular inorganic solids can be prepared via different techniques and in various 

forms such as powders, single crystals, films, and fibers.32 Layered oxide perovskites are mainly 

synthesized as powders via solid state reactions (ceramic method). Solid state reactions consist 

of combining non-volatile reagents, and successive grinding and heating for prolonged periods to 

specific temperatures (as high as 1300 ºC in some cases).32–35 Grinding is a key factor in such 

reactions as it increases the surface contact area of the solid reactants and allows for more 

homogeneity and higher crystallinity of the product.33,36 Due to the limited diffusion of reagents 

in solid form, longer reaction durations (usually days) and higher temperatures (in some cases 

also high pressures37–39), are typical for solid state reactions as opposed to regular organic 

syntheses. Based on the necessity of successive grinding and heating, these reactions are also 

known as ‘heat and beat’ or ‘shake and bake’ methods.32,33,36 Figure 1-5 provides pictures of 

Figure 1-4: Two important families of layered oxide perovskites are presented here; (a) RbCa2Nb3O10 as a 

triple-layered Dion-Jacobson, and (b) Li2CaTa2O7 as a double-layered Ruddlesden-Popper. 
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important components in carrying out a solid state reaction: (a) furnace-ovens that can go to 

higher temperatures needed for ceramic methods, (b) mortar and pestle-for grinding, and (c) 

alumina crucible-typical reaction vessel in solid state reactions. Considering the harsh conditions 

of ceramic methods discussed above, synthesis of metastable compounds would require 

alternative approaches, such as those carried out at lower temperatures and shorter time 

times;24,40 these will be covered in the following sections.  

 

The regular ceramic method is certainly the main synthetic approach when it comes to 

layered perovskites. There is, however, another alternative high-temperature method which is 

also popular among inorganic chemists: molten salt synthesis.32,41,42 In this technique, a few 

percent of a salt with a melting point lower than the reaction temperature is combined with other 

oxide and carbonate reagents of the reaction. Melting of the salt will enhance the diffusion of the 

starting materials, as well as the homogeneity of the product without having to perform any 

intermediate grinding. In other words, the molten salt acts as the “solvent” of this modified 

ceramic method.41 In case of using a large amount of salt (salt-to-reactant molar ratios as high as 

10:1), the molten salt synthesis is specifically called a flux-assisted approach.1,41,43–46 Salts used 

for this technique typically include alkali chlorides and sulfates (such as KCl and Na2SO4), 

which can be conveniently washed away from the final product after the reaction (usually very 

soluble in water).41 Flux-assisted approaches can be done with considerably higher rates (in only 

Figure 1-5: Important components of a solid state reaction: (a) 

furnace, (b) mortar and pestle, and (c) crucible. 
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a few hours) and at temperatures lower than their alternative ceramic routes. Also, by tuning the 

reaction temperature and duration, they allow for controlling the shape and size of the particles in 

the final products.41,43–45,47 It should be noted that the synthesis of the oxides and layered 

perovskites is also possible via other wet low-temperature processes, where the properties of the 

final product are highly affected by the change of the synthetic approach and the conditions.48–52 

 

1.1.1.3 Properties and Applications 

The selection of A and B elements and their stoichiometry in perovskites and layered 

variations, are the key factors to introduce a wide variety of interesting electrical, magnetic, and 

optical properties to the mixed metal oxides.23,24,26,28,53,54 Some key features are: dielectricity and  

ferroelectricity,26,55–57 superconductivity (defined as zero electrical resistance and expulsion of 

magnetic field below a critical temperature),38,58–63 colossal magnetoresistance, ferromagnetism 

and antiferromagnetism,64–67 interesting optical properties,23,68 proton conductivity,23,69–72 

photocatalytic73–77 and catalytic activity.23,78,79 Engineering the perovskite structure and 

composition has made them key materials in electronic, catalytic, and photovoltaic applications 

over the past decades. Considering the exchangeable interlayer in some cationic layered 

compounds, a large variety of inorganic or organic arrays can be formed in the layered 

perovskites, where fine tuning of the final properties is also possible. Even though modified 

ABX3 type halide perovskites are mostly used for electronic and photovoltaic applications,80–87 

tailoring the interlayer and the slab composition of layered oxide perovskites makes them 

interesting photocatalytic materials.2,17,73–77,88 The overall structure and composition of the 

perovskite are controlled via the reactants and conditions of the high temperature solid state 

reactions. However, structures with mixed valence,89–92 nonstoichiometry of the oxygen or 

cations,23 and specific inorganic or organic arrays in the interlayer,88,93–101 call for lower 

synthetic temperatures where such kinetic phases are accessible.24,27,102 Using low temperature 

reactions, sometimes as a multistep sequence, allows for controlling structural features of the 

layered perovskite and access to a wide variety of interesting properties.24,27,96 The fundamentals 

of low temperature approaches (soft chemistry), especially those that matter to the goals of this 

dissertation, are covered in the following section.  
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1.2– Soft Chemistry (Chimie Douce) 

The term Chimie douce was first proposed in 1977 by a French scientist, Jacques Livage 

(translated to soft chemistry).36,103 Later on, Jean Rouxel expanded the soft chemistry field by 

working on solid precursors, and organizing the first national meeting on chimie douce 

approaches in the nineties.36 The inspiration behind soft chemistry reactions is to mimic the wet 

chemistry that nature offers for daily creations of bio-materials in living organisms without any 

extreme conditions.36,103 In other words, soft chemistry is defined as synthetic approaches done 

in lower temperatures where thermodynamically unstable structures and morphologies are 

accessible at the kinetic level.24 Sol-gel processes36,46,104 and topotactic reactions24,27 are two 

main types of chimie douce approaches widely studied in the past decades.36 A “sol-gel process” 

is the transformation of “solution” precursors to an inorganic network, forming a “gel” (this so-

called inorganic polymerization is typically done via hydrolysis and condensation 

reactions).27,36,50,104–106 Topotactic reactions, which are the main processes used in this work, are 

defined as methods where fine tuning of the structure of a layered compound, especially in the 

interlayer region, is done while the main structure of the starting compound is maintained. The 

layered precursor (host) is typically pre-formed via high temperature solid state-reactions, and 

then modified via low temperature soft chemistry approaches.24,27,36  

 

1.2.1 Topochemical Manipulation of Layered Perovskites 

Topochemical manipulation is defined as modification of a layered host while its major 

structural features are maintained in the obtained product.17,36 In a layered oxide perovskite, the 

new structural features are directed via various techniques such as ion exchange, intercalation, 

deintercalation, and substitution, when the structure of the perovskite slab remains basically 

intact.24,27 Figure 1-6 represents four types of topotactic reactions that are significant to this 

research: (a) ion exchange, (b) intercalation, (c) grafting, and (d) exfoliation.27 More detailed 

description of each of these processes is provided below. As illustrated in the figure, in all of 

these approaches the slab structure of the host is maintained.27 
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1.2.1.1 Ion Exchange 

Considering the nature of layered oxide perovskites (negative slabs with -1 or -2 lamellar 

charge), the interlayer cations are exchangeable with other cations or cationic structural units in 

such a way that the overall charge within these layered compounds stays neutral. Other than 

simply exchanging an ion with another one with the same oxidation state,107 there are cases 

where the replacing unit is either an ion of a different oxidation state (aliovalent exchange),108,109 

or an ionic array (co-exchange),67,94 either way, a specific stoichiometry is formed to keep the 

overall interlayer charge the same as the initial stage. There have also been reports of partial 

exchange of the interlayer ions.27,110 

An exchangeable interlayer is one of the very interesting features of charged layered 

materials, which allows one to exchange the interlayer ions with new ions and ionic arrays (ion 

exchange), or insert organics held in place via covalent bonds or acid-base interactions (grafting, 

and intercalation, respectively). Ion exchange is the simplest way to modify the interlayer of 

perovskites, and indeed a typical step preceding other modification reactions such as 

intercalation and grafting.  

 

1.2.1.2 Intercalation 

Intercalation consists of inserting an ion or molecular unit in the interlayer area, without 

removing any of the constituent elements present in the structure.2 Intercalation sometimes leads 

Figure 1-6: An illustration of: (a) ion exchange, (b) intercalation, (c) grafting, 

and (d) exfoliation reactions in a layered host. 
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to a reduction or oxidation reaction by altering a specific oxidation state in the slab (respectively 

reductive61,111 or oxidative112,113 intercalation). However, neutral intercalation happens where a 

complete molecular unit is inserted without changing the oxidation states in the slab or causing 

any other structural change other than the expansion or contraction of the d-spacing.24,27 Insertion 

of water molecules in some perovskites (hydration),107,114 or formation of ammonium ions in the 

interlayer by acid-base interaction of organic amines and solid acid perovskites, are the examples 

of neutral intercalation.2,100,107,115,116 

 

1.2.1.3 Grafting 

Strong covalent bonds are formed in the event of a grafting reaction, where organic 

groups are tethered to the terminal oxygens of a layered oxide perovskite.27 Most common 

terminal bonds include M-O-C,97–100 M-O-Si,117–119 and M-O-P,120 where M is the transition 

metal in B site (such as Nb).  

Figure 1-7 represents grafting and intercalation reactions of a double-layered DJ 

perovskite (HLaNb2O7) with n-alkyl alcohols and n-alkylamines, respectively. It is notable that 

prior to a successful organic modification reaction, an elementary ion exchange reaction is 

carried out; formation of HLaNb2O7 from A'LaNb2O7 using acids such as HNO3. The protonated 

form, solid acid perovskite, shows high reactivity with desired organics (such as amines and 

alcohols). As illustrated below, intercalation reactions with amines only involve the formation of 

ammonium ions through the combination of interlayer proton and the RNH2 (R = n-alkyl groups 

or more complicated organic structures).100,107,115,116,121 However, the mechanism of grafting 

reactions is more complicated. Considering the hydroxy functional groups in an n-alkyl alcohol, 

it is suggested that the mechanism would include an initial hydrolysis followed by 

esterification.98,122 
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1.2.1.4 Exfoliation  

Liquid exfoliation techniques mainly involve the intercalation of polymeric, organic, or 

ionic species that weaken the interlayer adhesion and result in the delamination of the layered 

structure.4,118,119,123–126 Having weak out-of-plane interactions and strong in-plane bonds is the 

key to have a high-yield exfoliation of the layered host, for instance exfoliation of black 

phosphorous to phosphorene monolayers is experimentally a challenge due to stronger interlayer 

interactions as well as relatively weak in-plane phosphorus-phosphorous bonds.127 The reactivity 

of the Ruddlesden-Popper phase with an organic base is often very limited,128 however, double- 

and triple-layered Dion-Jacobson-type perovskites (such as RbLaNb2O7, RbLaTa2O7 and 

KCa2Nb3O10) efficiently go through exfoliation reactions, producing freestanding 2D layers used 

in different applications.129–135 Figure 1-8 provides an illustration of exfoliation reactions, where 

bulky tetra(n-butyl)ammonium ions (TBA+) are intercalated in the galleries of a double-layered 

DJ perovskite and caused the delamination of the 3D structure into individual layers.  

 

Figure 1-7: Grafting and intercalation reactions of HLaNb2O7 with n-alkyl alcohols and 

n-alkylamines, respectively. In this illustration 3-carbon chains are used. 
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1.2.2 Heating Techniques 

Even though traditional wet chemistry routines using hot plate / stirrer accessories are 

still popular despite their typical long durations, more advanced heating techniques, such as 

solvothermal methods and microwave-assisted reactions, are absolutely required in order to 

successfully, efficiently, and rapidly carry out some specific soft chemistry approaches. Further 

details of these two common heating techniques will be provided in the following sections. 

 

1.2.2.1 Solvothermal Methods 

In simple words, a solvothermal reaction is performed under modest temperature and 

high pressure, and in an appropriate solvent.46 Typically a mixture of reactants and a solvent is 

enclosed inside a PTFE-lined cylinder (bomb), and heated in an oven up to 100-500 ºC and under 

high pressures.32 Pictures of a PTFE-lined cylinder and a typical sealable autoclave (stainless 

steel container), are presented in Figure 1-9. In case of using water as the solvent, the 

solvothermal reaction is specifically called hydrothermal.1,32,136 Even though higher pressures 

can be easily reached via connection to an external pressure control, the amount of pressure in 

the vessel can also be estimated based on the filling percentage of the mixture in the bomb and 

the reaction temperature.32,137 In other words, the second function of the solvent in such reactions 

is to transmit pressure via forming convection streams in the confined reaction vessel (for 

example due to the existence of water / steam in a hydrothermal method).32 Solvothermal 

Figure 1-8: A typical exfoliation reaction of HLaNb2O7 perovskite due to the 

intercalation of tetra(n-butyl)ammonium hydroxide. 
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reactions have been vastly used for the production or modification of various inorganic 

materials.88,100,136,138–147 

 

 

 

 

 

 

 

 

 

 

1.2.2.2 Microwave-Assisted Reactions 

Microwave irradiations have been used as an important method of heating since 

commercializing the first generation of microwave ovens in 1950s.148,149 Use of microwaves in 

performing chemical transformation was first reported as a published work in 1986,150,151 and 

have been extensively expanding since then in facilitating processes in different fields such as 

analytical chemistry, biochemistry, photochemistry, catalysis, as well as the synthesis of 

inorganic materials, organometallics, polymers, and most importantly microwave-assisted 

organic synthesis (MAOS).152–155 Microwave-assisted research was initially based on the use of 

kitchen microwave ovens, which tremendously increased the confusion among the chemists in 

1990’s due to non-reliable temperature / pressure monitoring and higher chances of explosion. 

Even though employing domestic household microwave ovens is not yet eliminated in the 

published works (about 30% in 2009), the majority of the researchers today take advantage of 

dedicated microwave stations and their interesting features (monitoring both temperature and 

pressure on-line and accurately, higher safety controls, robust cavities that withstand possible 

explosions, and possibility of stirring the reaction vessels which increases the homogeneity).152 

Despite availability of dedicated microwave reactors in lower prices these days, they are still 

harder to afford than conventional heating equipment.152 

 

Figure 1-9: PTFE-lined cylinder and parts of a typical autoclave (left) 

and a sealed autoclave (right). 
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Heating a reaction vessel using an external heat source (conventional thermal heating) 

typically causes a temperature gradient within the sample with the temperature increasing in 

layers closer to the reaction vessel (Figure 1-10a). The key feature of microwave-assisted 

reaction, is the simultaneous exposure of the whole reaction mixture to microwaves (internal or 

in core volumetric heating), causing a uniform temperature increase throughout the entire sample 

(Figure 1-10b).32,152,156  

 

 

 

 

 

 

 

 

 

 

 

The frequency of microwaves is in 0.3 – 300 GHz range of the electromagnetic 

irradiation, corresponding to wavelengths of 1 mm – 1 m.32,152,156 Microwaves are used for 

transmission of either energy or information. All domestic microwave ovens and dedicated 

microwave stations operate at a specific frequency (2.45 GHz) to avoid interference with 

telecommunication frequencies.152 This small frequency does not cleave any molecular bonds 

and is also lower than Brownian motion, proving that microwaves will not induce any chemical 

reactions via direct absorption (as opposed to ultraviolet or visible radiation).152 Like any 

electromagnetic irradiation, microwaves also transmits as a transverse oscillating wave of 

electric and magnetic fields.152,156 The electric component of microwaves is mainly responsible 

for heating of the materials via two major mechanisms: dipolar polarization and ionic 

conduction. Molecules with dipoles constantly try to align themselves with the oscillating 

electric field and realign as the field quickly changes. In this process, heat is generated due to 

molecular friction and dielectric loss. In ionic conduction, heating is based on the collisions of 

Figure 1-10: Comparison of heat distribution in: (a) conventional methods 

with an external heat source, and (b) microwave-assisted reactions 
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charged particles and ions as they oscillate back and forth under the impression of the alternating 

electric field.152 In both of these mechanisms, the microwaves are absorbed by dipolar molecules, 

ions, or charged particles, and generate heat throughout the sample. However, there is a third 

mechanism which applies to semiconducting or conducting materials (such as metals) where 

microwaves are mainly reflected rather than absorbed: resistive (ohmic) heating mechanism. In 

ohmic heating, the electric field will direct the free flow of electrons on the surface of the 

material, which causes heating due to the intrinsic resistance of the system.152,155 Even though the 

electric field is the component that is responsible for heating most of the microwave-assisted 

processes, the interactions with the magnetic field could also be of interest in some cases (for 

instance for transition metal oxides).157–159 

 

The dielectric properties of a certain material will directly impact their ability to 

efficiently convert this electromagnetic irradiation into heat (dielectric heating). Microwave-

absorbing feature of the materials is typically evaluated by the so-called loss factor or loss 

tangent (tan δ). This factor is obtained by dividing the dielectric loss of the material (ε") by its 

dielectric constant (ε'), respectively defined as the efficiency of the material to convert the 

electromagnetic radiation into heat, and polarizability of the molecules in the electric field. 

Solvents used in microwave chemistry can be classified based on their loss factor: high (tan δ > 

0.5, such as ethanol), medium (0.1 < tan δ < 0.5, such as water), and low microwave-absorbing 

(tan δ < 0.1, such as toluene). It should be noted that the loss factor is strongly frequency and 

temperature dependent. For instance, the loss tangent of pure water and most of the organic 

solvents drops with increasing the temperature; as in water heating via microwaves gets very 

difficult past 100 ºC, to a point that water becomes transparent to microwaves at its supercritical 

temperature. In the opposite scenario (in case of the materials that become more microwave-

absorbing at elevated temperatures), the chances of overheating and explosion highly 

increases.152 

 

Microwave-assisted reactions significantly decrease the reaction times due to the 

minimization of wall effects and efficient internal heating of the reaction mixture. This allows 

the chemists screen for new target compounds in a few hours, and move on to more decision 

points without wasting days waiting for the result.152 Due to the enormous instantaneous energy 
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provided in microwave heating, thermodynamically controlled reactions can also take place, as 

opposed to the conventional heating techniques were mainly kinetic products are obtained (the 

easiest path with the lowest activation energy due to the mild conditions in conventional 

methods).156 This so-called “microwave flash heating” is believed to be the main reason of the 

rate-enhancement in the majority of microwave-assisted reactions. However, there are more 

perplexing aspects to microwave-matter interactions (microwave effects),152 which are also 

known to enhance the rate of microwave-assisted reactions. Full ramifications of the microwave 

effects have not been realized yet.   

  

1.3– Nanomaterials 

Nanotechnology is based on the manipulation of materials in nanoscale – from 

subnanometer to several hundred nanometers. However, the decisive aspect of nanotechnology is 

the appearance of a novel property, so-called “nano-effect”, which is achieved by going down in 

the crystallite size of a particular material .160,161 Even though materials in the microscale have 

properties very similar to that of bulk, nanoscale materials offer distinctively different features 

than that of their bulk.160 As an example, gold has no catalytic properties in bulk, however, gold 

nanocrystals are known to be great low-temperature catalysts.160 Gold also changes its typical 

yellow color when a critical size is reached: becoming blue at about 50 nm and purple at about 

20 nm (the nano-effect in this specific example is the plasmon resonance revealed in the smaller 

size range).161 Since the 1980s, nanotechnology has been growing tremendously in different 

areas such as therapeutic drugs, information storage, refrigeration, chemical/optical computers, 

improved ceramics and insulators, harder metals, thin film precursors, environmental chemistry 

(solar cells, remediation, water purification, and destructive adsorbents), catalysts, sensors, smart 

magnetic fluids, and batteries.4,161–163 Some of the aforementioned fields should be considered 

more as nanoscience, as they are still a step away from well-realized technologies.161 The 

cornerstone of nanoscience is the ability to fabricate and process nanostructures and 

nanomaterials: materials with at least one dimension in the nano-scale. Properties of a material 

can strictly change by changing its dimensionality; designing desirable zero-, one-, two-, and 

three-dimensional nanostructures (like nanoparticles, nanorods, nanosheets, and nanoflowers, 

respectively).4,164 Two-dimensional (2D) materials, having two dimensions outside of 
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nanometric size range by definition, are the specific class of nanomaterials that was the focus of 

this work.4 

 

1.3.1 Two-Dimensional (2D) Nanosheets 

Synthesis and fabrication methods in nanoscience are classified in two main areas: 

bottom-up and top-down approaches. Nanomaterials in bottom-up approaches are made from the 

bottom using subnano building blocks (atoms, molecules, or clusters), while top-down 

approaches involve fabrication of nanomaterials or nanostructures from a microscopic bulk 

material.4,160,161 It is notable that the level of surface defects and internal stress is usually minimal 

in bottom-up approaches as opposed to the latter class.160 Some important syntheses and 

fabrication methods of 2D nanomaterials can be highlighted as: micromechanical cleavage, 

liquid exfoliation, chemical vapor deposition, van der Waals epitaxial growth on substrate, and 

hydrothermal synthesis.4,165–167 Fabrication of 2D nanomaterials in a typical top-down method is 

based on cleaving weak out-of-plane van der Waals interactions in a layered solid, and the 

formation of freestanding layers maintaining the initial strong in-plane chemical bonds of the 3D 

host.4,11,12,14,127,168–173 Liquid exfoliation explained in section 1.2.1.4 is the most common 

technique in such top-down methods; delamination of the layered structure as a result of the 

intercalation of polymeric, organic, or ionic species.4,118,119,123–126,128  

Graphene family174 (graphene175,176, graphene oxide177–179, fluorographene180,181, 

hexagonal boron nitride8–10,182, and boron carbon nitride183,184), 2D chalcogenides (transition 

metal dichalcogenide185,186and trichalcogenide187), and nanosheets of layered double 

hydroxides14,171(LDHs) and oxides169–171,188 (such as transition metal oxides, perovskites, and 

niobates) are a number of important types of 2D materials.4,12,174 Layered oxide perovskites, 

attainable with tunable elemental compositions and slab thicknesses as described earlier, are one 

of the important hosts for the fabrication of single or few layers of oxide nanosheets with desired 

composition and thickness via liquid exfoliation method.4,12,168–171 Intercalation of a bulky 

organic base such as tetra(n-butyl)ammonium is the most common method of liquid exfoliation 

in layered oxide perovskites.128,129,189–197 
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1.4– Hybrid Materials 

When organic and inorganic components are mixed at the atomic or molecular level in 

the composition of a compound, a hybrid material is formed.36,198 Soft chemistry approaches 

discussed above, allow for the preparation of a wide variety of hybrid materials with different 

interesting properties.36 Classification of the hybrid materials is mainly based on the nature of the 

interactions in the interface of the organic and inorganic moieties: weak (such as electrostatic 

forces, hydrogen bonding, π-π interaction, or van der Waals contacts) or strong (covalent, iono-

covalent, or Lewis acid-base bonding).17,198–201 The motivation behind the fabrication of hybrids 

is to ultimately combine the best of both organic and inorganic counterparts in one molecular 

composite; a mixture with superior properties.81,106,198,201 Key features of the inorganic materials 

and nanomaterials can be highlighted as: strong ionic and covalent forces in the extended lattice, 

tunable electronic and magnetic properties, mechanical hardness, and thermal stability. On the 

other hand, the organic molecules offer interesting structural diversity, simple and low-cost 

processing methods, significant polarizability and fluorescence efficiency, light weight, as well 

as plastic mechanical behavior.81 A simple example is the incorporation of 0D, 1D, or 2D 

nanostructures in a polymeric matrix and the formation of a lightweight composite with 

significantly improved mechanical properties, widely used in many well-stablished technologies 

like transportation infrastructure.198 Interestingly, the best teacher in this field is nature with 

countless examples of organic-inorganic hybrids in all living organisms (like bones).106,198 The 

birth of hybrid materials can be traced back to the need of human to create handicrafts with 

various colors by mixing inorganic pigments and organic dyes.198,200 However, only during the 

last decades science could offer the atomic-resolution analysis tools to shed light on hybrid 

materials and nanotechnology.198 Functional hybrid materials allow for the fabrication of 

advanced materials with novel properties meeting the need of the emerging technologies in 

optics, electronics, catalysis, energy storage, membranes, coatings, and medicinal sciences.198,200 

Synthesis and fabrication of organic-inorganic hybrid materials and nanomaterials have been 

widely studied in the literature199,202–209 for various inorganic hosts such as clays,210–212 

perovskites99,120,133,134,213–216 and other oxides217–227.  
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1.5– Characterization and Analysis 

1.5.1 Crystallography and Structure Determination  

1.5.1.1 Crystal Systems 

Any solid is a specific arrangement of atoms, ions, or molecules networking together, 

creating a three-dimensional lattice. When the arrangement of this network creates a long-range 

order, the solid is known to be crystalline, as opposed to non-crystalline materials (amorphous, 

also referred to as glasses) with only a short-range order.228–230 Figure 1-11 shows two 2D 

networks with long and short range orders (a and b, respectively). Considering the ordered 

arrangement of atoms in a crystalline solid, the smallest repeating unit is called the unit cell (for 

example each hexagon in Figure 1-11a is a unit cell). In other words, a crystalline structure is 

built up of many identical unit cells, packed side by side, each representing the symmetry of the 

solid.231,232 Considering a cuboid shape for the unit cell in 3D, the specifications of the unit cell 

are three edges (a, b, and c) and three angles (α, β, and γ), as presented in Figure 1-12. Noting the 

possible variations in three edges and angles, 3D crystals can be classified into seven distinct unit 

cell shapes, also known as crystal systems. Table 1-1 shows these seven crystal systems.231 It 

should be noted that these different shapes do not define the unit cell of the solid, it is the 

symmetry elements that give identity to the unit cell (such as mirror plane, rotation axis, etc.). For 

instance, the essential symmetry in a simple cubic system is four threefold axes passing through 

the body diagonals, though additional symmetry elements are also present in most cubic crystals 

(the essential symmetries in seven systems are shown in Table 1-1 as well). All seven crystal 

systems can be derived by stretching/compressing a simple cubic unit cell along a diagonal 

Figure 1-11: Illustration of long range order (a) and short range 

order (b), respectively called crystalline and amorphous. 
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and/or axis(es), and sometimes shearing one face relative to the other, which causes the loss of 

some symmetry elements with each distortion step, and generation of a new shape. Another 

important feature of each crystal system is the specific locations of the atoms, ions, or molecules, 

known as lattice points, linking of which will construct the unit cell. There are different lattice 

types: primitive (points only at the corners), face centered (points in the center of each face, as 

well as the corners), body centered (an extra lattice point in the center of the cell in addition to 

the corner points), base centered (points in the center of two parallel faces, as well as the 

corners), and rhombohedrally centered (two points on the longest body diagonal, in addition to 

the points in the corners_only applies to the trigonal system). As shown in the last column of 

Table 1-1, specific lattice types are allowed in different crystal systems, making 14 different 

combinations (Bravais lattices).230,231,233 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1-1: The specifications of different crystal systems 

*P (primitive), F (face-centered), I (body-centered), A, B, or C (Base-centered), and R (rhombohedrally-centered) 

 

Crystal system Unit cell restrictions Symmetry Allowed lattices* 

Cubic a = b = c,   α = β = γ = 90º Four threefold axes P, F, I 

Tetragonal a = b,   α = β = γ = 90º One fourfold axis P, I 

Orthorhombic α = β = γ = 90º Three twofold axes or mirror planes P, F, I, A (B or C) 

Hexagonal a = b,   α = β = 90º, γ = 120º One sixfold axis P 

Trigonal or 

Rhombohedral 

a = b,   α = β = 90º, γ = 120º  or 

a = b = c,  α = β = γ ≠ 90º 
One threefold axis P or R 

Monoclinic α =  γ = 90º One twofold axis or mirror plane P, C 

Triclinic None None P 

Figure 1-12: Unit cell parameters are shown here. Three edges: a, b, and c, and 

three angles: α (between b and c), β (between a and c), and ɣ (between a and b). 
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Lattice planes are considered as imaginary planes in the unit cell which in cases coincide 

with actual layers of atoms in the crystal structure. Each set of planes is defined by assigning 

three numbers known as Miller indices. In order to assign miller indices to each set of planes, 

one should first assign the origin and the three axes, and then find the fractional intersections of 

these planes with each axis. The reciprocals of these three fractions are written in parentheses 

and known as miller indices, with (hkl) general symbol. Figure 1-13 shows (040) set of planes in 

a random unit cell, where all of the planes are separated with 

a characteristic distance (called d-spacing). The d-spacing of 

more complicated sets of planes can be calculated knowing 

the unit cell parameters. For instance, in orthogonal crystals 

(where α = β = γ = 90º), the d-spacing is simply calculated 

as: 
1

𝑑ℎ𝑘𝑙
2 =  

ℎ2

𝑎2 +
𝑘2

𝑏2 +
𝑙2

𝑐2. 

Perovskites are mostly obtained as polycrystalline powders: a large number of very small 

crystals with random relative orientations building up a 3D polycrystalline sample.234 In a perfect 

single crystal however, there is an unbroken crystal lattice throughout the entire sample to the 

very edges of it.235 

 

1.5.1.2 Diffraction Techniques 

In case of non-molecular crystalline solids, the crystal structure can be most important 

identity to be characterized. One of the 

most powerful techniques, needed in 

order to gain information about the 

spatial arrangement of atoms in a 

crystal, is the diffraction experiment; 

this is where the interaction of the 

sample with radiation reveals 

information about the atomic 

structure.236 In diffraction techniques 

specifically, scattered radiation coherent 

with the incident beams are of interest. 

Figure 1-13: (040) miller indices 

in a cuboid unit cell. 

Figure 1-14: Conditions that lead into constructive 

interference from a set of parallel planes with an 

interlayer spacing of d (derivation of Bragg's law). 
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Generally, a high degree of order within the sample is required in order to yield interference of 

scattered radiation from different parts of the samples, and accurately obtain structural details.237 

In other words, even though in most directions the scattered waves interfere destructively and 

cancel out each other (out-of-phase beams), there should be a high periodicity of the atoms in a 

crystal causing the waves interfering constructively in certain directions (in-phase waves).231,237 

The interference of the scattered radiation can be presented by rays “reflecting” from a set of 

parallel planes with an interlayer spacing of d, where each plane populates the certain atoms of 

the lattice (Figure 1-14). The Bragg equation (the easiest way to access structural information in 

powder diffraction) is derived from Figure 1-14.231,234,236,237 The logic of Bragg’s law is to figure 

out the conditions that two reflected beams would be in-phase (1' and 2' beams, respectively 

reflected from the incidence of 1 and 2 beams with an angle of θ). The Bragg equation is 

satisfied when the extra distance that the second ray travels, equals a whole number of the 

wavelength (based on figure, the xyz distance should be equal to nλ). Considering the simple 

geometry relationships involved, xyz also equals 2 × 𝑑 sin 𝜃, leading to the Bragg equation ( 

𝑛𝜆 = 2𝑑 sin 𝜃 ).231,234,236,237 

 

Illumination of an object by light in an optical microscope is the simplest example of 

scattering of light due to the interaction of the oscillating electric field of this electromagnetic 

radiation with the dipoles of the specimen, however, no structural details less than the 

wavelength of the visible light (~400 nm) can be detected. Study of the fine atomic structure 

requires radiations with wavelengths in the order of the interatomic distances (~1-3 Å), which 

can be provided by X-rays, neutron beams, or electrons with appropriate energy.231,237  

 

X-ray Diffraction. Among X-rays, neutrons and electrons, X-rays are the cheapest to 

produce and typically non-destructive, and so the most common diffraction technique is based on 

the X-rays (X-ray diffraction, XRD). X-rays are typically produced in sealed tubes (so called X-

ray tubes), where accelerated electrons (up to 60 kV) bombard an anodic metal target inside a 

vacuum tube (often Cu).231,234,237 These incident electrons carry enough energy to ionize the 1s 

electrons of Cu, followed by the instantaneous drop of an electron from the outer orbitals (2p or 

3p) to the vacant level created at 1s. Based on the nature of the transition, 3p → 1s or 2p → 1s, 

specific wavelengths of X-rays are generated, respectively called Kβ (1.3922 Å for Cu) or Kα 

(1.5418 Å for Cu). Among the X-rays emitted by striking the metal target, it is desired to filter 
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out anything but the most intense radiation, and obtain a monochromatic beam for the analysis 

(for instance filtering out the Kβ from the emission by using Ni foils or a monochromator, and 

passing through clean Cu Kα X-rays).231 As the oscillating electric field of this monochromatic 

electromagnetic radiation hits the electrons of the atoms, it vibrates them. These vibrating 

charges will then re-emit radiation coherent with the incident X-rays, acting as a secondary 

source reflecting in-phase X-rays to the detector. Based on the mechanism of X-ray diffraction, 

the scattering factor of an atom is proportional to the number of electrons of it (the atomic 

number), and the structure factor shows the intensity of the reflected X-rays based the fractional 

co-ordinates and the scattering factors of the lattice atoms. This way, the electron density within 

the lattice is obtained via diffraction, elucidating the structural details.231,233,237  

In a polycrystalline powder, the crystallites and the lattice planes are randomly arranged 

in all orientations. So, for each set of planes there are always enough crystallites present at the 

Bragg angle θ with the incident beam. A movable detector in this case will be able to sweep all 

of the reflections with different θ values assigned to specific sets of atomic planes (angular 

dispersive techniques).238 In some setups of the powder XRD instruments the sample is held 

stationary with the X-ray tube and detector both moving simultaneously over the angular range θ 

(theta-theta setup), and in other designs the X-ray tube is held stationary while the sample and 

detector are both moving by angles θ and 2θ, respectively (2theta-theta setup).234 Figure 1-15 

shows a 2theta-theta X-ray powder diffractometer used in the current research. 

Figure 1-15: An X-ray powder diffraction instrument with theta-2theta setup. 
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Synchrotron radiation is produced by accelerating charged particles (electrons or 

positrons) to very high speeds, close to the speed of light, while passing them through a specific 

closed-loop path (storage ring). Strong acceleration of charged particle in an electric field and 

continuous deflection in magnetic fields, results in the production of a continuous spectrum of X-

rays that are 1013 times more brilliant than the beams released from common X-ray tubes.238 

Synchrotron sources are huge national facilities where the storage ring is typically hundreds of 

meters in diameter. The storage ring consists of successive curved and straight segments, which 

cause the emission of synchrotron radiation, respectively by steering the electrons using a 

bending magnet, or oscillating them via alternating magnetic fields provided in magnetic arrays. 

The energy of the emitted synchrotron X-rays depends on the energy of the electrons and 

specifications of their path in the storage ring. Regardless, using the synchrotron X-rays allows 

for significantly higher resolution powder diffraction measurements due to the use of extremely 

intense radiations with tunable wavelengths.231,234,237 

  

Neutron Diffraction. Neutrons are neutral subatomic particles with finite mass, one-half 

spin, a specific magnetic moment, and wavelike behavior (wavelengths in the range of 0.5-3 

Å).231,234,238 Due to their magnetic moment, neutrons are diffracted by the spin of the nuclei of 

the atoms. In other words, the neutron scattering power of an atom depends on its nuclear 

structure. Based on this feature, the isotopes of an element and even the light atoms can be 

identified and distinguished. Neutron diffraction is also of interest when the lattice points have 

very similar atomic numbers, or in order to study magnetic materials.234,237 Also, because of 

being uncharged and small neutron-matter interactions (both nuclear and magnetic), neutrons are 

highly penetrating into the bulk of the specimen.234 Despite these advantages, neutron diffraction 

is a very expensive technique, and requires a large amount of sample due to the typical low 

intensity of the neutron beams (at least 1 mm3, which usually is not attainable in single 

crystals).231,237 

Making intense neutron beams in laboratories is not possible and requires immense 

facilities. There are two methods to produce neutron beams with enough energy for decent 

powder diffraction experiments: either using a nuclear reactor, or a spallation source.231,234 Even 

though the two methods are based on fission reaction, they are also quite different and yield 

neutrons with different features. In the nuclear reactor method, a fissile material is specifically 
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used (such as highly enriched 235U), and a continuous spectrum of radiation and a lot of heat is 

released (unlike X-ray source where intense characteristic peaks are obtained). Using a crystal 

monochromator, only a specific wavelength of this continuous spectrum is filtered out, which 

will result in the loss of a lot of neutron energy, as well as weak analysis radiation.231,234 The 

mechanism of neutron production in the second method is based on spallation: interaction of 

highly accelerated and energetic proton beams with a heavy-metal target (such as liquid 

mercury).231,234 For instance, the parts of the spallation neutron source (SNS) at the Oak Ridge 

National Laboratory (ORNL) is as following: acceleration of a stream of negative hydrogen ions 

in a long path surrounded by superconducting cavities of niobium and gigantic magnets, 

conversion of this highly accelerated and focused ions to protons by passing them through 

carbon foils, accumulation of the energetic protons in a ring for 1046 turns to form one intense 

pulse of proton, hitting the metal target with proton beams 60 times per second to cause 

spallation, and finally leading the neutron beams to different detectors (beams should be slowed 

down and cooled to appropriate temperatures using water or liquid hydrogen, as they are sent to 

different beam lines).239 In spallation techniques, about 30 neutrons per proton is produced, and a 

high neutron flux would be available for analysis techniques.231 This method is also known as 

time-of-flight neutron analysis, where different wavelengths of the entire neutron spectrum are 

used with a specific angle of diffraction θ (same fundamental Bragg’s law, only with variable λ 

and d-spacing, at a fixed θ).230 

 

Employing both neutron and X-ray diffraction techniques (especially synchrotron X-ray 

method) is the most elucidating approach in structural study: where all of the atoms contribute to 

neutron diffraction allowing for a comprehensive structural refinement, more accurate unit cell 

refinement comes with X-ray diffraction experiments because of the significant X-ray scattering 

power of heavier atoms.230,231 

 

Electron Diffraction. Due to the wavelike characteristic of electrons, electron diffraction 

is another tool for structural studies. Electrons are scattered by both positively charged nuclei 

and negatively charged electron clouds of the atoms (so the electron scattering factor of the 

atoms contain both positive and negative terms).240 The beam-matter interaction is the most in 

electron diffraction, which leads to the least penetration depth in this method compared to X-rays 
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with an acceptable level of penetration depth, and neutrons offering the most.231,241 Another 

disadvantage of this method is the high scattering efficiency of electrons which causes further 

interference of the reflected beams with other sets of planes, and results in unreliable intensities 

and sometimes extra reflections in the diffraction pattern.231 Lastly, electrons are usually quite 

damaging to organic-based and biological samples.237 One valuable feature of electron 

diffraction is the possibility to obtain unit cell and symmetry information for crystals smaller 

than a tenth of mm, which is nearly impossible with neutron or X-ray diffraction methods.231 

This diffraction technique mostly comes as an asset of the transmission electron microscopes 

which will be explained in the forthcoming sections.231,241,242 

 

1.5.1.3 Refinement 

Structure determination based on powder diffraction has these major phases: data 

reduction, unit cell refinement (indexing), structure solution, structure refinement, and intensity 

extraction.230 Initially, the raw diffraction file should be translated to a list of distinct reflections 

with certain positions and intensities, this process is called data reduction, including general 

steps such as: fitting and subtraction of the background, data smoothing, peak search, and 

elimination of the fake peaks.234 Indexing is based on assigning the most appropriate Miller 

indices to the diffraction peaks, by fitting a calculated pattern to the available experimental data 

using least-square trial and error methods.230,234 In simple words, Miller indices are calculated 

based on an estimated set of unit cell parameters, and a simulated diffraction pattern is generated, 

then in successive loops the difference between the simulated pattern and the experimental one is 

minimized in order to yield the most appropriate unit cell parameters. After indexing and unit 

cell refinement, structure solution should be done: selecting the best crystal systems, realizing 

the systematic absences (zero structure factors), identifying the missing or extra peaks based on 

related models, and finally narrowing down the possible options for the space group.230,231 

Solving the structure is mathematically very complicated, but is fortunately done using 

automated computer programs taking advantage of different algorithms (the Patterson methods 

working best in case of having few heavy atoms, and the more advanced direct methods for 

phase determination and in case of having atoms with similar atomic numbers).231,234,238 While 

Patterson methods use a specific Fourier summation of the structure factor (generating F-maps), 

direct methods are based on statistical probabilities to calculate a number of phases from the 
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“observed” structure amplitudes, followed by generating sharp electron density maps (E-maps) 

and successively optimizing them.233 After the structure is resolved, atomic positions are refined 

as a full pattern refinement.238 Structure refinement used to be only based on the best least-square 

fit between the calculated structure factors and the experimentally obtained ones (minimum 

difference). Rietveld established an alternative structure refinement approach where not only the 

structure factor, but also the peak widths and shapes, lattice parameters, scale factor, and atomic 

co-ordinates are refined as required. The Rietveld method is now the most common structure 

refinement approach, that most conveniently deals with problems such as overlapping peaks and 

phase quantification.230,233,234 If only the crystal system and the possible space group is known, 

intensity extraction (Le Bail extraction) can be employed to generate a set of integrated 

intensities, which will assist with the structure solution and final refinement.230 Nearly all the 

refinement elements are now done as automated calculations, however, enough knowledge of the 

significant refinement functions is needed in order to perform a successful structure refinement 

(such as normalized peak profile function, background function, numerical measures of fit, etc.). 

It should be noted that refining too many variables at once might more likely generates a false 

minimum with some incorrect structure parameters; so the strategy should be refining a certain 

variable and fixing it at the refined value, and then progressing by one-by-one refinement of the 

other parameters as well.231 

 

1.5.2 Electron Microscopy 

Generation of electrons is typically done either via thermionic emission (heated wire or 

crystal), or field-effect emission (single crystals in intense electric field and under ultrahigh 

vacuum). Electron microscopy provides valuable information about the structure, composition, 

and morphology of the samples.243 There are many variations of electron microscopy techniques 

used in a wide range of magnifications and for various applications: stationary beam methods 

(such as transmission electron microscopy, high-resolution electron microscopy, reflection 

electron microscopy, electron energy-loss spectroscopy imaging, and Lorentz microscopy), and 

scanning beam methods (like scanning electron microscopy, scanning reflection electron 

microscopy, and scanning transmission electron microscopy).240 The resolution ranges for the 

most common types of electron microscopy are presented in Figure 1-16: high-resolution 
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electron microscopy (HREM), scanning-transmission electron microscopy (STEM), transmission 

electron microscopy (TEM), and scanning electron microscopy (SEM).243,244  

 

If the sample is thin enough and the electron beam is high-voltage (200-400 kV), 

electrons can transmit through the sample where structural and compositional information in 

atomic scale is attainable.240 The working principle is no different from the optical microscopy: 

illumination of a specimen by electromagnetic radiation which is a monochromatic electron 

beam in case of TEM and HREM.241 Image formation in TEM is basically due to diffraction 

phenomenon, with minimal effect of normal absorption (readily usable in diffraction mode, 

introduced earlier, as well as imaging mode).240 HREM is also based on the projection of the 

bulk structure along the incident electron beam, only it yields the highest resolution (an actual 

interatomic resolution of ~1Å).240,245 SEM technique is more of a mapping method rather than 

imaging: low voltage electron beams (up to 30 

kV) scan across the sample, and energy loss of the 

electron due to beam-matter interaction provides 

morphological and compositional information.240 

Despite the fact that the resolution of SEM is 

about an order of magnitude less than TEM, it is 

indeed a very unique technique widely used to 

investigate the morphology and 3D shape of the 

specimen.240 Figure 1-17 illustrate some basic 

electron-matter interactions, where TEM is more 

based on elastic scattering (primary electrons 

transmitting and diffracting with almost no energy 

Figure 1-16: Resolution ranges for the most common types of electron microscopy. 

 

Figure 1-17: Some important interactions 

of electron beam and the matter. 
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loss), SEM involves inelastic scattering (mainly based on the secondary electrons).243,246,247 

Energy dispersive spectroscopy (EDS) is an asset on EM instruments which provides 

compositional contrast based on the characteristic X-rays emitted following the ejection of 

secondary electrons.243 

 

1.5.3 Atomic Force Microscopy (AFM) 

Atomic force microscopy (AFM) allows for the surface analysis of micron- and nano-

sized structures in atomic resolution.244,248,249 Chemical and mechanical properties of the surface, 

as well as some level of crystal lattice structure is possible using this valuable microscopy 

tool.248,250 3D surface topography in AFM is based on the specific tip-surface interactions as the 

surface of the specimen is being rastered by a delicate probe. AFM can operate in two modes: the 

static mode or DC (non-vibrating probe), and the dynamic mode or AC (vibrating cantilever, 

amplitude- or frequency-modulated).244,248 Based on the attraction of the tip to the surface, the 

AFM imaging modes are classified to contact and non-contact modes, where respectively 

repulsive and attractive interactions between the two are manipulated in a controlled manner.248 

The contact mode can be performed in two modes: constant force (interpreting the height signal 

from the piezo-drive) or constant height (generating height signal based on the deflection of the 

cantilever).248,249 In non-contact mode imaging, the tip is oscillating at its resonant frequency, 

and the frequency shift due to the interaction force between the tip and the surface is monitored. 

Tapping mode is an intermittent contact imaging mode, where the tip is oscillating at a setpoint 

amplitude, and the topographic information is obtained by monitoring the change in the 

amplitude as it periodically encounters the surface. Tapping mode imaging is best when it comes 

to soft and loosely attached samples (such as nanosheets).248 

 

1.5.4 Thermal Analysis 

Thermal analysis (TA) is the study of a specific property of a sample as a function of 

temperature by heating or cooling it in a controlled manner.251 Different properties such as 

temperature difference, heat flow, weight change, dimensions, chemical composition, optical, 

acoustic, mechanical, electrical, and magnetic properties can be studied in TA methods. Among 

these various properties, the mass, temperature difference, and heat flow are the most common 

ones leading to the well-known thermogravimetric analysis (TGA), differential thermal analysis 
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(DTA), and differential scanning calorimetry (DSC) techniques, respectively.243,251–254 TGA 

elucidates the thermal stability of the material and the fraction of its volatile or more 

temperature-sensitive components, by heating the specimen up to specific temperatures under 

specific atmospheres. This method is of significant interest for the estimation of the organic 

loading in organic-inorganic hybrids where the organic substituent can be easily burned off as 

the inorganic part usually has much higher thermal stability. As some of the thermal events are 

not accompanied by any weight change (such as melting, crystallization, or glass transition), 

temperature difference between the sample and the standard pan is also usually monitored (DTA 

and DSC techniques). The main difference between DTA and DSC is the capability of the 

instrument to be calibrated in the latter, which allows for assigning a heat flow difference to the 

temperature difference being measured.243,251 

 

1.5.5 Spectroscopy Techniques 

Different spectroscopic techniques are based on the absorption or emission of a form of 

energy by materials under certain conditions. The energy is usually transferred as 

electromagnetic radiation, and the results (spectra) are presented as the intensity of absorption or 

emission plotted versus the energy (usually expressed as wavelength or frequency of the 

radiation).243 Figure 1-18 shows the wavelength and energy of different parts of electromagnetic 

radiation used in various analysis techniques.154,243,255 As the wavelength of the radiation 

increases (higher frequencies and energies), the dimension of the subject of study goes up as 

well; for instance microwaves can only cause molecular rotations without any actual absorption, 

while infrared causes vibrational motions of atoms and molecules by absorption/emission, and 

even higher-frequency waves such as ultraviolet (UV), visible, and X-rays trigger electronic 

transitions within atoms.154,243,256 
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Vibrational Spectroscopy. Radiations with frequencies in the range of the vibration 

frequency of the atoms in solids and molecules (1012-1013 Hz) can excite the vibrational modes 

to higher energies. In IR / FT-IR technique, the absorption of the electric vector of the incident 

radiation by an oscillating molecular dipole changes its frequency, and the resulting spectrum is 

obtained by plotting the intensity of the radiation either absorbed or transmitted versus the 

wavenumber or frequency of the radiation. Compared to IR, the radiation source in Raman is of 

much higher energy (a laser with a fixed wavelength), and the analysis is based on inelastic 

scattering of the incident photon, followed by a change in its frequency. The resulting Raman 

spectrum provides peaks whose frequencies show shifts from that of the incident beam, where 

the shift is equivalent to the frequency of the molecular vibration (it gains energy by absorbing a 

phonon, or loses energy by emitting one, respectively called anti-Stokes or Stokes shifted). It 

should be noted that while polar bonds are usually detected via their specific absorption 

frequency (IR), the polarizable bonds do inelastic scattering in a certain wavenumber 

(Raman).243,256–262 If instead of light, neutron beam is used for vibrational spectroscopy, the 

inelastic neutron scattering (INS) will help probing the dynamics of atoms and molecules.255,260 

INS magnetic scattering is not subject to optical selection rules (all vibrations are active), it 

provides a wide spectral range (covering wavenumbers less than 400 cm-1 as well), it is sensitive 

to hydrogen atom vibrations, it has the highest penetration depth compared to photons, and it can 

also be accurately modeled.255 A more comprehensive understanding of the structure is attainable 

by using all three IR, Raman, and INS vibrational spectroscopy techniques together. 

 

Figure 1-18: Some spectroscopy techniques based on the energy of the 

electromagnetic radiation involved. 
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Ultraviolet-Visible Spectroscopy (UV-Vis). This method of spectroscopy uses higher-

energy radiations (near-IR through the visible to the UV range; 102-103 kJ/mol) to allow for the 

investigation of electronic transitions in materials. The transition of electrons can happen in 

different ways: excitation of an electron from one orbital of an atom to higher energy orbitals of 

the same atom (exciton band), promotion of the electron of an atom to a higher energy orbital of 

an adjacent atom (charge-transfer spectra), excitation of an electron from a localized orbital to a 

delocalized energy level (conduction band), and most popular type is the study of the promotion 

of the electron from the valence band to the conduction band (band gap measurement).243 The 

study of absorbance / transmittance in different liquids, or reflectance from solid samples and 

films (diffuse-reflectance UV-Vis spectroscopy) are common practical ways of this spectroscopy 

technique.263–268 

 

Fluorescence Spectroscopy (FL). Luminescence is defined as the absorption of UV or 

visible radiation followed by emission of energy in higher wavelength in order for the excited 

analyte to go back to its initial state (resulting spectra are supplementary to what is obtained from 

UV-Vis spectroscopy). Spontaneous emission is called Fluorescence (spin-allowed emission 

with an abrupt decay after the removal of the excitation source, 10-5–10-8s), while 

phosphorescence refers to a longer time lag (10-4 –104 s) between the absorption and the 

following emission due to a change in spin quantum number (spin-forbidden 

emission).256,260,266,269,270 Photoluminescence term is the same as luminescence, however, it is 

more common among chemists investigating the absorption / emission of light by 

semiconductors and nanostructures.257,268 

 

1.5.6 Mass Spectrometry 

In this analytical technique, gaseous ions are produced from a sample, accelerated in an 

electric and/or magnetic field, and separated based on their charge-to-mass ratios (m/Z). In other 

words, mass spectrum shows the proportional abundance of an atom, molecule, or molecule 

fragment of a bigger molecular structure, according to its specific charge-to-mass ratio. Upon 

variation of the magnetic field, the spectrum of masses is obtained based on the simple fact that 

heavier ions with less charge are least deflected while reaching the detector. Based on this simple 

description, important components of any mass spectrometer are an ion source, mass separator, 
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and detector. Molecular mass, elemental composition, and isotopic distribution of a compound, 

as well as the sequences of the macromolecules such as DNA can be determined with high 

accuracies using mass spectrometry. It is notable that the combination of this technique with 

chromatography methods provide a very powerful tool to analyze mixtures (for instance 

identifying the toxin residues and contaminants in food products).271,272 

 

 

1.5.7 Superconducting Quantum Interference Device (SQUID) 

A superconducting quantum interference device (SQUID) is a very sensitive detector of 

minute magnetic fields (magnetic flux).273,274 A SQUID can detect a change of electromagnetic 

energy 100 billion times weaker than the energy that moves the needle of a compass.275 

Operation of SQUID is based on two physical phenomena: flux quantization and Josephson 

tunneling.274–276 Flux quantization is based on the fact that the magnetic flux of a 

superconducting loop (or a hole in a bulk of superconductor) is quantized (ℎ 2𝑒⁄ ; h = Planck's 

constant and e = electron charge). Josephson current is the tunneling of current between two 

superconducting materials separated by a thin insulating or non-superconductive barrier (this 

sandwich-like setup is called the Josephson junction or JJ).273–275,277,278 DC-SQUIDs consist of 

two parallel JJ where the quantum interference due to electron tunneling depends on the strength 

of the magnetic field within a loop. RF-(or AC-) SQUIDs includes only one JJ mounted on a 

superconducting ring, and the magnetic flux is measured based on the voltage changes occurring 

due to the interactions between the ring and an external circuit with oscillating current. DC-

SQUIDS are more complicated and expensive, but much more sensitive.275,279 Other than 

identification of magnetic behavior of materials in research laboratories, SQUIDs are also used 

to study human brain anomalies and some other medical applications.273 

 

1.6– Outline of the Current Research 

The focus of this dissertation is on the topochemical manipulation of Dion-Jacobson and 

Ruddlesden-Popper type perovskites via rapid microwave-assisted reactions. The research started 

back in 2013 in order to produce organic-inorganic hybrids based on the perovskite hosts using 

the common solvothermal reactions available at the time. Employing microwaves in the organic-

modification steps late 2014, allowed us to decrease the typical reaction durations significantly 
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(from days to hours), and be able to screen various chemistries in the time window of this work. 

Chapter Two provides the results of microwave-assisted grafting and intercalation reactions on a 

number of Dion-Jacobson and Ruddlesden-Popper hosts, using simple n-alkyl alcohols / amines 

with various lengths, and confirms the high quality and yield of these reactions. Chapter Three 

includes the results of some novel characterization techniques (neutron diffraction and neutron 

spectroscopy) done on several organic-inorganic hybrids, made in large quantities and with high 

qualities via facile microwave approaches, for a number of tests ran using SNS facilities at the 

Oak Ridge National Laboratory. Chapter Four highlights microwave-assisted exfoliation of DJ 

perovskites and following surface modification reactions, which efficiently yields surface-

tailored nanosheets with various saturated and unsaturated surface groups. In Chapter Five, the 

trials to perform polymerization on monomer-grafted nanosheets are reported. The impact of the 

elemental composition of various double- and triple-layered DJ perovskites on the optical 

properties of the bulk layered perovskite and exfoliated nanosheets is investigated in Chapter 

Six. After concluding the highlights of this dissertation in Chapter Seven, five appendices are 

provided at the end to summarize a few side projects of the researcher. 
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Chapter 2. Rapid Topochemical Modification of Layered Perovskites via 

Microwave Reactions† 

2.1– Introduction  

Microwaves have been an important method of heat treatment since the 1950’s when the 

first generation of microwave ovens were commercialized.1,2 In addition to the heating of 

foodstuffs, microwaves have been utilized in environmental remediation, medicine, printing, 

paints, thin films, agriculture, and wood processing.3–9 Microwaves are also significant in 

chemistry for facilitating reactions and processing in various fields such as analytical 

chemistry,10–13 biochemistry,8,14 photochemistry,15,16 catalysis,17–20 inorganic materials,9,21–24 

organometallics,25–28 polymers,29,30 and most importantly organic synthesis.31–36  

Organic-inorganic hybrids are of interest since they can potentially exhibit tunable or 

superior features compared to their pure organic and inorganic counterparts.37,38 Tunable 

mechanical, electronic, optical, and catalytic properties are attainable by combinations of various 

components as well as through control of bonding interactions.39–42 Based on the interactions at 

the organic-inorganic interface, hybrids can be divided into weak bonding (hydrogen bonding, 

van der Waals contacts or electrostatic forces) and strong bonding (covalent, iono-covalent, or 

Lewis acid-base).43,44 The best examples of these composites are lightweight materials based on 

polymers reinforced with inorganic nanoparticles that exhibit synergistically superior properties 

despite weak interfacial bonding.39 Organic-inorganic hybrids can also be designed at the 

molecular scale with strong intermolecular covalent linkages.37,38  

Perovskites have been modified by the insertion of organic substituents such that the 

resulting hybrids offer interesting magnetic, electrical, optical and catalytic properties.38,41,44–46 

Simple perovskite hybrids with the ABX3 general formula (where A is an organic substituent, B 

is a divalent metal in octahedral anion coordination, and X is a halide anion) can be prepared by 

direct reaction of the various components.38,41,46  Layered perovskite hybrids can be formed 

through intercalation or grafting44,45,47–53from Dion-Jacobson or Ruddlesden-Popper type phases 

                                                 

† This chapter was adapted from: Akbarian-Tefaghi, S.; Teixeira Veiga, E.; Amand, G.; Wiley, J. B. Rapid 

Topochemical Modification of Layered Perovskites via Microwave Reactions. Inorg. Chem. 2016, 55 (4), 1604–

1612. 
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(A'[An-1BnO3n+1] and A'2[An-1BnO3n+1], respectively, where n = layer thickness, A and A' = alkali-

metal, alkaline earth, or rare-earth cations, and B = transition metal cation).47,54 While ABX3 type 

compounds are mainly used for electronic, optical and photovoltaic applications,38,41,46,55–58 

manipulating the interlayer of layered oxide perovskites with organics can produce 

photocatalytically active hybrids.44,45 Some reports of exfoliation/delamination of layered oxide 

perovskites53,59–65 show that it is also possible to produce surface-tailored nanosheets for use as 

reinforcing components in polymer-based hybrids;53,63,64 since the surfaces of nanosheets are 

organically modified, the filler will have a better affinity for the polymer matrix, thereby 

improving the mechanical properties of the hybrid.52,53,66  

While microwave-assisted reactions have been quite effective in a variety of organic 

syntheses,22,32–36 as well as in the preparation of inorganic solids,9,22 their use in the modification 

of layered perovskites has been limited. Recently Boykin and Smith67 reported the production of 

perovskite-based hybrids by microwave-assisted grafting reactions of n-alcohols on the triple-

layered Dion-Jacobson perovskites, RbAe2Nb3O10 (Ae = Ca, Sr);67 an exciting advance which 

reduced grafting times down from days or weeks to hours.  Herein we build on this approach by 

showing that microwave synthesis can be applied to a variety of topotactic reactions (ion 

exchange, intercalation and grafting) on double- and triple-layered perovskites of both Dion-

Jacobson and Ruddlesden-Popper structure types. Detailed studies are presented optimizing 

times and temperatures in a dedicated synthetic microwave system.  The series of inorganic hosts 

in this study, RbLaNb2O7, KCa2Nb3O10, Li2CaTa2O7 and Na2La2Ti3O10, were chosen due to the 

previous reports on their modification.44,45,48–51 Microwave-assisted ion exchange and 

intercalation reactions, as well as grafting reactions with the Ruddlesden-Popper hosts, are 

reported for the first time. 

 

2.2– Experimental  

2.2.1   Materials 

Rb2CO3 (Alfa Aesar, 99.8%), K2CO3 (Alfa Aesar, 99.997%), Na2CO3 (Alfa Aesar, 

99.997%), Li2CO3 (Alfa Aesar, 99.999%), CaCO3 (Alfa Aesar, 99.99%), KCl (Alfa Aesar, 

99.995%), TiO2 (Alfa Aesar 99.995%), and Ta2O5 (Alfa Aesar, 99.85%) were used as received. 

La2O3 (Alfa Aesar, 99.99%), Nb2O5 (Alfa Aesar, 99.9985%), and Pr6O11 (Alfa Aesar, 99.9%) 
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were heated at 1000˚C for 12 h in order to eliminate any impurities. Organic n-alkylamines and 

n-alkyl alcohols were used without any further distillation: methanol (Fisher Scientific 99.9%), 

1-propanol (Alfa Aesar 99+%), 1-pentanol (Alfa Aesar 98+%), 1-decanol (Alfa Aesar 98+%), 

methylamine (Alfa Aesar 40% w/w aq. soln.), ethylamine (Alfa Aesar 70% aq. soln.), 1-

propylamine (Alfa Aesar 99+%), 1-butylamine (Alfa Aesar 99%), 1-hexylamine (Alfa Aesar 

99%) and 1-octylamine (Alfa Aesar 99%). For aqueous solutions (aq. soln.), milli-Q water (18.2 

MV cm, Millipore) was mixed with the pure solvent to obtain the desired concentration 

(typically 50% v/v aq. soln. of n-alkyl amine or 80% v/v aq. soln. of n-alcohol). Caution:  

amines are corrosive and very irritating to the skin, eyes and lungs; these reagents should be 

handled in a fume hood with proper PPE. 

2.2.2   Synthesis of the Inorganic Hosts  

RbLaNb2O7, KCa2Nb3O10, Li2CaTa2O7 and Na2La2Ti3O10 were synthesized from the 

corresponding oxides and carbonates by methods similar to previously reported solid state 

reactions.68–71 All ceramic reactions were done in alumina crucibles in air. RbLaNb2O7 was 

synthesized by mixing Rb2CO3, La2O3, and Nb2O5 in a molar ratio of 1.3:1:2, respectively. The 

ground mixture was pre-heated at 850 ˚C for 12 h, re-ground, and then heated at 1050 ˚C (24 h) 

and 1100 ˚C (24 h) with one intermediate grinding. KCa2Nb3O10 was prepared by a method 

similar to the molten salt synthesis reported by Geselbracht et al.69 K2CO3, CaCO3, Nb2O5, and 

KCl were mixed in a 1:4:3:15 molar ratio, respectively. The mixture was ground and heated at 

900 ˚C (24 h), 950 ˚C (12 h) and 1000 ˚C (2 h). For the synthesis of Li2CaTa2O7, Li2CO3, CaCO3 

and Ta2O5 were mixed and ground in a molar ratio of 1.3:1:1, respectively, and then heated at 

1175˚C for 4 h with two intermediate grindings. Na2La2Ti3O10 was prepared by grinding a 

mixture of Na2CO3, La2O3, and TiO2 with 1.3:1:3 molar ratio of the reagents, respectively. The 

mixture was pre-heated at 550 ˚C for 12 h and heated at 1050 ˚C for 48 h with three intermediate 

grindings. RbPrNb2O7 was synthesized similar to that reported by Montasserasadi et al.72 in 

order to study the reproducibility of the topotactic reactions on other compounds isostructural 

with what provided here. Rb2CO3, Pr6O11, and Nb2O5 were ground in a molar ratio of 3.3:1:6, 

respectively. The mixture was pre-heated at 850 ˚C for 12 h, re-ground, and then heated at 1050 

˚C (6 h) and 1100 ˚C (48 h) with one intermediate grinding. RbLaNb2O7, RbPrNb2O7, 
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KCa2Nb3O10, Li2CaTa2O7, and Na2La2Ti3O10 final products were washed with copious amount of 

distilled water, rinsed with acetone, and dried at 130 ˚C for several hours. 

Microwave Syntheses.  Topochemical reactions involving ion exchange, grafting and 

intercalation were carried out in a StartSYNTH Microwave Synthesis Labstation (Figure 2-1). 

The unit was equipped with Milestone’s START platform, which provides the possibility of 

simultaneously processing up to 32 reactions. The individual reactions are contained in pressure 

reactors (< 15 bar) where the typical reaction volumes ranged from 4 to 16 ml. For non-aqueous 

reaction mixtures, a Weflon button (graphite-doped Teflon) was used in the mixture to absorb 

the microwaves in the non-polar solvents. A Teflon stirring bar (transparent to the microwaves) 

was used in all trials to ensure the reaction uniformity. Caution:  Glass reaction vessels should 

be carefully inspected before each reaction; defects in the glass (e.g. pits) can result in hotspots, 

possibly leading to explosion.  

2.2.3   Acid Exchange (Protonation)  

Microwave acid treatment was carried out for 3 h at 60˚C with continuous stirring and a 

maximum power of 300 watts. Following the literature on conventional proton exchange,45,48–51 

nitric acid solutions with different molarities were used in order to carry out these reactions. In 

all cases, the molar ratio of proton to the interlayer cation remained greater than 150:1. 

HLaNb2O7 and HCa2Nb3O10 were prepared by treatment with 6 M HNO3, H2CaTa2O7 with 4 M 

HNO3, and 1 M HNO3 in the case of H2La2Ti3O10. The protonated products were washed with 

distilled water until pH 7 was obtained, and then dried at 130 ˚C for at least 3 hours.  
  

2.2.4   Organic Modification of the Protonated Hosts  

All the organic-inorganic hybrid syntheses involved the protonated hosts above. 

Reactions were performed in air for 30 minutes to one hour. Samples were heated from 25 ˚C to 

desired reaction temperature (100, 120 and 150 ˚C) with a heating rate of 2.5 ˚C/min. 

2.2.4.1   Direct Grafting of Short-Chain n-Alkyl Alcohols. CnH2n+1-LaNb2O7 members 

(n = 1, 3) were directly synthesized from the protonated Dion-Jacobson host. Typically, 0.15 g of 

HLaNb2O7 was reacted with 14 mL of 80% v/v aq. soln. of n-alcohol for 1 h at 100 ˚C with the 

maximum power of 350 W. The products were washed with distilled water and acetone and then 

dried at 70 ˚C for 1 h. 
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Figure 2-1: Milestone’s StartSYNTH Labstation (left) and parts of a 15-bar pressure reactor used in 

modification reactions of the perovskite hosts (right). 
 

 

2.2.4.2   Direct Intercalation of n-Alkyl Amines. CnH2n+1NH2-LaNb2O7 and CnH2n+1NH2-

CaTa2O7 members (n = 1 – 4) were prepared directly from the protonated Dion-Jacobson and 

Ruddlesden-Popper hosts. Typically, 0.15 g of HLaNb2O7 or H2CaTa2O7 was stirred with 14 mL 

of 50% v/v aqueous solutions of n-alkyl amines for 1 h at 100 ˚C (maximum power of 350 W). 

The intercalated products were washed with distilled water, ethanol and acetone and dried at 70 

˚C for 1 h. 

2.2.4.3   Indirect Exchange Reactions of HLaNb2O7 Host. Using rapid microwave 

reactions, the interlayer of CnH2n+1-LaNb2O7 members (n = 1, 3) were successfully exchanged 

with longer chain n-alkoxy and n-alkylamine substituents: CnH2n+1OH (n = 3, 5 and 10) and 

CnH2n+1NH2 (n = 1 – 4). Exchanging CnH2n+1NH2-LaNb2O7 hybrids (n = 1, 3 and 4) was also 

done in order to obtain longer intercalants (n = 3, 4, 6 and 8). Exchanging an n-alkylamine 

substituent with n-alkoxy was not successful in any of the trials on this host. In the case of water-

soluble reactants (n = 1 – 4), typically 0.03 g of CnH2n+1-LaNb2O7 (or CnH2n+1NH2-LaNb2O7) was 

stirred with 5 ml of 50% v/v aq. soln. of n-alkyl amine or 80% v/v aq. soln. of n-alcohol for 1 h 

at 100 ˚C (maximum power of 350 W). For CnH2n+1OH (n = 5 and 10) and CnH2n+1NH2 (n = 6 

and 8) reactants, the typical microwave procedure was carried out by reacting 0.03 g of the 

parent hybrid with 5 mL of the pure target solution containing Weflon, either for 1 h at 120 ˚C 
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with the maximum power of 800 W (n = 5 and 6), or for only 30 min at 150 ˚C with the 

maximum power of 1000 W (n = 8 and 10). Synthesis of C8H17NH2-LaNb2O7 was also possible 

by reacting 0.03 g of C10H21-LaNb2O7 with 5mL of pure 1-octylamine (30 min at 150 ˚C with the 

maximum power of 1000 W). The products were washed with either water and acetone, or just 

acetone for the longer chain reactants, and dried at 70 ˚C for 1 h. 

2.2.4.4   Indirect Exchange Reactions of H2CaTa2O7 Host. Similar to what has been 

reported in the literature,45,51 direct reaction of n-alcohols with a Ruddlesden-Popper host was 

found to be unsuccessful. However, it was possible to obtain C3H7-CaTa2O7 using an amine-

intercalated intermediate.  Stirring 0.1 g of 1-propylamine-CaTa2O7 with 14 mL of 80% v/v aq. 

soln. of n-propanol for 1 h at 100 ˚C (maximum power of 350 W), the 1-propylamine intercalant 

was replaced by an n-propoxy substituent. The interlayer of C3H7-CaTa2O7 was then successfully 

exchanged with longer chain n-alkoxy substituents (n = 5 and 10) by reacting 0.03 g of the parent 

hybrid for 1 h at 120 ˚C (maximum power of 800 W) with 5 mL of pure n-pentanol or n-decanol 

solvent containing a Weflon. Exchanging the intercalated n-alkylamine in CnH2n+1NH2-CaTa2O7 

hybrids (n = 3 and 4) was also done in order to obtain longer intercalants (n = 4, 6 and 8). 

Targeting C4H9NH2-CaTa2O7, typically 0.03 g of C3H7NH2-CaTa2O7 was reacted with 5 mL of 

the 50% v/v aq. soln. of 1-butylamine for 1 h at 100 ˚C (maximum power of 350 W). In the case 

of CnH2n+1NH2 (n = 6 and 8), the microwave reaction was typically done by reacting 0.03 g of 

the CnH2n+1NH2-CaTa2O7 hybrids (n = 3 and 4), 5 mL of the pure target solvent, and a Weflon 

button for 1 h at 120 ˚C (maximum power of 800 W). All the final products were washed with 

ethanol and acetone and dried at 70 ˚C for 1 h (for water-miscible amines, distilled water was 

also used). 

2.2.5   Characterization  

X-ray powder diffraction (XRD) data were collected on a Philips X’Pert system equipped 

with Cu Kα radiation (λ = 1.5418 Å) and a curved graphite monochromator. Typical scans were 

carried out in continuous mode with a scan rate of 0.02 °/s. The peak positions and lattice 

parameters were refined using Fullprof73 and a least-squares method with the ChekCell 

program.74 A JEOL (model JSM-5410) scanning electron microscope (SEM), equipped with the 

energy dispersive analysis (EDS), EDAX (DX-PRIME) microanalytical system, was used for 

elemental analysis. Raman spectra were obtained with a Thermo-Fisher DXR dispersive Raman 
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spectrometer using the λ = 532 nm line with a spectral resolution of 3 cm-1. Thermogravimetric 

analysis (TGA) and differential scanning calorimetry (DSC) data were collected on a TA 

Instruments TGA-DSC SQ600 system in alumina pans under a dilute oxygen atmosphere (ca. 

50% argon); samples were heated to 800 °C at a rate of 10 °C/min. Combustion of the organic 

substituents provided information on the organic loading in the interlayer of the inorganic host. 

 

2.3– Results 

Ion exchange with microwave heating was carried out on four different perovskite hosts 

to produce HLaNb2O7, HCa2Nb3O10, H2CaTa2O7 and H2La2Ti3O10. Figure 2-2 provides the XRD 

patterns of the various hosts versus their acid exchanged products. While typical proton 

exchange reactions can take several days,45,48–51,67 microwave reactions can be completed in 3 

hrs.  Protonated perovskite hosts are needed to carry out grafting or intercalation reactions with 

long-chain alcohols and amines, respectively.  

Initial studies involved grafting reactions with the acid-exchanged double-layered 

perovskite host, HLaNb2O7. While the solvothermal method takes days, microwave reactions 

produce the same quality compounds in as little as an hour.  Figure 2-3 compares the XRD 

patterns of three sets of reaction products, each set prepared through both solvothermal and 

microwave methods: HLaNb2O7 (HLN), n-propoxy-LaNb2O7 (propoxy-LN) and n-decoxy-

LaNb2O7 (decoxy-LN). Unit cell values (Table 2-1) were obtained from indexed XRD patterns.  

TGA and DSC analyses were also carried out to show that similar weight losses and thermal 

behaviors occur in the two alkoxy-grafted products regardless of the synthetic method (Figure 2-

4).  Table 2-1 compares the percent weight loss and the estimated stoichiometries for propoxy-

LN and decoxy-LN products; the approximate organic loading per [LaNb2O7] unit was 

calculated based on the formation of LaNb2O6.5 after decomposition, as verified by XRD and 

reported by Hermann et al.75 The compositions are essentially identical for both synthetic 

methods.  In cases where literature values were available, organic contents were found to be 

slightly lower than those reported for propoxy-LN and decoxy-LN.49  
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Figure 2-2: XRD patterns of the perovskite hosts versus the acid exchanged products 

obtained via microwave heating. 
 

Figure 2-3: Comparison of XRD patterns for solvothermal (autoclave) and microwave 

methods.  (a) RLN (starting material) and the three sets of topochemical-modification 

products: HLN, propoxy-LN and decoxy-LN obtained via (b) solvothermal (autoclave) and (c) 

microwave reactions. 
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Table 2-1: Unit cell parameters, weight loss and organic loading of propoxy-LN and decoxy-LN hybrids 

prepared via microwave and solvothermal methods. 

*Average of minimum three TGA-DSC runs 
 

This microwave approach is quite versatile and can be used for the rapid fabrication of a 

large number of both grafted and intercalated products.  Figure 2-5 provides the XRD patterns of 

10 hybrids prepared from HLaNb2O7 (HLN), in all cases the first reflection shifts to lower angles 

on expansion of the interlayer. Alcohol grafting products are shown in Figures 2-5b – 2-5e and 

amine intercalation products in Figures 2-5f – 2-5k. Raman spectroscopy further supported the 

presence of alkyl chains as well as C-N/C-O bonds in the hybrids (Figure 2-6a).  Synthesis of 

CnH2n+1-LN (n = 1, 3) and CnH2n+1NH2-LN (n = 1 – 4) was initiated from the protonated host 

(HLN). In the case of CnH2n+1-LN (n = 5, 10) and CnH2n+1NH2-LN (n = 6, 8), efficient 

grafting/intercalation is obtained if shorter organics (n = 3, 5 and n =3, 4 for the alcohols and 

amines, respectively) are already present in the interlayer.  TGA results are provided in Table 2-2 

for the entire series (Figure 2-7 shows the TGA and DSC curves for these 10 hybrids). The 

estimated organic loading per [LaNb2O7] unit is in the range of 0.83-1.3, which is in agreement 

with that previously reported in Dion-Jacobson hosts.48,49 Table 2-3 presents the unit cell 

 
Chemical Formula of the 

Organic Substituent 

Lattice Parameter 

(Å) 

Volume 

(Å3) 

Weight Loss% *  

(organic + water) 

Estimation of 

Loading per 

[LaNb2O7] a c  

Microwave C3H7O- n-propoxy 3.888(3) 15.4011(5) 232.796 8.45(1) 0.7745(1) 

C10H21O- n-decoxy 3.876(5) 27.2380(6) 409.185 22(3) 0.833(7) 

Solvothermal C3H7O- n-propoxy 3.887(3) 15.3180(4) 231.449 8.5(3) 0.780(3) 

C10H21O- n-decoxy 3.876(6) 27.1928(6) 408.505 23(2) 0.835(4) 

Figure 2-4: a) TGA and b) DSC curves comparing the thermal behavior of propoxy-LN and decoxy-LN 

prepared via (a) microwave method or (b) autoclave method. 
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parameters for the series of alcohols and amines (when available, literature values are shown for 

comparison). The interlayer spacing clearly increases as the length of the intercalated/grafted 

organic substituent increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6: Raman spectra provided for the hybrids based on HLN and HCT.  

a) RLN-based products: (a) RLN, (b) HLN, (c-f) n-alkoxy-LN (CnH2n+1-LaNb2O7 where n=1, 3, 5 and 10 in c, 

d, e and f respectively) and (g-l) n-alkylamine-LN (CnH2n+1NH2-LaNb2O7 where n=1, 2, 3, 4, 6 and 8 in g, h, ©, 

j, k and l respectively).   

b) LCT-based products: (a) LCT, (b) HCT, (c-e) n-alkoxy-CT (CnH2n+1-CaTa2O7 where n=3, 5 and 10 in c, d 

and e respectively) and (f-k) n-alkylamine-CT (CnH2n+1NH2-CaTa2O7 where n= 1, 2, 3, 4, 6 and 8 in f, g, h, ©, j 

and k respectively). 

Figure 2-5: XRD patterns of (a) HLN, (b-e) n-alkoxy-LN (CnH2n+1-LaNb2O7 

where n=1, 3, 5 and 10 in b, c, d and e, respectively), and (f-k) n-alkylamine-LN 

(CnH2n+1NH2-LaNb2O7 where n=1, 2, 3, 4, 6 and 8 in f, g, h, i, j and k, respectively). 
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Table 2-2: TGA results and approximate organic loading for HLN-based hybrids prepared by the 

microwave methods. 

*Average of at least three TGA-DSC runs 

** Literature values calculated based on the carbon content 

 

 

Table 2-3: Unit cell parameters for RLN, HLN and derived hybrids. 
 

* Larger c parameter needed to index the powder pattern 

 

 

 

 

 

 Chemical Formula of the Organic Substituent Weight Loss%*  

(organic + water) 

Estimation of Loading per 

[LaNb2O7] 

HLaNb2O7 2.07(2) 1.007(4)  

G
ra

ft
ed

 H
y

b
ri

d
s CH3O- methoxy 5.1(6) 0.99(3)  

C3H7O- n-propoxy 8.45(1) 0.7745(1) 0.85 49 ** 

C5H11O- n-pentoxy 13(2) 0.84(1)  

C10H21O- n-decoxy 22(3) 0.833(7) 0.87 49 ** 

In
te

rc
a
la

te
d

 H
y

b
ri

d
s 

CH3NH2 methylamine 8.30(1) 0.9685(2)  

C2H5NH2 Ethylamine 11(2) 0.96(2)  

C3H7NH2 n-propylamine 13.6(8) 0.995(6)  

C4H9NH2 n-butylamine 19.95(7) 1.301(0)  

C6H13NH2 n-hexylamine 20(1) 0.999(4)  

C8H17NH2 n-octylamine 23.2(2) 0.9389(7)  

  
Chemical Formula of the Organic Substituent 

Lattice Parameter (Å) Literature Lattice Parameter (Å) 

a c a c 

RbLaNb2O7 3.884(2) 10.9626(3) 3.885(2) 10.989(3) 68,76 

HLaNb2O7 
3.883(3) 10.4527(5) 

3.8886(4) 10.5483(12) 49,77 

3.891(4) 10.578(6) 49 

G
ra

ft
ed

 H
y

b
ri

d
s 

CH3O- Methoxy 3.883(4) 23.0579(5) * - 11.8 48 

C3H7O- n-propoxy 3.888(3) 15.4011(5) - 15.3 49 

C5H11O- n-pentoxy 3.886(6) 18.5051(9) - - 

C10H21O- n-decoxy 3.876(5) 27.2380(6) - 27.3 49 

In
te

rc
a

la
te

d
 H

y
b

ri
d

s CH3NH2 Methylamine 3.899(6) 12.1073(6) - - 

C2H5NH2 Ethylamine 3.884(2) 16.5819(2) - - 

C3H7NH2 n-propylamine 3.884(3) 18.3316(2) - - 

C4H9NH2 n-butylamine 3.881(3) 20.9230(3) - - 

C6H13NH2 n-hexylamine 3.873(8) 24.7800(6) - - 

C8H17NH2 n-octylamine 3.877(8) 28.3872(7) - - 
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Figure 2-7: a) TGA and b) DSC curves for n-alkoxy-LN and c) TGA and d) DSC curves for n-alkylamine-LN. 

 

Similar ion exchange, grafting, and intercalation reactions were also carried out on 

RbPrNb2O7 (RPN).  As expected, comparable reactivity as to that seen for RLN is observed 

(Figure 2-8a and 2-8b). 

Grafting of n-pentanol and n-decanol is also possible straight from the protonated form 

(HLN), as shown in Figure 2-9. However, this single-step reaction was found to be incomplete as 

the product mainly contains the HLN starting material (Figure 2-9a and 2-9c). Multistep 

expansion of the interlayer leads to better quality hybrids with the longer-chain substituents. As 

shown in Figure 2-9, n-hexylamine and n-octylamine intercalation products were also attainable 

directly from HLN host, but products from this single-step reaction are of poorer quality 

compared to those obtained from an n-butylamine-LN intermediate. 
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Figure 2-8: Results on topochemical modification of RPN host, isostructural with RLN. 

a) Comparing the XRD patterns of RPN and HPN with RLN and HLN; (a) RLN, (b) HLN, (c) RPN, and 

(d) HPN.  

b) HPN-based hybrids; (a) HPN, (b, c) CnH2n+1-PN (n=1 and 3 for b and c respectively), and (d-h) 

CnH2n+1NH2-PN (n=1, 3, 4, 6, and 8 in d, e, f, g and h, respectively). 
 

The formation of organic-inorganic hybrids from the triple-layered Dion-Jacobson host 

HCa2Nb3O10 (HCN) was also studied (Figure 2-10). In the case of HCN, intercalation of n-

alkylamines (CnH2n+1NH2, n = 1-4, 6, 8) readily occurred under the same experimental conditions 

as HLN. The only difference between these two hosts was n-alcohol reactivity; successful 

grafting of only methanol was seen despite examination of different sets of reaction conditions, 

even those proceeding through either alkoxy or amine intermediates. Grafting of n-propanol and 

n-hexanol was recently reported by Boykin and Smith with microwaves;67 the reaction 

conditions we examined did not produce successful grafting reactions with n-alcohols where 

n>1. 
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Figure 2-9: Comparing four different hybrids based on (a) HLN host, prepared either from (b) 

intermediates or (c) straight from HLN.  

∎ Square peaks: the incompletion of the reaction due to the presence of HLN starting material.  

* Star peaks: the existence of the target products provided in (b), despite the incomplete reactions in (c). 

 

 

 

 

 

 

 

  

 

 

 

 

 

The microwave approach is also quite effective for modification of Ruddlesden-Popper 

type hosts.  The XRD patterns of 7 different hybrids synthesized from H2CaTa2O7 (HCT) are 

provided in Figure 2-11. Preparation of n-alkylamine intercalated products, CnH2n+1NH2-CT (n = 

Figure 2-10: HCN-based hybrids; (a) HCN, (b) methoxy-CN, and (c-h) n-alkylamine-CN (CnH2n+1NH2-

CN, where n=1, 2, 3, 4, 6, and 8 for c, d, e, f, g and h, respectively). 
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1 – 4) was carried out directly from the protonated host (The products n = 1, 2 are shown in Figure 

2-12). Figures 2-11e and 2-11f show the intercalated products where n = 3 and 4, respectively. 

CnH2n+1NH2-CT (n = 6, 8), Figures 2-11g and 2-11h, were obtained from n-alkylamine-CT 

intermediates (n = 3 or 4). In order to create n-alkoxy bonds in the interlayer, amine intercalated 

intermediates were used since direct reactions with protonated hosts were not successful.45,51 To 

obtain CnH2n+1-CT (n = 3, Figure 2-11b), 1-propylamine-CT was reacted with n-propanol. Further 

reactions with n-propoxy-CT acting as an intermediate were then possible, leading to longer-chain 

alkoxy substituents (n = 5, 10, Figure 2-11c, 2-11d).  Unit cell parameters for the complete HCT 

reaction series are presented in Table 2-4. There is good agreement between literature lattice 

parameters and those values observed here (in some cases by doubling the c parameter). The 

indexed cells provided for CnH2n+1NH2-CT (n = 3, 4, 6 and 8) and n-pentoxy-CT have not been 

previously reported. Successful intercalation/grafting reactions on HCT were also supported by 

Raman spectroscopic characterization (Figure 2-6b).  

 

 

 

 

 

 

 

 

 

 

Figure 2-11: XRD patterns of the hybrids based on HCT. (a) HCT, (b-d) n-alkoxy-CT (CnH2n+1-

CaTa2O7 where n=3, 5 and 10 in b, c and d, respectively), and (e-h) n-alkylamine-CT (CnH2n+1NH2-

CaTa2O7 where n= 3, 4, 6 and 8 in e, f, g and h, respectively). 



68 

 

  

 

 

 

 

 

 

Figure 2-12: XRD patterns of (a) HCT host, (b) methylamine-CT, (b’) methylamine-CT in b retreated 

with fresh methylamine, (c) ethylamine-CT with a broad first peak, and (c’) ethylamine-CT with a 

shouldered first peak. 

 

Table 2-4: Unit cell parameters of LCT, HCT and organic grafted/intercalated products. 

* Diffraction patterns indexed with smaller c parameters than those reported in reference 45 

  

In the case of the triple-layered Ruddlesden-Popper (HLT), successful reactions are 

limited to CnH2n+1NH2, n = 1, 3, 4, 6 and 8 (Figure 2-13).  Many in this series, however, show 

incomplete conversion and a loss in crystallinity. This seems to be more dependent on the 

inorganic host rather than the conditions of the modification reaction, as multiple treatments of 

the HLT-based hybrids did not improve the conversion or crystallinity.  Since, the reactions to 

form the CnH2n+1NH2-LT amines were incomplete, use of these samples as intermediates for 

grafting reactions were not attempted.  

 

 

  Chemical Formula of the 

Organic Substituent 

Lattice Parameter (Å) Literature Lattice Parameter (Å) 

a b c a b c 

Li2CaTa2O7 5.506(2) 5.455(2) 18.193(6) 5.5153(1) 5.4646(1) 18.2375(3) 70 

H2CaTa2O7 5.403(2) 5.497(2) 18.242(6) 5.409(2) 5.506(6) 18.274(0) 45 

G
r
a
ft

ed
 

H
y
b

ri
d

s C3H7O- n-propoxy 4.010(2) 3.848(2) 17.25(1)* 3.920(6) 3.859(1) 34.621(9) 45 

C5H11O- n-pentoxy 3.892(4) 3.841(3) 20.75(2) - - - 

C10H21O- n-decoxy 3.904(3) 3.847(4) 34.16(3)* 3.916(4) 3.857(6) 70.052(1) 45 

In
te

r
ca

la
te

d
 

H
y
b

ri
d

s 

C3H7NH2 n-propylamine 3.868(2) 3.845(2) 17.930(9) - - - 

C4H9NH2 n-butylamine 3.922(3) 3.849(4) 20.64(1) - - - 

C6H13NH2 n-hexylamine 3.885(5) 3.849(3) 24.51(2) - - - 

C8H17NH2 n-octylamine 3.906(3) 3.855(2) 27.33(2) - - - 
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2.4– Discussion 

Solvothermal synthesis is based more on conductive heating with an external heat source, 

while microwave irradiation produces efficient internal heating.32 This so-called “in core 

volumetric heating” can potentially increase the reaction speed as well as temperature 

uniformity. Recently, Boykin and Smith used microwaves to carry out grafting reactions with n-

alcohols for the triple-layered Dion-Jacobson hosts RbAe2Nb3O10 (Ae = Ca, Sr);67 the control of 

temperature and power, however, was limited due to the use of a simple domestic microwave. In 

the present work, a dedicated microwave station (Figure 2-1) was used, allowing one to 

reproducibly achieve specific temperatures and powers.  

In this study, the microwave method was investigated for a series of topochemical 

reactions.  For comparison within the RLN series, solvothermal methods were also used. In all 

instances, the two approaches gave very similar results, though the microwave method was able 

to complete the reaction in hours instead of days. Figures 2-3 and 2-4 and Table 2-1 compare 

diffraction and thermal data for sets of HLN, propoxy-LN, and decoxy-LN samples that were 

produced by both microwave and solvothermal methods. The diffraction and thermal analysis 

gave very similar results in terms of the lattice parameters and organic loading per [LaNb2O7] 

unit regardless of the synthesis method, further confirming the effectiveness of the microwave 

method. In previous syntheses reported by Suzuki et al.,49 the series of reactions from HLN to 

Figure 2-13: XRD patterns of five amine-intercalated products based on HLT host (a), 

CnH2n+1NH2-LT,  where n = 1, 3, 4, 6, and 8 for (b), (c), (d), (e) and (f), respectively. 
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decoxy-LN were carried out in sealed ampules with reaction times as long as 13 d total (3 d 

protonation at 60 ˚C, 3 d n-propanol grafting at 80 ˚C, and 7 d final reaction with n-decanol at 80 

˚C). In the solvothermal reactions carried out as controls in the current study, the reaction times 

were reduced, cutting the duration to 5 d (2 d protonation at 90 ˚C, 2 d n-propanol grafting at 100 

˚C, and 1 d final reaction with n-decanol at 200 ˚C, all steps done in autoclaves). It then becomes 

especially significant that this same reaction was carried out in only 4.5 h with microwave 

methods. Even considering the warmup time of each reaction, the overall process did not exceed 

6 h (3 h protonation at 60 ˚C, 1 h n-propanol grafting at 100 ˚C, and 30 min reaction with n-

decanol at 150 ˚C).   

For the triple-layered Dion-Jacobson (KCa2Nb3O10), both microwave assisted proton 

exchange and amine intercalation reactions readily occur.  With regards to grafting reactions, the 

reactivity with n-alcohols was limited to methanol only.  This is in contrast to what has been 

observed by others67 and may relate to reaction parameters investigated in our study. 

Another part of the study involved the organic modification of Ruddlesden-Popper 

perovskites, H2CaTa2O7 (HCT) and H2La2Ti3O10 (HLT).45,51 As presented in Figure 2-11, 

intercalation/grafting reactions on HCT hosts were quite successful (using CnH2n+1NH2, n = 1 - 4, 

6, 8 and CnH2n+1OH, n = 3, 5, 10). In the case of direct intercalation of methylamine, there 

appears to be two phases produced in this reaction (Figure 2-12). The peak at 2Θ = 6.640 degrees 

(d spacing ~13.3 Å) corresponds to literature values,45 while the higher angle peak at 2Θ = 7.626 

degrees has not been previously reported for this compound.  Interestingly, the high angle 

reflection becomes more intense after the sample is treated again with fresh methylamine (Figure 

2-12b’). In case of ethylamine, the reaction from HCT was also successful, however, the 

diffraction peaks are broader compared to the sharp peaks present in the rest of the products 

(Figure 2-12c versus Figure 2-11). In contrast, while HLT is readily prepared via microwave-

assisted protonation, subsequent amine intercalation reactions are always incomplete with a 

slight loss in crystallinity.   This behavior may relate to the poor reactivity of anhydrous HLT 

with organics; considering that HLT was obtained as an anhydrous phase in the present 

experiments and that anhydrous HLT cannot be rehydrated in water.44,50 

To further highlight the advantages of the microwave method compared to conventional 

methods, the reaction duration to synthesize n-propoxy-CT from Li2CaTa2O7 can be compared to 
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that previously reported by Wang et al.45 using an autoclave approach. As they reported a 16 d 

modification via conventional mehods45 (3 d protonation with 4 M HNO3 at room temperature, 3 

d autoclave treatment with methylamine at 80 ˚C, 3 d autoclave exchange with methanol at 80 

˚C, and finally 7 d exchange of methanol with n-propanol at 80 ˚C), n-propoxy-CT was obtained 

in only 5 h in the present work (3 h protonation with 4 M HNO3 at 60 ˚C, 1 h reaction at 100 ˚C 

to prepare n-propylamine-CT, and finally exchanging for n-propanol from the amine 

intermediate was done at 100 ˚C for 1 h). It is worth noting that microwave method is applied on 

Ruddlesden-Popper family herein for the first time, successfully carrying out proton exchange, 

intercalation and grafting. 

As presented in Tables 2-3 and 2-5, XRD patterns were indexed for the hybrids obtained 

from the HLN and HCT hosts. RbLaNb2O7, HLaNb2O7, and HLN-based hybrids were all 

indexed on tetragonal cells, while Li2CaTa2O7, H2CaTa2O7, and derived hybrids were indexed on 

Figure 2-14: Relationship between the c parameter of the hybrid and the number of the carbons in the 

alkyl chains, calculated for (a) n-alkoxy-LN, (b) n-alkylamine-LN, (c) n-alkoxy-CT, and (d) n-alkylamine-CT. 
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orthorhombic cells. Using the layer spacings for 

the various hybrids, the orientation of the organic 

chains in the interlayer of HLN and HCT hosts 

was estimated based on the methods proposed in 

the literature (see Figure 2-14).44,45,50,51,78,79 In the 

case of n-alkoxy-LN and n-alkoxy-CT the tilt 

angles were calculated as 42° and 76°, 

respectively, which are similar to that of literature 

values (57° for n-alkoxy-LN,48 41° for n-alkoxy-

CN,50 and 70° for n-alkoxy-CT45). The schematic 

model of n-propoxy-CT is presented in Figure 2-

15 as an example. 

 

In the present work, no water was added to the hydrophobic solvents (1-hexylamine, 1-

octylamine, 1-pentanol and 1-decanol). This experimental condition was not limited to the hybrids 

synthesized via the microwave technique, but was also applied for the solvothermal control 

reactions involving 1-decanol. Researchers, however, have suggested that exchange reactions 

require 1-3 mass% of added water at 80 ̊ C.44,45,48,50,51 Though water was not added to our reactions, 

it is possible that small amounts of water were present in the host or became available due to 

moisture in the air and that this combined with higher reaction temperatures44,50 (100-150 ˚C) 

allowed reactions to readily occur.  

2.5– Conclusions 

Microwave techniques can be effective for the topochemical manipulation of layered 

perovskites.  Combinations of proton exchange, grafting, and intercalation are possible.  These 

methods quickly lead to a series of organic-inorganic hybrids as demonstrated on four different 

Dion-Jacobson and Ruddlesden-Popper hosts, HLaNb2O7, HCa2Nb3O10, H2CaTa2O7 and 

H2La2Ti3O10.  Rapidity, coupled with the ability to make gram quantities of materials, highlights 

the potential of this approach for effectively expanding the production of new and known 

organic-inorganic hybrids. Taking advantage of rapid reactions permits one to screen a variety of 

reaction conditions and organic-inorganic hybrids for different applications.  One can then begin 

Figure 2-15: The schematic model of 

n-propoxy-CT product. 
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to design and screen various organic substituents such that different combinations could lead to 

new hybrids with technologically significant properties.  
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Chapter 3. Further Characterization of Layered Hybrid Perovskites using 

Neutron Diffraction‡ 

3.1– Introduction 

Hybrid materials, combining organic and inorganic counterparts at the atomic level, let us 

take advantage of both sets of features that each class has to offer at once.1–6 Some hybrids allow 

for anchoring organic molecules to an inorganic lattice and the formation of “self-organizing” 

systems; inorganic-organic hybrid perovskites are one of the important examples in this regard.6–

12 Despite their usual degradation under ambient condition, the inorganic-organic layered halide 

perovskites have been studied vastly due to their outstanding potential in optoelectronic devices 

and solar cells.13–20 The structure of layered hybrid halide perovskites can be easily determined 

as these hybrids are readily attainable in the form of single crystals or highly-oriented 

polycrystalline films at typically mild conditions.21–25,6,26–28,13,29–31,20 As opposed to the halide-

type layered perovskites, the oxide variations offer far better stability in ambient conditions, as 

well as the possibility to form an actual covalent bond between the anchored organic substituent 

and the inorganic slab; these interactions are not limited to electrostatic or Lewis acid-base 

anchoring of the organic ions.32,33,9 However, as the synthesis of layered hybrid oxide 

perovskites as single crystals or even highly-oriented polycrystals has not yet been fullfilled in 

our knowledge, where the crystal stucture of these materials is yet to be determined. The only 

tools that have been widely used for revealing some structural aspects of hybrid oxide 

perovskites so far, are X-ray diffraction, solid-state NMR, and vibrational spectroscopy 

techniques.34,10,35,11,36,12 The interlayer distances (or the largest unit cell parameters) obtained via 

XRD and unit cell refinement are typically plotted versus the number of carbons in the alkyl 

chains, and the slope of the line will be then compared to the distance that a single -CH2- would 

add up to the interlayer spacing, which is about 1.27 Å. If the anchored organics form a 

monolayer, the slope will be about 1.27 Å, and in bilayers it should be about twice this value. 

“Tilted” monolayers and bilayers are demonstrated when the slopes are lower than 1.27 and 2.54 

Å, respectively.10–12,34,35,37,38 This method only allows for the “estimation” of the tilt angle, 

                                                 

‡ Manuscript in preparation 
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without providing any information about the positions of the light elements in the organic chain. 

As a complementary observation, the fraction of trans and gauche conformations are typically 

collected from IR and solid-state NMR spectroscopies, to evaluate the order of the chains across 

the interlayer.34,36,37,39–42 These techniques have demonstrated all-trans conformation for the n-

alkyl chains, which is subject to rearrangement upon heating.34,36 

The extent of X-ray scattering is directly proportional to an atom’s atomic number, which 

makes lighter elements transparent in X-ray powder diffraction of a polycrystal.43–45 On the 

contrary, the neutron scattering power of an atom depends on its nuclear structure, where even 

lighter elements such as carbon and oxygen are “visible”. This makes the neutron diffraction 

technique a powerful way of determining the crytal structure of polycrystalline materials which 

are rich in lighter elements (such as inorganic-organic hybrids).43,45–47 Unfortunately, neutron 

diffraction requires a large amount of sample due to the typical low intensity of the neutron 

beams,43,45 which can be an issue in some systems based on the availability of facile large-scale 

synthesis approaches. Since efficient production of inorganic-organic layered perovskites is now 

possible via microwave-assisted reactions, larger amounts of these materials are attainable as a 

single batch to yield decent quality neutron powder diffraction data.12,48 Ideally, the atomic 

percent of hydrogen has to be minimized in neutron diffraction techniques due to its large 

incoherent and inelastic scattering which can almost hide the Bragg peaks. However, using over 

a hundred milliliters of deuterated solvents is quite costly, and shorter-chain organics can as well 

minimize this undesirable scattering in our favor.  

Herein, efforts have been made to shed light on the crystal structure of inorganic-organic 

hybrid oxide perovskites via neutron diffraction technique for the first time. Structure refinement 

of n-propoxy-LaNb2O7 was successfully carried out positioning the perovskite slab and the first 

bonding carbon of the organic chain. Temperature studies were also performed on n-propoxy-

LaNb2O7 from 300 K to 10 K and vice versa to investigate the cell contraction/expansion and 

possible hysteresis in a complete loop. Synchrotron XRD collected were also collected on these 

systems. Radiation at 0.4146 Å appeared destructive on the hybrid samples, providing 

questionable merged data. However, even this merged data presented a decent fit with the 

perovskite models developed for structural refinement. 

    



80 

 

3.2– Experimental 

3.2.1   Materials 

The carbonate reagent, Rb2CO3 (Alfa Aesar, 99.8%), was used as received. La2O3 (Alfa 

Aesar, 99.99%) and Nb2O5 (Alfa Aesar, 99.9985%) oxides were heated at 1000˚C for 12 h for 

the elimination of impurities or non-stoichiometries. Organic alcohols and amines were used 

without any further distillation: 1-propanol (Alfa Aesar 99+%), 1-pentanol (Alfa Aesar 98+%), 

1-decanol (Alfa Aesar 98+%), benzyl alcohol (Alfa Aesar 99%), 3-phenoxybenzyl alcohol (Alfa 

Aesar 98%), 1-propylamine (Alfa Aesar 99+%), 1-hexylamine (Alfa Aesar 99%) and 1-

octylamine (Alfa Aesar 99%). For aqueous solutions (aq. soln.), milli-Q water (18.2 MV cm, 

Milli-pore) was mixed with the pure solvent to obtain the de-sired concentration (typically 50% 

v/v aq. soln. of n-alkyl amine or 80% v/v aq. soln. of n-alcohol). Caution:  handle all of the 

organic solvents and specifically the amines in a fume hood with proper PPE—amines are toxic, 

corrosive, and very irritating to the skin, eyes and lungs. It is highly recommended to purchase 

only small amounts of the amines due to being moderately air sensitive. In case of storage times 

more than 6 months, amines are best to be kept under protective inert gas.  
 

3.2.2   Synthesis of RbLaNb2O7 

RbLaNb2O7 was synthesized by grinding stoichiometric amounts of La2O3 and Nb2O5 

oxides with a 30% molar excess of Rb2CO3.12,49 The mixture was preheated at 850 °C overnight, 

reground, and heated at 1050 °C for 24 h. After regrinding, the sample was finally heated at 1100 

°C for 24 h. The product was washed with copious amount of water to remove the excess 

carbonate, and dried at 100 °C for a few hours. The XRD pattern of RbLaNb2O7 host showed a 

tetragonal structure with a = 3.884(2) Å and c = 10.9626(3) Å, consistent with the literature 

values (a = 3.885(2) Å and c = 10.989(3) Å).49,50 
 

Microwave Syntheses.  Proton exchange, grafting and intercalation reactions were 

carried out in a StartSYNTH Microwave Synthesis Labstation as demonstrated in the previous 

chapter. The Milestone’s START platform is capable of simultaneously treating up to 32 reaction 

vessels in the carrousel (each can safely contain 4-16 mL of the reaction mixture). For non-

aqueous reaction mixtures, a Weflon button (graphite-doped Teflon) was used in the mixture to 

aid the non-polar solvents absorbing the microwaves. The reaction uniformity was also ensured 
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by using a Teflon stirring bar in all trials. Caution:  Defects and cracks in the glass vessels can 

result in hotspots or lead to explosion, make sure to inspect them before every run.  
 

3.2.3   Acid Exchange (Protonation)  

Microwave acid treatment was carried out by continuous stirring of the RbLaNb2O7 host 

in 6 M HNO3 for 3 h at 60 °C with a maximum power of 300 watts. For the complete exchange 

of the Rb+ with proton, at least 150 times molar excess of the H+ was provided in all trials. 

HLaNb2O7 product was washed with distilled water until pH 7 was obtained, and then dried at 90 

°C for at least 3 hours. The XRD pattern of the protonated sample showed a tetragonal structure 

with a = 3.883(3) Å and c = 10.4527(5) Å, in agreement with two sets of literature values 

available for HLaNb2O7: a = 3.8886(4) Å and c = 10.5483(12) Å,8,51 and a = 3.891(4) Å and c = 

10.578(6) Å.8 
 

  

3.2.4   Organic Modification of the Protonated Hosts  

Organic modification reactions were performed in air for 30 minutes to one hour, 

involving HLaNb2O7. Samples were heated from 25 °C to the desired reaction temperature (60, 

100, 120 and 150 °C) with a heating rate of 2.5 °C/min. In order to obtain a neutron diffraction 

pattern with an acceptable quality, at least 1 gram of each sample was required. Providing 

enough sample was met by running 12 reaction vessels simultaneously each containing 0.1 g of 

the same sample. Neutron vibrational spectroscopy only required 0.3-0.4 g of sample, so, 

running 4 reactions vessels containing 0.09 g of the same sample provided enough sample in 

each case. More details on the conditions of each steps, as well as the reaction mixture of each 

vessel in a specific reaction, are provided below following what reported earlier for these 

microwave-assisted reactions.12 Note: In cases that the quality of the product was not optimal 

after performing a specific organic-modification reaction, a so-called retreatment step was 

carried out by redoing the exact same reaction for a second time on the low-quality product, and 

in all cases improved the quality significantly. The retreatment process was only required for the 

production of over 1 g of high-quality samples from the following hybrids: n-pentoxy-LaNb2O7, 

n-decoxy-LaNb2O7, 1-octylammonium-LaNb2O7, and 3-phenoxybenzyl alcoxy-LaNb2O7. 
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3.2.4.1   Grafting Reactions with n-Alkyl Alcohols 

C3H7-LaNb2O7 was synthesized by reacting 0.09-0.1 g of HLaNb2O7 with 14 ml of 80% 

v/v aq. soln. of 1-propanol for 1 h at 100 °C (350 W maximum). The 1-propoxy-LaNb2O7 

intermediate was washed with distilled water and acetone, then dried at 70 °C for 1 h. The 

interlayer of C3H7-LaNb2O7 was then successfully exchanged with longer chain n-pentoxy or n-

decoxy substituents, yielding C5H11-LaNb2O7 and C10H21-LaNb2O7, respectively.12 The typical 

microwave procedure was carried out by reacting 0.09-0.1 g of n-propoxy-LaNb2O7 intermediate 

with 11 mL of the corresponding alcohols: 1-pentanol for 45 min at 120 °C (800 W maximum) 

or 1-decanol for 30 min at 150 °C (1000 W maximum). The n-pentoxy-LaNb2O7 and n-decoxy-

LaNb2O7 products were washed with copious amount of acetone and dried at 70 °C for 1 h. The 

n-decoxy-LaNb2O7 hybrid has a large interlayer spacing (about 17 Å), which makes it a great 

intermediate that can be used for the production of benzyl alcoxy-LaNb2O7 and 3-phenoxybenzyl 

alcoxy-LaNb2O7 hybrids via exchanging the n-decoxy bond respectively with benzyl alcoxy and 

3-phenoxybenzyl alcoxy.  
 

3.2.4.2   Grafting Reactions with Cyclic Organics—Benzyl Alcohol and 3-Phenoxybenzyl 

Alcohol 

The interlayer of C10H21-LaNb2O7 hybrid was successfully exchanged with two cyclic 

organics, benzyl alcohol and 3-phenoxybenzyl alcohol, respectively yielding C7H7-LaNb2O7 and 

C13H11-LaNb2O7. The typical microwave procedure was carried out by reacting 0.09-0.1 g of n-

decoxy-LaNb2O7 intermediate with 11 mL of the corresponding alcohols: benzyl alcohol for 1 h 

at 60 °C (300 W maximum) or 3-phenoxybenzyl alcohol for 1 h at 100 °C (600 W maximum). 

The products were washed with copious amount of acetone and dried at 70 °C for 1 h. 
 

3.2.4.3   Intercalation Reactions with n-Alkylamines 

Preparation of 1-propylammonium-LaNb2O7 was done by reacting 0.09-0.1 g of 

HLaNb2O7 with 14 ml of 50% v/v aq. soln. of 1-propylamine for 1 h at 100 °C (350 W 

maximum). The C3H7NH3-LaNb2O7 was washed with distilled water, ethanol, and acetone, then 

dried at 70 °C for 1 h. The interlayer of 1-propylammonium-LaNb2O7 (as well as n-propoxy-

LaNb2O7) is then exchangeable with longer chain 1-hexylammonium substituent,12 yielding 

C6H13NH3-LaNb2O7. The typical microwave procedure was carried out by reacting 0.09-0.1 g of 

n-propylammonium-LaNb2O7 intermediate with 11 mL of pure 1-propylammine for 45 min at 
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120 °C (800 W maximum). The 1-hexylammonium-LaNb2O7 was washed with copious amount 

of ethanol and then acetone, then dried at 70 °C for 1 h. 
 

3.2.5   Characterization 

X-ray powder diffraction (XRD) data were obtained on a Philips X’Pert system equipped 

with Cu Kα radiation (λ = 1.5418 Å) and a curved graphite monochromator. XRD scanning was 

performed in continuous mode with a scan rate of 0.02 °/s. Refinement of the peak positions and 

lattice parameters was carried out using Fullprof52 and a least-squares method with the ChekCell 

program.53 Raman spectra were collected on a Thermo-Fisher DXR dispersive Raman 

spectrometer using the λ = 532 nm line with a spectral resolution of 3 cm-1.  

Neutron diffraction data were collected on the powder diffractometer POWGEN (BL-

11A)54 located at the Spallation Neutron Source (SNS) of the Oak Ridge National Laboratory 

(ORNL). 1—1.3 g of each sample was loaded in a 6-mm diameter vanadium can (06 V cans), 

and measurements were done using the 24-sample changer with cryogenic capabilities. Quick 

measurements were collected on all samples at room temperature (300 K) to determine the 

feasibility of the samples. Due to the large number of hydrogen atoms present (samples were not 

deuterated), some of the samples showed large backgrounds from incoherent and inelastic 

scattering from hydrogen. Two samples namely n-propoxy-LaNb2O7 and 1-propylammonium-

LaNb2O7 were measured at both 300 K and 100 K for 4-6 hours— each at a center wavelength of 

1.333 Å covering a d-spacing range of 0.4-6.1 Å.  Comprehensive temperature studies were then 

performed between 10 K and 300K for n-propoxy-LaNb2O7; the sample was cooled down from 

300 K to 10 K at a rate of 0.56 K/min and heated to 300 K from 10 K at a rate of 0.55 K/min.  

Data was continuously collecting compensating in case beam went down, i.e.  data collection 

automatically stopped in case beam down holding the temperature.  These data were post 

processed to 58 slices collected at every 5 K. General processing of the diffraction files (such as 

conversion from TOF to d-spacing), as well as binning, was carried out using the Mantidplot 

software via remote analysis service provided by ORNL. Rietveld analysis of the neutron 

diffraction data collected on the n-propoxy-LaNb2O7 was performed using the GSAS software 

and EXPGUI user interface.55,56 

High-resolution synchrotron XRD data for n-propoxy-LaNb2O7, n-pentoxy-LaNb2O7, and 

1-propylammonium-LaNb2O7 samples were collected on beamline 11-BM at the Advanced 



84 

 

Photon Source (APS),57 Argonne National Laboratory; collection temperatures of 300 K and 100 

K, at a calibrated wavelength of 0.414627 or 0.414631 Å. The samples darkened under this 

intense measurement, which except for 1-propylammonium-LaNb2O7 did not go away even after 

cooling down to 100 K. All the samples showed structural changes with exposure; some peaks 

dramatically changing during the 1800-second lap between the first and last detectors (at times 

shifting by about 2 millidegrees total). Therefore, the merged data from high resolution XRD 

could not be used for any refinement purposes.  
 

3.3– Results 

3.3.1   Initial Characterzation by XRD and Raman Spectroscopy 

Samples were prepared and initially examined with XRD and Raman spectroscopy, 

before getting shipped and processed at APS and ORNL. The XRD patterns and Raman spectra 

of n-propoxy-LaNb2O7, n-pentoxy-LaNb2O7, n-decoxy-LaNb2O7, n-propylammonium-LaNb2O7, 

n-hexylammonium-LaNb2O7, benzyl alcoxy-LaNb2O7, and 3-phenoxybenzyl alcoxy-LaNb2O7 

samples are provided in Figures 3-1 and 3-2, respectively. According to our previous report on 

complete series of n-alkyl alcoxy- and n-alkylamine-LaNb2O7 hybrid perovskites,12 all of the 

samples with alkyl chains show decent quality. In case of the two samples with cyclic groups, 

benzyl alcoxy- and 3-phenoxybenzyl alcoxy- LaNb2O7, the existance of the phenyl rings is well 

supported in Figure 3-2h and i (bands related to phenyl rings marked with solid circles).58  

 

 

 

 

 

 

 

 

 

 

 

Figure 3- 1: XRD patterns of (a) n-propoxy-LaNb2O7, (b) n-pentoxy-LaNb2O7, 

(c) n-decoxy-LaNb2O7, (d) n-propylammonium-LaNb2O7, (e) n-hexylammonium-

LaNb2O7, (f) benzyl alcoxy-LaNb2O7, and (g) 3-phenoxybenzyl alcoxy-LaNb2O7. 
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3.3.2   Structure Evaluation via Diffraction Techniques 

The starting model was based on the information obtained from the unit cell parameters 

presented in Table 2-3.12 These values were used to modify the atomic positions of CsLaNb2O7 

model refined in a tetragonal cell (P4/mmm).59 This general modification step involves 

redrawing the structure of CsLaNb2O7 with the a and c parameters of the target hybrid obtained 

from Table 2-3, and adjusting the positions that would change by new unit cell dimensions. For 

instance, the terminal oxygens of CsLaNb2O7 with x/a, y/b and z/c fractional coordinats of 0.5, 

0.5, and 0.3569(6), respectively,59 will be adjusted to 0.5, 0.5, and 0.2586 for n-propoxy-

LaNb2O7 (multiplying 0.3569 by 
𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑚𝑜𝑑𝑒𝑙

𝐶𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑜𝑑𝑒𝑙
 ). In simple words, this model sets the perovskite 

slabs in the right positions estimated by combining the unit cell parameters of the target structure 

with the host refined model (CsLaNb2O7). The simple models of n-propoxy-LaNb2O7, n-

pentoxy-LaNb2O7, and 1-propylammonium-LaNb2O7 were generated, and employed in 

calculating the diffraction pattern in both the X-ray and neutron methods. Figure 3-3 illustrates 

these three models. 

Figure 3- 2: Raman spectra of (a) RbLaNb2O7, (b) HLaNb2O7, (c) n-propoxy-LaNb2O7, (d) n-

pentoxy-LaNb2O7, (e) n-decoxy-LaNb2O7, (f) n-propylammonium-LaNb2O7, (g) n-hexylammonium-

LaNb2O7, (h) benzyl alcoxy-LaNb2O7, and (i) 3-phenoxybenzyl alcoxy-LaNb2O7. 
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3.3.2.1   Regular and Synchrotron X-Ray Diffraction 

Since the atomic scattering factors for hydrogen, carbon, and oxygen are relatively small 

compared to heavier elements, these elements are almost transparent to X-rays.  In terms of 

comparing X-ray diffraction models, there is little if any difference between observed data and 

calculated models that do not contain alkyl chains.  The experimental XRD patterns of n-

propoxy-LaNb2O7, n-pentoxy-LaNb2O7, and 1-propylammonium-LaNb2O7 samples (a) are 

compared to the patterns calculated by the crystallographic models (b), and provided in Figures 

3-4 and 3-5, respectively, for regular XRD (1.54056 Å) and synchrotron (0.4146 Å) data. 

Synchrotron XRD data were collected in order to calculate more accurate unit cell parameters 

(compared to those presented in Table 2-3 via regular XRD), which would be a better starting 

point for structure refinement. However, the samples showed sensitivity (degradation) to these 

very intense X-rays, with some peaks shifting noticeably (by about 2 millidegrees) in the 1800-

second time lag between the first and last detectors during data collection. Therefore, the merged 

data obtained from synchrotron were only used to evaluate the models, rather than calculating 

more accurate unit cell parameters for our systems. The model proposed for n-pentoxy-LaNb2O7 

shows poor agreement with the experimental results, which lead us to only consider n-propoxy-

Figure 3- 3: Starting models for (a) n-propoxy-LaNb2O7, (b) n-pentoxy-LaNb2O7, 

and (c) 1-propylammonium-LaNb2O7 generated based on the tetragonal structure of 

CsLaNb2O7 and the unit cell parameters of each system. 
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LaNb2O7 and 1-propylammonium-LaNb2O7 for the comparison of experimental and simulated 

neutron diffraction patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3- 4: Regular XRD patterns for n-propoxy-LaNb2O7, n-pentoxy-LaNb2O7, and 

1-propylammonium-LaNb2O7; (a) experimental versus (b) calculated. 

Figure 3- 5: Synchrotron XRD patterns for n-propoxy-LaNb2O7, n-pentoxy-LaNb2O7, 

and 1-propylammonium-LaNb2O7; (a) experimental versus (b) calculated. 
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3.3.2.2   Neutron Diffraction 

Quick measurements (4-min) were collected on all the samples presented in Figure 3-1 at 

room temperature (300 K), and at two different wavelengths (1.333 and 2.665 Å) to determine 

the feasibility of the samples. Except for n-propoxy-LaNb2O7, n-pentoxy-LaNb2O7, and 1-

propylammonium-LaNb2O7, the rest of the samples showed large backgrounds because of the 

large atomic ratio of hydrogen and its incoherent and inelastic scattering. A center wavelength of 

1.333 Å covering a d-spacing range of 0.4-6.1 Å was selected for examining the best-quality 

samples, namely n-propoxy-LaNb2O7 and 1-propylammonium-LaNb2O7, measured at both 300 

K and 100 K for 4-6 hours.  

Since only the models proposed for n-propoxy-LaNb2O7 and 1-propylammonium-

LaNb2O7 provided agreement between experimental and calculated XRD patterns, only these 

two were selected for evaluating the neutron diffraction data. Figure 3-6 presents the calculated 

TOF neutron pattern obtained from the simple models in Figure 3-3, compared to the 

experimental results. Similar to the promising fit obtained in XRD patterns (Figures 3-4 and 3-5), 

the TOF patterns also provide great agreement with the calculated patterns. The intensity 

difference between (a) and (b) patterns can be minimized during structure refinement steps 

presented later in this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3- 6: TOF neutron patterns of n-propoxy-LaNb2O7 and 1-propylammonium-

LaNb2O7; (a) experimental data versus (b) calculated patterns. 
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In the case of n-propoxy-LaNb2O7, the alkyl chain is covalently bonded to the terminal 

oxygens of the perovskite slab, which makes it easier to add the alkyl chains in the starting 

model presented in Figure 3-3 (as opposed to the 

alkylammonium chain which is present in the 

vicinity of the terminal oxygens, not allowing for an 

easy starting point to add NH3
+ and the first carbon 

in the alkyl chain to the slab). The n-propoxy-

LaNb2O7 model presented in Figure 3-3a was 

modified by adding the first carbon of the propoxy 

chain. In order to perform this addition reasonably, 

the C-O was set to 1.54 Å and in a tilt angle of 42º 

(estimated in our previous work).12 It should be 

noted that initially this carbon is added to a 

reasonable position, and that the structure 

refinement will allow for fine-tuning its position for 

a better fit. The rest of the carbons of the alkyl chain 

can then be simply added using the crystallographic 

information available for alkyl chains,60 and then further refinement can help do a final structure 

refinement. The only complication in that case would be finding the best symmetry options that 

provide for a better fit with the experimental data. Figure 3-7a shows the model where only one 

carbon is added to the tetragonal system introduced earlier (P4/mmm), while 3-7b presents the 

model with the addition of all three carbons using the crystallographic information of n-octanol60 

and estimating a tilt angle of 42º. Figure 3-8 compares the neutron TOF patterns of these two 

models with the experimental data. The second model with a complete 3-carbon chain does not 

seem to offer any advantages over the simpler model considering their fit with the experimental 

pattern. Adversely, they also complicate the structure refinement steps due to limiting the space 

groups that would provide reasonable symmetry options and chain arrangement. Thus, the simple 

1-carbon model was used in Rietveld refinement steps provided in the next section. 

 

 

Figure 3- 7: Two starting models with 

(a) only one carbon, and (b) all three 

carbons of the n-propoxy chain. 
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3.3.2.3   Rietveld Refinement 

Using the GSAS software and EXPGUI user interface, the general parameters such as 

background, zero shift, phase, sample displacement, peaks shapes (using Lorentzian and 

Gaussian fits), and unit cell were refined one by one and fixed at their best condition.55,61 In the 

next refinement steps, only background and cell were marked to still get refined with modifying 

every new parameter at each step. The position (x), isotropic thermal parameter (Uiso), and 

occupancy (F) of the C element were refined one by one, and then together, while a restraint was 

set to the C-O bond-length (1.3-1.8 Å). The occupancy of all the other elements were fixed at 

one, and their position and thermal parameters were refined step by step. After optimizing these 

values for all the elements, all of them were also marked to be refined together as the final step 

(Note: refining the thermal parameters of Nb and La was performed using the “damping” 

feature, which would apply only small changes). The goodness of the fit is evaluated in form of a 

parameter named χ2, which would equal to one for a perfect fit between the calculated model and 

the experiment. Also, so-called R-Factors should be minimized in a good fit—weighted profile 

R-Factor (Rwp
2) and unweighted profile R-Factor (Rp).55 The refinement steps applied above 

improved the χ2 value from about 50 down to 16, suggesting an acceptable fit between the 

generated model and the experimental data. The χ2 can still be improved by further developing 

Figure 3- 8: TOF data for n-propoxy-LaNb2O7; (a) experimental data versus 

the calculated models with (b) one-carbon or (c) three-carbon alcoxy chains. 
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this model. Table 3-1 provides the refined atomic positions and thermal parameters obtained for 

n-propoxy-LaNb2O7. Figure 3-9 presents the calculated neutron diffraction pattern in red versus 

the experimental data in black (the background is also presented in green). The difference 

between the two calculated and experimental patterns is shown in blue in the very bottom, which 

would be a flat line in perfect condition. 

 

Table 3- 1:Fractional positions, occupancy, and thermal parameters for n-propoxy-LaNb2O7 
 

atom Site x y Z Occupancy 100×Uiso 

C 8t 0.5 0.626(7) 0.351(2) 0.1041 2(1) 

La 1a 0 0 0 1 0.094* 

Nb 2h 0.5 0.5 0.1417(3) 1 0.005* 

O1 4i 0 0.5 0.1201(3) 1 0.48(8) 

O2 2h 0.5 0.5 0.2627(8) 1 4.3(3) 

O3 1c 0.5 0.5 0 1 4.3(5) 

 

P4/mmm, a = 3.899(1) Å, c = 15.403(4) Å, V = 234.2(2) Å3, Rp = 3.61%, Rwp = 2.50%, and χ2 = 15.37 

* the Uiso parameters for La and Nb showed standard deviations as large as the refined value 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3- 9: Rietveld refinement of n-propoxy-LaNb2O7 neutron diffraction data. 
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3.3.2.4   Temperature Studies Based on Neutron Diffraction 

Other than three long scans performed at 300 K, 100 K, and 10 K for the n-propoxy-

LaNb2O7 sample, the temperature was also infinitesimally changed from 300 K to 10 K and vice 

versa to better study the impact of temperature on the structure. Thus, n-propoxy-LaNb2O7 was 

cooled down from 300 K to 10 K at a rate of 0.56 K/min, and then heated to 300 K from 10 K at 

a rate of 0.55 K/min. These continuous data were then post processed to 58 slices collected at 

about every 5 K. Figure 3-10 provides the color-fill plot for these two sets of temperature studies. 

In order to further study the hysteresis of the system in this loop, the first and last slices of each 

set of experiments, which provide the neutron diffraction patterns at 10 K and 300 K 

respectively, were compared to the long scans performed at the same temperatures (Figure 3-11). 

Comparing the end slices to the longs scans ran at 300 K and 10 K (respectively in black and 

red), suggests almost no hysteresis in the few loops studied here—marked peaks better highlight 

the major peaks that shift the most between 300 K and 10 K temperatures, better approving of 

the reversibility of this structural change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3- 10: Color-fill plots as the temperature of n-propoxy-LaNb2O7 is decreased 

from 300 K to 10 K (a), and increased back to 300 K (b). 
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Figure 3-12 compares the three long scans carried out at 300 K, 100 K, and 10 K on n-

propoxy-LaNb2O7 sample. Clearly, there seems to be no structural difference between 100 K and 

10 K patterns. Considering the intense peak present at the d-spacing of about 3.5 Å which was 

presented earlier in Figures 3-10a and b, the first 20 slices almost show a flat line as opposed to 

the gradual shift noticed in the last 38 slices.  

Based on the model that was presented earlier for n-propoxy-LaNb2O7, the hkl values of 

four of the peaks were selected in order to estimate the contraction as the sample is cooled down 

to 100 K. The a and b parameters were first calculated based on (010) and (110) reflections, and 

the c parameters were then obtained using the (012) peak. The ∆c was approximately 0.92 Å 

from this set of calculations; almost 1 angstrom of contraction due to the temperature difference. 

Repeating the same steps based on the (113) reflection also yielded a ∆c of 0.96 Å. This 

observation seems to be similar to the phase transitions proposed for hybrid halide perovskites, 

typically at temperatures higher than 300 K.7,13,14,62–64   

 

Figure 3- 11: Comparing the first and last slices of each continuous measurement to the long 

scans ran at the same temperatures; (a) the cool-down and (b) the heat-up processes, versus the 

long scan at 300 K in black and the long scan in 10 K in red. 
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Figure 3- 12: a) Comparing the diffraction pattern of n-propoxy-LaNb2O7 collected at three 

temperatures; (a) 300 K, (b) 100 K, and (c) 10K. b) Highlighting the (113), (110), (012), and (010) 

reflections versus d-spacing in a narrower range, in order to estimate the cell contraction upon cooling. 

Figure 3- 13: The d-spacing of (a) (110), (b) (010), (c) (113), and (d) (012) reflections versus 

temperature for the 10-to-300 K run. 
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The 58 slices of the warmup cycle in 

Figure 3-10b (10-to-300 K) were opened one 

by one, and the d-spacing of the four peaks 

highlighted in Figure 3-12 were then 

collected as a function of the temperature of 

each slice (slices are approximately 5 K apart 

from each other based on the binning). 

Figure 3-13 presents the plots of the d-

spacing of (110), (010), (113), and (012) 

reflections at each slice versus their 

temperature. Notice that each slice is quite 

noisy as it is a brief portion of the continuous 

data collection process, and so all the d-

spacing values are subject to error when 

being read. Similar to what was previously 

seen in Figures 3-10, 3-11, and 3-12, the two 

(110) and (010) reflections stay constant by 

varying the temperature, while (113) and (012) reflections start increasing noticeably when the 

temperature passes 100 K. Figure 3-14 shows the linear relationship of the d-spacings of the two 

temperature-dependant peaks with their temperature in 150-300 K range. 

 

3.4– Discussion 

The structure of layered hybrid halide perovskites have been extensively studied as they 

are typically synthesized as single crystals or highly-oriented polycrystalline films.21–25,6,26–

28,13,29–31,20 Conversely, the structure of polycrystalline layered hybrid oxide perovskites has not 

yet been fully resolved other than some estimations carried out via X-ray diffraction, solid-state 

NMR, and vibrational spectroscopy techniques.34,10,35,11,36,12 Typically, only an estimation of the 

tilt angle of the organic bilayers is done,10–12,34,35,37,38 with predicting all-trans conformation 

based on the solid-state NMR and vibrational spectroscopy techniques.34,36  

Figure 3- 14: The linear relationship between the 

d-spacing of the temperature-dependant peaks with 

temperature in 150-300 K range. 
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As the synthesis of layered hybrid oxide perovskites via available methods has not yet led 

to the formation of single crystals or at least highly-oriented polycrystals, neutron diffraction 

technique is the only tool to shed some light on the positions of the lighter elements in such 

structures.43,45–47 Facility and efficiency of novel microwave-assisted reactions12,48 allowed us to 

produce high-quality LaNb2O7-based hybrids in large quantities, enough to obtain decent neutron 

diffraction results.43,45 Therefore, we were able to perform structure refinement on layered hybrid 

oxide perovskites herein. As demonstrated earlier, our generated model is a great starting point 

for more complicated models that can follow in the future. Even though deuterated solvents in 

the experimental scale of this experiment are quite expensive, it can be a price that can be paid in 

order to further resolve the structure of these hybrids later on, without worrying about the 

incoherent and inelastic scattering of hydrogen in longer organics. Selecting the hybrids with the 

least amount of hydrogen (shorest organic chains), the adverse impact of hydrogen on the 

neutron diffraction patterns were minimized in the current work. So, the XRD and neutron 

diffraction patterns were only generated for of n-propoxy-LaNb2O7, n-pentoxy-LaNb2O7, and 1-

propylammonium-LaNb2O7 hybrids, modeled as plain perovskite slabs set in the right distance 

based on earlier unit cell refinement results (Figure 3-3). After evaluating the overall feasibility 

of these starting models (Figures 3-4, 3-5, and 3-6), n-propoxy-LaNb2O7 was selected as the best 

model and successfully refined positioning the perovskite slab and the first bonding carbon of the 

organic chain (Figures 3-7, 3-8, and 3-9, as well as Table 3-1). 

Performing neutron diffraction temperature studies in Figures 3-10, 3-11, 3-12, 3-13,and 

3-14 also suggested a gradual contraction in the c parameter, as the temperature is dropped from 

300 K to 100 K (similar to the phase transitions demonstrated for layered hybrid halide 

perovskites).7,13,14,62–64 The total contraction was estimated to be about 1 angstrom in this range, 

and was found to be reversible. The expansion coefficient along the c-axis is approximately 

0.0052 Å/K based on the data points of the warmup cycle collected above 150 K up to 300 K. 

 

3.5– Conclusions 

Inorganic-organic LaNb2O7-based hybrids were successfully obtained in large quantities, 

and further studied with neutron diffraction; n-propoxy-LaNb2O7, n-pentoxy-LaNb2O7, n-

decoxy-LaNb2O7, n-propylammonium-LaNb2O7, n-hexylammonium-LaNb2O7, and benzyl 

alcoxy-LaNb2O7. Despite the presence of hydrogen atoms in all systems, acceptable patterns 
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with manageable backgrounds were obtained for the n-propoxy-LaNb2O7, n-pentoxy-LaNb2O7, 

and 1-propylammonium-LaNb2O7 hybrids. Three simple models were generated for these three 

systems, and evaluated using XRD and neutron diffraction simulated patterns. Focusing on the 

neutron diffraction pattern of n-propoxy-LaNb2O7 obtained at 300 K, the structure was 

successfully refined positioning the perovskite slab and the first bonding carbon of the organic 

chain. Continuous temperature studies were also performed on n-propoxy-LaNb2O7, suggesting a 

reversible contraction of the interlayer as the system is cooled down to 100 K. 
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Chapter 4. Rapid Exfoliation and Surface-Tailoring of Perovskite Nanosheets 

via Microwave-Assisted Reactions§ 

4.1– Introduction 

The nanoscale manipulation of materials is the foundation of nanotechnology.  Advances 

in synthesis have allowed this field to grow rapidly in a variety of areas (e.g., medicine, 

electronics, and materials) since the 1980s.1–3 The properties of nanostructured materials can 

dramatically change with variations in their dimensionality.3,4 With respect to two-dimensional 

(2D) materials, these are often obtained by cleaving weak out-of-plane van der Waals 

interactions in a layered host, leading to freestanding layers with strong in-plane chemical 

bonds.3,5–14 The weak out-of-plane interactions and strong in-plane bonds are key to high-yield 

delaminations of layered hosts. There are many sets of well-studied 2D materials113,11,15 

including the graphene family15 (graphene,16,17 graphene oxide,18–20 fluorographene,21,22 

hexagonal boron nitride,23–26 and boron carbon nitride27,28), 2D chalcogenides (transition metal 

dichalcogenide29,30 and trichalcogenide31), layered double hydroxides8,10 (LDHs), and oxides6–8 

(e.g., aluminosilicate clays, transition metal oxides with rock salt- and perovskite-related 

structures). Interest in such 2D materials and their nanostructures arises from properties that 

make them suitable for diverse applications in electronics, optoelectronics, catalysis, gas 

separation or storage, coatings, support membranes, sensors, etc.3,4,12,32,33    

A variety of methods has been reported for the fabrication of 2D nanosheets.  These 

include liquid exfoliation, micromechanical cleavage, chemical vapor deposition, van der Waals 

epitaxial growth on a substrate, and hydrothermal synthesis.3,33–35 Liquid exfoliation is especially 

prevalent where techniques mainly involve intercalation of organic, polymeric, or ionic species 

that weaken the interlayer adhesion and result in the delamination of the layered structure.3,36–43 

Ultrasonic cleavage of the layers is another important approach to liquid exfoliation, which can 

                                                 

§ This chapter was adapted from: Akbarian-Tefaghi, S.; Rostamzadeh, T.; Brown, T. T.; Davis-Wheeler, C.; 

Wiley, J. B. “Rapid Exfoliation and Surface-Tailoring of Perovskite Nanosheets via Microwave-Assisted Reactions” 

(submitted). 
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increase the yield of exfoliation after the intercalation step, or in some cases, when done in 

suitable solvents, can on its own lead to exfoliation.3,11,44,45   

Layered oxide perovskites are one set of important compounds that can be manipulated to 

lead to individual oxide nanosheets or thin slabs consisting of just a few layers. Typically, these 

materials are produced via the liquid exfoliation method.3,5–8,11 Since the slab thickness and the 

elemental composition of the perovskite host can be manipulated in the solid state synthesis step 

prior to exfoliation, engineering of the nanosheet composition and thickness is readily 

obtainable. Intercalation of a bulky organic base such as tetra(n-butyl)ammonium ion (TBA+) is 

the most common method of liquid exfoliation in layered perovskites.42,46–55 As the reactivity of 

the Ruddlesden-Popper phase with an organic base is often very limited,42 double- and triple-

layered Dion-Jacobson-type compounds such as RbLaNb2O7, RbLaTa2O7, and KCa2Nb3O10 are 

the most-commonly used precursors to produce nanosheets and more complicated assemblies of 

2D structures for various applications.45,47,48,56–72 In some cases, fluorination70,73 or doping49,71,74 

of these perovskites has been carried out prior to exfoliation to improve the conductivity or 

catalytic activity of the nanosheets.  

Once 2D nanosheets are obtained, they can be used as building blocks for more 

complicated structures, allowing for improved electronic, optoelectronic, catalytic, or mechanical 

properties of composite structures. Integration of these components can occur via 2D 

heterostructures (lateral and vertical),15,32–34,75–78 layer-by-layer assemblies,6,72,79–90 or the 

incorporation of chemically-modified monolayers into polymers. Among the different methods 

of surface modification of various nanosheets,88,90–98 graphene oxide (GO) has attracted much 

attention where there are many studies discussing the functionalization and surface modification 

of GO nanosheets99–110 and GO based composites.111–119 Some of the composites involve actual 

covalent bonds between GO nanosheets and polymer chains, either by crosslinking nanosheets to 

polymer chains,120–122 or by in-situ polymerization on nanosheet surfaces.123–125 Unlike GO 

nanosheets and self-assembled-monolayers (SAMs),126–130 controlled surface modification of 

perovskite-based nanosheets has been limited to only a few reports.36–38,45,69,70 At best, the 

surface groups of the perovskite nanosheets are introduced prior to exfoliation. These systems 

typically contain organic substituents in the interlayer of the host. In HLaNb2O7 for example, 

nanosheets are obtained via ultrasonic exfoliation of hosts containing fluoroalkoxy groups in the 
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interlayer,45 or by growing a polymeric network in the interlayer, which then delaminates the 

layered structure into nanosheets within a polymer matrix.36–38 There is only one report where 

surface groups are covalently attached to nanosheets after exfoliation; this study involves the 

attachment of phenylphosphonate groups, where the entire process required over a week of 

reaction time (7 d exfoliation followed by 3 d of surface modification reaction).131,132 In other 

cases, there is no actual covalent bond between the nanosheets and the surface groups or polymer 

chains; electrostatic interactions dominate these systems.69,70,133,134  

Rapid microwave-assisted (MA) methods have been found to be effective for organic 

modification of bulk layered perovskites.135–138 Herein we extend microwave methods to both the 

rapid exfoliation and post-exfoliation surface-modification of perovskite nanosheets.  MA 

reactions allow exfoliation to be carried out in as little as 15 min and subsequent surface 

modifications in as little as 1 h. Exfoliation utilizes the protonated double-layered Dion-Jacobson 

perovskite (HLnNb2O7; Ln = La, Pr) where reactions with TBAOH quickly lead to dispersed 

materials.  Exchange reactions can then be applied with a wide variety of organics leading to 

new surface groups; this approach allows one to replace TBA+ groups with other organics that 

contain hydroxyl or amine functionality. This is significant in that it allows the production of a 

variety of nanosheet-based hybrids with controlled surface engineering in only a few hours.   

 

4.2– Experimental 

4.2.1   Materials  

Rb2CO3 (Alfa Aesar, 99.8%) was used as received. La2O3 (Alfa Aesar, 99.99%), Nb2O5 

(Alfa Aesar, 99.9985%), and Pr6O11 (Alfa Aesar, 99.9%) were heated at 1000 °C in air for 12 h 

in order to eliminate any impurities or nonstoichiometries. Organic solvents were used without 

further purification: toluene (Fisher 99.5%), 1-propanol (Alfa Aesar 99+%), 1-pentanol (Alfa 

Aesar 98+%), 1-decanol (Alfa Aesar 98+%), 1-propylamine (Alfa Aesar 99+%), 1-butylamine 

(Alfa Aesar 99%), 1-hexylamine (Alfa Aesar 99%), and 1-octylamine (Alfa Aesar 99%). 

Tetrabutylammonium hydroxide 30-hydrate, 95+% (TBAOH, ACROS Organics) was used for 

exfoliation trials. Note: To preserve the integrity of the TBAOH reagent, it is recommended that 

the storage temperature be in the range of 2-8 °C, and that handling at room temperature be 

minimized to avoid melting. A variety of organic components with hydroxyl functional groups 
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were used to study the reproducibility of the proposed surface-modification technique; 

polyethylene glycol 400 (Alfa Aesar PEG-400), benzyl alcohol (Alfa Aesar 99%), 3-

phenoxybenzyl alcohol (Alfa Aesar 98%), phenylphosphonic acid (Aldrich 98%), 2-allylphenol 

(Alfa Aesar 98+%), 9-decen-1-ol (Alfa Aesar 90+%), trimethylolpropane diallyl ether (Sigma 

Aldrich 90%), and 6-chloro-1-hexanol (Alfa Aesar 97%) were used as received. Note: To 

minimize unwanted degradation, unsaturated organics are best stored in a refrigerator in the 

absence of oxygen. Toluene and milli-Q water (18.2 MV cm, Millipore) were used for non-

aqueous solutions and aqueous solutions (aq. soln.), respectively. 

 

4.2.2   Synthesis of Inorganic Hosts 

RbLnNb2O7 (Ln = La, Pr) were synthesized by grinding stoichiometric amounts of the 

corresponding oxides (La2O3, Pr6O11 and Nb2O5) with a 30% molar excess of Rb2CO3 as 

previously reported.139,140  The excess carbonate was used to compensate for the loss of alkali-

metal oxides due to volatilization. The mixture was preheated at 850 °C overnight, ground, and 

heated at 1050 °C (24 h and 6 h for Ln = La and Pr, respectively). After regrinding, the sample 

was heated at 1100 °C (24 h and 48 h for Ln = La and Pr, respectively). The product was washed 

with copious amount of water to remove the excess carbonate, and dried at 100 °C for a few 

hours. 

Microwave Syntheses.  Topochemical reactions involving ion exchange, exfoliation, and 

surface modification (details given below) were carried out in a StartSYNTH Microwave 

Synthesis Labstation as previously reported.136 The unit was equipped with Milestone’s START 

platform where the individual reactions were contained in quartz pressure reactors (< 15 bar) and 

placed in a rotor. Grafting unsaturated organics was carried out in a Milestone QV-50 setup, 

where a quartz reactor vessel was sealed in the glovebox in order to eliminate the exposure of the 

reaction mixture to oxygen. Figure 4-1 shows the picture of the sample rack in Milestone QV-50 

setup, where a sealed quartz vessel is placed in front of the IR sensor inside the microwave 

cavity. As shown here, the reaction mixture, stirring bar and Weflon button are all placed in the 

vessel in a glovebox (Figure 4-1b), and then completely sealed under argon (Figure 4-1c). After 

taking the sealed sample holder out, the reaction is maintained under argon until after opening 

the cap. Caution: One should inspect glass microwave vessels before each reaction; glass defects 

might lead to hotspots and result in an explosion. 
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4.2.3   Acid Exchange (Protonation)  

Microwave acid treatment was carried out for 3 h at 60 °C with continuous stirring and a 

maximum power of 300 W.136 To maintain a molar ratio of greater than 150:1, proton to 

interlayer cation (Rb), a 6M nitric acid solution was used for the ion exchange. The protonated 

product was washed with distilled water until pH 7 was achieved.  The samples were then dried 

at 100 °C for 3 hours.  

 

4.2.4   Exfoliation of HLnNb2O7  

HLnNb2O7 (HLnNb) was exfoliated in an aqueous solution of TBAOH with a molar ratio 

of 1:10 for HLnNb to hydrated TBAOH in as little as 15 minutes. Typical microwave-assisted 

exfoliation reactions were carried out at 1 h at 60 °C (max 300 W), then ramped to 80 °C over a 

10-minute period, before heating at 80 °C for 1 h (max 350 W). Exfoliation with high 

conversions could also be realized in shorter times, though this approach favors smaller 

nanosheets: 1 h at 80 °C (max 350 W), 30 min at 100 °C (max 450 W), and 15 min at 120 °C 

(max 550 W).  All products were washed with water and ethanol, and dried at 70 °C for several 

hours.  

 

Figure 4- 1: Milestone QV-50 setup. 
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4.2.5   Surface Exchange of Nanosheets with n-Alkyl Alcohols and n-Alkylamines  

Once exfoliated LnNb nanosheets were obtained (TBA-LnNb NS), various n-alkyl 

alcoxy and n-alkylammonium surface groups were placed on LnNb NS by exchange reactions 

with CnH2n+1OH (n = 3, 5, 10) and CnH2n+1NH2 (n = 3, 4, 6, 8) solvents via microwave-assisted 

exchange reactions. Typically, 25 mg of dried TBA-LnNb NS were reacted with 8 mL pure 

solvent containing a Weflon button: 1 h at 100 °C (max 600 W) in n-propanol, 1-propylamine 

and 1-butylamine, 45 min at 120 °C (max 800 W) for n-pentanol and 1-hexylamine, and 30 min 

at 150 °C (max 1000 W) for n-decanol and 1-octylamine. The products were washed with 

acetone and dried at 70 °C for several hours.  

 

4.2.6   Exchange of Nanosheets with Other Organic Surface Groups  

Typically 15 mg of TBA-PrNb NS were stirred in 8 mL of desired solution mixture with 

microwave heating: 15% (w/w) aq. soln. of PEG-400 (100 °C  for 1 h, max 350 w), 2% (w/w) 

soln. of phenylphosphonic acid in toluene (100 °C  for 1 h, max 1000 W with a Weflon button), 

pure 6-chloro-1-hexanol (120 °C  for 45 min, max 800 W with a Weflon button), pure benzyl 

alcohol (60 °C  for 1 h, max 300 W with a Weflon button), and pure 3-phenoxybenzyl alcohol 

(80 °C  for 1 h max power of 400 W with a Weflon button). All products were washed with 

ethanol, then acetone, and dried at 70 °C for several hours.  

 

4.2.7   Exchange of Nanosheets with Unsaturated Surface Groups  

In order to protect unsaturated bonds from undesired polymerization in oxygen, reactions 

with 9-decen-1-ol, 2-allylphenol, and trimethylolpropane diallyl ether were carried out under 

argon. For the microwave-heated samples, 15 mg of TBA-LnNb NS were combined with 5 mL 

of pure organic reactants within reactor vessels, sealed in a glovebox under argon, and heated at 

90 °C for 45 min (max 500 W). Alternative to these microwave-assisted reactions, similar 

exchange reactions were carried out with convection heating under argon in a glovebox; samples 

were heated on a hot plate with stirring for 2 d at 80 °C. The glovebox reactions were done as 

controls and in all cases yielded identical results to microwave reactions. The monomer-grafted 

sheets were washed with ethanol, then acetone, dried under vacuum at room temperature, and 

stored under argon in a glove-box. 
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4.2.8   Characterization  

A Philips X’Pert system equipped with Cu Kα radiation (λ = 1.5418 Å) and a curved 

graphite monochromator was used in continuous mode with a scan rate of 0.02 °/s to collect the 

X-ray powder diffraction (XRD) data. Thermogravimetric analysis (TGA) and differential 

scanning calorimetry (DSC) were carried out on a TA Instruments TGA-DSC SDT Q600 system 

in alumina pans under a dilute oxygen atmosphere (ca. 50% argon); samples were heated to 900 

°C at a rate of 15 °C/min. Raman spectra were collected in a Thermo-Fisher DXR dispersive 

Raman spectrometer using the λ = 532 nm line with a spectral resolution of 3 cm-1. The thickness 

of the nanosheets was examined under an Asylum Research MFP-3D Atomic Force Microscope 

(AFM) working in the dual amplitude resonance tracking (DART) mode; nanosheet samples 

were observed as a dilute dispersion made by an ethanol drop cast onto a mica sheet. 

Transmission electron microscopy (TEM) images and selected area electron diffraction (SAED) 

were taken at JEOL 2010 high-resolution microscope (200 keV) and FEI TECNAI G2 F30 FEG 

TEM (300 keV). For TEM measurements, a dilute dispersion of nanosheets in ethanol was drop 

cast onto a grid (carbon film coated fine mesh copper), and dried at room temperature for a few 

hours. Field emission SEM images of sample morphologies were obtained on a HITACHI S-

4800 FEG CRYO-SEM. For the FESEM sample preparation, either a dispersion of nanosheets in 

ethanol was drop cast on small pieces of aluminum foil, or a trace of the dried powder was 

mounted on a piece of double-sided carbon tape. The samples were lightly coated with gold and 

observed in 1-3 kV range. 

 

4.3– Results 

4.3.1   Exfoliation of HLnNb2O7   

It has been found that microwave heating can be used to readily exfoliate layered 

perovskites. A variety of conditions were investigated to examine the influence of reaction times 

and temperature, and in all cases nanosheets were efficiently obtained through exfoliation of the 

perovskite host: 2 h at 60 °C, 1 h at 80 °C, 30 min at 100 °C, and 15 min at 120 °C (halving the 

reaction times with every 20 °C increase in the exfoliation temperature). TEM images of the 

TBA-PrNb nanosheets synthesized under these different conditions are presented in Figure 4-

2a−d, demonstrating the efficient production of nanosheets in 15, 30, 60 and 120 minutes at 

temperatures ranging from 60 °C to 120°C. Evaluation of nanosheets across the entire TEM grid 
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supports effective and essentially complete exfoliation in all the conditions above. It appears that 

nanosheets obtained at higher temperatures are on average relatively smaller in size and 

generally more fragmented. Reactions carried out at 60 °C produced the largest nanosheets with 

some as large as few microns on an edge.  The insertion of TBA+ ions into the perovskite 

galleries results in delamination of the layered structure and loss of crystallinity.  XRD patterns 

of the reassembled nanosheets consistently confirmed the expected loss of crystallinity, and 

indicated a high-yield exfoliation when compared to the HPrNb2O7 host (Figure 4-3). The 

exfoliation conditions employed in all the following results were chosen to be a 2 h reaction as 

presented in Figure 4-2e,f (1 h at 60 °C , ramped to 80 °C  and heated for 1 h—as a single 

reaction with two steps). This ensured a very efficient exfoliation without high fragmentation of 

the nanosheets. Figure 4-4 provides the X-ray diffraction data for both TBA-LaNb and TBA-

PrNb nanosheets obtained via this selected method, and compares them to the XRD patterns of 

the hosts. The high angle reflections are minimized with 0k0 reflections dominating the pattern.  

The first reflections related to 0k0 set of planes shift from about 8.5 ° for HLnNb2O7 to 4.5 ° for 

TBA-LnNb NS, confirming the expansion in the interlayer spacings after the intercalation of 

TBA+. The first peak in the XRD pattern of TBA-LnNb NS is also broader than the very sharp 

first peak of the HLnNb2O7, suggesting the formation of nanostructures in the former. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4- 2: TEM images of the nanosheets obtained via various microwave conditions: 

(a) 2 h at 60 ˚C, (b) 1 h at 80 ˚C, (c) 30 min at 100 ˚C, (d) 15 min at 120 ˚C, (e,f) the main 

synthesis approach, consisting of a two-step heating method: 1 h at 60 ˚C - 1 h at 80 ˚C. 
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The topology of individual nanosheets was further examined with AFM.  The height 

contact-mode image and height profile from a TBA-PrNb nanosheet sample are provided in 

Figure 4-5. The average nanosheet thickness was found to be 1.4(3) nm based on 29 values 

measured from different height profiles of TBA-PN nanosheets. Considering the crystal structure 

of RbPrNb2O7 reported in the literature,140 the thickness of the PrNb2O7 slab is about 0.82 nm 

(oxygen-oxygen distance across the slab). Taking into account the thickness of each slab, any 

assembly of two nanosheets is expected to be greater than 1.64 nm (two slabs as well as an 

Figure 4- 3: XRD patterns of nanosheets obtained under various 

microwave exfoliation conditions, versus the host. 

Figure 4- 4: XRD patterns of the layered perovskite hosts versus the exfoliated 

nanosheets: RPN, HPN, and TBA-PN NS in (a-c), and RLN, HLN, and TBA-LN NS in (d-f). 
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interlayer spacing between adjacent organic 

layers). This implies the delamination of the 

hosts to at most two layers – though most likely 

single layers in the current study.  

 

FESEM images of TBA-LnNb2O7 (Ln = 

La, Pr) nanosheets are presented in Figure 4-6 

showing the existence of transparent nanosheets 

which stand individually or as assemblies of a 

few to multiple after being drop cast and dried. 

For nanosheets of a few layers, the thickness is 

small enough that underlying nanosheets can be 

observed. Interestingly, some small islands are 

observed on the surface of these nanosheets in absolute focus; these spots are not evident in TEM 

images. Figure 4-7 presents the TEM images and selected area electron diffraction (SAED) 

patterns of TBA-LnNb (Ln = La, Pr) nanosheets. The SAED analysis was performed to ensure 

the intact delamination of the perovskite slabs without disturbing the order of the in-plane 

elements. The known body-centered orthorhombic unit cell parameters are a = 5.4941 Å, b = 

Figure 4- 5: Height contact-mode AFM image 

and height profile for a TBA-PN NS sample. 

Figure 4- 6: FESEM images of (a-c) TBA-PN NS, and (d-f) TBA-LN NS. 
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21.9901 Å, and c = 5.4925 Å for RbLaNb2O7 and a = 5.4534 Å, b = 22.012 Å, and c = 5.4549 Å 

for RbPrNb2O7.139,140The delamination of the crystalline structure occurs in b direction so that 

the SAED patterns are along the [010] zone axis.  These SAED patterns can be indexed on a 

body-centered cell. The d value of the 200 reflection was then calculated (the wavelength of the 

electron beam was 0.0251 Å at 200 keV and the camera length was either 100 cm or 200 cm), 

which then allowed estimation of the a parameters; 5.71 Å and 5.68 Å for Ln = La and Pr, 

respectively. Similar calculations were then done for the 101 reflection to estimate the c 

parameter (5.71 Å and 5.74 Å for Ln = La and Pr, respectively).  These estimated a and c values 

are close to those of the starting material,48,142 and consistent with delamination of the layered 

host in b direction. EDS analysis on TBA-LnNb nanosheets under TEM (Figure 4-8) confirms 

that nanosheets retain both Nb and Ln. This investigation of thickness and atomic arrangement 

well proves that the exfoliation has efficiently taken place, maintaining the integrity of the slab 

composition as individual nanosheets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4- 7: TEM images of TBA-LnNb nanosheets are presented as well as the 

SAED patterns from the specified portions (Ln = (a) Pr, and (b) La). 
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As explained above, TBA-LnNb nanosheets are typically obtained by reacting 

HLnNb2O7 with TBAOH base. As a further study, exfoliation was also investigated using 

various layered hybrids with terminal alkoxy-grafted organics (n-alkyl alkoxy-PrNb2O7 instead 

of HPrNb2O7 acid exchanged hosts) to see whether alkoxy covalent bonds survive the 

intercalation of TBA+ and nanosheets with alkoxy surface groups are obtained, or similar TBA-

LnNb nanosheets are obtained regardless of the interlayer functionality of the exfoliating host. In 

all conditions, alkoxy groups were exchanged with TBA+ ions and the nanosheets exfoliated 

from the layered hosts, resulting in similar products as is seen starting from HLnNb2O7 (Figures 

4-9 and 4-10). This suggests that the reactivity of the oxygen atoms present on the surface of the 

nanosheets is very similar to those present in the interlayer of the perovskite-based hybrids. The 

methods available for organic modification of the layered perovskites can then be readily applied 

in the same fashion to modify the surface of the nanosheets with a variety of organics containing 

hydroxyl or amine functional groups. 

 

Figure 4- 8: Elemental analysis results for TBA-LnNb nanosheets: 

(a) Ln = Pr, (b) Ln = La. 
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Figure 4- 9: TGA-DSC curves for n-pentoxy-PrNb2O7 and the 

nanosheets produced from this host after reaction with TBAOH. 

Figure 4- 10: Raman spectra of (a) RbPrNb2O7, (b) HPrNb2O7 and 

(c-e) CnH2n+1PrNb2O7 (n = 1, 3, and 5 in c, d, and e, respectively), versus 

(f) the nanosheets obtained from the hosts provided in b-e. 
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Table 4- 1: Summary of microwave-assisted surface modification reactions. 

 

 

4.3.2   Organic Modification of Nanosheets  

Treatment of exfoliated TBA-LnNb nanosheets in different organic solvents allows one 

to exchange the TBA+ surface ions with various alkoxy and alkylammonium groups. Table 4-1 

gives a summary of various microwave reactions carried out in this work to perform surface 

modification on TBA-LaNb and TBA-PrNb nanosheets. Raman measurements verify the 

attachment of the different surface groups on these perovskite nanosheets (Figure 4-11). Initially, 

treatment was carried out with linear organics with simple structures (n-alkyl alcohols and n-

alkylamines). Organic modification with CnH2n+1OH (n = 3, 5 and 10) and CnH2n+1NH2 (n = 3, 4, 

6 and 10) was performed on the nanosheets in a fashion similar to what was used for 

topochemical reactions on bulk layered perovskites.136 As further proof that TBA+ is readily 

exchangeable, TBA-PrNb nanosheets were treated in pure 6-chloro-1-hexanol resulting in 

grafted surface groups with characteristic C-Cl Raman peaks (which is clearly distinguished 

from regular bonds in TBA+ ions present on the starting host, Figure 4-11c and 4-11k). Grafting 

more complicated organic substituents on the surface was also carried out; polyethylene glycol-

400 (PEG; C2nH4n+2On+1, n = 8.2 to 9.1), phenylphosphonic acid, benzyl alcohol, 3-

phenoxybenzyl alcohol, as well as a number of unsaturated molecules, 9-decen-1-ol, 2-

allylphenol, and trimethylolpropane diallyl ether (TMPDAE) were attached to the nanosheet 

surfaces. Figure 4-11 compares the Raman spectra of the bulk RbPrNb and HPrNb hosts, TBA-

Hybrid Perovskite 
Nanosheets  

Microwave Reaction (condition and duration) 

TBA-LnNb NS  
(TBA+-LnNb2O7)   
Ln = Pr, Nb 

HLnNb2O7 + TBAOH + water 

Variable durations (15 min- 2 h) and temperatures (60-120 °C) are applicable 

n-propoxy-Ln NS,  
1-propylammonium-Ln NS, 
1-butylammonium-Ln NS 

TBA-LnNb NS + n-propanol / 1-propylamine / 1-butylamine 

1 h at 100 °C- max 600 W (using Weflon button) 

n-pentoxy-Ln NS, 
6-chloro-1-hexoxy-Ln NS 
1-hexylammonium-Ln NS 

TBA-LnNb NS + n-pentanol / 1-hexylamine / 6-chloro-1-hexanol 

45 min at 120 °C- max 800 W (using Weflon button) 

n-decoxy-Ln NS, 
1-octylammonium-Ln NS 

TBA-LnNb NS + n-decanol / 1-octylamine 

30 min at 150 °C- max 1000 W (using Weflon button) 

PEG-Ln NS 
TBA-LnNb NS + 15% (w/w) aq. soln. of PEG-400  

1 h at 100 °C- max 350 W  

Benzyl alcoxy-Ln NS 
TBA-LnNb NS + benzyl alcohol 

1 h at 60 °C- max 300 W (using Weflon button) 

3-phenoxybenzyl alcoxy-Ln NS 
TBA-LnNb NS + 3-phenoxybenzyl alcohol 

1 h at 80 °C- max 400 W (using Weflon button) 

Phenylphosphonic-Ln NS 
TBA-LnNb NS + 2% (w/w) soln. of phenylphosphonic acid in toluene  

1 h at 100 °C- max 1000 W (using Weflon button) 
9-decen-1-oxy-Ln NS, 
2-allylphenoxy-Ln NS, 
TMPDAE-Ln NS 

TBA-LnNb NS + 9-decen-1-ol / 2-allylphenol / trimethylolpropane diallyl ether 

1 h at 80 °C- max 400 W (sealed vessel, using Weflon button) 
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PrNb nanosheets, and the various organic-inorganic hybrids synthesized based on modification 

of TBA-PrNb nanosheets. Characteristic bands of some of the nanosheet-based hybrids are 

highlighted in order to support the presence of different surface groups. The two rectangles with 

dashed borders highlight the peaks related to alkanes:143 C-H symmetric and asymmetric stretch 

and deformation in -CH3, C-H symmetric and asymmetric stretch, scissoring, twisting and 

wagging in –CH2-, and stretch and deformation in –C-H. Based on the structure of the surface 

groups, these bands are expected to be seen for all the hybrids except for phenylphosphonic-PN 

NS which only has –PO(OH)2 connected to a phenyl ring (stretch of P-O and P=O bonds are 

highlighted with solid circles in Figure 4-11). C-Cl bond is expected in nanosheets grafted with 

monochlorinated hexanol (marked with stars). The bands related to a phenyl ring are slightly 

different based on the substitutions present on the ring; characteristic peaks143 in monosubstituted 

(in phenylphosphonic-, benzyl alcoxy-, and 3-phenoxybenzyl alcoxy-PN NSs), 1, 2 disubstituted 

(in 2-allylphenoxy-PN NS), and 1, 3 disubstituted rings (in 3-phenoxybenxyl alcoxy-PN NS) are 

highlighted with solid triangles. Upon grafting 9-decen-1-ol and trimethylolpropane diallyl ether 

Figure 4- 11: Raman spectra of organically modified nanosheets versus the hosts: (a) RPN, (b) 

HPN, (c) TBA-PN NS, (d-g) CnH2n+1NH3
+-PN NS (n = 3, 4, 6, and 8 in d, e, f, and g, respectively), (h-j) 

CnH2n+1O-PN NS (n = 3, 5, and 10 in h, i, and j, respectively), (k) C6H12ClO-PN NS, (l) PEG-PN NS , 

(m) C7H7O-PN NS, (n) C13H11O2-PN NS, (o) C6H6O2PO-PN NS , (p)C10H19O-PN NS,  (q) C9H9O-PN 

NS, and (r) C12H22O3-PN NS. (Raman bands related to alkanes are highlighted in dashed squares, solid 

triangle was used to mark the peaks pertinent to phenyl rings, solid circles for phosphonic related bonds, 

hollow circles for alkene related peaks, and star to mark the C-Cl bond.) 
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(TMPDAE), alkene related bonds are 

also observed at 3082 and 1644 cm-1. 

Performing thermal analysis on various 

hybrid nanosheets provides further 

evidence of different groups present on 

the surface of the nanosheets after 

exchange; differences in the thermal 

behaviors and weight losses of three of 

the hybrids compared to TBA-PN NS, 

are presented in TGA-DSC results 

(Figure 4-12).  

 

In theory, the length of the surface group will have an impact on how close the 

nanosheets can get to one another. This is similar to a recent report where LaNb2O7 nanosheets 

and organic molecules formed self-assembled hybrid films with a characteristic d-spacing in 

XRD.144 Different interlayer 

spacings of the obtained hybrid 

nanosheets can be best studied via 

XRD measurements on samples 

drop cast out of their suspensions 

(Figure 4-13). The diffraction 

patterns show sharper peaks for the 

hybrids with moderately larger 

surface organics (CnH2n+1OH (n = 5 

and 10), CnH2n+1NH2 (n = 4, 6 and 

10), 6-chloro-1-hexanol, 3-

phenoxybenzyl alcohol, and 9-

decen-1-ol), than seen with TBA+ 

groups, suggesting a higher level of 

organization in these systems. 

Figure 4-14 provides the XRD 

Figure 4- 12: TGA-DSC results of some nanosheet-based 

hybrids compared to TBA-PN NS host. 

Figure 4- 13: XRD patterns of hybrid PN nanosheets with various 

surface groups:  ammonium groups in (a) TBA+ and (b-e) 

CnH2n+1NH3
+(n = 3, 4, 6, and 8 in b, c, d, and e, respectively), as well 

as grafted alkoxy groups in (f-h) CnH2n+1O (n = 3, 5, and 10 in f, g, 

and h, respectively), (i) C6H12ClO, (j) PEG , (k) C7H7O, (l) C13H11O2, 

(m) C6H6O2PO , (n)C10H19O,  (o) C9H9O, and (p) C12H22O3. 
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patterns of two hybrid nanosheets containing n-butylammonium and n-decoxy surface groups, 

compared to bulk layered organic-inorganic hybrids having the same organic substituent in the 

interlayer, to highlight the similarity in the interlayer spacings. This suggests that drop cast 

nanosheets form stacked assemblies with interlayer spacings very similar to that of the layered 

hybrid perovskite containing the same organic substituent. In other words, nanosheet assemblies 

with tunable interlayer spacings are readily attainable by tailoring the surface with various 

functional groups. Formation of nanosheet assemblies is further supported in Figure 4-15 by 

comparing the TEM images of n-decoxy-PN and TBA-PN NSs. Even though TBA-PN NS 

mainly form individual nanosheets in a dried state, assemblies of hybrid nanosheets are obtained 

by tuning the surface groups. Here the interdigitating grafted n-decoxy surface groups allow for 

the formation of assemblies of multiple nanosheets with certain interlayer spacings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4- 14: XRD patterns of two types of organically modified sheets 

compared to similar layered hybrids: (a) TBA-PN NS, (b,d) nanosheets 

with n-butylammonium and n-decoxy surface groups, respectively, and 

(c,e) layered hybrids with similar organic substituents in the interlayer. 

Figure 4- 15: TEM images of (a) TBA-PN NS, and (b, c) n-decoxy-PN NS (obtained by 

treatment of TBA-PN NS in n-decanol). 
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It should be noted that the hybrid films only offer short-range order due to the assembly 

of surface-tailored perovskite slabs in specific spacings, while the hybrid layered perovskites 

present prior to exfoliation are more crystalline with long-range order in their crystallites136 

(Figures 4-16 and 17). It is expected that once the layered bulk structure is broken into individual 

slabs (nanosheets), assembly of the nanosheets cannot provide a high crystallinity as once existed 

in the bulk layered material. FESEM images shown in Figure 4-16 compare bulk grafted 

polycrystalline samples to functionalized nanosheets. Long-range order of layered n-decoxy-

PrNb2O7 with n-decoxy grafted 

in the perovskite galleries 

(Figure 4-16a,b) is compared to 

the hybrid films formed from n-

decoxy-PN nanosheets (Figure 

4-16c,d). The crystals exhibit 

an expanded, mille-feuille-like 

layered structure while the 

nanosheets show a few, poorly 

ordered restacked layers – the 

latter being the result of 

reassembly after an effective 

exfoliation step.  

 

 

 

 

 

 

 

 

 

 

Figure 4- 16: FESEM images of (a,b) layered n-decoxy-PrNb2O7, 

compared to (c,d) restacked n-decoxy-PN nanosheets. 

Figure 4- 17: The range of the order in hybrid nanosheets is compared to that of a hybrid layered 

perovskite present prior to exfoliation. 



120 

 

Variation in the organic surface groups is expected to impact the level of order in stacked 

hybrid nanosheets (Figure 4-17b); very short surface groups of the adjacent slabs are less capable 

of interacting well with each other, and very long organics fail to offer a repetitive locking 

behavior due to higher chances of bending and entanglement. Figure 4-18 shows the FESEM 

image of nanosheets with a long chain organic on the surface (PEG-400, 16-18 carbons in the 

backbone), and randomness in the nanosheet assemblies formed after drop casting and drying (no 

order in stacking). It is notable that the density of PEG-PN nanosheets was much smaller than 

any other products; the volume of the starting TBA-PN NS powder increased extensively after 

treatment in PEG-400 aqueous solution. 

 

 

 

 

 

 

 

 

Unsaturated surface groups can also be readily attached to the oxide nanosheets.  Figure 

4-19 shows the XRD patterns of the three unsaturated hybrid nanosheets (Figure 4-13n−p) before 

and after air exposure.  A clear change in diffraction data can be seen in these systems after 2 

days storage in air. Since this spontaneous saturation of monomer-grafted nanosheets occurs at 

room temperature, it is not an instant reaction and takes over a day. This means the samples can 

be handled outside the glovebox for quick characterization tests (XRD and Raman) without 

instant saturation of the double bonds. For XRD characterization, freshly exposed samples were 

scanned for 30 minutes (Figure 4-19a, c, and e); then the exact same sample was then left in open 

air for 2 d and rescanned (Figure 4-19b, d, and f). In all cases, the first peak is shifted to higher 

angles which indicates a contraction in interlayer spacings, likely due to the linkage of the double 

bonds between adjacent stacked nanosheets. This premise was supported by Raman data from an 

air-exposed 9-decen-1-oxy-PN NS sample, which clearly shows a decrease in the intensity of the 

peaks attributed to alkenes (Figure 4-20). It is noteworthy that TMPDAE-PN NS is light 

Figure 4- 18: FESEM images of PEG-PN NS, showing poor restacking behavior. 
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sensitive as well as air sensitive, which may explain the noisier XRD pattern seen even with 

short (1 h) air exposure times.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4– Discussion 

4.4.1   Exfoliation of HLnNb2O7 

Previous studies generally report the need for days of stirring to obtain similar exfoliated 

nanosheets.40,42,46,48–50,57,60,63,145,146 In contrast, the microwave-assisted exfoliation methods 

presented here yield nanosheets in as little as 15 min. Even though the necessity of long 

sonication in specific solvents such as acetonitrile was claimed in order to obtain exfoliated 

Figure 4- 19: Effect of air exposure on monomer-grafted 

nanosheets: 9-decen-1-oxy-PN NS (a) before and (b) after air exposure, 

2-allylphenoxy-PN NS (c) before and (d) after storage in air, and 

TMPDAE-PN NS (e) before and (f) upon exposure to air and light. 

Figure 4- 20: Raman spectra of 9-decen-1-oxy-PN NS 

after (a) 30 min and (b) 2 d exposure to air. 
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nanosheets of the similar hosts after the intercalation of TBA+,70 sonication was done only in 

between the washing centrifugation steps (in acetone or ethanol) for only a few minutes. 

Microwave approaches are not new in the synthesis of other types of nanomaterials (various 

nanoparticles and nanostructures,147–152 graphene nanosheets153–155), however, utilizing this 

method for the rapid exfoliation of perovskites and post-exfoliation surface modification is novel 

to our knowledge. Interestingly, the average dimensions of the nanosheets obtained via MA 

reactions, are comparable to similar perovskite nanosheets attainable by conventional long 

bench-top stirring methods.45,48–50,57,65,68 It should be noted that the average dimension are 

usually observed via microscopy methods, as more quantitative methods such as dynamic light 

scattering (DLS) cannot be effective due to the wide range of lateral dimensions present after an 

exfoliation process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As explained above, TEM and AFM studies indicate the formation of single-layered 

nanosheets after TBA+ intercalation in the perovskite galleries. Similar to the previous reports,156 

the presence of tetrabutylammonium (TBA+) ion on the surface of nanosheets can be easily 

confirmed using Raman spectroscopy and TGA (Figure 4-21). Figure 4-6 shows the FESEM 

images of TBA-LnNb nanosheets where the existence of dots on the surface of the nanosheets is 

Figure 4- 21: (a) TGA and DTGA curves, and (b) Raman results for HLnNb2O7 hosts and 

TBA-LnNb nanosheets, proving the existence of TBA+ on the nanosheets after the exfoliation. 

(a) 

(b) 
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clear. As seen in Figure 4-22, these dots are 3D and are not thought to be a type of surface 

defect. They are not from gold sputtering of the samples, as they were seen only in the images of 

the nanosheets and not bulk materials.  Since the exfoliation process only involves water and 

TBAOH, it is most likely that these spots are islands containing TBA+ ions, held to the surface 

via acid-base interactions. Even after washing the sheets with copious amounts of various 

solvents (water, ethanol and acetone) repeatedly, these 3D surface entities can still be seen in 

FESEM. The observed sensitivity of these surface entities to the electron beam during the 

FESEM imaging is also consistent with their organic nature. Images of the nanosheets after 

combustion up to 1000 °C under dilute oxygen (Figure 4-23) showed no evidence of spots. The 

surface of the hybrid nanosheets in some cases also had some trace of these dots (Figure 4-

16c,d), suggesting that exchange of TBA+ with other surface groups were at times not a 100%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4- 22: Horizontal FESEM view of TBA-PN NS showing protrusion of dots 

on NS surface. Arrows indicates some of the dots. 

Figure 4- 23: FESEM images of (a) TBA-PN NS and (b) TBA-LN 

NS burned under dilute oxygen up to 1000 ºC. 
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The loss of crystallinity in the exfoliated samples is clearly shown in Figure 4-4 where 

the high-angle peaks in the starting materials disappear except for two low intensity reflections at 

about 2θ= 33 and 41 degrees. For TBA-LnNb nanosheets, there are three low angle peaks 

appearing at about 2θ= 4.5, 8 and 9 degrees. The peak at 2θ= 8° seems to be an impurity peak 

present in almost all of the hybrid nanosheets as well. Since the characteristic peak of the 

HLnNb2O7 (protonated host) is at 8.5°, this impurity peak cannot be a sign of remaining 

unexfoliated host. However, it can imply the presence of some nanosheet assemblies that are 

more rich in proton than TBA+. The two other values are related to 0k0 set of planes. This also 

works for the rest of the hybrid nanosheets where any peaks less than 10 degree and other than 

the impurity peak could be indexed as 0k0 (for instance in case of n-decoxy-PN NS: d spacing 

values of 27.16, 13.78, and 9.20 Å for the peaks at 2θ= 3.25, 6.41 and 9.60 degrees, indexed as 

020, 040, and 060, respectively). The peaks observed in the XRD pattern, as well as the 

intensities, are also subject to change based on the number of the individual nanosheets restacked 

together.142 

4.4.2   Organic Modification of Nanosheets 

Combining the organic modification of nanosheets with a rapid microwave approach 

leads to the facile production of a variety of nanosheet-based hybrids with controlled surface 

engineering. Organic modification was first carried out using linear n-alkyl alcohols and n-

alkylamines, CnH2n+1OH (n = 3, 5 and 10) and CnH2n+1NH2 (n = 3, 4, 6 and 10), respectively, and 

then further extended to saturated and unsaturated cyclic and linear alcohols. Even though only 

linear amines were studied here, the future scope of surface modifications could be very wide 

especially considering the high reactivity of layered perovskites with a variety of amines (linear 

and cyclic).134,137 The XRD patterns of these hybrids are presented in Figure 4-13, which 

suggests a restacking behavior when the organic surface groups are moderately long; sharper 

peaks are observed for CnH2n+1OH (n = 5 and 10), CnH2n+1NH2 (n = 4, 6 and 10), 6-chloro-1-

hexanol, and 3-phenoxybenzyl alcohol. In case of shorter substituents (n-propylammonium-, n-

propoxy-, benzyl alcoxy-, and phenylphosphonic-), as well as very long ones (such as PEG-400), 

the XRD patterns seem to be noisier with broader first reflections, which is consistent with poor 

restacking order within reassembled samples. The mechanism of these surface exchange 

reactions are expected to be similar to the grafting/intercalation reactions that take place in the 
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interlayer of a layered oxide perovskite.157,158 For the organic amines, protonated molecules 

displace the TBA+ ions and are held to the surface of the negatively-charged perovskite 

nanosheets via electrostatic interactions, and alcoxy organic molecules initially undergo 

hydrolysis followed by esterification to attach to the terminal oxygens of the perovskite 

octahedra. 

Restacking of the nanosheets can also be seen in TEM and FESEM images. On 

examination of n-decoxy-PN NS (Figures 4-15 and 4-16) for example, while single-standing 

nanosheets are seen in TEM and FESEM images of TBA-PN NS (Figures 4-2 and 4-15a), 

assemblies of multiple nanosheets are formed after grafting n-decoxy surface groups (Figure 4-

15b,c). Comparing n-decoxy-PN NS to the bulk n-decoxy-PrNb2O7 layered sample in Figure 4-

16, the loss of order in nanosheet-based hybrids (Figure 4-16c,d and Figure 4-17) is clearly seen 

(even after restacking). The PEG-PN NS sample (Figure 4-18) does not exhibit the same type of 

stacking behavior seen in the n-decoxy-PN NS (Figure 4-16c,d); this is consistent with the broad, 

almost featureless XRD seen for PEG-PN NS (Figure 4-13j). FESEM images show the absence 

of ordered assemblies in the sample; this is most likely due to the presence of the large organic 

surface groups quelling strong registry between nanosheets. Very small surface groups such as n-

propoxy also seem to result in poor registry between adjacent sheets (Figure 4-13b and f).  

Grafting unsaturated organics on the surface of the nanosheets (Figure 4-13n−p) produces 

nanomaterials that can be covalently bonded into a polymeric network. Previous studies have 

been limited to grafting monomers within the interlayer of perovskite hosts, subsequent 

polymerization leads to exfoliation into nanosheets bound within a polymeric matrix. 36–38 

Contrary to topochemical modification of layered perovskites, which is limited to the target 

substituents small enough to permeate the interlayer of the host,136,157,158 surface modification of 

exfoliated nanosheets readily occurs regardless of the size of the target surface group. Via the 

simple synthetic method reported here, a variety of unsaturated hybrid nanosheets can be rapidly 

prepared and further incorporated in different polymeric networks in future studies. Considering 

the fact that surface modification of GO nanosheets often involves more complicated 

chemistry121,122,124,125 and yet studied vastly, this facile method can potentially attract as much 

attention to the study of a new class of reinforcing agents which can covalently bond to 

polymeric composites.  
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4.5– Conclusions 

Utilizing microwave-assisted reactions, exfoliated TBA+-LnNb2O7 nanosheets (TBA-

LnNb NS, Ln = La, Pr) were rapidly obtained from HLnNb2O7 layered hosts. Further microwave 

treatments were then implemented to perform post-exfoliation surface modification of TBA-

LnNb NS. Through fast microwave reactions (< 1 h), the TBA+ surface groups were readily 

replaced with various organics containing hydroxyl and amine functional groups – different 

linear and cyclic organics were attached to nanosheets surfaces in order to produce tailored 

nanosheets including those with CnH2n+1OH (n = 3, 5 and 10), CnH2n+1NH2 (n = 3, 4, 6 and 10), 

6-chloro-1-hexanol, PEG-400, phenylphosphonic acid, benzyl alcohol, 3-phenoxybenzyl alcohol, 

and unsaturated surface groups such as 2-allylphenol. As the only condition to produce surface-

tailored nanosheets is the selection of organics with any hydroxyl or amine functional group, this 

facile modification method allows for the production of various nanosheet-based hybrids with 

potentially novel electronic, magnetic, optical and mechanical properties. The integration of 

active monomers, for use in the production of nanosheet-infused polymers, could lead to 

important new composite materials in which the polymer network is covalently bonded and 

reinforced by oxide-nanosheets. 
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Chapter 5. Grafting and Polymerization on Perovskite-Based Nanosheets* 

5.1– Introduction 

As presented in the previous chapter, post-exfoliation surface-modification of perovskite 

nanosheets is readily achievable via facile microwave-assisted chemistries in as little as 1 h. This 

chapter will concentrate on the perovskite nanosheets that are modified with unsaturated 

organics, and summarize the results obtained when these monomer-grafted nanosheets undergo 

radical polymerization using free radical initiators and at times with the addition of divinyl 

monomers. 

When it comes to the incorporation of nanosheets in a polymer matrix via actual covalent 

bonds, graphene oxide (GO) nanosheets are the most-studied. The composites with actual 

covalent bonds between GO nanosheets and polymer chains are typically attainable in two ways: 

either by crosslinking nanosheets to polymer chains,1–3 or by in-situ polymerization on nanosheet 

surfaces.4–6 Unlike GO nanosheets, there are only a few reports investigating the modification of 

perovskite-based nanosheets with organic surface groups and polymer chains.7–12 The covalent 

surface groups of the perovskite nanosheets are typically introduced prior to exfoliation; these 

organic substituents are already present in the interlayer of the bulk layered host. In HLaNb2O7 

for example, nanosheets are obtained by growing a polymeric network in the interlayer, which 

then delaminates the layered structure into nanosheets within a polymer matrix covalently 

grafted to it.7–9 There is only one report where surface groups are covalently attached to 

nanosheets after exfoliation; this study does not involve unsaturated groups or polymer chains, 

and is carried out via conventional heating methods carried out over a few days.13,14 In other 

cases, there is no actual covalent bond between the nanosheets and the surface groups or polymer 

chains; here, electrostatic interactions are dominant.11,12,15,16  

                                                 

* This chapter was adapted from: Akbarian-Tefaghi, S.; Wiley, J. B. “Grafting and polymerization on 

perovskite-based nanosheets” 252nd American Chemical Society National Meeting and Exposition, Philadelphia, 

PA, August 2016 (Poster Presentation). 
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 Rapid microwave-assisted (MA) methods have been found to be effective for organic 

modification of bulk layered perovskites.17–20 As highlighted in Chapters 2 and 4, we were able 

to also extend the microwave methods to both rapid exfoliation and surface exchange of 

perovskite nanosheets. Initially protonated double-layered perovskites HLnNb2O7 (Ln = La, Pr) 

were exfoliated in an aqueous solution of tetra(n-butyl)ammonium hydroxide via rapid 

microwave reactions yielding TBA+-LnNb2O7 nanosheets (TBA-LnNb NS), and then five 

different unsaturated organics with hydroxyl functional groups were exchanged with the tetra(n-

butyl)ammonium surface groups. Grafting unsaturated groups to the surface of the nanosheets 

allows one to then grow polymer chains off the surfaces of the inorganic nanosheets. The 

resulting composite is especially interesting in that polymer chains are covalently bonded to the 

inorganic component. A number of unsaturated organics such as 5-hexen-1-ol, 9-decen-1-ol, 

acrylic acid, 2-allylphenol, and trimethylolpropane diallyl ether (TMPDAE) were grafted on the 

surface of the nanosheets. Figure 5-1 illustrates the surface modification of the TBA-LnNb NS 

with these five specific organics (double bonds are marked with star (+)).  

Figure 5- 1: Exchange of TBA+ surface groups on TBA-LnNb nanosheets with unsaturated organic 

groups (5-hexen-1-ol, 9-decen-1-ol, acrylic acid, 2-allylphenol, and TMPDAE). 

The double bonds are marked with star (+). 
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Radical polymerization of the monomer-grafted nanosheets with AIBN only, or a mixture 

of AIBN and a divinyl monomer such as divinylbenzene (DVB) or di(ethylene glycol) divinyl 

ether (DEGDVE) was then carried out. Figure 5-2 presents the overall reaction scheme once 

monomer-grafted nanosheets (2-allylphenoxy-PrNb NS as an example) are incorporated in a 

polymerization reaction with the initiator and a divinyl monomer. As illustrated in this figure, 

AIBN will break into two radicals which then activate the double bonds into reacting radicals, 

allowing for the crosslinking and networking of the monomer-grafted nanosheets and divinyl 

monomers.  

 

Other than producing hybrid nanosize additives (organic-inorganic nanosheets) that allow 

for a tunable compatibility with a polymeric matrix, through this work the in-situ polymerization 

of the monomer-grafted nanosheets was also realized. Controlled surface functionalization of 

inorganic nanosheets is important to the effective engineering of functional composite materials 

with improved mechanical properties. 

 

Figure 5- 2: Incorporation of monomer-grafted nanosheets in radical polymerization, using a 

thermal free-radical initiator (AIBN) as well as a divinyl monomer (DVB or DEGDVE). 
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5.2– Experimental 

5.2.1   Materials  

For the synthesis of RbLnNb2O7 (Ln = La, Pr), the carbonate reagent was used as 

received, and the oxides were heated at 1000 ˚C in air for 12 h in order to eliminate any 

impurities or non-stoichiometries: Rb2CO3 (Alfa Aesar, 99.8%), La2O3 (Alfa Aesar, 99.99%), 

Nb2O5 (Alfa Aesar, 99.9985%), and Pr6O11 (Alfa Aesar, 99.9%). Tetrabutylammonium 

hydroxide 30-hydrate, 95+% (TBAOH, ACROS Organics) was used for the exfoliation trials 

(Note: To preserve the integrity of the TBAOH reagent, it is recommended that the storage 

temperature be in the range of 2-8 ˚C, and that handling at room temperature be minimized to 

avoid melting). A number of unsaturated organic components with hydroxyl functional groups 

were used to graft monomers on the nanosheets: 5-hexen-1-ol (Alfa Aesar 98%), 9-decen-1-ol 

(Alfa Aesar 90+%), acrylic acid (Alfa Aesar 99%, stab. with ca 200 ppm 4-methoxyphenol), 2-

allylphenol (Alfa Aesar 98+%), and trimethylolpropane diallyl ether (Sigma Aldrich 90%) were 

used as received. Two divinyl monomers, divinylbenzene (Alfa Aesar 80%, mixture of isomers, 

stab. with 1000ppm 4-tert-butylcatechol) and diethylene glycol divinyl ether (Alfa Aesar 98%, 

stab. 0.1% potassium hydroxide), were used as crosslinking agents without further purification 

(Note: To minimize unwanted degradation, unsaturated organics are best to be stored in a 

refrigerator in the absence of oxygen). 2,2′-azobis(2-methyl-propionitrile) free radical initiator, 

AIBN, (Sigma Aldrich 98%), was used in order to initiate and expedite the radical 

polymerization reactions (Note: AIBN has to be stored in a fridge at 2-8 ˚C at all times, unless 

quick weighing is performed in ambient condition). Recrystallization of AIBN initiator was 

carried out before using: AIBN was dissolved in 50 ˚C methanol, then the solution was quickly 

filtered to remove any insoluble impurities, and the filtrate was slowly cooled down to yield pure 

AIBN crystals used in the following reactions.  

 

5.2.2   Synthesis of Inorganic Hosts 

RbLnNb2O7 (Ln = La, Pr) were synthesized by grinding stoichiometric amounts of the 

corresponding oxides (La2O3, Pr6O11 and Nb2O5) with a 30% molar excess of Rb2CO3.21,22 The 

excess carbonate was used to compensate for the volatilization of various rubidium oxides that 

are produced by heating the carbonate. The mixture was preheated at 850 °C overnight, ground, 
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and heated at 1050 °C (24 h and 6 h for Ln = La and Pr, respectively). After another intermediate 

grinding, the sample was heated at 1100 °C (24 h and 48 h for Ln = La and Pr, respectively). To 

remove the excess carbonate, the product was washed with copious amount of water and dried at 

100 ˚C for several hours. 

 

5.2.3   Microwave Syntheses   

Topochemical reactions involving ion exchange and exfoliation (details given below) 

were carried out in a StartSYNTH Microwave Synthesis Labstation as previously reported 

(pictures and details of the setup presented in chapter 2).18 The unit was equipped with 

Milestone’s START platform where the individual reactions were contained in quartz pressure 

reactors (< 15 bar) and placed in a rotor. Grafting unsaturated organics, as well as polymerization 

reaction, was carried out in a Milestone QV-50 setup, where a quartz reactor vessel was sealed in 

the glovebox in order to eliminate the exposure of the reaction mixture to oxygen (the setup and 

the steps to seal the reactor were introduced in chapter 4). Caution: One should inspect glass 

microwave vessels before each reaction; glass defects might lead to hotspots and result in an 

explosion. 

 

5.2.3.1  Acid Exchange (Protonation) 

Microwave-assisted acid treatment was carried out for 3 h at 60˚C with continuous 

stirring (maximum power of 300 W).18 A 6M nitric acid solution was used for the ion exchange, 

where the molar ratio of proton to interlayer cation (Rb) was maintained greater than 150:1. The 

acid-exchanged product was washed with distilled water until pH 7 was achieved, and then dried 

at 100 ˚C for 3 hours.  

 

5.2.3.2  Exfoliation of HLnNb2O7 

HLnNb2O7 (HLnNb) was exfoliated in an aqueous solution of TBAOH with a molar ratio 

of 1:10 for HLnNb to hydrated TBAOH. Microwave-assisted exfoliation reactions were carried 

out at 1 h at 60 ˚C (max 300 W), ramped to 80 ˚C over a 10-minute period, and then heated at 80 

˚C for 1 h (max 350 W). Exfoliated products were washed with water and ethanol, and dried at 

70 ˚C for several hours.  
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5.2.3.3  Surface-Exchange of Nanosheets with Unsaturated Surface Groups 

In order to protect the unsaturated bonds from undesired polymerization in oxygen at 

elevated temperatures, reactions with the five unsaturated organics were carried out under argon. 

Typical synthesis of monomer-grafted nanosheets involved reacting 60 mg of TBA-LnNb NS 

with 8 mL of the pure unsaturated organic solvent within reactor vessels, sealed in a glovebox 

under argon, and heated at 90 ˚C for 45 min (max 500 W, using a Weflon button). Alternative to 

these microwave-assisted reactions, similar exchange reactions were carried out with convection 

heating under argon in a glovebox; samples were heated on a hot plate with stirring for 2 d at 80 

˚C. The glovebox reactions were performed as controls for microwave-assisted trials, and in all 

cases yielded identical results to microwave reactions. The monomer-grafted nanosheets were 

then rapidly washed with ethanol and acetone in ambient condition (up to 10 minutes maximum), 

dried under vacuum at room temperature for a few minutes, and stored under protective argon 

gas in a glovebox. 

 

5.2.3.4  Polymerization of Monomer-Grafted Nanosheets 

Radical polymerization of the monomer-grafted nanosheets was carried out in sealed 

vessels with AIBN as a thermal free-radical initiator, and at times with the addition of a 

crosslinking agent, divinylbenzene (DVB) or diethylene glycol divinyl ether (DEGDVE); 

microwave heating was typically performed by heating the reaction mixture at 100 ˚C for 20 min 

(max 600 W). Polymerization of the unsaturated nanosheets was realized by adding 20% (w/w) 

AIBN to 10 mg of the monomer-grafted nanosheets produced above, dissolved in 5 mL toluene. 

In some trials, the crosslinking agents (divinyl monomers) were also added to enhance the 

linkage of the monomer-grafted nanosheets to each other, and to cause more noticeable 

morphology change after the polymerization. This was done based on two typical recipes: either 

addition of 200% (w/w) divinyl monomer and 30% (w/w) AIBN, or 400% (w/w) divinyl 

monomer and 50% (w/w) AIBN, to 10 mg of various monomer-grafted nanosheets dissolved in 5 

mL toluene.  

 

5.2.4   Characterization  

A Philips X’Pert system equipped with Cu Kα radiation (λ = 1.5418 Å) and a curved 

graphite monochromator was used in continuous mode with a scan rate of 0.02 °/s to collect the 
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X-ray powder diffraction (XRD) data. Thermogravimetric analysis (TGA) and differential 

scanning calorimetry (DSC) were carried out on a TA Instruments TGA-DSC SDT Q600 system 

in alumina pans under a dilute oxygen atmosphere (ca. 50% argon); samples were heated up to 

900 ˚C at a rate of 15 ˚C/min. Raman spectra were collected in a Thermo-Fisher DXR dispersive 

Raman spectrometer using the λ = 532 nm line with a spectral resolution of 3 cm-1. Field 

emission SEM images of sample morphologies were obtained on a HITACHI S-4800 FEG 

CRYO-SEM. For the FESEM sample preparation, a dilute dispersion of nanosheets in ethanol 

was drop cast on small pieces of aluminum foil, lightly coated with gold, taped onto the FESEM 

stud using carbon tapes, and finally observed in 1-3 kV range. 

 

5.3– Results 

A number of unstaurated organics were successfully grafted on perovskite nanosheets via 

MA exchange reactions performed on TBA-LnNb NS: 5-hexen-1-ol, 9-decen-1-ol, acrylic acid, 

2-allylphenol, and trimethylolpropane diallyl ether (TMPDAE). Figure 5-3 provides the XRD 

patterns for these monomer-grafted nanosheets; samples were taken out of the glovebox and 

scanned upon <1 h air-exposure (a), and the very same sample preparation was then rescanned 

after 2 d storage in ambient condition (b). The first XRD reflections in all cases shift to higher 

angles upon long air exposure, indicating a shrink in the interlayer spacings of the re-stacked 

nanosheets, which suggests spontaneous linkage of the neighboring nanosheets due to the side 

reaction of their unsaturated surface groups in the presence of oxygen. Figure 5-4 presents the 

Figure 5- 3: XRD patterns of the monomer-grafted nanosheets upon (a) <1 h air exposure, and 

(b) 2 d storage in air; TBA-PrNb host versus the products of reaction with (b) 5-hexen-1-ol, (c) 9-

decen-1-ol, (d) acrylic acid, (e) 2-allylphenol, and (f) TMPDAE. 
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Raman spectra for these modified nanosheets (<1 h air-exposure), highlighting the characteristic 

peaks that are expected in each case.23 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5 compares the TGA-DSC results obtained for (a) 2-allylphenoxy-PrNb, (b) 5-

hexen-1-oxy-PrNb, (c) 9-decen-1-oxy-PrNb, (d) acrylic acid-PrNb, and (e ) TMPDAE-PrNb 

nanosheets, confirming their different thermal behaviors and weight losses. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5- 4: Raman spectra of the monomer-grafted nanosheets, 

highlighting the characteristic peaks expected in each case. 

Figure 5- 5: TGA-DSC results for monomer-grafted nanosheets. 
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FESEM images were used to study the morphological differences due to polymerization 

of monomer-grafted nanosheets. However, even without introducing AIBN or any crosslinking 

agent, and only upon air exposure, there seems to be a significant topological difference between 

a monomer-grafted nanosheet (after several days storage in air) and the TBA-PrNb nanosheet 

(Figure 5-6). 

 

 

 

 

 

 

Polymerization among monomer-grafted nanosheets was attempted by adding AIBN free 

radical initiator to the modified nanosheets. FESEM was performed only on one type of these 

monomer-grafted nanosheets, 9-decen-1-oxy-PrNb NS, and the results are provided in Figure 5-

7, showing an even more dramatic topological difference as opposed to the sample that was only 

exposed to air without the addition of AIBN (Figure 5-6b). Interstingly, the TGA results show 

less weight losses after reaction with AIBN, which suggests the removal of some monomeric 

groups as some others are reacting among different nanosheets (Figure 5-8). 

 

 

 

 

 

 

 

 

 

 

Figure 5- 6: FESEM images of (a) TBA-PrNb NS, (b) 9-decen-1-oxy-PrNb NS, and (c) 2-allylphenoxy-PrNb NS. 

Figure 5- 7: Morphological differences studied via FESEM after the addition of AIBN to 9-decen-1-oxy-

PrNb NS. Reactions were performed in three different ways under argon; (a) 3 h stirring on hot plate at 80 

˚C, (b) 1 h microwave heating at 80 ˚C, and (c) 20 min microwave heating at 100 ˚C. 
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Figure 5-9 shows the effect of microwave reaction condition on the morphology of 

polymerized 9-decen-1-oxy-PrNb NS, when both AIBN and DVB are introduced. The same 

study was also performed when the other divinyl monomer, DEGDVE, is used instead of DVB; 

the FESEM images are provided in Figure 5-10. Thermal behaviors of the polymerization 

products in all of these cases are then compared in Figure 5-11. It is evident that increased 

reaction temperature enhances the size of the islands forming on the surface of the nanosheets 

(based on FESEM), and conversely reduces the organic loading on the nanosheets (based on 

TGA). 

 

 

 

 

 

 

 

 

 

Figure 5- 8: TGA-DSC results comparing the 9-decen-1-oxy-PrNb NS 

to AIBN-treated ones. 

Figure 5- 9: Impact of the microwave reaction condition on the morphology of 9-decen-1-

oxy-PrNb NS polymerized with DVB and AIBN, (a) 1 h at 80 ºC, and (b) 20 min at 100 ºC. 
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Raman spectrum of 9-decen-1-oxy-PrNb NS is compared to its polymerized trials in 

Figure 5-12. The most significant change in polymerized samples reflecting in Raman spectra, is 

the appearance of the characteristic peaks of the phenyl ring when DVB is incorporated in the 

structure (1750-1500 cm-1).23 Considering the thorough washing step in toluene, DVB should be 

covalently bonded to the NS to show these significant peaks (Figure 5-12h and i versus the 

monomer-grafted NS in Figure 5-12a). 

Figure 5- 10: Impact of the microwave reaction condition on the morphology of 9-decen-1-oxy-

PrNb NS polymerized with DEGDVE and AIBN, (a) 1 h at 80 ºC, and (b) 20 min at 100 ºC. 

Figure 5- 11: TGA-DSC results for (a) 9-decen-1-oxy-PrNb NS sample 

treated with AIBN and DEGDVE for (b) 100 ˚C and (d) 80 ˚C, or with AIBN 

and DVB for (c) 100 ˚C and (e) 80 ˚C. 
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Since only a limited number of samples could be observed under FESEM, other than 9-

decen-1-oxy-PrNb NS, only the morphology of polymerized 2-allylphenoxy-PrNb NS samples 

were further investigated. Figure 5-13 shows the FESEM images of three polymerized 2-

allylphenoxy-PrNb NS samples when 20 min microwave heating was performed with the 

addition of: (a) only AIBN, (b) both AIBN and DEGDVE, or (c) both AIBN and DVB. Figure 5-

14 provides the TGA-DSC results for these samples. The polymerized sample with the highest 

organic loading appears to be the one whith both DVB and AIBN incorporated in the reaction. 

However, even in this case the weight loss is only about the same as the monomer-grafted 

nanosheet and is no higher than that, which indicates the loss of some organic groups as some 

crosslinking is occuring among various nanosheets introduced to both AIBN and DVB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5- 12: Raman spectra of (a) 9-decen-1-oxy-PrNb NS compared to its polymerized products; when only 

AIBN is used (b) 3 h hot plate stirring at 80 ˚C, (c) 1 h microwave heating at 80 ˚C, (d) 45 min microwave radiation 

at 90 ˚C,  or (e) 20 min microwave reaction at 100 ˚C, in case of using both AIBN and DEGDVE when microwave 

heating is performed for (f) 1 h at 80 ˚C or (g) 20 min at 100 ˚C, and lastly, when both AIBN and DVB are used in 

microwave reactions for (h) 1 h at 80 ˚C, or (i) 20 min at 120 ˚C. 
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Figure 5-15 shows the XRD patterns of 9-decen-1-oxy-PrNb and 2-allylphenoxy-PrNb 

nanosheets versus a few polymerized samples using either only AIBN or a combination of AIBN 

and a divinyl monomer. It is clear that polymerization typically leads to broader peaks and less 

order in re-stacked hybrid nanosheets due to the formation of larger organic surface groups. 

 

 

 

Figure 5- 13: FESEM images of 2-allylphenoxy-PrNb NS sample polymerized in microwave for 20 min at 

100 ˚C with: (a) AIBN, (b) AIBN and DEGDVE, and (c) AIBN and DVB. 

Figure 5- 14: TGA-DSC behaviors of a few polymerized 2-allylphenoxy-

PrNb NS samples. 
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It should be noted that in all the polymerized samples reported herein so far, the amount 

of the secondary monomer (divinyl monomer) was intentionally low, so the polymer chains 

would not bury the nanosheets. The reactivity of these monomer-grafted nanosheets was 

basically established by following the morphological differences in the nanosheets. Figure 5-16 

is an example of a polymerization reaction with the addition of three active components to 10 mg 

9-decen-1-oxy-PrNb NS: AIBN 30% (w/w), DVB 100% (w/w), and AA 100% (w/w). Reaction 

was carried out in 5 mL of toluene, stirring for 3 h at 80 ˚C on hot plate (under argon). Formation 

of polymer beads and embedding the nanosheets in polymeric features are obvious. Sample 

surface charging and electron beam damage are fairly high in this sample due to the majority of 

polymer component, resulting a noisy FESEM image. 

 

 

 

Figure 5- 15: XRD patterns of (a) 9-decen-1-oxy-PrNb and (i) 2-allylphenoxy-PrNb 

nanosheets versus their polymerized samples respectively provided in (b-h) and (j-l). 
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The desired way for the incorporation of these nanosheets in a polymeric network is via a 

method that provides constant mixing of the components as the polymerization continues. This 

mixing also has to be of a great quality to ensure the even distribution of these additives all over 

the polymeric matrix. In order to have these additives boosting the mechanical properties without 

yielding a brittle composite, usually less than 10% w/w reinforcing agent has to be added to the 

polymeric matrix. Figure 5-17 illustrates a simple polymerization reaction were only 3% w/w 2-

allylphenoxy-PrNb NS is added to DVB monomers going through radical polymerization (1 d 

polymerization at 70 ˚C by conventional reaction on the hot plate in the glovebox, using 1% w/w 

AIBN dissolved in 3 mL toluene). AIBN forms radicals due to heating (radical initoators are 

shown as I˚) which can then activate the unsaturated bonds in DVB and 2-allylphenoxy-PrNb 

NS, and yield radicals from them as well. The crosslinking then will continue incorporating all 

these radicals in a random way, and the poly-DVB gel (PDVB) will covalently incorporate the 

nanosheets (PDVB-NS composite gel). Figure 5-18 presents the pure PDVB obtained by reacting 

DVB and AIBN in toluene, and compares it to the PDVB-NS composite prepared by the addition 

of 2-allylphenoxy-PrNb NS. Even though TGA confirms the existance of about 3% inorganic 

nanosheet in the PDVB-NS composite as expected (Figure 5-19), the Raman spectra cannot 

highlight any difference between pure PDVB and the composite as presented in Figure 5-20. 

This can be due to the small percentage of nanosheets which peaks are shielded by PDVB bands. 

Another interesting feature of PDVB-NS composite compared to the pure PDVB appeared to be 

its partial crystallinity as presented in Figure 5-21; pure PDVB seems to be quite amorphous as 

Figure 5- 16: FESEM image of 9-decen-1-oxy-PrNb NS polymerized 

with the addition of AIBN, DVB and AA in the same batch. 
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expected, while the composite shows one XRD peak indicating more crystallinity. Higher 

crystallinity can be due to the presence of nanosheets in the polymer matrix which creates some 

level of ordered polymer chains around these additives. However, it should be noted that 

replicates of this batch turned out to be completely amorphous (no peaks appearing in XRD), and 

additional study has to be performed for further reproducibility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5- 17: The steps of producing PDVB-crosslinking-2-allylphenoxy-PrNb NS: (a) the 

mixture of AIBN, 2-allylphenoxy-PrNb NS, DVB and toluene prior to reaction, (b) the formation of 

radicals from DVB and 2-allylphenoxy-PrNb NS once the radicals forming from AIBN (I˚) 

activates the double bond, (c) random crosslinking among present radicals, and (d) formation of a 

PDVB-NS composite gel. 

Figure 5- 18: Pure PDVB (left) compared to PDVB-NS composite 

formed after incorporation of 2-allylphenoxy-PrNb NS (right). 
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Figure 5- 19: TGA-DSC results for (a) PDVB-NS composite 

compared to (b) pure PDVB. 

Figure 5- 20: Raman spectra of (a) 2-allylphenoxy-PrNb NS, (b) 

pure PDVB, and (c) PDVB-NS composite. 

Figure 5- 21: XRD patterns of (a) pure PDVB, (b) PDVB-NS composite, 

and 2-allylphenoxy-PrNb NS (c) before and (d) after air exposure. 
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5.4– Discussion 

Grafting unsaturated organics on the surface of the nanosheets leads to hybrid nanosheets 

that have some level of air-sensitivity due to the unsaturated double bonds. This is not an instant 

reactivity, as oxygen acts like an intitiator with a long half life under ambient conditions. Based 

on the XRD patterns of these monomer-grafted nanosheets upon air-exposure versus a 2-d 

exposure, provided respectively in Figures 5-3a and b, the very same sample preparations show a 

layer contration upon longer air-axposure. This is most likely due to the linkage of the 

unsaturated bonds present in the neighboring re-stacked nanosheets, causing a gradual reduction 

in the interlayer spacings. FESEM images of two types of monomer-grafted nansoheets 

presented in Figure 5-6 also confirms larger islands of organic surface-groups compared to 

TBA+-PrNb NS which has no air sensitivity. In general, FESEM images well prove the 

morphological evolution of TBA+-PrNb NS after introducing unsaturated organics, as well as 

after further polymerization of these monomer-grafted nanosheets with either AIBN only, or a 

combination of AIBN and a divinyl monomer. XRD also revealed noisier patterns and broader 

peaks after polymerization, which confirms poorer crystallinity, as expected. Raman spectra 

were indicative of the various functional groups of monomer-grafted nanosheets, and typically 

confirmed the addition of the divinyl monomer after the polymerization. The only limitation with 

Raman is where the divinyl monomer has functional groups that are similar to what is already 

present due to the unsaturated surface groups of the monomer-grafted nanosheets; for instance 

adding DEGDVE to 9-decen-1-oxy-PrNb Ns cannot show any significant extra peaks in Raman, 

but the addition of DVB does.  

TGA results for polymerized nanosheets seemed to indicate a destructive nature for these 

polymerization techniques; in all cases the polymerized samples showed a lower weight loss 

compared to that of the monomer-grafted nanosheets. Even though polymerization should lead 

into linking polymer chains to the surface of the nanosheets without removing any unsaturated 

groups that are already present, this observation indicates the deletion of some unsaturated 

groups as some others undergo polymerization. This adverse effect seems to also be dominant 

over polymerization, as in all cases the weight losses are even less than the initial monomer-

grafted nanosheet. It is highly recommended that less extreme polymerization conditions also be 
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investigated to see if the loading of organics on the nanosheets can be further improved (lower 

temperatures for longer durations). 

 

5.5– Conclusions 

Various unstaurated organics were successfully grafted on perovskite nanosheets via 

microwave-assisted exchange reactions perofrmed on TBA+-LnNb2O7 NS; 5-hexen-1-ol, 9-

decen-1-ol, acrylic acid, 2-allylphenol, and trimethylolpropane diallyl ether (TMPDAE). The 

reactivity of the monomer-grafted nanosheets was investigated via XRD, FESEM, and Raman 

and verified the successful formation of polymer on the surface. TGA results indicated poor 

organic loading on the polymerized samples versus the monomer-grafted nanosheets, which will 

have to be improved in the future research. Controlled surface functionalization and in-situ 

polymerization of inorganic nanosheets is significant in order to improve the mechanical 

properties of functional composite materials. 
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Chapter 6. Optical Properties of Functionalized Metal-Oxide Nanosheets* 

6.1– Introduction 

 Liquid exfoliation is one of the main top-down approaches for the fabrication of 2D 

nanomaterials via cleaving weak out-of-plane van der Waals or electrostatic interactions in a 

layered solid.1–16 Exfoliation of layered oxide perovskites using bulky organics allow for the 

production of metal-oxide nanosheets whose elemental composition and thickness are easily 

controlled in the preceding solid-state reaction.10,17–26 Double- and triple-layered Dion-Jacobson 

perovskites such as RbLaNb2O7 and KCa2Nb3O10 are the most common hosts in this case for the 

preparation of such oxide nanosheets and more complicated assemblies.10,18,19,27–44 Other than 

ruling out the elemental composition of the 2D slab via the solid-state formation of the 

perovskite host from its oxide and carbonate reagents, fluorination41,45 and doping20,43,46 can also 

be carried out after the ceramic method and prior to exfoliation to introduce specific properties in 

the final nanosheets (such as conductivity or catalytic activity). Due to the presence of the bulky 

organics on the surface of these exfoliated nanosheets, these metal-oxide freestanding layers are 

considered hybrid. Intercalation of tetra(n-butyl)ammonium ion (TBA+) is the most common 

method for the delamination of layered perovskites, producing TBA+-functionalized oxide 

nanosheets.10,17–26 These nanosize metal-oxide inorganic scaffolds provide mechanical hardness 

and thermal stability to the hybrid nanosheets, as well as tunable electronic and magnetic 

properties.47,48 On the other hand, functionalization with various organic surface groups with 

structural diversity and varying properties (such as polarizability and luminescence) provide 

further control over the final properties of the hybrid nanosheets.47,48 As demonstrated in the 

literature, the elemental composition of the 2D layers can significantly impact their 

photocatalytic activity, optical or electronic properties.20,36,41,45,46,49–51 Sometimes various types 

                                                 

* This chapter was adapted from two poster presentations: 1) Akbarian-Tefaghi, S.; Brown, T.; Renquet, P.; 

Rostamzadeh, T.; Davis-Wheeler, C.; Wiley, J. B. “Novel Hybrid Perovskite-Based Nanosheets via Rapid 

Microwave-Assisted Reactions” 2017 Materials Research Society Spring Meeting and Exhibit, Phoenix, AZ, April 

2017— 2) Akbarian-Tefaghi, S.; Poduval, A.; Renquet, P.; Rostamzadeh, T.; Davis-Wheeler, C.; Wiley, J. B. 

“Impact of the Functionality of Perovskite-Based Nanosheets on Their Optical Properties” 2017 Materials Research 

Society Spring Meeting and Exhibit, Phoenix, AZ, April 2017. 
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of nanosheets are also integrated as 2D heterostructures (lateral and vertical)52–59 or layer-by-

layer assemblies44,60–72 to direct specific properties in a final nanocomposite film. Even though 

the impact of the intercalants of some layered oxides on their optical properties has been studied 

before,11,24,73–76 the influence of various organic functionalities of the 2D hybrid oxide 

nanosheets has not yet been investigated properly. Taking advantage of novel microwave-

assisted (MA) post-exfoliation surface-modification reactions, various linear and cyclic alcoxy or 

ammonium organic functionalities with different degrees of saturation can now be introduced 

very rapidly and efficiently,77 allowing for screening and tuning a vast number of functionalized 

metal-oxide nanosheets with directed properties.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1 compares the general structure of the double- and triple-layered Dion-

Jacobson hosts that were used here: HPrNb2O7, HCa2Nb2FeO9, and HLaCaNb2MnO10. These 

double- and triple-layered hosts are isostructural with HLaNb2O7 and HCa2Nb3O10 perovskites, 

respectively; the most-widely used precursors for the preparation of perovskite nanosheets. Pr, 

Fe, and Mn elements with partially filled d or f orbitals were introduced in order to direct new 

properties in the final hybrid nanosheets, as well as investigate the impact of the elemental 

composition among isostructural nanosheets. Novel TBA+-PrNb2O7, TBA+-Ca2Nb2FeO9, and 

TBA+-LaCaNb2MnO10 nanosheets were obtained by rapid MA exfoliation of the hosts in 

TBAOH aqueous solution, and then modified with various organics; CnH2n+1-OH (n = 3, 5, and 

Figure 6- 1: Double- and triple-layered Dion-Jacobson perovskites used 

for the preparation of functionalized nanosheets. 
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10), CnH2n+1-NH2 (n = 3, 6, and 8), C7H7-OH, and C7H7-NH2. The properties of the hybrid 

nanosheets as a function of elemental composition and surface groups were then investigated 

with atomic force and electron microscopies, X-ray diffraction, and vibrational, fluorescence, 

and diffuse-reflectance UV-Visible spectroscopies.  

 

6.2– Experimental 

6.2.1   Materials 

Rb2CO3 (Alfa Aesar, 99.8%), K2CO3 (Alfa Aesar, 99.997%), CaCO3 (Alfa Aesar, 

99.99%), Fe2O3 (Alfa Aesar, 99.99%), MnO2 (Alfa Aesar, 99.997%,), and KCl (Alfa Aesar, 

99.995%) were used as received. Nb2O5 (Alfa Aesar, 99.9985%), La2O3 (Alfa Aesar, 99.99%) 

and Pr6O11 (Alfa Aesar, 99.9%) were heated overnight at 1000 °C to eliminste impurities. 

Tetrabutylammonium hydroxide 30-hydrate (TBAOH), either ACROS Organics 95+% or Sigma 

Aldrich 99+%, was used for the exfoliation of the perovskite hosts. Note: To preserve the 

integrity of the TBAOH reagent, it is recommended that the storage temperature be in the range 

of 2-8 °C, and that handling at room temperature be minimized to avoid melting. Milli-Q water 

(18.2 MV cm, Milli-pore) was used to dissolve TBAOH in the exfoliation trials. Organic 

alcohols and amines were used without any further distillation: 1-propanol (Alfa Aesar 99+%), 

1-pentanol (Alfa Aesar 98+%), 1-decanol (Alfa Aesar 98+%), benzyl alcohol (Alfa Aesar 99%), 

benzylamine (Alfa Aesar 98+%), 1-propylamine (Alfa Aesar 99+%), 1-hexylamine (Alfa Aesar 

99%) and 1-octylamine (Alfa Aesar 99%). Caution:  All of the organic solvents and specifically 

the amines must be handled in a fume hood with proper PPE—amines are toxic, corrosive, and 

very irritating to the skin, eyes and lungs. It is also recommended to purchase only small 

amounts of amines and keep the storage time within 6 months. In case of longer storage times, 

amines are best to be kept under protective inert gas. 

  

6.2.2   Synthesis of the Perovskite Hosts 

RbLnNb2O7 (Ln = La, Pr) were synthesized by grinding stoichiometric amounts of the 

corresponding oxides (La2O3 or Pr6O11 and Nb2O5) and a 30% molar excess of Rb2CO3 similar to 

the previous reports.78,79  The excess carbonate was used to compensate for the loss of alkali-

metal oxides due to volatilization. The mixture was preheated at 850 °C overnight, ground, and 
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heated at 1050 °C (24 h and 6 h for Ln = La and Pr, respectively). After regrinding, the sample 

was heated at 1100 °C (24 h and 48 h for Ln = La and Pr, respectively). 

KCa2Nb3O10 was prepared based on a molten salt method:80 Stoichiometric proportions 

of K2CO3, CaCO3, and Nb2O5 were well ground with 15:1 molar excess of KCl. The mixture was 

heated for 24 h at 900 °C, 18 h at 950 °C, and 2 h at 1000 °C, without any intermediate grinding. 

Inspired by the previous reports on the solid state synthesis of RbCa2Nb2FeO9,81,82 this 

host was synthesized by grinding 30% excess of Rb2CO3 with stoichiometric amounts of CaCO3, 

Nb2O5, and Fe2O3, and then pre-heating the mixture (6 h at 550 °C, regrinding, and another 

preheating step at 850°C overnight). The final heating step was performed at 1150°C for 48 h 

with one intermediate grinding. Using Cs2CO3 rather than Rb2CO3, this exact regular method 

was also applicable for the synthesis of CsCa2Nb2FeO9. 

RbLaCaNb2MnO10, a novel triple-layered host recently made and characterized by one of 

our group members,83 was also prepared via regular ceramic method: 25% excess of Rb2CO3 was 

added to stoichiometric proportions of La2O3, CaCO3, Nb2O5 and MnO2. The mixture was pre-

heated (550 °C for 6 h, reground, and heated at 850 °C overnight), and then heated at 1150 °C 

for 30 h with one intermediate grinding. 

The final perovskite hosts were washed with copious amount of water to remove the 

excess carbonate (as well as KCl in case of KCa2Nb3O10), and dried at 100 °C for a few hours. 

6.2.3   Microwave Assisted Reactions   

Proton exchange, exfoliation, and post-exfoliation surface-modification reactions were carried 

out in a StartSYNTH Microwave Synthesis Labstation as demonstrated chapter 2.84 For non-

aqueous reaction mixtures, a Weflon button (graphite-doped Teflon) was maintained in the 

mixture during the reaction to aid the non-polar solvents absorbing the microwaves.  The 

uniformity of each reaction was also ensured by using a Teflon stirring bar in all trials 

(transparent to microwaves). Caution:  It is required to inspect the glass vessels for defects and 

cracks before each experiment; these defects can create hotspots and cause explosion. 

  

6.2.3.1   Acid Exchange (Protonation)  

HLaNb2O7, HPrNb2O7, HCa2Nb3O10, HCa2Nb2FeO9, and HLaCaNb2MnO10 were 

prepared by MA acid treatment of their hosts in a 6 M nitric acid solution at 60 °C for 3 h (with 
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continuous stirring and a maximum power of 300 W).84 It is required to maintain a molar ratio of 

greater than 150:1 for the proton to interlayer cation (K, Rb, or Cs) in order to obtain above 95% 

yield in the proton exchange step. The protonated products were washed with copious amount of 

distilled water, and dried at 100 °C for a few hours.  

 

6.2.3.2   Exfoliation of the Perovskite Hosts  

The protonated perovskites were exfoliated in an aqueous solution of TBAOH with at 

least 10-fold molar excess of hydrated TBAOH. Typical microwave-assisted exfoliation 

reactions were carried out at 1 h at 60 °C (max 300 W), then ramped to 80 °C over a 10-minute 

period, before heating at 80 °C for another 1 h (max 350 W).77 All products were washed with 

water and ethanol, and dried at 60 °C overnight.  

 

6.2.3.3   Post-Exfoliation Surface-Exchange Reactions 

Once exfoliated nanosheets were obtained (TBA-PrNb2O7, TBA-Ca2Nb2FeO9, and TBA-

LaCaNb2MnO10 NS), various surface groups with alcoxy or ammonium functional groups were 

successfully introduced by treating the NS containing TBA+ surface groups in various solvents 

via MA exchange reactions:77 CnH2n+1OH (n = 3, 5, 10), benzyl alcohol (BA), benzylamine 

(BAm), and CnH2n+1NH2 (n = 3, 6, 8) solvents. Typically, 20 mg of dried NS was reacted with 8 

mL pure solvent containing a Weflon button: 1 h at 60 °C (max 300 W) in benzyl alcohol and 

benzylamine, 1 h at 100 °C (max 600 W) in n-propanol and 1-propylamine, 45 min at 120 °C 

(max 800 W) for n-pentanol and 1-hexylamine, and 30 min at 150 °C (max 1000 W) for n-

decanol and 1-octylamine. The products were washed with acetone and dried at 70 °C for several 

hours.  

 

6.2.4   Characterization 

A Philips X’Pert system equipped with Cu Kα radiation (λ = 1.5418 Å) and a curved 

graphite monochromator was used in continuous mode with a scan rate of 0.02 °/s to collect the 

X-ray powder diffraction (XRD) data. Infrared spectroscopy was performed using a Perkin 

Elmer 2000 FT-IR spectrometer. Raman spectra were collected in a Thermo-Fisher DXR 

dispersive Raman spectrometer at a wavelength of 532 nm line with a spectral resolution of 3 

cm-1. The NS thicknesses were examined under an Asylum Research MFP-3D Atomic Force 
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Microscope (AFM) working in the dual amplitude resonance tracking (DART) mode; a very 

dilute suspension of each NS sample in ethanol was drop cast onto a mica sheet. Transmission 

electron microscopy (TEM) images and selected area electron diffraction (SAED) were taken at 

JEOL 2010 high-resolution microscope (200 keV) and FEI TECNAI G2 F30 FEG TEM (300 

keV). For TEM measurements, a dilute dispersion of each NS in ethanol was drop cast onto a 

grid (carbon film coated fine mesh copper), and dried at room temperature for a few hours. Field 

emission SEM images of sample morphologies were obtained on a HITACHI S-4800 FEG 

CRYO-SEM. For the FESEM sample preparation, a dispersion of NS in ethanol was drop cast on 

small pieces of aluminum foil, lightly coated with gold, taped onto the FESEM stud using carbon 

tapes, and finally observed in 1-3 kV range. 

Optical measurements were carried out using ultraviolet-visible (UV-Vis) and 

fluorescence (FL) spectroscopies, respectively collected on a Cary 500 UV-Vis/NIR 

spectrometer, and a Perkin Elmer LS 55 Luminescence Spectrometer. Each sample (TBA-

LaNb2O7, TBA-PrNb2O7, TBA-Ca2Nb3O10, TBA-Ca2Nb2FeO9, and TBA-LaCaNb2MnO10 NS) 

was evaluated in two ways: either a very dilute suspension of the NS in ethanol was filled in 

quartz cuvettes, or a very concentrated suspension of NS in ethanol (more like a thick paste of 

NS) was coated on quartz slides to form an even thick film. The solid samples proved to show 

more variations rather than the dilute suspensions, and so all other hybrid nanosheets were only 

characterized as solid films on quartz slides. The UV-Vis and FL instruments are designed to 

carry both types of preparations; either solid or solution. However, the solution form in cuvettes 

is the default setup, which typically yields absorbance spectrum in case of UV-Vis or 

excitation/emission spectra for FL measurements. In order to study the solid films in UV-Vis, the 

diffuse reflectance accessory (DRA) was plugged to the instrument instead of the two front and 

back cuvette-holders. In case of FL spectroscopy, a front surface accessory was used in place of 

the cuvette holder which allowed for clipping the NS-coated quartz slide for excitation/emission 

measurements.  
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6.3– Results 

6.3.1   Formation of Hybrid Oxide Nanosheets 

As demonstrated in Chapter 4, MA exfoliation and following surface-modification 

reactions successfully lead into various hybrid nanosheets based on double-layered LnNb2O7 

perovskites (Ln = La, Pr). Here, the same experimental methods77 are applied for the production 

of novel oxide nanosheets and their various hybrid derivatives from two triple-layered DJ 

perovskites; HCa2Nb2FeO9 and HLaCaNb2MnO10.  

 

Focus of this chapter will be on the optical properties of the hybrid nanosheets that are 

obtained from HPrNb2O7, HCa2Nb2FeO9, and HLaCaNb2MnO10 DJ perovskites, as it is expected 

to see interesting features due to the presence of Pr, Fe, and Mn elemenets, respectively. Novel 

TBA+-PrNb2O7, TBA+-Ca2Nb2FeO9, and TBA+-LaCaNb2MnO10 nanosheets are initially 

compared to well-known TBA+-LaNb2O7, TBA+-Ca2Nb3O10 nanosheets, and then used as 

“hosts” for the preparation of other functionalized nanosheets using CnH2n+1-OH (n = 3, 5, and 

10), CnH2n+1-NH2 (n = 3, 6, and 8), C7H7-OH, and C7H7-NH2. For the convenience, LaNb2O7-, 

PrNb2O7-, Ca2Nb3O10-, Ca2Nb2FeO9-, and LaCaNb2MnO10-based nanosheets are respectively 

abbreviated as LN, PN, CN, Fe, and Mn nanosheets throughout this chapter. 

 

Figure 6-2 compares the XRD patterns of TBA-LN, TBA-PN, TBA-CN, TBA-Fe, and 

TBA-Mn to their protonated hosts, confirming the loss of crystallinity as the intercalation of 

TBA+ delaminates the layered hosts into freestanding layers. In order to further approve of the 

formation of nanosheets in case of novel TBA-Fe and TBA-Mn NS, TEM was also tried, 

showing individual layers of nanosheets throughout the sample (Figure 6-3). SAED insets in 

Figure 6-3 confirms the maintained atomic order throughout each layer, prying apart the layered 

hosts only from their swollen and detached interlayers. The topology of individual nanosheets 

was further examined with AFM.  The height contact-mode image and height profile from TBA-

Fe and TBA-Mn nanosheet samples are provided in Figure 6-4. The average nanosheet 

thicknesses of TBA-Fe and TBA-Mn nanosheets, based on 45 values measured from different 

height profiles, were found to be 1.8(4) nm and 2.2(5) nm, respectively. A smaller average 

thickness for Fe NS compared to Mn NS seems to be reasonable considering the random oxygen 

vacancies of these nanosheets, as well as having only Ca2+ in the A site of the An-1BnO3n+1 slab 
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(rather than a combination of Ca2+ and larger La3+ in Mn NS). Estimating the thickness of each 

slab from the structure of RbCa2Nb3O10,85 any assembly of two nanosheets is expected to be 

greater than about 2.4 nm (two slabs as well as an interlayer spacing between adjacent organic 

layers). This implies the delamination of both of these hosts to at most two layers, similar to 

TBA-PN NS.77 The morphology of TBA-Fe and TBA-Mn nanosheets was also examined by 

FESEM technique and presented in Figure 6-5, approving of assemblies of thin sheets, with 

TBA+ aggregates appearing as surface dots similar to those observed for TBA-PN and TBA-LN 

nanosheets in chapter 4.77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

Figure 6- 2: XRD patterns of the as-synthesized nanosheets versus their protonated 

layered hosts; (a) HLN, (b) TBA+-LN NS, (c) HPN, (d) TBA+-PN NS, (e) HCN, (f) TBA+-

CN NS, (g) HFe, (h) TBA+-Fe NS, (i) HMn and (j) TBA+-Mn NS. 
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Figure 6- 3: TEM images and SAED patterns of (a) TBA-Fe 

NS and (b) TBA-Mn NS. 

Figure 6- 4: Height contact-mode AFM images and height profiles for (a) TBA-Fe NS and 

(b) TBA-Mn NS samples. 
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Post-exfoliation surface-modification of TBA-Fe and TBA-Mn nanosheets were 

perfomed using CnH2n+1-OH (n = 3, 5, and 10), CnH2n+1-NH2 (n = 3, 6, and 8), C7H7-OH, and 

C7H7-NH2 solvents, for introducing various linear/cyclic alcoxy and ammonium fanctionalities to 

these nanosheets. Figure 6-6 and 6-7 respectively present the XRD patterns of Fe NS and Mn NS 

hybrid nanosheets. In case of hybrid Fe NS, in some cases the first reflection is very weak 

(Figure 6-6 e and f) or even missing (Figure 6-6 b, h, and i), indicating a poorer reactivity for this 

type of metal oxide nanosheet as opposed to Mn NS (Figure 6-7) and PN NS (presented in 

chapter 4). Vibrational spectroscopy was carried out to evaluate the organic loading and the 

success of the surface-exchange reactions in case of these two classes of metal-oxide nanosheets. 

Figure 6-8 provides the Raman spectra of some of the hybrids obtained from Fe NS; the whole 

wavenumber range is presented in Figure 6-8a, and a smaller region was zoomed in b to 

highlight the bands pertinent to the organic groups. Two propoxy and propylammonium 

derivatives do not show alkane-related bands (marked with dashed square in Figure 6-8 b), 

which considering their previously presented XRD patterns (Figure 6-6 b and e) indicates a very 

low degree of organic loading, if any. However, the decent loading of the organic groups on the 

rest of the hybrids is supported via these Raman spectra—see the alkane-related bands in dashed 

square, as well as the peaks pertinent to the phenyl ring marked with solid traingles.86 Raman 

spectroscopy was also investigated on hybrid Mn NSs. In this case, the laser beam in Raman 

seemed to interact unfavorably with this specific hosts and its derivatives, yielding a broad peak 

Figure 6- 5: FESEM images of (a,b) TBA-Fe NS and (c,d) TBA-Mn NS samples. 
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that would shield all the important vibration bands. Therefore, IR spectroscopy was applied 

instead to study various vibrational modes expected for hybrid Mn NS (Figure 6-9). Despite 

better XRD patterns observed for hybrid Mn NS versus those of Fe NS, the quality of the IR 

spectra are in general poorer than the Raman, not indicative of better organic loading for the Mn 

derivatives as suggested by XRD (which is most likely instrumental). Based on the zoomed-in IR 

spectra presented in Figure 6-9b, the degree of organic loading in case of propylammonium, 

propoxy, and pentoxy derivatives is poor, while the other hybrids show the expected bands (the 

alkane-related peaks in dashed square, and the bands pertinent to the phenyl ring highlighted 

with solid traingles).86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6- 6:  XRD patterns of various hybrid Fe NS; (a) TBA-Fe, (b—d) CnH2n+1-

Fe NS (n = 3, 5, and 10 in b, c, and d respectively), (e—g) CnH2n+1-NH3
+-Fe NS (n = 3, 

6, and 8 in e, f, and g respectively), (h) C7H7-Fe NS, and (i) C7H7-NH3
+-Fe NS. 

Figure 6- 7: XRD patterns of various hybrid Mn NS; (a) TBA-Mn, (b—d) CnH2n+1-

Mn NS (n = 3, 5, and 10 in b, c, and d respectively), (e—g) CnH2n+1-NH3
+-Mn NS (n = 3, 

6, and 8 in e, f, and g respectively), (h) C7H7-Mn NS, and (i) C7H7-NH3
+-Mn NS. 
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Figure 6- 8: Raman spectra of some hybrid Fe NS compared to their layered hosts; (a) layered 

RbCa2Nb2FeO9, (b) layered HCa2Nb2FeO9, and various hybrid Fe NS with TBA+, CnH2n+1NH3
+ (n = 3, 6, 8), 

CnH2n+1- (n = 3, 5, 10), and C7H7- surface groups respectively presented in (c—j). The spectra are provided in 

full range wavenumber in a and then zoomed in b (the peaks related to alkanes and phenyl groups are 

respectively highlighted with dashed square and solid traingles in b). 

Figure 6- 9: IR transmittance spectra for various hybrid Mn NS versus their layered hosts provided in a) 

full-range wavenumber, as well as b) zoomed in region; (a) layered RbLaCaNb2MnO10, (b) layered 

HLaCaNb2MnO10, and various hybrid Mn NS with TBA+, CnH2n+1NH3
+ (n = 3, 6, 8), CnH2n+1- (n = 3, 5, 10), and 

C7H7- surface groups respectively presented in (c—j). The peaks related to alkanes and phenyl groups are 

respectively highlighted with dashed square and solid traingles in b. 
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6.3.2   Optical Properties 

6.3.2.1   TBA-Functionalized Nanosheets 

The optical properties of TBA-PN, TBA-Fe, and TBA-Mn nanosheets were first 

evaluated in two different sets of experiments: 1) as-synthesized nanosheets were sonicated in a 

few drops of ethanol to form a very concentrated suspension. Then, using a very small portion of 

the concentrated batch, a very dilute suspension of each nanosheet was prepared for optical 

measurements by adding extra ethanol—too dilute that the distinguished color of the nanosheets 

were no longer visible, and they all appeared transparent, 2) thick films were prepared on quartz 

slides using the concentrated suspensions of the nanosheets (so-called “reassembled 

nanocomposite thin films”). The samples from these two preparation techniques are called 

“solution” and “solid” samples throughout the body and images presented later in. Absorbance, 

reflectance, and FL spectra are presented for solution and/or solid samples of these nanosheets, 

and compared to those of TBA-LN and TBA-CN nanosheets as known references. Figure 6-10 

presents the absorbance spectra of the dilute suspensions of the five nanosheets, where very 

similar behavior is observed regardless of the elemental composition. However, the solid 

samples of the same nanosheets investigated via DRS show quite different responses as provided 

in Figure 6-11 (dashed patterns in case of b, d, and e show the spectra obtained for a replicate 

batch of each sample). To further clarify the impact of the elemental composition on the optical 

Figure 6- 10: Absorbance spectra of the dilute suspensions of the five NS; 

(a) TBA-LN, (b) TBA-PN, (c) TBA-CN, (d) TBA-Fe, and (e) TBA-Mn NS. 
 



170 

 

properties exploiting the DRS results, the Tauc plot87–90 was also obtained from the reflectance 

spectra. As proposed in the literature,56 layered perovskites with indirect band gaps might change 

into direct band gaps after exfoliating into monolayers. However, sample preparation in form of 

thin film composites leads into restacked monolayers more likely to behave as indirect band gap 

materials again. Therefore, both direct and indirect band-gap estimations were taken into account 

providing the Tauc plots, respectively presented in Figures 6-12 and 6-13. In order to calculate 

the band-gap from the reflectance (R ), first F(R ) is calculated based on the Kubelka–Munk 

function,87,91 where 𝐹(𝑅) =
(1−𝑅)2

2𝑅
. The calculated F(R ) can then replace α (absorption 

coefficient) in well-known Tauc-Davis-Mott formula; (ℎ𝑣𝛼)1/𝑛 = 𝐴 (ℎ𝑣 − 𝐸𝑔), where h is the 

Planck’s constant, v is frequency, Eg is the band gap, A is the proportional constant, and n is 0.5 

or 2 for direct and inderct band-gap materials, respectively.87,91 The following Tauc plots, 

(ℎ𝑣𝛼)1/𝑛 for both n = 0.5 and 2, are provided versus hv (eV), calculated from hC/λ or simply 

1239.7/λ, where wavelength in nm is plugged in the equation. Using the Tauc plot, band gap can 

then be estimated similar to the literature.9,28,92,93 

 

 

Figure 6- 11: Diffuse reflectance spectra of the five NS; (a) TBA-LN, (b) TBA-

PN, (c) TBA-CN, (d) TBA-Fe, and (e) TBA-Mn NS. Dashed patterns in case of b, d, 

and e show the spectra obtained for a second batch of each sample. 
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The emission spectra of both solution and solid samples prepared from TBA-LN, TBA-

PN, TBA-CN, TBA-Fe, and TBA-Mn NS were obtained via fluorescence spectroscopy with 

excitations at 250, 330, and 550 nm. The FL sectra obtained from dilute suspensions are 

presented in Figure 6-14, where the ones from the thin composite films are shown in Figure 6-15. 

All the spectra are normalized in order to minimize the influence of the sample preparation on 

the optical responses. 

 

Figure 6- 12: Tauc plot considering a direct band gap; (hvF(R))2 versus hv. 

Figure 6- 13: Tauc plot considering an indirect band gap; (hvF(R))1/2 versus hv. 
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Considering Figures 6-10, 6-11, 6-14, and 6-15, thin film composites better highlight the 

difference in the optical responses collected from TBA NS (as opposed to the dilute suspensions 

of the same samples). This observation was especially noticeable in case of DRS results. Thus, in 

Figure 6- 14: Fluorescence spectra of solution samples prepared from TBA NS; 

emission spectra of (a) background—cuvette filled with ethanol, (b) TBA-LN, (c) 

TBA-PN, (d) TBA-CN, (e) TBA-Fe, and (f) TBA-Mn NS. 

Figure 6- 15: Fluorescence spectra of solid films prepared from TBA NS; 

emission spectra of (a) background—blank quartz slide, (b) TBA-LN, (c) TBA-PN, 

(d) TBA-CN, (e) TBA-Fe, and (f) TBA-Mn NS. 



173 

 

order to further investigate the impact of various organic functionalities on similar optical 

properties as those presented above, only solid samples were prepared and studied. In case of FL 

spectra, only excitation at 250 nm will be considered for various hybrid nanosheets to observe 

the influence of the organic functionalities on the emission response. 

 

6.3.2.2   Various Hybrid PrNb2O7, Ca2Nb2FeO9, and LaCaNb2MnO10 Nanosheets 

Figures 6-16, 6-17, and 6-18 respectively provide the DRS results obtained for a number 

of hybrid PN, Fe, and Mn nanosheets. Hybrid Mn nanosheets show the highest dependance on 

the organic functionality, where the reflectance spectra obtained from various hybrid Fe 

nanosheets all superimpose, and in case of hybrid PN NS only one hybrid behaves differently 

from the others (benzyl alcoxy-PN NS).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6- 16: DRS for various hybrid PN NS; TBA-PN, pentoxy-PN, decoxy-PN, 

hexylammonium-PN, octylammonium-PN, benzyl alcoxy-PN, and benzylammonium PN NS. 

Benzyl alcoxy-PN NS, marked with star, is the only hybrid responding different than the others. 

Figure 6- 17: DRS for various hybrid Fe NS; TBA-Fe, pentoxy-Fe, decoxy-Fe, hexylammonium-

Fe, octylammonium-Fe, benzyl alcoxy-Fe, and benzylammonium-Fe NS, all superimposing. 
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Emission spectra at 250 nm-wavelength excitation were also collected for various hybrid 

PN, Fe, and Mn NS via fluorescence spectroscopy, and presented respectively in Figures 6-19, 6-

20, and 6-21 below. The impact of the functionality in hybrid Mn nansheets is the most, and it 

mitigates as we go to Fe NS, and is the least in case of PN NS. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6- 18: DRS for various hybrid Mn NS; (a) TBA-Mn, (b) pentoxy-Mn, (c) decoxy-Mn, (d) 

hexylammonium-Mn, (e ) octylammonium-Mn, (f) benzyl alcoxy-Mn, and (g) benzylammonium-Mn 

NS. Fine-tuning of the reflectance, and so the band gap, is possible by tailoring the surface groups. 

Figure 6- 19: FL spectra for various hybrid PN NS; (a) TBA-PN, (b) pentoxy-PN, (c) 

decoxy-PN, (d) hexylammonium-PN, (e ) octylammonium-PN, (f) benzyl alcoxy-PN, and 

(g) benzylammonium-PN NS, showing the same emission at 250 nm excitation wavelength. 
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Figure 6- 20: FL spectra for various hybrid Fe NS; (a) TBA-Fe, (b) pentoxy-Fe, (c) decoxy-Fe, 

(d) hexylammonium-Fe, (e ) octylammonium-Fe, (f) benzyl alcoxy-Fe, and (g) benzylammonium-Fe 

NS, showing the same emission at 250 nm excitation wavelength except for pentoxy hybrid (b). 

Figure 6- 21: FL spectra for various hybrid Mn NS, presenting the emission at 250 nm 

excitation wavelength; (a) TBA-Mn, (b) pentoxy-Mn, (c) decoxy-Mn, (d) hexylammonium-Mn, (e ) 

octylammonium-Mn, (f) benzyl alcoxy-Mn, and (g) benzylammonium-Mn NS, the most-influenced 

emission spectra by the organic surface groups among the three classes of hybrid nanosheets. 



176 

 

6.4– Discussion 

6.4.1   Formation of Hybrid Oxide Nanosheets 

The main focus of this chapter was to investigate the impact of both elemental 

composition and the organic surface groups of hybrid metal-oxide nanosheets on their optical 

properties. In this regard, three DJ perovskites isostructural with well-known HLaNb2O7 and 

HCa2Nb3O10 were selected, where the existance of an element with patially-filled d/f orbitals in 

A or B site of the An-1BnO3n+1 perovskite slab was ensured (n = 2 or 3 for double- and triple-

layered hosts, respectively); Pr, Fe, and Mn in HPrNb2O7, HCa2Nb2FeO9, and HLaCaNb2MnO10, 

respectively. Even though the impact of the elemental composition on photocatalytic activity, 

optical or electronic properties of some 2D materials has been studied before,20,36,41,45,46,49–51 the 

influence of the functional groups on freestanding layers has not been investigated yet (possibly 

due to the limitation of the available experimental methods to freely tailor these surface groups 

as a post-exfoliation step). 

 

The novel MA exfoliation and surface-modification techniques introduced in Chapter 4 

for two double-layered DJ perovskites,77 were successfully employed on triple-layered DJ hosts 

as well (HCa2Nb2FeO9 and HLaCaNb2MnO10). Initially, the success of the MA exfoliation using 

TBAOH was confirmed for the new triple-layered hosts, using X-ray diffraction, as well as 

atomic force and electron microscopies (Figures 6-2, 6-3, 6-4, and 6-5). Intact exfoliation of the 

initial 3D-organization of the slabs into their freestanding 2D slabs is supported by the loss of 

crystalinity observed in the XRD patterns collected after delamination compared to those prior to 

the reaction (Figure 6-2), as well as the SAED patterns which approve of the maintained atomic 

order in each slab (Figure 6-3 inset). The formation of thin sheets is further confirmed by 

electron microscopy techniques (Figures 6-3 and 6-5), as well as observing at most twolayer-

thick nanosheets in AFM profiles (Figure 6-4). Various organic derivatives of Ca2Nb2FeO9 and 

LaCaNb2MnO10 nanosheets were then obtained similar to those of PrNb2O7 reported earlier.77 In 

order to evaluate the organic loading in these post-exfoliation exchange reactions, XRD and 

vibrational spectroscopy were performed on the various nanosheet hybrids (provided in Figures 

6-6, 6-7, 6-8, and 6-9). Despite high reactivity of the double-layered nanosheets with various 

organics observed for LnNb2O7 (Ln = La, Pr),77 the reactivity of the triple-layereds are somewhat 

less. This is similar to the poorer reactivity of layered HCa2Nb3O10 with alcohols observed in our 
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earlier work.84 Even though the successful incorporation of n-propoxy and n-propylammonium 

surface groups remained questionable after XRD and vibrational spectroscopy, the rest of the 

hybrids were decent (n-pentoxy, n-decoxy, 1-hexylammonium, 1-octylammonium, benzyl 

alcoxy, and benzylammonium derivatives). In general, Mn NS showed better reactivty of the two 

triple-layereds studied here. 

 

6.4.2   Optical Properties 

6.4.2.1   TBA-Functionalized Nanosheets 

The impact of the elemental composition of TBA-functionalized nanosheets on their 

reflectance and emission was studied by screening the five types of nanosheets in both solution 

and solid forms; TBA+-LaNb2O7, TBA+-PrNb2O7, TBA+-Ca2Nb3O10, TBA+-Ca2Nb2FeO9, and 

TBA+-LaCaNb2MnO10. It is notable that PN, Fe and Mn NS all have different colors (green, 

orange, and black, respectively), as opposed to white LN and CN NS, which is a simple visual 

way to predict varying absorbance/reflectance behaviors for them. Dilute dispersions of these 

nanosheets in ethanol yielded very similar absorbance spectra (Figure 6-10), while the DRS 

performed on solid films showed quite different responses (Figure 6-11). It has been shown in 

the literature that the number of layers and their size quantization impact their band gap—band 

gap increasing as the number of monolayers decreases, for instance, bulk 3D hosts usually have a 

smaller band gap compared to their 2D exfoliated variations.9,28,56,93 Other than the band gap 

energy, the type of the transmission also changes from indirect to direct when the dimensionality 

of a perovskite or layered material is decreased from three to two.56 Based on these two general 

statements, we cannot confidently determine the type of the transition (direct or indirect) in 

restacked nanosheets; while being 2D strongly suggests a direct transition, formation of a 

restacked assembly might push it more towards an indirect type. Usually in case of absorbance 

studies, you can confidently take the exfoliated nanosheet as a direct-band gap, as you are 

studying a dispersion of monolayers. However, due to our focus on DRS of the thin composite 

films, we prefered to provide both forms of the Tauc-Davis-Mott formula; both [ℎ𝑣(𝐹(𝑅))]2 and 

[ℎ𝑣(𝐹(𝑅))]1/2 plotted versus ℎ𝑣, respectively, for direct and indirect-band gap materials, in 

Figures 6-12 and 6-13. The next important item to determine is “the point of inflection” – the 

maximum points of the first derivative of the Tauc plot.87 Then, a line should be drawn tangent 

to the curve at the point of inflection, whose intersection with x axis (hv) will give the band gap 
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value (Eg). Band gap energy values for exfoliated LaTa2O7 and Ca2Nb3O10 are respectively 

reported as 4.2 and 3.45 eV,9,28 suggesting that the point of inflection should be on the linear 

portion of the [ℎ𝑣(𝐹(𝑅))]1/𝑛 plots for hv values greater than about 3 eV. However, the Eg of 

TBA-LN NS is estimated to be smaller than that of CN NS when the linear portion in 4-5 eV is 

considered (either with direct or indirect relationship), and almost equal when the linear portion 

in 3.5-4 eV is extended to the horizontal hv axis. In both cases, the triple-layered NSs do not 

yield a smaller Eg value as expected.9,28,56,93 Despite this uncertainty on reporting definite Eg 

values for these nanosheets, their reflectance is obviously different due to their different 

elemental composition, most likely resulting from different band gaps. 

The emission spectra of five TBA-functionalized nanosheets in solution are presented in 

Figure 6-14, compared with the blank run presented in light grey (quartz filled with pure 

ethanol). When excited at 250 nm (a), the maximum emission wavelength seems to slightly shift 

among the five samples; least for TBA-CN NS (370 nm) and highest for TBA-Mn NS (400 nm), 

with almost the same broadness of the emission peak. In case of excitation at 330 nm (b), the 

same order is observed, however, the range of shifting is narrower (about 390 to 400 nm). For 

550 nm excitation (c), the maximum of all five nanosheets overlap, while their lower-wavelength 

tail shows various intensities for different types (most intense for TBA-CN and least for TBA-

Mn NS, in other words, the emission peak at this wavelength is somewhat narrowest for TBA-

Mn NS, and broadest for TBA-CN NS). The same examination was performed on the solid films 

prepared from the same samples (Figure 6-15). The shapes and maxima of the emission peaks for 

250 nm excitation showed a wider variation among the solid samples (a). In case of excitations at 

330 nm (b), a slight shift was again observed for the maxima of the emission peaks of the five 

samples (from 370 to 400 nm), where TBA-CN again had the lowest wavelength for its 

maximum, but this time TBA-PN showed the highest. The emission spectra for 550 nm 

excitation (c) showed overlapping broad peaks with a maximum similar to that of the solution 

samples. Again, the TBA-Mn sample yielded the narrowest peak, and TBA-CN the broadest (the 

difference in broadness was more significant in case of solid samples though). As most 

noticeable changes among different samples was observed in solid samples and at an excitation 

wavelength of 250 nm, different hybrid derivatives of PN, Fe, and Mn nanosheets were only 

plotted for this specific condition. Other than investigating the emission behavior using FL, 
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excitation spectra of various emission wavelengths were also studied for all the samples. 

However, due to very similar spectra obtained for these trials, they were not included in the 

results. 

 

6.4.2.2   Various Hybrid PrNb2O7, Ca2Nb2FeO9, and LaCaNb2MnO10 Nanosheets 

DRS results for various PN, Fe, and Mn hybrids were presented on Figures 6-16, 6-17, 

and 6-18, respectively, showing the most significant impact of the functional groups among 

different derivatives of the Mn NS. According to Figure 6-18 (representing the DRS results for 

Mn NS hybrids), the reflectance at about 500 nm gradually increases in its relative intensity as 

TBA+ is exchanged with benzylammonium, n-alkyl alcoxy, and n-alkylammonium groups. The 

benzyl alcoxy surface group also causes the most dramatic change in the absorbance behavior of 

Mn NS by changing the shape of the spectra (Figure 6-18f). Considering that benzyl alcoxy is 

the only organic that has an influence on the absorbance of hybrid PN NS (Figure 6-16), this 

surface group seems to have the most significant impact in cases that the absorbance is relatively 

dependant on the surface groups (here in case of Mn and PN NSs). 

Considering the emission spectra of these three classes of hybrid nanosheets in Figures 6-

19, 6-20, and 6-21, Mn NS again show the most dependance on the organic groups in their 

emission spectra collected at 250 nm excitation. Despite the strong emission of TBA-Mn NS at 

both 300 and 550 nm, the maximum emission of benzyl alcoxy-, benzylammonium-, pentoxy-, 

and decoxy-Mn NS is at about 380 nm, and for the two n-alkyl ammonium derivatives appears at 

about 550 nm (Figure 6-21). 

Variations of organic surface groups seemed to have minimal impact on the optical 

properties of hybrid Fe and PN nanosheets. Conversely, fine tuning of the reflectance/emission 

spectra of Mn hybrids was possible by changing the surface groups. 

 

6.5– Conclusions 

A series of novel functionalized metal-oxide nanosheets were obtained from double- and 

triple-layered Dion-Jacobson perovskites; HPrNb2O7, HCa2Nb2FeO9, and HLaCaNb2MnO10. 

Rapid microwave-assisted reactions were used to efficiently fabricate organic-inorganic 

nanostructures with controlled elemental composition, thickness, and surface groups. The optical 

properties, absorbance and emission behavior, of the various hybrid nanosheets were then 
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studied as a function of the elemental composition and the organic surface groups for both 

dispersed nanosheets and reassembled nanocomposite thin films. Studying the dispersed host 

nanosheets (TBA+-PrNb2O7, TBA+-Ca2Nb2FeO9, and TBA+-LaCaNb2MnO10) tended to exhibit 

similar optical properties, where nanocomposite films from the same samples showed a more 

noticeable variation versus the elemental composition of the nanosheets. The optical properties 

of various hybrid nanosheets were then investigated as a function of the organic surface groups 

for nanocomposite films prepared from n-pentoxy, n-decoxy, 1-hexylammonium, 1-

octylammonium, benzyl alcoxy, and benzylammonium derivatives of all three types of PrNb2O7, 

Ca2Nb2FeO9, and LaCaNb2MnO10 nanosheets. Diffuse reflectance and fluorescence spectra of 

the LaCaNb2MnO10 hybrid nanosheets changed the most under the impact of their organic 

surface groups, conversely, the emission of various PrNb2O7 hybrid nanosheets and the 

absorbance of  Ca2Nb2FeO9 hybrid nanosheets showed almost no dependance on their organic 

surface groups. 
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Chapter 7. Concluding Remarks 

The main goal of this work was to develop novel inorganic-organic hybrids based on 

layered oxide perovskites. This was fulfilled via topochemical manipulation of Dion-Jacobson 

(DJ) and Ruddlesden-Popper (RP) perovskite phases, with various alcohols and amines. These 

reactions typically start with an initial proton exchange step, followed by introducing short-chain 

n-alkyl alcohols and/or n-alkylamines. The short-chain organics are then exchangeable with 

longer ones, allowing for a variety of anchored organic groups, held in the interlayer via alcoxy 

covalent bonds or acid-base interactions (for alcohols and amines, respectively). Clearly, such 

topochemical modification reactions are naturally multi-step, and could take a very long time if 

each step requires a few days to yield a decent-quality product. Solvothermal approaches were 

the best option available for stepwise modification reactions at the time that we started this work 

in 2013. Despite being faster than traditional hot-plate stirring methods, such solvothermal 

modifications would still require over a week to efficiently yield a specific organic derivative of 

a layered perovskite (consider the steps for the solvothermal preparation of n-decoxy-LaNb2O7 

from RbLaNb2O7). As demonstrated in Chapter 2, we were among the first groups exploiting 

microwave radiation in such topochemical modification reactions, introducing facile procedures 

for the production of a number of hybrid oxide perovskites. We specifically showed that proton 

exchange can also be performed in microwave apparatus, and combinations of proton exchange, 

grafting, and intercalation can decrease a multi-step modification procedure that is at least a 

week long to only a few hours. Various types of layered perovskites, double- and triple-layered 

DJ and RP, were investigated to evaluate the effectiveness of proposed microwave-assisted 

reactions. The results of this initial phase of our work were summarized in Chapter 2, presenting 

the great potential of this approach for rapid production of new and known organic-inorganic 

hybrids. It should be noted that despite high reactivity of double-layered DJ and RP hosts 

(HLaNb2O7, HPrNb2O7, and H2CaTa2O7), the reactivity of the triple-layered hosts (HCa2Nb3O10 

and H2La2Ti3O10) were somewhat limited under our conditions. 

Taking advantage of the efficiency of the microwave approaches demonstrated in 

Chapter 2, large amounts of organically modified HLaNb2O7 were readily obtained, allowing for 

the collection of decent-quality neutron diffraction patterns, and taking the very first step in 

refining the structure of a layered hybrid oxide perovskite. The results presented in Chapter 3 are 
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very novel, and indeed the beginning of more research on locating the anchored organic chains in 

polycrystalline hybrid oxide perovskites.  

Beyond three-dimensional (3D) hybrids presented in Chapters 2 and 3, exfoliation of DJ 

layered oxide perovskites and properties of various functionalized metal-oxide nanosheets were 

then fully discussed in Chapters 4, 5, and 6. The rapidity and effectiveness of microwaves were 

again employed in exfoliation reactions, leading to novel delamination processes as well as post-

exfoliation surface-modification reactions to obtain a wide range of functionalized metal-oxide 

nanosheets within a few hours. Chapter 4 specifically approves of the validity of these 

approaches looking at the simplest possible host (HLnNb2O7; Ln = La, Pr), showing how the 

surface of these oxide nanosheets can be tailored with various saturated and unsaturated linear or 

cyclic organics. Focusing more on unsaturated organic surface groups, so-called monomer-

grafted nanosheets were obtained and their polymerization trials were reported in Chapter 5. In 

Chapter 6, microwave-assisted exfoliation and post-exfoliation surface-modification reactions 

were expanded to a few triple-layered DJ hosts as well; investigating HCa2Nb3O10, 

HCa2Nb2FeO9, and HLaCaNb2MnO10 perovskites, similar to HLaNb2O7 and HPrNb2O7. The 

impact that elements such as Pr3+, Fe3+, and Mn4+ would impose on the optical properties of such 

functionalized metal-oxide nanosheets was then presented, and the optical properties of 

LaCaNb2MnO10 nanosheets showed the highest dependence on their organic functional groups.  

 

This work leads into novel microwave-assisted methods for the organic modification of 

layered oxide perovskites, as well as effective exfoliation and surface-modification of perovskite 

nanosheets. The ability to obtain functionalized metal-oxide nanosheets with engineered 

compositions and surfaces, is quite significant in developing new composites with potentially 

tunable properties (such as mechanical and optical). 
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Appendix A. Grafting Hydroxylated Fullerene in Layered Perovskites 

A.1 Introduction 

Interesting structure and properties of the C60 molecule have been studied extensively 

since its birth in 1980s.1 C60 is a truncated icosehedron as shown in Figure A-12; its nearly 

spherical structure is the main reason that C60 is mostly known as “buckyball”.   C60 or 

buckminsterfullerene was the firstly discovered member of fullerene family (closed-cage carbon-

based spheroidal molecules such as C20, C30, C40, C50, C60, C70, C90, C240, and C720
1,3 consisting of 

edge-sharing hexagons and pentagons). 

 

 

 

 

 

 

 

 

 

Buckminsterfullerene is famous because of its relatively high-temperature 

superconductivity when intercalated or doped with alkali metals.4,5 Examples include, but are not 

limitted to, Cs3C60, Cs2RbC60 and K3C60 with Tc’s about 30 K.6–14 Donation of the metal 

electrons to the fullerene is the reason why these alkali-doped fullerides (MxC60) can potentially 

show superconductivity.15 Endohedral fullerenes (endofullerenes),16–20 where the dopant is 

inside of the C60 cage (M@C60), may also be superconductors based on the same reasoning.15 

Another very important use of C60 is the incorporation of its derivatives in solar cells in order to 

enhance the performance and efficiency.21–28 In this respect, functionalization and modification 

of buckminsterfullerene is vastly studied to provide different derivatives of C60 with various 

reactivities and properties.29–38 Simplest C60 derivatives are amino fullerenes21,39–42 and 

fullerenols (also know as fullerols)25,43–56 with various applications in solar cells, 

electrochemistry, and biomedicine. 

Figure A- 1: (a) Structure of a single C60 (buckminsterfullerene), 

and (b) fcc crystal structure of C60 at room temperature. 
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Modification of perovskites with fullerene derivatives has been limitted only to layered 

halide perovskites used in solar cells.57,58 Incorporation of buckminsterfullerene in the interlayer 

of layered oxide perovskite was the main goal of the present work. Based on the very different 

properties of oxide perovskites compared to halides, such hybrids are expected to bring out 

interesting features once C60 is engaged in these novel hosts, even as interesting as 

superconductivity. Considering the efficient grafting of organics containing hydroxy groups in 

the interlayer of the Dion-Jacobson-type perovskites,59,60 simple fullerene derivatives were made 

via hydroxylation of the pristine C60 based on the procedures46–48,51,52,25 available in the literature. 

The simplest reactions to produce fullerol (also known as polyhydroxy fullerene as well as 

fullerenol) are based on vigorous stirring of C60 solution (usually in toluene or benzene) with an 

aqueous solution of NaOH or KOH, in the presence of a phase transfer catalyst such as with 

tetra(n-butyl)ammonium hydroxide (TBAOH).25,46 Some reports suggest using polyethylene 

glycol-400 (PEG) as the phase transfer catalyst to increase the rate of the reaction.48,51 Some 

other methods incorporate H2O2 in the following steps to increase the number of hydroxyl groups 

from about 1244 to 30 or so.52 Among all synthetic approaches for the production of fullerol, the 

solvent-free method proposed by Wang et al. seems to be the most straightforward, which only 

involves grinding the pristine C60 with solid NaOH and drops of H2O2.49 
 

A.2 Experimental 

A.2.1 Materials 

Rb2CO3 (Alfa Aesar, 99.8%), C60 (Alfa Aesar, 99%), H2O2 (Alfa Aesar, 29-32% w/w 

aqueous solution), polyethylene glycol 400 (Alfa Aesar), and NaOH (BDH, 97%) were used as 

received. La2O3 (Alfa Aesar, 99.99%) and Nb2O5 (Alfa Aesar, 99.9985%) were heated at 1000˚C 

for 12 h in order to eliminate any impurities. Organic n-alkyl alcohols, 1-propanol (Alfa Aesar 

99+%) and 1-decanol (Alfa Aesar 98+%), were used without any further distillation. For aqueous 

solutions (aq. soln.), milli-Q water (18.2 MV cm, Millipore) was used.  

A.2.2 Synthesis of n-decoxy-LaNb2O7 

RbLaNb2O7 was synthesized by grinding stoichiometric amounts of La2O3 and Nb2O5 

oxides with a 30% molar excess of Rb2CO3 as previously reported.61 The mixture was preheated 

at 850 °C overnight, reground, and heated at 1050 °C for 24 h. After regrinding, the sample was 
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finally heated at 1100 °C for 24 h. The product was washed with copious amount of water to 

remove the excess carbonate, and dried at 100 ˚C for a few hours. Acid treatment and alcoxy 

grafting reactions were performed in a StartSYNTH Microwave Synthesis Labstation as reported 

in earlier chapters.60 Microwave protonation of the host was achieved by continuous stirring of 

ground RbLaNb2O7  in a 6M nitric acid solution for 3 h at 60˚C (max power of 300 W), 

maintaining the molar ratio of proton to Rb greater than 150:1 for an efficient exchange. The 

protonated product was washed with distilled water until pH 7 was obtained, and dried at 100 ˚C 

for 3 hours. C3H7-LaNb2O7 was synthesized by reacting 0.15 g of HLaNb2O7 with 14 mL of 80% 

v/v aq. soln. of 1-propanol for 1 h at 100 ˚C with the maximum power of 350 W. The 1-propoxy-

LaNb2O7 intermediate was washed with distilled water and acetone and then dried at 70 ˚C for 1 

h. Finally, the interlayer of C3H7-LaNb2O7 was successfully exchanged with longer chain n-

decoxy substituent, yielding C10H21-LaNb2O7. The typical microwave procedure was carried out 

by reacting 0.1 g of n-propoxy-LaNb2O7 with 11 mL of 1-decanol for only 30 min at 150 ˚C with 

the maximum power of 1000 W. The n-decoxy-LaNb2O7 product was washed with acetone and 

dried at 70 ˚C for 1 h. This final hybrid was used in the following steps to easily replace the n-

decoxy substituent with fullerol due to the large interlayer spacing that n-decoxy-LaNb2O7 has 

(about 17 Å). 

A.2.3 Hydroxylation of Fullerene 

Solution Method. Following the procedure reported by Zhang et al.,48 hydroxylation was 

carried out using NaOH and PEG-400 (as the source of hydroxy groups and the phase transfer 

catalyst, respectively). Pure C60 was readily soluble in toluene (typically 25 mg C60 was 

dissolved in 15 mL of toluene). While vigorously stirring the C60 solution in ambient condition, 1 

mL of 15 M NaOH was added dropwise (molar ratio of OH- to C60 is about 400:1). Then, a few 

drops of an aqueous solution of PEG was added to the stirring mixture. For the preparation of aq. 

PEG, 0.111 g PEG-400 was dissolved in 5 mL water, and then 0.125, 0.375, 1 and 2 mL of this 

aqueous solution was used to yield various molar ratios of PEG to C60 for 4 different batches of 

C60-(OH)n (0.20, 0.6, 1.6, and 3.2 to 1, respectively). Vigorous stirring of the mixture was 

continued for 10 mins, yielding C60-(OH)n with various levels of solubility in toluene (more OH 

groups and less solubility in toluene with increasing the molar ratio of PEG, it should be noted 

that all batches above were still dispersible in toluene). The mixture of the product was washed a 



192 

 

few times with 30-50 mL of DI water in a separatory funnel, checking the pH every time, until 

the excess basic NaOH was thoroughly washed off from the product and pH 7 was obtained. 

Methanol was then added to the mixture of toluene and C60-(OH)n, aiding with the precipitation 

of the solid, and expediting the final step of solvent evaporation process which was carried out 

using a rotary evaporation apparatus for up to 15 minutes at 60 °C (Büchi Rotavapor R-200). 

This dark brown solid of C60-(OH)n was dissolved and stored in 15 mL fresh toluene. C60-(OH)n 

from this approach is named as I-C60-(OH)n. 

Solvent-Free Approach. Based on the facile solvent-free hydroxylation method proposed 

by Wang et al.,49 0.36 g NaOH (9 mmole), 0.7 mL of 30% H2O2 (9 mmole), and 108 mg pure C60 

(0.15 mmole) were added in a mortar, respectively. The reagents were well ground for 15 mins, 

yielding a brownish paste. The ground product was completely miscible with water, and was 

transferred to a centrifuge tube using less than 10 mL DI water. The mixture in the tube was 

topped with about 40mL methanol and centrifuged (when methanol is the dominant solvent, C60-

(OH)n readily precipitates). After a few centrifugation steps in methanol/water mixture, the 

precipitate was dried for a few hours at 70 °C. C60-(OH)n from this approach is named as II-C60-

(OH)n. 

A.2.4 Grafting Fullerol in the Perovskite Interlayer  

Based on C60-(OH)n obtained above, two different procedures were planned to produce 

C60-LaNb2O7 using the exchange of the two types of hydroxylate C60 with the interlayer of n-

decoxy-LaNb2O7. In the first method, 3 mL of the toluene solution of I-C60-(OH)n, was mixed 

and stirred with 15 mg of n-decoxy-LaNb2O7 (roughly in a 0.25:1 molar ratio of the two solids, 

respectively). This mixture was then transferred to a Teflon-lined stainless steel autoclave, and 

heated at 100 °C for 15 h (200 °C for 6 h yielded some successful batches as well). In a second 

approach, 5 mg of water-miscible II-C60-(OH)n was dissolved in 1 mL water, and mixed with 6 

mL of 2-butanone solution containing 15 mg of n-decoxy-LaNb2O7. The mixture was sonicated 

for a few mins and then heated at 100-110 °C for 15 h in a Teflon-lined stainless steel autoclave. 

A.2.5 Characterization 

X-ray powder diffraction (XRD) data were collected on a Philips X’Pert system equipped 

with Cu Kα radiation (λ = 1.5418 Å) and a curved graphite monochromator. Typical scans were 

carried out in continuous mode with a scan rate of 0.02 °/s. Infrared spectroscopy was performed 
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using a Perkin Elmer 2000 FT-IR spectrometer. Thermogravimetric analysis (TGA) and 

differential scanning calorimetry (DSC) data were collected on a TA Instruments TGA-DSC 

SDT Q600 system in alumina pans under a dilute oxygen atmosphere (ca. 50% argon); samples 

were heated up to 1000 °C at a rate of 10 °C/min. I-C60-(OH)n samples were run in a AB Sciex-

3200 Q Trap mass spectrometer by direct injection in electrospray system with the temperature 

of 300 °C for the source. The curtain gas flow was maintained at 10 mL/min, and the ion source 

gas (nitrogen) was in the positive mode. 

 

A.3 Results and Discussion 

A.3.1 Grafting I-C60-(OH)n. Figure A-2 shows the C60 hydroxylation process by adding 

NaOH and PEG to the solution of C60: (a) violet solution of pure C60 in toluene, and (b) Fullerol, 

I-C60-(OH)n, after the addition of 15 M NaOH and aq. PEG in molar ratios of 400 and 20 to 1 

mole of C60, respectively. Molar ratios of 5 or less for PEG:C60 yielded I-C60-(OH)n that was 

completely miscible with toluene, reaction of which with n-decoxy-LaNb2O7 was studied under 

various conditions. Figure A-3 represents the schematic of the proposed exchange reaction of 

hydroxylated C60 with the interlayer of C10H21-LaNb2O7. The major issue with these reactions 

was poor reproducibility; despite using the same batch of fullerol and the exact same 

solvothermal condition, most of the reactions showed poor crystallinity for the C60-LaNb2O7. 

The most successful reaction conditions with most consistent results turned out to be 15 h at 100 

°C, or 3 h at 200 °C, using fullerols obtained at 0.6 for the molar ratio of PEG to C60.  
 

 

Figure A- 2: (a) Pure C60 dissolved in toluene, hydroxylation upon 

addition of NaOH and PEG to produce (b) I-C60-(OH)n. 
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Figure A-4 shows the FTIR spectra for fullerene and fullerol, supporting the 

hydroxylation process due to the appearance of sharp alkoxy bands at 1260-1000 cm-1. 

Observation of the OH bond with nuclear magnetic resonance (NMR) would work the best by 

dissolving the fullerol in D2O which was not the case for hydrophobic I-C60-(OH)n. In order to 

further prove the successful formation of fullerol via an alternative analytical technique rather 

than FTIR and NMR, mass spectroscopy was done on I-C60-(OH)n. Figure A-5 shows the 

existance of molecular fragments with m/Z values higher than 720, which strongly suggests the 

formation of OH bonds on fullerene. It should be noted that the molar mass of fullerol can be 

estimated by adding OH (17 g/mole) to pure fullerene, yielding numbers such as 737, 754, 771, 

… , 720 + n(17) g/mole based on various n 

values in I-C60-(OH)n. The m/Z spacings 

between the fragments of hydroxylated C60 

are consistently about either 44 or 58 Da 

for the two batches prepared with 0.6 and 

1.6 molar ratio of PEG respectively, while 

the steps are about 35 in case of pure 

Fullerene. These spacings are differen 

from what reported in the litrature 

Figure A- 3: Grafting of hydroxylated fullerene in the perovskite interlayer 

 

Figure A- 4: FTIR spectra of (a) pure C60 versus 

(b) the hydroxylated version 
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(respectively 74 and 24 Da for fullerol and fullerene),62,63 but is related to losing hydrocarbon 

fragments regardless.  

Thin layer chromatography (TLC) was performed on the hydoxylated fullerene using 

either dichloromethane (DCM) or toluene as the mobile phase and silica gel as the stationary 

phase. As presented in Figure A-6, DCM provided better separation due to its higher polarity 

index compared to toluene (2.4 and 3.1 respectively). The TLC test with DCM suggests the 

existance of both non-polar fullerene (marked with star) and polar fullerols with various n values 

(marked with square); the more polar the molecule, the more affinity with the stationary phase 

and less migration speed it will have. This incosistency in the hydroxylation products can be one 

Figure A- 5: Mass spectra for (a) pure fullerene and (b) two batches of hydroxylated 

fullerene dissolved in pure toluene. 

 



196 

 

of the reasons that lead to poor reproducibility of the following grafting reactions with n-decoxy-

LaNb2O7. 

 

 

 

 

 

 

 

 

 

 

 

Figure A-7 compares the XRD patterns of n-decoxy-LaNb2O7 and C60-LaNb2O7. XRD 

pattern of pure fullerene is presented to be able to trace unreacted fullerols that might be present 

outside of the perosvkite interlayer (XRD patterns of pure fullerene and I-C60-(OH)n matched, 

confirmng the same crystalline structure after the hydroxylation method used here). Table A-1 

shows the unit cell refinement results for RbLaNb2O7, HLaNb2O7, n-propoxy-LaNb2O7, n-

decoxy-LaNb2O7 and C60-LaNb2O7. The interlayer spacing of each hybrid should be about the 

dimensions of the organic present in the interlayer (this interlayer spacing is presented as ∆c, 

calculated by subtracting the c parameter of HLaNb2O7 from the c parameter of the hybrid). 

Considering the diameter of a single fullerene (~7Å), a interlayer spacing of 10-11 Å seems to 

make perfect sense. Smilar XRD patterns with slight shifts in their first reflections were observed 

for 10-20% of the trials considered as successful batches, with the rest yielding noisy XRD 

patters suggesting either poor crystallinity or lack of organics due to high 2θ values for the first 

peak (Figure A-7 d). Figure A-8 shows the TGA curves for two successful reactions at 100 ºC. 

Based on the dimensions of C60 and the a and b parameters in the tetragonal cell of the host 

(Figure A-9), 8 fullerenes per 16 unit cell seems to be about the maximum possible C60 packing 

in the unit cell, yielding %45 weight loss in TGA.  Based on this estimation, the loading of C60 in 

Figure A- 6: TLC test performed on hydroxylated fullerene using (a) toluene and 

(b) DCM as the mobile phase, as well as (b) under UV light showing both non-polar 

C60 (marked with star) and more polar fullerols (marked with square). 
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the successful batches seems to be lower than what it can be. There is a chance that this loading 

can be enhanced via better hydroxylation of C60 and a more efficient exchange reaction. Despite 

this estimation, estereospecific limitations might also impact the maximum loading not ever 

getting to about %45. Once more reproducible exchange reactions are proposed for the 

production of C60-LaNb2O7, hopefully these questions can be answered more definitely. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A- 1: Unit cell parameters of C60-LaNb2O7 compared to three other similar compounds. 
 

Compound a (Å) c (Å) ∆c (Å) Chain length (Å) 

HLaNb2O7 3.883(3) 10.4527(5) - - 

n-propoxy-LaNb2O7 3.888(3) 15.4011(5) 4.9484 ~ 5   (tilt angle of ~ 42º with the slab) 

n-decoxy-LaNb2O7 3.876(5) 27.2380(6) 16.7853 ~ 14 (tilt angle of ~ 42º with the slab) 

C60-LaNb2O7 3.882(7) 21.4953(9) 11.0426 ~ 7.5    

 

 

 

Figure A- 7: XRD patterns of (a) pure fullerene, (b) n-decoxy-LaNb2O7 

used as the host, (c) C60-LaNb2O7, typical product of successful C60 grafting, 

and (d) typical product of unsuccessful C60 grafting. 
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As a complementary study, grafting I-C60-(OH)n was also carried out in microwave: 3 mL 

of the toluene solution of I-C60-(OH)n was mixed with the dispersion of 15 mg of n-decoxy-

LaNb2O7 in 3 mL toluene. Three replicates of the same reaction was performed at 125 °C for 3 h 

with a maximum power of 1200 watts (using a Weflong button and a 30-min warmup time in all 

cases). These trials showed no trace of grafting; the XRD pattern of the product was exactly the 

Figure A- 8: TGA-DSC results for two successful C60-LaNb2O7 products 

Figure A- 9: Estimation of the maximum loading of C60 per 

LaNb2O7 unit cell based on their sizes 
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same as starting n-decoxy-LaNb2O7. As a final observation, 7 different batches of I-C60-(OH)n 

with various PEG molar ratios and so various levels of hydroxylations ( 0.2, 0.6, 1.6, 3.2, 5.0, 

10.0, and 20.0 to 1 mole of C60), were produced based on the details provided in the 

experimental section. In order to keep the amount of the fullerol high with respect to n-decoxy-

LaNb2O7 reagent, all the hydroxylation products (about 25 mg) were dissolved in 12 mL toluene 

and reacted with 15 mg of n-decoxy-LaNb2O7. These 7 trials were heated in microwave under 

conditions like the first three trials, only for shorter duration (15 minutes). Unfortunately, these 

trials yielded products with XRD patterns the same as the starting materials (n-decoxy-

LaNb2O7), or as presented in Figure A-7 d with small c parameters which gives no evidence of 

C60 grafting in both cases. 

 

A.3.2 Grafting II-C60-(OH)n. This version of hydroxylated C60 was absolutely miscible 

with water, which would not call for hydrophobic solvents such as toluene used in the previous 

section. Another complication that water-miscible C60-OH imposes, is less compatibility with 

hydrophobic n-decoxy-LaNb2O7. To carry out reactions using II-C60-(OH)n, dry hydroxylated 

fullerene was well dispersed in either toluene or 2-butnone, which showed better miscibility with 

the latter. In other trials, the solution of  hydroxylated fullerene in 1 mL water was mixed with 6 

mL of either toluene or butanone. After the addition of n-decoxy-LaNb2O7 to the mixture, the 

autoclave was sealed and maintained at either 100 or 110 °C for 15 h. All of these trials turned 

out to be consistently unsuccesfful, showing the same XRD pattern as presented in Figure A-7 d, 

only with noisier and broader peaks. 

Considering the results provided in Chapter four of this dissertation, grafting 

hydroxylated C60 would also be an option starting from the TBA-LnNb2O7 nanosheets (Ln = La, 

Pr). Since the groups are going to exchange in the surface of the nanosheets, there might be 

better chances for the C60-OH bulky groups to react without having to penetrate the interlayer of 

n-decoxy-LaNb2O7. Two reactions were carried out where 15 mg of TBA-LnNb2O7 nanosheets 

were mixed with 10 mg of II-C60-(OH)n and dispersed in 10 mL of pure water. It should be noted 

that both solids were completely miscible with water due to their hydrophilicity. The mixture 

was heated for 1 h at 80 ºC with a maximum power of 350 watts and a 20-min warmup. 

Unfortunately, unreacted fullerol was completely mixed with the product, and could not be 
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removed despite various washing methods. Even though the change in the XRD patterns 

presented in Figure A-10 might suggest that hydroxylated C60 is actually grafted on the 

nanosheets in the trials above, the success of these reactions cannot be further proved without 

complete removal of the unreacted fullerol. Considering that strating fullerol was absolutely 

soluble in water, the reason why there is this much difficulty in washing off the unreacted 

fullerol using water remained unknown. It is possible that the hydroxylated fullerene also 

undergoes changes during these reactions. 

 

 

 

 

 

 

 

 

 

 

In a few trials, n-pentoxy-LaNb2O7 was used instead of n-deoxy-LaNb2O7, and reacted 

with both I-C60-(OH)n and II-C60-(OH)n. Especially in case of II-C60-(OH)n, n-pentoxy-LaNb2O7 

was expected to perform better due to less hydrophobicity. However, no reaction or the 

unsuccessful XRD pattern in Figure A-7 d was again obtained despite this change. 

 

A.4 Conclusions 

Despite the low reproducibility in C60 grafting reactions, it was proved that it is possible 

to successfully graft C60 in the interlayer of the layered oxide perovskites. The chances of 

successfully grafting fullerene might be just intrinsically low due to the short length of the OH 

bond on these buckyballs. It is suggested that other functionalization reactions take place in order 

to introduce longer hydroxy groups to the surface. This can increase the facility of the following 

exchange reactions with the oxide perovskite. Another issue here could be low control in the 

Figure A- 10: Grafting hydroxylated C60 on TBA-LnNb2O7 nanosheets. 
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number of hydroxy bonds that get grafted to the fullerene, and so the large distribution in the 

fullerol products. Considering the price of pure fullerene, separation of the fullerols in a packed 

chromatography column was not tried in the current study. However, this is another suggestion 

which can enhance the reproducibility of the reactions in the following studies. 
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Appendix B.  Incorporating More Elaborate Structures in the Interlayer 

B.1 Introduction 

Other than grafting or intercalation of simple alkyl chains in the interlayer of the layered 

hosts, more compicated structures containing hydroxyl or amine functional groups are also prone 

to react with the terminal oxygens.1–6 In this chapter the reactivity of HLaNb2O7 perovskite with 

a number of organics with more elaborate structures will be reviewed. Figure B-1 shows the 

structure of the organics that are mainly investigated in this chapter: 2-allylphenol, benzyl 

alcohol, and 4-amino-1,2,4-triazole.  

 

 

 

 

 

 

The reactivity of hydroxymethylferrocene was 

also investigated in a few trials. Considering the structure 

of this compound presented in Figure B-2, it is highly 

expected that the ferrocene component grafts to the 

terminal oxygen via covalent bonds forming because of 

its hydroxymethyl functional groups. 

 

The ability of organic-inorganic hybrids to pick up organic chains from an organic 

solvent is also briefly reviewed in the last part of this chapter. This so-called adsorption was 

done by studying the pickup of either n-octane chains by n-decoxy-LaNb2O7 hybrid, or toluene 

by benzyl alcoxy- LaNb2O7 (Figure B-3). 

 

 

 

 

Figure B- 1: The structure of the organics incorporated in the interlayer. 

Figure B- 2: Structure of 

hydroxymethylferrocene. 
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B.2 Grafting 2-Allylphenol 

As presented in Chapter 4 of this dissertation, both saturated and unsaturated cyclic and 

linear alcohols were grafted onto perovskite nanosheets via rapid microwave-assisted reactions. 

The reactivity of the terminal oxygens in the bulk perovskite is comparable to the surface 

oxygens, and so similar grafting reactions can be demonstrated for leyered perovskites as well as 

what was provided earlier for the nanosheets. Some of the results presented in this appendix were 

obtained prior to the microwave breakthrough, and so were carried out via conventional heating 

and longer reactions. However, conditions similar to those presented in the first chapters can be 

investigated for the bulk perovskites as well in the future, and are most likely to successfully 

work. The only difference between the reactivity of the layered perovskite and the nanosheets, is 

the limitation present for large organics permeating the interlayer as opposed to openly exposed 

oxygens on nanosheets. So, it is strongly recommended to prepare n-decoxy-LaNb2O7 (n-

decoxy-LN) in order to successfully allow for the penetration of any organic in the interlayer, 

and the exchange of the n-decoxy group with the target organic. This intermediate hybrid has an 

interlayer spacing of about 16 Å which makes it a great starting material for almost any 

successful exchange with most of organics with amine or hydrxoyl functional groups, regardless 

of their sizes. In case of targeting unsaturated organics, reaction mixture can be sealed inside a 

Figure B- 3: Adsorption of organic chains by the interlayer of the hybrid; (a) n-octane by 

n-decoxy-LaNb2O7, and (b) toluene by benzyl alcoxy-LaNb2O7. 
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microwave vessel in an argon glovebox, and taken out to go through a microwave-assisted 

reaction while maintained under neutral atmosphere. The equivalent conventional approach 

presented in this section (emlpoyed a while before the microwave innovation), is a 7-d treatment 

in argon glovebox maintained at 80 ˚C. Typically 0.05 g of n-decoxy-LN was mixed with 3 mL 

of the pure solvent (target organic), and constantly stirred during the reaction. Unsaturated 

organics included: linear alcohols such as 3-buten-1-ol, 5-hexen-1-ol, 9-decen-1-ol, and cyclic 

alcohols such as 2-allylphenol. Figure B-4a presents the XRD pattern of 2-allylphenoxy-LN 

compared to that of n-decoxy-LN. A close-up of the first peaks of 5-hexen-1-oxy-, 9-decen-1-

oxy-, and 2-allylphenoxy-LN is then provided in Figure B-4b versus their host.  

 

 

 

 

 

 

 

 

 

 

Further reactions in the interlayer of the hybrid perovskites incorporating monomers are 

deemed pretty promising once microwave-assisted reactions are employed; this can be 

investigated in the future via a new approach towards new and known chemistries.7–10 

 

B.3 Grafting Benzyl Alcohol 

Successful grafting of benzyl alcohol does not call for any harsh conditions; leaving n-

decoxy-LN in a few mL of benzyl alcohol at RT without any stirring, benzyl alcoxy-LaNb2O7 

(BA-LN) can be prepared overnight. Various microwave heating conditions were explored to 

find out the shortest route to obtain BA-LN, and 1 h at 60 ˚C (maximum power of 300 W) 

appeared to be the best method. In case of applying higher temperatures for the synthesis of BA-

LN, the sample comes out with an orange/brown color and less crystallinity. As n-decoxy-LN 

Figure B- 4: XRD pattern of n-decoxy-LN versus some of monomer-grafted perovskites.  
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compound (more a cotton shade of white) 

goes through an exchange reaction with 

benzyl alcohol, the color of the BA-LN 

product comes out as a sharp yellow color 

(Figure B-5). This change in the physical 

appearance suggests a different optical 

behavior in this product; absorbance in the 

visible range as opposed to the starting 

material (Figure B-6). The yellow color of 

as-synthesized BA-LN seems to change to 

orange upon exposure to sunlight (this change usually takes about a few months in ambient 

condition). Figure B-7 presents the XRD pattern of as-synthesized BA-LN and the same sample 

rescanned after 3 months exposure to sunlight, and it is clear that the interlayer spacing of BA-

LN slightly shrinks upon this exposure (2θ shifting from 4.50˚ to 4.75˚). Interestingly, the orange 

aged BA-LN has a different absorbance when tested using diffuse-reflectance UV-Visible 

spectroscopy (Figure B-6 e versus d). This optical response strongly suggests a specific 

arrangement of phenyl rings grafted in the interlayer, possibly similar to π˗π stacking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B- 5: Sharp yellow color of as-synthesized 

benzyl alcoxy-LaNb2O7. 
 

Figure B- 6: Diffuse-reflectance UV-Vis for (a) RbLaNb2O7, (b) HLaNb2O7, (c) 

n-decoxy-LaNb2O7, and benzyl alcoxy-LaNb2O7 (d) as-synthesized and (e) aged. 
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Another aspect investigated over BA-LN hybrid, was the intercalation of alkali metals in 

the interlayer. The idea was to incorporate electron-donating components into the stacked phenyl 

rings of the interlayer as illustrated in Figure B-8, producing A˚-BA-LN samples (where A was 

Li and K). Li˚ was introduced by reacting 2 mL of n-butyllithium solution (Sigma-Aldrich, 1.6 

M in hexanes) with 10 mg BA-LN pressed as a pellet. While the pellet was submerged in the 

solution, gentle stirring was continued for 5 d at RT in an argon glovebox (without breaking the 

pellet). The yellow pellet turned into black in a few hours, and after the completion of the 

reaction was rinsed a few times with hexanes (every time pipetting out the solution to the waste 

and replacing it with fresh hexanes). After the final wash, the pellet was left for several hours 

with an open cap to fully dry out. The intercalation of K˚ was attempted by reacting 10 mg BA-

LN pressed pellet with potassium vapor in evacuated and sealed 13-mm Pyrex tube for 6 d at 150 

˚C (6 mg of soft solid potassium element was placed in a smaller Pyrex tube trapped in the larger 

sealed tube, as presented in Figure B-9). The pellets of A˚-BA-LN were treated as air-sensitive 

samples: the black pellets were sealed using polymer film under argon prior to air exposure, and 

the XRD scans were run immediately after taking them out of the glovebox. Figure B-10 

presents the XRD patterns of BA-LN, Li˚-BA-LN, and K˚-BA-LN samples (the peaks marked 

with star are due to the protective polymer film used for sealing the sample). 

 

Figure B- 7: XRD patterns of BA-LN (b) as-synthesized 

and (c) aged, compared to (a) n-decoxy-LaNb2O7. 
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Figure B- 9: (a) sharp yellow BA-LN prior to intercalation, and (b) 

post-reaction picture of BA-LN pellet exposed to K˚ vapor under vacuum. 

Figure B- 10: XRD pattern of (a) BA-LN compared to 

intercalation products using (b) Li˚ and (c) K˚. 

Figure B- 8: Illustration of alkali metal intercalation in benzyl 

alkocy-LaNb2O7 (here K˚ is presented as an example). 
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As presented in Figure B-10, the intercalation reaction with K˚ does not seem to be 

successful due to lacking a first peak. This is most likely due to the instability of BA-LN at 150 

˚C for a few days (even though 150 ˚C is still much lower than typical intercalation 

temperatures). This was further supported by running BA-LN in TGA-DSC under argon-oxygen 

atmosphere with an isotherm at 150 ˚C for a few hours: the sharp yellow sample already 

discolored to blackish brown indicating the initiation of decomposition for this sample. However, 

the intercalation of Li˚ turns out to be very promising comparing the two XRD patterns in Figure 

B-10 a and b. The first peak shifts to a lower angle after Li˚ intercalation, indicating a slight 

expansion in the interlayer spacing (which makes sense considering the addition of Li˚ 

component to benzyl alcoxy grafted groups). Li˚-BA-LN synthesis was replicated a few times, 

and tested using SQUID to investigate any interesting magnetic properties. Even though it 

showed an interesting magnetic behavior once as presented in Figure B-11, we were unable to 

replicate this result in the other batches. Considering the Zero Field Cooling (ZFC) and Field 

Cooling (FC) behavior of the sample measured at a 3500 Oe field as presented in Figure B-11 a, 

there is a magnetic event happening at 40 K (ignoring the noise at about 75 K). The magnetic 

hysteresis curve was then obtained at 5 K for this sample, showing a diamagnetic behavior 

mostly, with a different response in fields close to zero as provided in Figure B-11 b. (resembling 

either paramagnetic or antiferromagnetic behavior in this tiny portion of the field). 

 

 

 

 

 

 

 

 

 

 

Even though we were unable to replicate the interesting result provided in Figure B-11, 

the sensitivity of the sample might be a factor contributing to this issue. Hopefully BA-LN 

Figure B- 11: (a) ZFC-FC at 3500 Oe, and (b) hysteresis curve at 5 K for Li˚-BA-LN sample. 

(b) (a) 
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hybrid and metal intercalated variations of it can be further studied in the future, as they seem to 

offer interesting magnetic and optical properties that are yet to be explored. 

 

B.4 Attempted Intercalation of 4-Amino-1,2,4-Triazole 

Intercalation of 4-amino-1,2,4-triazole (AT) was carried out using different 

intermediates: n-propoxy-LaNb2O7, n-pentoxy-LaNb2O7, n-decoxy-LaNb2O7, 1-propylamine-

LaNb2O7, and 1-hexylamine-LaNb2O7. All of these intermediates were dispersible in water 

except for n-decoxy-LaNb2O7. In case of these more hydrophilic intermediates, typically 0.1 g 

AT was dispersed in 10 mL of water, and reacted with 20 mg of the hybrid intermediate in the 

microwave˗ for1 h at 100 ˚C with the maximum power of 450 W in case of n-pentoxy-LaNb2O7 

and 1-hexylamine-LaNb2O7, and 2 h at 80 ˚C with the maximum power of 300 W for n-propoxy-

LaNb2O7 and 1-propylamine-LaNb2O7). Unfortunately, all the products obtained were identical 

to their starting materials, indicating no AT intercalation. Since n-decoxy-LaNb2O7 is very 

hydrophobic, AT intercalation trials using this intermediate was done in toluene as the solvent. In 

this case, typically 1 g AT was dissolved in 12 mL of toluene and reacted with 20 mg of the 

intermediate (either 1 h at 80 ˚C with the maximum power of 800 W, or 1 h at 100 ˚C with the 

maximum power of 1000 W, using a Weflon button in both cases). This reaction seemed to yield 

an acceptable XRD pattern as presented in Figure B-12. It is suggested to carry out more 

replicates similar to these successful conditions, and study the quality of intercalation via Raman 

spectroscopy and TGA analysis. Based on the successful surface-tailoring of the nanosheets with 

AT reported in Chapter 4, further tuning the reaction conditions is expected to yield AT-

intercalated products with optimal loading. 

 

 

 

 

 

 

 

 
Figure B- 12: The most promising conditions obtained for the intercalation 

of 4-amino-1,2,4-triazole (AT). 
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B.5 Attempted Grafting of Hydroxymethylferrocene 

Grafting of hydroxymethylferrocene (HMF) was performed using n-decoxy-LN and n-

propoxy-LN intermediates. Typically, 20 mg of the intermediate hybrid was added to 100 mg 

HMF (Alfa Aesar, 97%) dissolved in 3 mL of toluene. Due to the sensitivity of HMF to 

moisture, the mixtures were maintained under argon in a glovebox, while constantly stirred for 7 

d at 80 ˚C. The product was rinsed a few times with toluene, every time settling for a few hours 

to let the powder precipitate, and then pipetting out the solution to the waste and replacing it with 

fresh toluene. After the final wash, the wet powder was evacuated in the chamber of the 

glovebox, placed in a container filled with drierite desiccant and capped under argon. The sample 

was taken out while staying sealed, and was exposed to the ambient condition for less than 30 

minutes for XRD and vibrational spectroscopy characterization. 

 

Comparing the XRD pattern of the n-decoxy-LN sample after the experiment to that of 

the starting material (Figure B-13 b versus a), the same first reflections are observed, only 

broader and less intense. It is also notable that the crystallinity decreases based on the loss of the 

majority of the high angle peaks. Repeating the experiment with n-propoxy-LN also lead into 

similar results, only this time the loss of the high angle reflections was not as significant (Figure 

B-13 c and d). Further characterization with Raman and IR (Figures B-14 and B-15, 

respectively) suggests that HMF is actually present in the products (due to the existence of HMF 

characteristic peaks in 

the products). However, 

since the XRD patterns 

indicate no significant 

changes in the interlayer 

spacings, it is highly 

suggested that HMF 

only partially grafts to 

the surface rather than 

disturbing the interlayer 

and taking over the 

Figure B- 13: XRD patterns of HMF-LN samples obtained from (b) n-decoxy-LN 

and (d) n-propoxy-LN, compared to their hosts (respectively provided in a and c). 
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current organic. In case of n-decoxy-LN, it is also possible that HMF causes partial delamination 

of the layered hybrid, while the n-decoxy interlayer groups are mostly maintained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.6 Organic Adsorption to the Layered Hybrids 

Three criteria were taken into account selecting the organic solvent and layered hybrid 

pairs: firstly, only organics similar to the interlayer groups are expected to have strong 

Figure B- 14: Raman spectra of (a) n-decoxy-LN and (c) n-propoxy-LN 

compared to (b, d) HMF-LN samples, as well as (e) pure HMF. 

Figure B- 15: IR spectra of HMF-LN samples obtained from (b) n-decoxy-LN and 

(d) n-propoxy-LN, compared to their hosts (respectively provided in a and c). 
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interactions and possible adsorption (for instance a possible van der Waals interaction between 

n-octane target and n-decoxy groups, or possible π-π stacking as well as van der Waals 

interactions when toluene is targeted for the adsorption in benzyl alcoxy-grafted hybrids), 

secondly, the boiling point of the target organic should be high enough not to quickly escape the 

interlayer after adsorption (about 110 ˚C and 125 ˚C for toluene and n-octane, respectively), and 

lastly, not having any functional groups in the target organic which would interfere in an 

exchange reaction with the interlayer organic groups . To experimentally investigate the organic 

adsorption idea, 20 mg of the layered hybrid was dispersed in 6 mL of the pure target organic, 

and heated in microwave for 30 minutes at 80 ˚C (maximum power of 800 W). The products 

were not washed at all, not to intentionally extract the organics possibly trapped in the interlayer. 

After the reaction, the sample was centrifuged, and then RT dried after disposing of the 

supernatant. 

The products were tested using XRD and TGA-DSC. Theoretically, XRD might stay the 

same after the experiment if the target organic is just entering the voids in between the interlayer 

organics, or might as well show a slight expansion in the interlayer spacing. However, a larger 

weight loss is expected in case of a successful organic adsorption. Adsorption of toluene in BA-

LN consistently showed no change in the weight loss after the experiment, and the XRDs were 

also identical. Based on Figure B-16, some of the trials investigating n-octane adsorption yielded 

very interesting results: comparing the XRD pattern of (a) n-decoxy-LN with (b and c) two of the 

trials, broadening and shouldering of the 00ℓ peaks are clear after the experiment. Thermal 

analysis was then performed on the host versus these two trials (Figure B-17 a, b, and c), which 

further indicated successful adsorption of n-octane due to showing higher weight losses after the 

reaction: weight losses of 20%, 31%, and 39%, respectively, indicating a loading of 0.72 mole n-

decoxy per 1 mole LaNb2O7 in the host, and addition of (b) 0.80 mole n-octane and (c) 1.46 mole 

n-octane per 1 mole n-decoxy-LN. However, a few exactly similar replicates yielded XRD 

patterns and TGA curves identical to the host, suggesting the poor reproducibility of the previous 

promising results. Running the experiment either for longer times (1 h at 80 ˚C), or at a lower 

temperature (12 h at RT, or 1 h at 60 ˚C), also lead into TGA-DSC curves indicating no trace of 

n-octane adsorption.  
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The results obtained under the conditions studied here, seem to be inconclusive. In order 

to support the idea of organic adsorption to the interlayer of perovskite-based hybrids, more 

promising and reproducible results have to be attained. 

 

B.7 Conclusions 

As described throughout this chapter, some complementary experiments and tests have to 

be carried out in order to obtain more conclusive results in each case. The insertion of 

unsaturated organics has a simple and promising chemistry and only calls for more replicates and 

Figure B- 16: XRD patterns of (a) n-decoxy-LN, and (b, c) two 

promising trials inserting n-octane in n-decoxy-LN hybrid. 

Figure B- 17: TGA-DSC curves showing an increase in the weight loss after two 

promising trials perfomed for the adsorption of n-octane to n-decoxy-LN hybrid. 
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following polymerization. Optical and magnetic properties of BA-LN and A˚-BA-LN products 

need to be more vastly studied, and already show interesting features as addressed above. More 

conditions are to be investigated for the successful intercalation of AT in layered perovskites, 

yielding more crystalline samples. Grafting of hydroxymethylferrocene in the interlayer of the 

perovskite seemed unsuccessful, only suggesting surface reactions or partial exfoliation of the 

layered habrid. In case of organic pickup by the interlayer of organic-inorganic hybrids, a couple 

of interesting results were obtained which appeared to be irreproducible; this idea also needs to 

be investigated more in order to draw any solid conclusions.  
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Appendix C. Bridging Layered Perovskites: A2-xLa2Ti3-xNbxO10 and Ion 

Exchange Products  

C.1 Introduction 

Ion exchange (IE) is a very simple and effective topochemical manipulation technique for 

the modification of Dion-Jacobson (DJ) and Ruddlesden-Popper (RP) phases. IE is performed by 

replacing the interlayer cations with other cations or cationic structural units in solution, molten 

salt or under acidic conditions.1–3 The interlayer ion can be simply exchanged with another ion 

with the same oxidation state,4 or one of a different oxidation state (aliovalent exchange).3,5 In 

cases an ionic array can also be formed (co-exchange).6–8 Regardless, the specific stoichiometry 

of the replacing unit will keep the overall interlayer charge the same as the initial stage in the 

host. Considering the interlayer charge varying from +2 in the RP host to +1 in the DJ type, ion 

exchange products with simple metal halides (MX2) will show distinct structures and properties. 

While A2La2Ti3O10 as a RP phase leads into aliovalent exchange with M2+ producing 

MLa2Ti3O10,3 co-exchange between DJ-type ACa2Nb3O10 and MX2 results in the formation of 

metal-halide arrays within perovskite slabs in (MX)Ca2Nb3O10 product.6,7 A2-xLa2Ti3-xNbxO10 

system (0 ≤ x ≤ 1) first reported by Uma et al.,9 corresponds to a triple layered solid solution of 

A2[La2Ti3O10] RP phase and A[La2Ti2NbO10] DJ phase. Therefore, A2-xLa2Ti3-xNbxO10 (as 

demonstrated in Figure C-1) has a variable interlayer cation density and is bridging between the 

two end members.9,10 Based on the literature, IE reactions with metal halides have never been 

studied for this bridging solid solution. Structure determination and topotactic manipulation of 

this intermediate bridging compound will be studied in this chapter. In order to meet this goal, 

A2-xLa2Ti3-xNbxO10 system (0 ≤ x ≤ 1, A = Li, Na, K, and Rb) was prepared via ceramic method 

and IE reactions. IE with CuCl2 as a metal halide was successfully done starting from the two 

end members (x = 0 and x = 1) and further efforts were done to perform the same manipulation 

on the intermediate hosts. 
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C.2   Experimental 

A2-xLa2Ti3-xNbxO10. Members of A2-xLa2Ti3-xNbxO10 (A = Rb, K, Na where x = 0, A = 

Rb where 0 < x < 1, and A= Rb, Cs where x = 1) were prepared through high temperature solid 

state reactions. Cs2CO3  (Alfa Aesar, 99.994%), Rb2CO3  (Alfa Aesar, 99.975%), K2CO3 (Alfa 

Aesar, 99.997%), Na2CO3 (Alfa Aesar, 99.997%),  La2O3 (Alfa Aesar, 99.99%), TiO2 ( Alfa 

Aesar 99.995%) and Nb2O5 (Alfa Aesar, 99.9985%) were mixed in stoichiometric ratios 

according to the following equation (Eq. C-1) and in the presence of excess amount of carbonate 

(30%) to compensate for its volatilization. The mixture was pre-heated at 850 ˚C for 12 h, and 

heated at 1050 ˚C for 48 h in an alumina crucible in air, with at least three intermediate 

grindings.9–11 (Note: La2O3 and Nb2O5 were preheated at 1000 ˚C for 12 h in order to eliminate 

any impurities). For the synthesis of the RP end members with Na or K as the interlayer cations 

(A2-xLa2Ti3-xNbxO10 where x = 0 and A = Na, K), an extra pre-heating step at 550 ˚C prior to 850 

˚C found to be necessary. For the DJ end member (A2-xLa2Ti3-xNbxO10 where x = 1 and A = Rb 

or Cs), it was best to do an extra heating step at 1150˚C for 12 h after the completion of heating 

at 1050˚C. In case of the solid solutions (A2-xLa2Ti3-xNbxO10 where 0 < x < 1 and A = Rb), more 

intermediate grinding and less extreme heating had to be performed. Studying the structural 

evolution of Rb2-xLa2Ti3-xNbxO10 ( x = 0.15 ) using XRD revealed that more than 2 h heating at 

1050 ˚C after the preheating step would yield a mixture of the end members rather than the 

Figure C- 1: Structure of A2-xLa2Ti3-xNbxO10 solid solutions where 0 ≤ x ≤ 1. 
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metastable solid solution. Note that the temperature has to be increased from 850 ˚C to 1050 ˚C 

in  50 ˚C  increments with intermediate grindings in between. These extra grinding steps would 

compensate for the shorter reaction time and provide acceptable crystallinity. Direct synthesis of 

Na1.65La2Ti2.65Nb0.35O10 from its oxide and carbonate reagents was also performed by heating the 

ground mixture at 550 ˚C (18 hr), 850 ˚C (24 hr), and finally 1050 ˚C (12 hr) with three 

intermediate grindings. After the reaction, the products were washed with copious amount of 

distilled water, rinsed with acetone and dried at 130˚C for several hours. 

 

 

 

 

Ion exchange was used as a topochemical method to obtain A2-xLa2Ti3-xNbxO10 from 

corresponding nitrates (where A=Li and x=0, as well as cases where A=Li, Na, K and 0 < x ≤ 1). 

Rb2-xLa2Ti3-xNbxO10 was ground in a 1:10 molar ratio with LiNO3 (Alfa Aesar, 99%), NaNO3 

(Alfa Aesar 99.999%) and KNO3 (Alfa Aesar, 99.994%) and heated at 330, 400, and 400˚C for 

2-3 days, respectively. After the ion exchange reaction, the products were washed with distilled 

water, rinsed with acetone and dried at 130˚C for an hour. 
 

(CuClx)La2Ti3-xNbxO10. (CuClx)La2Ti3-xNbxO10 members (0 ≤ x ≤ 1) were prepared through a 

low temperature ion exchange reactions. Pressed pellets of A2-xLa2Ti3-xNbxO10 and CuCl2 (Alfa 

Aesar, 99.995%) in a 1:2 molar ratio were placed inside a 13-mm Pyrex tube, sealed under vacuum 

(<10-4 Torr), and heated at 350˚C for various durations based on the type of the A cation. IE 

reactions on A2-xLa2Ti3-xNbxO10, where 0 ≤ x < 1, worked best for A = Li and Na, for 7 days and 

14 days, respectively. In case of A2-xLa2Ti3-xNbxO10 where x = 1 (the DJ end member), the IE 

reaction completed regardless of the interlayer cation ˗ performed for 7, 14, 16, 10, and 8 days 

where A was Li, Na, K, Rb, and Cs, respectively. After the ion exchange reaction, the product was 

washed with distilled water to remove unreacted CuCl2 and any alkali halide byproduct (ACl), and 

dried at 130˚C for an hour. 

Characterization. X-ray powder diffraction (XRD) data was collected on a Philips X’Pert 

system equipped with Cu Kα radiation (λ=1.5418 Å) and a curved graphite monochromator. 

Typical scans were collected in continuous mode with a scan rate of 0.02°/s. The peak positions 

(2 − x) A2CO3 + 2 La2O3 + (6 − 2x) TiO2 + xNb2O5 →  2 A2−xLa2Ti3−xNbxO10 + (2 − x) CO2  

;  0 ≤ 𝑥 ≤ 1   

Equation C- 1:  



222 

 

and lattice parameters were refined by a least-squares method with the ChekCell program.  A JEOL 

(model JSM-5410) scanning electron microscope (SEM) equipped with the energy dispersive 

analysis (EDS), EDAX (DX-PRIME) microanalytical system, was used for elemental analysis. 

Raman spectra were obtained with a Thermo-Fisher DXR dispersive Raman spectrometer using 

the λ=532 nm line with a spectral resolution of 3 cm-1.   

 

C.3 Results and Discussion 

C.3.1 A2La2Ti3O10. Figure C-2 shows the XRD patterns of the RP end members. First 

reflection (assigned to ℓ = 2 of the 00ℓ set of planes) shifts to lower angles as the interlayer 

cation becomes larger (from Li to Rb), indicating layer expansion as expected.  IE with CuCl2 

was performed successfully starting from Li2La2Ti3O10 and Na2La2Ti3O10. XRD pattern of the 

CuLa2Ti3O10 product is presented in Figure C-3 showing a good agreement with the reference 

pattern generated based on the crystal structure of CuLa2Ti3O10.3 Table C-1 summarizes the unit 

cell parameters of RP products (A2La2Ti3O10), which are all in good agreement with the 

literature values.3,9,12,13 

 

 

 

 

Figure C- 2: XRD patterns of the RP end members, A2La2Ti3O10, where 

A is (a) Rb, (b) K, (c) Na, and (d) Li. 
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C.3.2 ALa2Ti2NbO10. Figure C-4 presents the XRD patterns of the DJ end members. As 

expected, the first reflection (typically ℓ = 1 in 00ℓ) shifts to lower angles as the interlayer cation 

increases in size. In case of NaLa2Ti2NbO10, existence of a hydrated form is obvious (the XRD 

pattern shown in light gray). The (CuCl)La2Ti2NbO10 presented in Figure C-5 is the IE product 

of CuCl2 and LiLa2Ti2NbO10, however, the reaction was also successful from all the other 

members as presented in Figure C-6. The XRD pattern of the (CuCl)La2Ti2NbO10 in Figure C-5 

is compared to that of LiLa2Ti2NbO10 as the starting material, as well as (CuCl)Ca2Nb3O10 as the 

reference. (CuCl)Ca2Nb3O10 pattern is generated based on its crystal structure,7 and due to being 

isostructural with (CuCl)La2Ti2NbO10, it can be used as a reasonable reference for this 

compound. Manipulating the crystal structure of (CuCl)Ca2Nb3O10 was then done replacing two 

Table C- 1: Unit cell parameters of A2La2Ti3O10 (A = Li, Na, K, and Rb) and CuLa2Ti3O10. 

Unit Cell Parameters 

Compound 
Unit Cell (Å) Literature Cell (Å) 

 a  c  a  c 

Rb2La2Ti3O10 3.882 (5) 30.2501(7) 3.898(3) 30.50(2) 

K2La2Ti3O10 3.861(3) 29.6867(6) 3.8769(1) 29.824(1) 

Na2La2Ti3O10 3.826(3) 28.4440(8) 3.83528(7) 28.5737(7) 

Li2La2Ti3O10 3.824(3) 26.6197(8) 3.84116(1) 26.560(1) 

CuLa2Ti3O10 3.816(5) 26.124(1) 3.8248(2) 26.329(1) 

Figure C- 3: the XRD pattern of CuLa2Ti3O10, (a) experimental trial 

versus (b) the reference pattern. 
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third of the niobium elements with titanium, as well as exchanging the calcium element with 

lanthanum. Since the atomic number of the elements impact the intensity of the peaks, the XRD 

pattern generated after this structural manipulation is in better agreement with the experimental 

sample. Unit cell parameters of the DJ products (ALa2Ti2NbO10) are presented in Table C-2, 

being in good agreement the values reported in the literature.7,9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C- 4: The DJ end member, ALa2Ti2NbO10, where A is (a) 

Cs, (b) Rb, (c) K, (d) Na both anhydrous and hydrated, and (e) Li. 

Figure C- 5: XRD pattern of experimental (CuCl)La2Ti2NbO10 compared to (a) LiLa2Ti2NbO10 

starting material, and (c) (CuCl)Ca2Nb3O10 and (d) (CuCl)La2Ti2NbO10 references. 
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*calculated by halving the c parameter in case of K, Na, and Li members, to better highlight the dependence of layer 

spacing on the interlayer units. 
 

C.3.3 A2-xLa2Ti3-xNbxO10. Rb2-xLa2Ti3-xNbxO10 solid solutions were prepared by direct 

ceramic method for x = 0.05, 0.15, 0.25, 0.5, 0.75, and 0.85. The synthesis of the solid solutions 

via an indirect method (grinding and heating of the appropriate ratios of the two end members) 

turned out to be unsuccessful despite many different conditions attempted. The XRD patterns of 

Rb2-x solid solutions are presented in Figure C-7. As the x value gets closer to the end-member 

values (0 for RP and 1 for DJ), the XRD patterns become more similar to the end members. This 

is highlighted by the slight shift in the peak at the 2θ range of 28 - 30 in Figure C-7. The XRD 

patterns of A2-xLa2Ti3-xNbxO10 intermediate solid solutions are expected to more resemble that of 

A2La2Ti3O10 RP end member based on the structural evolution presented in Figure C-1.9 Even 

though the XRD patterns do seem as expected in Figure C-7, there also seems to be a 

Table C- 2: Unit cell parameters of ALa2Ti2NbO10 (A = Li, Na, K, and Rb) and (CuCl)La2Ti2NbO10. 

 Unit Cell Parameters 

Compound 
Unit Cell (Å)  Literature Cell (Å) 

 a  c Layer Spacing*  a  c 

RbLa
2
Ti

2
NbO

10
 3.818(2) 15.1910(3) 15.1910(3) 3.8383(9) 15.2189(9) 

KLa
2
Ti

2
NbO

10
 3.831(3) 30.1015(8) 15.0508(4) 3.853(7) 30.07(8) 

NaLa
2
Ti

2
NbO

10
 3.827(4) 29.656(4) 14.828(2) This work 

LiLa
2
Ti

2
NbO

10
 3.832(2) 28.3854(2) 14.1927(1) This work 

(CuCl)La
2
Ti

2
NbO

10
 3.824(2) 15.9037(2) 15.9037(2) 3.8356(9) 15.9010(4) 

Figure C- 6: Successful synthesis of (CuCl)La2Ti2NbO10 from all ALa2Ti2NbO10 members . 
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competition between the structures of the two end members as the x value is increased to 0.5. 

The peak at 2θ=28-30 gets broad at x=0.5 and then exactly matches that of x=1 as x is increased. 

It should be noted that the synthesis of Rb1.5 was the most challenging and could easily yield a 

mixture of the two end members if heated slightly more.  

 

The XRD patterns by themselves, do not allow us to distinguish between the formation of 

a solid solution and an unsuccessful mixture of the two end members with certainty. Raman 

spectroscopy in Figure C-8 indicates a structural evolution as x is changed and more strongly 

supports the formation of a solid solution rather than a mixture of the two end members (though 

further studies are needed to verify this). Based on the vibrational study done on these solid 

solutions by Kim et al.,10 appearance of a band at 1000-950 cm-1 by increasing the x value 

greater than zero, is indicative of NbO6 octahedron formation. Considering the decrease of the 

band at 950-850 cm-1 and 580-510 cm-1, which is assigned to the outer TiO6 (not the central ones 

appearing at 720-670 cm-1), the site preference of NbO6 octahedra10 was also confirmed. For any 

non-zero value of x, a sharp peak at 1000-950 cm-1 was observed and the extent of x value was 

reflected in the intensity of this peak. 

Figure C- 7: Rb2-xLa2Ti3-xNbxO10 solid solutions for x = 0, 0.05, 0.15, 

0.25, 0.5, 0.75, 0.85, and 1. 
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Figure C-9 shows the XRD pattern of Rb1.75La2Ti2.75Nb0.25O10 solid solution versus the 

two end members. It is clearly shown that the structure of this solid solution compound is distinct 

from the end members with decent similarities to both; which is exactly expected for a solid 

solution. Figure C-10 shows the XRD patterns of all A1.75La2Ti2.75Nb0.25O10 solid solutions 

prepared via an IE reaction between Rb1.75La2Ti2.75Nb0.25O10 and ANO3 (A = Li, Na, and K). 

These patterns demonstrate the interlayer expansion as the interlayer cation grows larger (Li to 

Rb). Table C-3 shows the unit cell parameters of A1.75La2Ti2.75Nb0.25O10 solid solutions. Since 

some of these products are not published before, in most cases there was not a reference pattern 

available from the literature. However, volume of one unit cell decreases for smaller cations as 

expected, as further confirmation to the success of the reactions. 

 

 

 

Figure C- 8: Raman spectra of Rb2-xLa2Ti3-xNbxO10 solid solutions, confirming the strutural evolution. 
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*calculated by halving the c parameter in case of K, Na, and Li members, to better highlight the dependence of layer 

spacing on the interlayer units. 

 Unit Cell Parameters 

Compound 
Unit Cell (Å)  Literature Cell (Å) 

 a  c Layer Spacing* a c 

Rb1.75La2Ti2.75Nb0.25O10 3.852(6) 18.6745(6) 18.6745(6)          This work 

K1.75La2Ti2.75Nb0.25O10 3.833(3) 29.8751(3) 14.9376(1) 3.887(6) 29.75(5) 

Na1.75La2Ti2.75Nb0.25O10 3.831(3) 28.6508(6) 14.3254(3)          This work 

Li1.75La2Ti2.75Nb0.25O10 3.827(3) 26.9181(9) 13.4591(4)          This work 

Table C- 3: Unit cell parameters of A1.75La2Ti2.75Nb0.25O10 (A = Li, Na, K, and Rb). 

Figure C- 9: The XRD pattern of Rb1.75La2Ti2.75Nb0.25O10 solid solution 

versus the two end members. 

Figure C- 10: A1.75La2Ti2.75Nb0.25O10 solid solutions where A is 

(a) Rb, (b) K, (c) Na, and (d) Li. 
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Table C-4 represents the results of elemental analysis for the end members (A2La2Ti3O10 

and ALa2Ti2NbO10, where A = Rb, K, Na, and Li), as well as their products of IE with CuCl2. 

The elemental composition of A1.75La2Ti2.75Nb0.25O10 solid solutions is included as well. Despite 

the error that is almost always reflected in such EDS results, the experimental compositions more 

highlight the difference between these three set of products, and appear to be promising. 

 

Table C- 4: Elemental compositions of the end members and A1.75La2Ti2.75Nb0.25O10 solid solution* 

Elemental Analysis of the Experimental Samples 

A2La2Ti3O10 A1.75La2Ti2.75Nb0.25O10 ALa2Ti2NbO10 

Rb
2.0(1)

La
2.58(8)

Ti
3.35(6)

 Rb
1.11(4)

La
2.00 (6)

Ti
2.36(6)

Nb
0.27(4)

 Rb
1.0(1)

La
2.5 (1)

Ti
2.20(9)

Nb
1.1(1)

 

K
2.00(7)

La
2.71(5)

Ti
3.61(4)

 K
0.90(9)

La
2.00(8)

Ti
2.43(6)

Nb
0.22(3)

 K
0.89(4)

La
2.16(6)

Ti
1.93(8)

 Nb
1.00(9)

 

Na
2.0(2)

La
2.13(4)

Ti
2.9(1)

 Na
1.1(4)

La
2.00(1)

Ti
2.43(4)

Nb
0.24(2)

 Na
0.96(4)

La
2.17(6)

Ti
2.00(5)

 Nb
1.00(7)

 

Li
1.82(4)

La
2.00(4)

Ti
2.54(3)

 Li
0.96(3)

La
2.00(3)

Ti
2.45(6)

Nb
0.22(2)

 Li
0.91(3)

La
2.00(5)

Ti
1.84(4)

 Nb
0.97(7)

 

Cu
1.00(4)

La
2.11(2)

Ti
2.76(4)

O
10

  (Cu
0.94(8)

 Cl
0.79(6)

)La
2.16(6)

Ti
1.98(9)

 Nb
1.00(8)

 

*Data from EDS analysis 

 

Based on the cartoon presented in Figure C-11, the ultimate goal of this research was to 

evaluate the structure of (CuClx)La2Ti3-xNbxO10 solid solutions. One approach to this is the direct 

method which demonstrates the IE reaction of A2-xLa2Ti3-xNbxO10 solid solutions with CuCl2. 

The direct approach was carried out in various trials using the successful A2-xLa2Ti3-xNbxO10 

products. Equation C-2 provides the equation of the proposed ion exchange reaction based on the 

A1.75La2Ti2.75Nb0.25O10 as an example among these solid solutions. Considering the structural 

similarity between the solid solutions and the RP end member, it is expected that these IE 

reactions yield the best results where A = Na and Li. Some of these results are provided in Figure 

C-12 based on A1.65La2Ti2.65Nb0.35O10. Unfortunately, despite so many trials attempted, all the 

products of IE with CuCl2 seemed to be very similar to that of starting material, not approving of 

the success of the IE reaction. Instead of using Na2-xLa2Ti3-xNbxO10 as a product of the IE 

reaction of Rb2-xLa2Ti3-xNbxO10 and NaNO3, the synthesis of Na1.65La2Ti2.65Nb0.35O10 was also 

carried out directly using the oxide and carbonate reagents. As presented in Figure C-13, the 

direct Na1.65La2Ti2.65Nb0.35O10 does show sharper peaks and better crystallinity rather than the IE 

Na1.65La2Ti2.65Nb0.35O10. Interestingly, they also share similar peaks which provides further 

confirmation that they both resemble the same structure (only with different crystallinities). It is 

expected to obtain better results from the IE reaction of the direct Na1.65La2Ti2.65Nb0.35O10 with 
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CuCl2 due to its better crystallinity. Comparing patterns c and d in Figure C-13, this trial does 

seem to be the best attempt so far; it is different from the starting material and also shows 

multiple overlapping peaks at 2θ = 33-34 º similar to that of CuLa2Ti3O10 provided earlier in 

Figure C-3. However, this compound lacks a defined first peak which can be hopefully fixed in 

the following works continuing this research. 

 

Equation C- 2: 

A1.75La2Ti2.75Nb0.25O10  +  CuCl2  →  CuCl0.25 La2Ti2.75Nb0.25O10  +  1.75 ACl  

 

 

 

 

 

 

 

 

 

 
 

 

Figure C- 11: Demonstrating the main goal of this chapter. 

Figure C- 12: IE reaction between A1.65La2Ti2.65Nb0.35O10 and 

CuCl2. 



231 

 

 

 

 

 

 

 

 

 

 
 

Other than the direct method for the synthesis of (CuClx)La2Ti3-xNbxO10, an indirect 

approach was also attempted based on equation C-3 by mixing appropriate ratios of the two end 

members CuLa2Ti3O10 and (CuCl)La2Ti2NbO10. The end members were ground together, pressed 

as a pellet, and reacted for either 10 days at 350 ºC, or 3 days at 400 ºC. The few trials were 

consistently yielding a mixture of the end members rather than a solid solution. One example is 

provided in Figure C-14. 

 

Equation C- 3: 

0.35 (CuCl)La2Ti2NbO10  +  0.65 CuLa2Ti3O10  →  CuCl0.35 La2Ti2.65Nb0.35O10    

 

 

 

 

 

 

 

 

 

 

 
Figure C- 14: Comparison of the end members, CuLa2Ti3O10 and (CuCl)La2Ti2NbO10, to the 

(CuCl0.35)La2Ti2.65Nb0.35O10 solid solutions synthesized from both direct and indirect methods. 

Figure C- 13: Direct synthesis of Na1.65La2Ti2.65Nb0.35O10, and its IE product with CuCl2. 
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C.4 Conclusions 

A2-xLa2Ti3-xNbxO10 was successfully prepared for x = 0, 0.05, 0.15, 0.25, 0.5, 0.75, 0.85, 

and 1 where A = Li, Na, K, and Rb. Some of the solid solutions produced in this work, are reported 

here for the very first time: A1.75La2Ti2.75Nb0.25O10 (A: Rb, Na, and Li). (CuClx)La2Ti3-xNbxO10 

members (x = 0 and 1) were successfully synthesized via an IE reaction between CuCl2 and each 

end member. Indirect preparation of (CuClx)La2Ti3-xNbxO10 bridging members from the end 

members was not successful. Direct synthesis of Na1.65La2Ti2.65Nb0.35O10 from its oxide and 

carbonate reagents yielded a product with better crystallinity, and so better reactivity with CuCl2. 

The most promising trial was the synthesis of solid solution (CuCl0.35)La2Ti2.65Nb0.35O10 from this 

direct Na-based host reacted with CuCl2. It is strongly recommended that the research following 

this work focuses on this aspect and obtains better quality (CuCl0.35)La2Ti2.65Nb0.35O10 for structure 

refinement. 
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Appendix D. A1-xA′xLaNb2O7 (A/A′ = Li, Na, K, Rb, Cs) Perovskite Solid 

Solutions* 

   D.1   Introduction 

Various MLaNb2O7 perovskites,1–5 and more specifically the ALaNb2O7 alkali series (A = 

Li, Na, K, Rb, Cs),6–12 have been studied vastly. KLaNb2O7, RbLaNb2O7, and CsLaNb2O7 are 

members of this series that are stable at high temperatures (>1000 C),6,7,10,11 and so attainable 

via direct solid state reaction of their oxide and carbonate reagents. Conversely, NaLaNb2O7 and 

LiLaNb2O7 members are metastable and should be prepared at lower temperatures that do not 

intrigue any decomposition.5,8,9,11 Simple ion exchange reactions are employed in the preparation 

of metastable ALaNb2O7 members, where the interlayer ion of an existing stable host (A = Cs, 

Rb, or K) is substitutes by another ion (such as Li and Na) supplied by a molten salt at low 

temperatures (<600 C).5,8,9,11  

The ALaNb2O7 family of compounds is illustrated in Figure D-1, presenting how the 

atomic radii of the interlayer cations make the perovskite slabs arranging in specific relative 

orientations.21–26 The goal of this research was to establish a continuous solid solution series 

based on this family, A1-xA′xLaNb2O7 (A/A′ = Li, Na, K, Rb, Cs where 0  x  1.0), and further 

investigate the variations in the structure as a function of the solid solution composition. These 

solid solutions were prepared via low-temperature reactions (< 600 C) between the two end-

members (x = 0, 1) as illustrated in Figure D-2. The structures of A1-xA′xLaNb2O7 solid solutions 

vary as differences in A/A′ cation atomic radii allow the perovskite slabs to adopt different 

relative orientations.  

Thermodynamically stable and metastable compounds readily formed solutions upon 

appropriate heating conditions from all adjacent end members, however, the metastable 

compounds forming from nonadjacent end members were found to decompose into LaNbO4 and 

ANbO3 before any effective interlayer mixing occurred (with the exception of K1-xCsxLaNb2O7 

solid solutions).  X-ray powder diffraction was used to determine the lattice parameters of the A1-

xA′xLaNb2O7 series (x = 0, 0.25, 0.5, 0.75, 1) and to discern structural variations as a function of 

                                                 

* Manuscript in preparation 
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composition. These solid solutions can potentially target partial ion exchange reactions favoring 

one of the interlayer ions over the other one. 

 

 

 

 

                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D- 1: Schematic structures of ALaNb2O7 perovskites, where A is: (a) Li, (b) Na, 

(c) K, (d) Rb, and (e ) Cs, highlighting different orientations of the perovskite slab based on 

the interlayer cation; (a, b) staggered, (c) partially staggered, and (d, e) eclipsed. 

Figure D- 2: Illustrating the overal synthetic approach of this chapter; indirect 

synthesis of the solid solutions by reacting appropriate ratios of the two end members. 
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   D.2   Experimental 

Synthesis. ALaNb2O7 (A = Cs and Rb)6,7,12 were prepared via high-temperature solid-

state reactions from the corresponding oxides and carbonates: Cs2CO3 (Alfa Aesar, 99.994%), 

Rb2CO3 (Alfa Aesar, 99.975%), La2O3 (Alfa Aesar, 99.99%), and Nb2O5 (Alfa Aesar, 

99.9985%) were mixed in stoichiometric ratios and in the presence of excess amount of 

carbonate (30%) to compensate for its volatilization. Note: Prior to use, La2O3 and Nb2O5 were 

treated at 1000 C for 12-24 h to remove any impurities or non-stoichiometries. The mixture of 

the reagents was thoroughly ground and preheated in an alumina crucible in air at 850 C for 12 

hours. The preheated mixture was reground and then heated for 48 h at 1050 C with one 

intermediate grinding. The product was rinsed with copious amount of distilled water to remove 

unreacted carbonates, and dried at 130 C for several hours. 

       Metastable ALaNb2O7 members (A = Li and Na) as well as KLaNb2O7 were prepared 

by grinding RbLaNb2O7 with the corresponding nitrate in a 1:10 molar ratio, and heating the 

mixture for 3 days at temperatures about 50 C higher than the melting point of ANO3:8–10,13 

LiNO3 (Alfa Aesar, 99%), NaNO3 (Alfa Aesar 99.999%) and KNO3 (Alfa Aesar, 99.994%), 

respectively heated at 300, 360, and 380 C. After the ion exchange reaction, the products were 

washed with distilled water, rinsed with acetone and dried at 130 C for an hour. Due to the 

hygroscopic nature of NaLaNb2O7, this sample was dehydrated at 250 C for 6 h, transferred to a 

desiccator right after removing from the furnace, and rapidly moved inside an argon glovebox. 

The XRD sample of NaLaNb2O7 was also prepared under polymer film inside the glovebox 

(sealed on all the sides to stay anhydrous), and taken out for quick characterization.  

       Appropriate molar ratios of A/A′LaNb2O7 end members were ground for the 

preparation of A1-xA′xLaNb2O7 solid solutions (x = 0.25, 0.5, and 0.75), pressed as pellets, and 

heated for 2-3 days at 325-600 C (temperatures and durations varying based on the A/A′ 

elements). Figure D-3 provides a summary of the successful reactions conducted for the 

preparation of A1-xA′xLaNb2O7 solid solutions: Li1-xNaxLaNb2O7 and Na1-xKxLaNb2O7 were 

respectively obtained at 325 C and 350 C in 2 days, K1-xRbxLaNb2O7 and Rb1-xCsxLaNb2O7 

were attainable at 400 C in 3 days, and K1-xCsxLaNb2O7 was made at 600 C in 3 days (the only 

solid solution that could be obtained from non-adjacent end members). Interestingly, solid 
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solutions rich in NaLaNb2O7 member also turned out to be hygroscopic, and were treated and 

scanned in the same manner as NaLaNb2O7 explained above: Li0.25Na0.75LaNb2O7, 

Na0.5K0.5LaNb2O7 and Na0.75K0.25LaNb2O7. Attempts to make A0.5A′0.5LaNb2O7 solid solutions 

from non-adjacent end members (Li solutions with K, Rb and Cs, as well as Na with Rb and Cs), 

were not successful: reactions were carried out over several days at various temperatures up to 

600 ºC, and in cases exceeding that, yielding either a mixture of the end members rather than a 

solid solution, or the LaNbO4 decomposition product.5  

 

 

 

 

 

 

 

 
 

 

Characterization. X-ray powder diffraction (XRD) data were collected on a Philips 

X’Pert system equipped with Cu Kα radiation (λ = 1.5418 Å) and a curved graphite 

monochromator. Scans were conducted in continuous mode with a rate of 0.02 °/s. The peak 

positions and lattice parameters were refined using Fullprof14 and a least-squares method with 

the ChekCell program.15 Raman spectra were collected on a Thermo-Fisher DXR dispersive 

Raman spectrometer with a wavelength of 532 nm line and a spectral resolution of 3 cm-1. A 

JEOL (model JSM-5410) scanning electron microscope (SEM), equipped with the energy 

dispersive analysis (EDS), EDAX (DX-PRIME) microanalytical system, was used for elemental 

analysis. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) data 

were obtained using a TA Instruments TGA-DSC SDT Q600 system in alumina pans under pure 

argon, where samples were heated up to 1000 °C with a rate of 20 °C/min.   

Figure D- 3: Diagram of the successful reactions for the preparation of A1-xA′xLaNb2O7 solid 

solutions from the end members. 
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   D.3   Results 

ALaNb2O7 end members were successfully prepared and compared to the references 

reported in the literature: direct ceramic method was employed for the synthesis of CsLaNb2O7 

and RbLaNb2O7, and low-temperature ion exchange reactions were conducted for the preparation 

of KLaNb2O7, NaLaNb2O7 and LiLaNb2O7 by reacting RbLaNb2O7 with the corresponding 

nitrate under specific conditions reported above. Figure D-4 presents the XRD patterns of the 

ALaNb2O7 end members, with their calculated unit cell parameters reported in Table D-1 along 

with the literature values. The unit cell parameters are in great agreement with the reported ones, 

providing proof of the great quality of the end members.7–10,12 As an extra visual confirmation, 

the XRD patterns of all the end members are lined up with their simulated references in Figure 

D-5.  

 

 

 

 

 

 

 

 

 

 

 

Table D- 1: Unit cell parameters of the ALaNb2O7 end members compared to the literature values. 

Unit Cell Parameters for ALaNb2O7 End Members 

A 
Experimental Values (Å) Literature Values (Å) 

a b c a b c 

Lia 3.874(3) - 20.3000(4) 3.8799(1) - 20.3606(5) 

Naa 3.903(3) - 21.0654(3) 3.9022(1) - 21.1826(8) 

Kb 3.895(2) 21.602(7) 3.879(2) 3.9060(1) 21.6030(7) 3.8879(1) 

Rba 3.874(2) - 10.9815(2) 3.885(2) - 10.989(3) 

Csa 3.898(4) - 11.1386(3) 3.908(1) - 11.160(4) 

a: tetragonal cell, and b: orthorhombic cell 

 

 

Figure D- 4: XRD patterns of ALaNb2O7 end members where A is: (a) Li, (b) Na, 

(c) K, (d) Rb, and (e) Cs. Peaks pertinent to the polymer film are marked with *. 

* * * * 
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       A1-xA′xLaNb2O7 solid solutions were obtained by an indirect method consisting of 

mixing, grinding and heating appropriate ratios of the two corresponding end members: A/A′ = 

Li, Na, K, Rb, Cs, for x = 0.25, 0.5, and 0.75, with the two end members falling on the two 

extremes for x = 0 and 1. Formation of a solid solution rather than a mixture was fulfilled from 

all of the adjacent end members only, with the successful synthesis of K1-xCsxLaNb2O7 as an 

exception in case of non-adjacent end members. In case of K1-xCsxLaNb2O7, a solid solution was 

not formed within the 325-400 C range. KLaNb2O7 is thermally stable at high temperatures 

(~1250C),5,10 as so more extreme reaction conditions could be applied until a solution was 

formed. Reacting the mixture at 600 C for two days was realized as the best procedure. As 

mentioned earlier, the reaction temperatures at which the solid solutions are formed, cannot 

exceed the stability window of the end members themselves (LiLaNb2O7 and NaLaNb2O7 are 

stable only up to about 730 and 820 °C respectively, while the three other end members are 

synthesized at temperatures above 1000 °C and are thermodynamically stable).5  

 

Figure D- 5: XRD patterns of ALaNb2O7 end members, where A is: (a) Li, (b) Na -both anhydrous and 

hydrated, (c) K, (d) Rb, and (e) Cs, with the corresponding reference patterns presented respectively in a′- e′. 
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Figures D-6 a—e  provide the XRD patterns of all 5 series of the solid solutions: (a) Li1-

xNaxLaNb2O7, (b) Na1-xKxLaNb2O7, (c) K1-xRbxLaNb2O7, (d) K1-xCsxLaNb2O7, and (e ) Rb1-

xCsxLaNb2O7. There seems to be an acceptable trend among all the patterns; as one solid solution 

is richer in one end member, the XRD pattern also resembles that end member more. 

Figure D- 6: XRD patterns of 5 series of solid solutions: (a) Li1-xNaxLaNb2O7, (b) Na1-xKxLaNb2O7, (c) 

K1-xRbxLaNb2O7, (d) K1-xCsxLaNb2O7, and (e ) Rb1-xCsxLaNb2O7. A close-up of the first reflection is 

presented on the right of each series 
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Interestingly, the middle solid solutions (A0.5A′0.5LaNb2O7) which are equally rich in both end 

members, appear to stand on their own rather than a mixture of the end members: 

Li0.5Na0.5LaNb2O7, Na0.5K0.5LaNb2O7, and K0.5Rb0.5LaNb2O7 matching the XRD pattern of the 

end member with the smaller cation (Li-, Na-, and K-LaNb2O7, respectively), while 

K0.5Cs0.5LaNb2O7 has a structure very similar to the Cs end member. Also, the solid solutions 

that were rich in NaLaNb2O7, appeared to present the hygroscopic nature of this end member as 

well (Li0.25Na0.75LaNb2O7, Na0.5K0.5LaNb2O7 

and Na0.75K0.25LaNb2O7). Figure D-7 provides 

the XRD patterns for three 1:1 solid solutions 

(A0.5A′0.5LaNb2O7 where A/A′ is K/Rb, K/Cs, 

and Rb/Cs), and compares each pattern to a 

sample prepared just by grinding a 1:1 mixture 

of the end members without any heat treatment. 

Clearly, the first peak of a solid solution is 

particularly distinguished; not a shouldered peak 

that indicates a mixture of the end members gone 

through an incomplete reaction. This is most 

notable in case of the K0.5Cs0.5LaNb2O7 solid 

solution with the largest difference in the atomic 

radii of the two end members. 

 

 

Unit cell refinement was attempted for all the solid solutions, and the unit cell parameters 

are provided in Table D-2. In cases, there were more than one acceptable set of unit cell 

parameters for a A1-xA′xLaNb2O7 solid solution with specific x, A and A′. The structural 

evolution among these solid solution series is expected to impact the largest unit cell parameter 

as well as the cell volume as the ratio of the larger interlayer ions changes.  

 

 

 

 

 

Figure D- 7: The first peaks of three 1:1 solid 

solutions with (a) K/Cs, (c) Rb/Cs, and (e ) K/Rb, 

compared to the corresponding 1:1 mixtures of 

the end members. 
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Table D- 2: Unit cell parameters of all A1-xA′xLaNb2O7 solid solutions. 

a: tetragonal cell, and b: orthorhombic cell 

 

In order to visually present the unit cell parameters as a function of the solid solution 

composition, the evolution of the largest unit cell parameter is provided in Figure D-8a versus 

the ionic radius of each composition. The largest unit cell parameter is named as c in this plot, 

which is the c parameter for a tetragonal cell, and b parameter in an orthorhombic structure. 

Another consideration was halving this value as needed in order to present them within a 

comparable range (10-11.5 Å). Ionic radius of each composition was also calculated based on the 

weighted average of the interlayer cation(s) for a specific point, using the literature values for the 

radii of the interlayer ions of the end members16; [(1-x)×rA + (x)×rA′] for the A1-xA′xLaNb2O7 

solid solution. The coordination number of the A/A′ cation in the A/A′LaNb2O7 end members 

was considered 4 in case of Li or Na, 6 for partially staggered K, and 8 for Rb or Cs,7–10,12,17 and 

Unit Cell Parameters (Å) for A1-xA′xLaNb2O7 (A/A′ = Li, Na, K, Rb, Cs) Solid Solutions  

 a b c 

 

LiLaNb2O7
a 3.874(3) - 20.3000(4) 

Li0.75Na0.25Nb2O7
a 3.876(2) - 20.2989(4) 

Li0.5Na0.5Nb2O7
a 

3.883(2) - 20.2917(2) 

3.880(3) - 20.2489(4) 

Li0.25Na0.75Nb2O7
a 3.899(5) - 20.9117(5) 

NaLaNb2O7
a 3.903(3) - 21.0654(3) 

Na0.75K0.25Nb2O7
a 3.897(4) - 21.0885(4) 

Na0.5Ka0.5Nb2O7
b 3.905(1) 21.284(7) 3.882(2) 

Na0.25K0.75Nb2O7
b 

3.897(2) 21.309(7) 3.869(2) 

3.896(2) 21.55(1) 3.884(3) 

KLaNb2O7
b 3.895(2) 21.602(7) 3.879(2) KLaNb2O7

b 

K0.75Rb0.25Nb2O7
b 3.896(2) 21.655(9) 3.884(2) a b c 

K0.5Rb0.5Nb2O7
b 

3.875(3) 21.966(9) 3.853(2) K0.75Cs0.25Nb2O7
a 

3.884(3) 21.80(1) 3.872(3)  

3.884(3) - 10.9277(3) 3.900(3) 21.74(2) 3.882(1) 

K0.25Rb0.75Nb2O7
a 3.880(2) - 10.9451(2) 

RbLaNb2O7
a 3.874(2) - 10.9815(2) K0.5Cs0.5Nb2O7

a 

Rb0.75Cs0.25Nb2O7
a 3.875(3) - 11.0137(5) 

3.887(3) - 11.0076(3) 

3.882(5) - 10.9995(2) 

Rb0.5Cs0.5Nb2O7
a 

3.883(4) - 11.0440(3) K0.25Cs0.75Nb2O7
a 

3.887(4) - 11.0684(5) 3.890(2) - 11.0753(3) 

Rb0.25Cs0.75Nb2O7
a 3.892(3) - 11.1079(4) 

CsLaNb2O7
a 3.898(4) - 11.1386(3) CsLaNb2O7

a 
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then the radii were found to be 0.730, 1.13, 1.52, 1.75, and 1.88 Å where the interlayer cation 

was Li+, Na+, K+, Rb+ and Cs+, respectively. Figure D-8b illustrates the evolution of the cell 

volumes among these solid solutions versus their ionic radii. Similar to Figure D-8a, the cell 

volumes were halved as needed to fall within a comparable range (140-180 Å3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As presented in Figures D-8 a and b, the changes in the unit cell parameters and cell 

volumes are generally consistent with the perovskite structure adopting a more favorable 

configuration to accommodate a larger cation while moving towards the Cs end member.  K1-

xRbxLaNb2O7, Rb1-xCsxLaNb2O7, and K1-xCsxLaNb2O7 solid solutions well follow the Vegard’s 

Figure D- 8: Plotting (a) the c parameters, and (b) the cell 

volumes of the solid solutions versus the ionic radii in each case. 
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law; where the unit cell parameters are expected to linearly change with the solid solution 

composition.18 The R-squared values for these three series are all higher than 0.94 which 

translates to a good linear fit plotting either the c parameters, or the cell volumes versus the ionic 

radii in each group (Figures D-9 a—c ). However, Li1-xNaxLaNb2O7 and Na1-xKxLaNb2O7 seem 

to offer negative departures from Vegard’s law (Figures D-10 a and b). It should be noted that 

Vegard’s law is more of a generalization than a law,18 and this does not disapprove of the 

successful formation of solid solutions in the last two cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D- 9: Unit cell parameters and the cell volumes of (a) K1-xRbxLaNb2O7, (b) Rb1-xCsxLaNb2O7, 

and (c) K1-xCsxLaNb2O7 solid solutions plotted versus the ionic radius of the interlayer cation(s). 



245 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Li1-xNaxLaNb2O7 solid solutions were selected as the only group with metastable 

products through the whole range of x values, and further thermal analysis was conducted on 

them. As presented in Figure D-11, the exothermic DSC peak in the range of 740-830 ºC shows a 

sensible transition as one moves from x = 0 to x = 1 across this series. In Figure D-12, the DSC 

transitions of the Li0.5Na0.5LaNb2O7 solid solution is compared to that of a 1:1 rough mixture of 

the two end members. It is clear that the solid solution has a more distinguished exotherm peak 

as opposed to the 1:1 mixture which shows a shouldered peak in a slightly wider range. 

However, it should be noted that the partial formation of a solid solution in case of the 1:1 

mixture is also intrigued under these heating conditions; only a poor structure is formed due to 

the shorter time available for the two end members to fully react. Even though Raman 

spectroscopy is known as a strong tool for the determination of the successful formation of solid 

solutions,17,19 no conclusive patterns were found in the spectra collected on four A1-xA′xLaNb2O7 

solid solution series (Figure D-13). 

 

 

 

Figure D- 10: Unit cell parameters and the cell volumes of (a) Li1-xNaxLaNb2O7 and (b) Na1-xKxLaNb2O7 solid 

solutions plotted versus the ionic radius of the interlayer cation(s). 
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Figure D- 11: DSC analysis performed on the metastable solid solution seris (Li1-xNaxLaNb2O7), 

where: (a) x = 0, (b) x = 0.25, (c) x = 0.5, (d) x = 0.75, and (e) x = 1. 

Figure D- 12: DSC analysis performed on (b) a 1:1 solid solution of Li/Na and 

compared to (c) a 1:1 rough mixture, with the end members presented in (a, d). 
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   D.4   Discussion  

The structures of the five end members are compared in Figure D-1, highlighting the 

impact of the interlayer ionic radii on the relative orientation of the perovskite slabs.6–12,17 

LiLaNb2O7 and NaLaNb2O7 phases have a partially staggered conformation where the perovskite 

layers are shifted by ½ in two directions (compared to the Cs or Rb members).  Conversely, the 

perovskite layers of RbLaNb2O7 and CsLaNb2O7 are eclipsed and so the NbO6 octahedra in both 

layers are well aligned.  The orientation of the slabs in KLaNb2O7 is intermediate to these two 

types and adopts a partially staggered configuration where the layers are shifted by ½ in a single 

direction compared to that of the eclipsed members.6–12 The small size of Li+ (0.73 Å) and Na+ 

Figure D- 13: Raman spectra presented for (a) Li/Na, (b) Na/K, (c) K/Cs, and (d) Rb/Cs solid solutions. 
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(1.13 Å) cations results in low coordination of these cations, and is related to the inherently low 

thermal stability of LiLaNb2O7 and NaLaNb2O7 compounds.5 The ionic radii of the six-

coordinate K+ (1.52 Å) conveys greater stability to the overall crystal structure than the four 

coordinate Li+ and Na+. As a result, this stability permits KLaNb2O7 to form a solid solution with 

the nonadjacent parent compound CsLaNb2O7. 

Once the quality of the five end members are confirmed comparing the XRD patterns and 

the resulted unit cell parameters with their references (Figures D-4 and D-5, as well as Table D-

1), various series of A1-xA′xLaNb2O7 solid solution can be formed using an indirect reaction 

between appropriate ratios of two specific end members (illustrated in Figures D-2 and D-3). 

Figure D-6 shows the XRD patterns of all successful solid solutions: (a) Li1-xNaxLaNb2O7, (b) 

Na1-xKxLaNb2O7, (c) K1-xRbxLaNb2O7, (d) K1-xCsxLaNb2O7, and (e ) Rb1-xCsxLaNb2O7. The 

XRD patterns well prove the formation of particular solid solutions rather than mixtures of the 

end members which would show peaks related to both starting materials. A close-up of the first 

peak in the XRD patterns of three 1:1 solid solutions (K0.5Rb0.5LaNb2O7, K0.5Cs0.5LaNb2O7, and 

Rb0.5Cs0.5LaNb2O7) compared to a 1:1 mixture of the end members further highlights the 

shouldered peaks expected in case of incomplete formation of the solid solutions (Figure D-7). In 

order to better study the evolution of the structure as a function of the composition, unit cell 

refinement was first realized for all the systems (Table D-2), and then plotted versus the 

weighted average ionic radii of the interlayer cations (Figure D-8, D-9, and D-10). Except for 

Figures D-6a and e which consist of isostructural end members, solid solutions in all other cases 

adopted a new configuration moving from one end member to the other; both tetragonal and 

orthorhombic cells were to be used to perform unit cell refinement across one group of solid 

solutions in Figures D-6b—d and Table D-2.  Figure D-8 illustrates the continuous evolution 

across the entire series of the solid solutions, while Figures D-9 and D-10 present them group by 

group. The c parameters and unit cell volumes show a gradual increase across the whole series as 

the ionic radii increase (from Li to Cs), however, there are a few inconsistencies happening in 

Li1-xNaxLaNb2O7 and Na1-xKxLaNb2O7 series. LiLaNb2O7, Li0.75Na0.25LaNb2O7 and 

Li0.5Na0.5LaNb2O7 have very similar c parameters and cell volumes, quite different from those of 

Li0.25Na0.75LaNb2O7 and NaLaNb2O7, which causes a sharp departure from Vegard’s law (as if 

there are two separate lines for the beginning solutions and the later ones with higher x values). 
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The Na1-xKxLaNb2O7 solid solutions (0.25 ≤ x ≤ 0.75) seem to fit to a line once two end 

members are excluded from the series, again causing a negative departure from Vegard’s law. 

This observation seems to be the characteristic of these two solid solution series, without any 

indication of the incomplete solution formation. Thermal analysis of Li1-xNaxLaNb2O7 

metastable series also showed a transition in the DSC peak moving from one end member to the 

other (Figure D-11). The sensible transition observed via thermal analysis, as well as the 

increasing trend of the c parameter/cell volume versus the ionic radii, strongly support the 

successful formation of A1-xA′xLaNb2O7 solid solutions. 

 

   D.5   Conclusions 

Low temperature topochemical reactions were proved to be effective pathways for the 

synthesis of alkali metal solid solutions (A1-xA′xLaNb2O7) from adjacent ALaNb2O7 and 

A′LaNb2O7 end members (A/A′ = Li, Na, K, Rb, Cs). Decomposition occurred with attempted 

solid solutions comprised of LiLaNb2O7 or NaLaNb2O7 with a nonadjacent end member. K1-

xCsxLaNb2O7 was the only instance where nonadjacent cation mixing led into the successful 

formation of solid solutions.  The unit cell parameters of these solid solutions were found to vary 

with the solid solution composition for each series in which the cations were randomly 

distributed in the interlayer. Layer expansion and translation occurred with increasing ionic radii 

across the entire A1-xA′xLaNb2O7 family corresponding to the accommodation of larger cations 

within the perovskite layers. For the K1-xRbxLaNb2O7, Rb1-xCsxLaNb2O7, and K1-xCsxLaNb2O7 

solid solutions, the Vegard’s law was well realized, while the two other groups showed negative 

departures from this generalization. These solid solutions can be further used to direct partial ion 

exchange reactions favoring one of the interlayer ions more than the other. 
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Appendix E. Inelastic Neutron Scattering Performed on Inorganic-

Organic LaNb2O7 Hybrid Perovskites 

E.1 Introduction 

Inelastic neutron scattering (INS) measurements were carried out to collect information 

about molecular vibrations of CnH2n+1-LaNb2O7 (n = 3, 5, and 10), CnH2n+1NH3-LaNb2O7 (n = 3 

and 6), C7H7-LaNb2O7 and C13H11-LaNb2O7 hybrids, synthesis of which was explained in details 

in Chapter 3. Contrary to IR and Raman, INS is not limited with any optical selection rules.1 In 

order to extract more information from the INS spectra, advanced molecular models have to be 

demonstrated for these hybrid systems.  

 

E.2   Experimental 

Characterization. High-resolution inelastic neutron scattering (INS) measurements were 

carried out on the vibrational spectrometer VISION (BL-16B)2 at the Spallation Neutron Source 

(SNS) of the Oak Ridge National Laboratory (ORNL). Unlike POWGEN which suffers from 

incoherent and inelastic scattering of hydrogen-rich samples, VISION is especially sensitive to 

hydrogen due to its large incoherent scattering cross section. Therefore, INS was used as a 

powerful tool to evaluate the organic substituents of all the hybrids regardless of the level of 

hydrogen; CnH2n+1-LaNb2O7 (n = 3, 5, and 10), CnH2n+1NH3-LaNb2O7 (n = 3 and 6), C7H7-

LaNb2O7 and C13H11-LaNb2O7. 0.3—0.35 g of each sample was loaded in cylindrical vanadium 

sample holder 6 or 8 mm in diameter. Data were collected at 5 K for a duration of typically 4 to 6 

hours. Instrument related background (vacuum shroud, heat shield, sample holder) was 

subtracted from the measured spectra. The TOF spectra were converted to energy transfer with 

the MantidPlot software, covering energy transfers from zero up to 496 meV (16-4000 cm-1). 

Other than standard rebinning and smoothing, the displayed spectra have not undergone any 

alterations. 

 

E.3   Results 

Inelastic neutron scattering (INS) spectra are presented in Figure E-1 where the molecular 

vibrations are detected using netrons, without any optical selection rules.1 Other than relying on 

similar methods1,3–6 to generally confirm the expected organic groups in each structure (like in 
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Figure 3-2), advanced molecular models have to be demonstrated to extract more information 

from this data.1,5,7,8 
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