
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

University of New Orleans Theses and 
Dissertations Dissertations and Theses 

Fall 12-16-2016 

A Machine Learning Approach to Determine Oyster Vessel A Machine Learning Approach to Determine Oyster Vessel 

Behavior Behavior 

Devin Frey 
University of New Orleans, dfrey@uno.edu 

Follow this and additional works at: https://scholarworks.uno.edu/td 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Frey, Devin, "A Machine Learning Approach to Determine Oyster Vessel Behavior" (2016). University of 
New Orleans Theses and Dissertations. 2253. 
https://scholarworks.uno.edu/td/2253 

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with 
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright 
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the 
work itself. 
 
This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an 
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.uno.edu%2Ftd%2F2253&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2253?utm_source=scholarworks.uno.edu%2Ftd%2F2253&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


A Machine Learning Approach to Determine Oyster Vessel Behavior 

 

 

 

 

 

 

A Thesis 

 

 

 

 

 

 

Submitted to the Graduate Faculty of the 

University of New Orleans 

in partial fulfillment of the 

requirements for the degree of 

 

 

 

 

 

 

Master of Science 

in 

Computer Science 

 

 

 

 

 

 

by 

 

Devin Frey 

 

B.S. University of New Orleans, 2013 

 

December, 2016  



 ii 

Acknowledgements 

 I would like to thank the following professors for their assistance in the 

completion of this project: Dr. Mahdi Abdelguerfi, for providing me the opportunity to 

work on this project; Dr. Thomas Soniat, for entrusting the project to me and providing 

insight on the biology-related aspects of this paper; and Dr. Md Tamjidul Hoque, for 

providing much guidance on the machine learning portions of this project. I would also 

like to thank the Louisiana Department of Wildlife and Fisheries for collecting the vessel 

data used in this project, as well as the University of New Orleans for providing the 

education that allowed me to produce this thesis. 

 Thanks also to David Gallegos, for providing the groundwork that this project is 

built upon, and Nathan Cooper, Dustin Peabody, and Daniel Ward for providing feedback 

on some of the visualizations produced for this project. 

 Lastly, I thank my parents and other family members who pushed me to pursue a 

higher education. 

 

  



 iii 

 

Table of Contents 

 

Abstract ............................................................................................................................... v 

1. Introduction ..................................................................................................................... 1 

2. Materials and Methods .................................................................................................... 4 
Overview of Methods .................................................................................................................. 4 
Machine Specifications ............................................................................................................... 5 
Study Area................................................................................................................................... 5 
VMS Modules ............................................................................................................................. 8 
Vessel Paths ................................................................................................................................ 8 
Speed ........................................................................................................................................... 9 
Net Speed .................................................................................................................................. 10 
Movement Angles ..................................................................................................................... 11 
Features ..................................................................................................................................... 12 
Previously Built Classifier ........................................................................................................ 13 
Support Vector Machines .......................................................................................................... 13 
Cross-Validation ....................................................................................................................... 18 
Windowing ................................................................................................................................ 20 
Grid Searching .......................................................................................................................... 20 
Smoothing ................................................................................................................................. 21 
Probability Estimates ................................................................................................................ 22 
Scaling the Data ........................................................................................................................ 23 

3. Results ........................................................................................................................... 24 
Movement Angle Versus Net Speed ......................................................................................... 24 
Window Size vs. SVM Accuracy.............................................................................................. 29 
Grid Searching .......................................................................................................................... 31 
Scaling ....................................................................................................................................... 32 
Maps .......................................................................................................................................... 33 

4. Discussion ..................................................................................................................... 39 

References ......................................................................................................................... 41 

Vita .................................................................................................................................... 42 

 
  



 iv 

List of Figures 

 

Figure 1: Flowchart of project methods .............................................................................. 5 
Figure 2: Public oyster grounds of Louisiana ..................................................................... 6 
Figure 3: Detail shots of primary oyster grounds ............................................................... 7 
Figure 4: Two idealized vessel movement paths, linear (A) and circular (B). ................... 9 
Figure 5: Triangle representing three sequential points in a theoretical vessel path. ....... 11 
Figure 6: Graph depicting the linearly separable case of two classes of vectors .............. 14 
Figure 7: Effect of gamma and C on RBF SVMs ............................................................. 16 
Figure 8: Figure demonstrating data set partitioned into 10 folds .................................... 18 
Figure 9: Graphs showing the speed, movement angle, and predicted behavior of vessel 

points. ........................................................................................................................ 25 
Figure 10: Graphs showing speed, net speed, and predicted behavior of vessel points ... 26 
Figure 11: ROC Curve for a linear kernel ........................................................................ 27 
Figure 12: Close-up of ROC Curve for a linear kernel ..................................................... 27 
Figure 13: ROC curve for an RBF kernel ......................................................................... 28 
Figure 14: Close-up of ROC curve for an RBF kernel ..................................................... 28 
Figure 15: Window Size vs. Accuracy for a Linear SVM ................................................ 30 
Figure 16: Window Size versus Accuracy for an RBF SVM ........................................... 31 
Figure 17: Previous classifier's prediction of vessel behavior versus SVM classifier's 

prediction of vessel behavior .................................................................................... 34 
Figure 18: Previous classifier's prediction of vessel behavior versus SVM classifier's 

prediction of vessel behavior .................................................................................... 34 
Figure 19: Previous classifier's prediction of vessel behavior versus SVM classifier's 

prediction of vessel behavior .................................................................................... 35 
Figure 20: Unknown points for vessel operating in Sister Lake reclassified by SVM 

classifier .................................................................................................................... 36 
Figure 21:  Unknown points for vessel operating in Lake Mechant reclassified by SVM 

classifier .................................................................................................................... 37 
Figure 22: Unknown points for a vessel operating in Sister Lake reclassified by SVM 

classifier .................................................................................................................... 37 
Figure 23: Unknown points for a vessel operating in Bay Junop reclassified by SVM 

classifier .................................................................................................................... 38 
 

  



 v 

Abstract 

 

 A support vector machine (SVM) classifier was designed to replace a previous 

classifier which predicted oyster vessel behavior in the public oyster grounds of 

Louisiana. The SVM classifier predicts vessel behavior (docked, poling, fishing, or 

traveling) based on each vessel’s speed and either net speed or movement angle. The 

data from these vessels was recorded by a Vessel Monitoring System (VMS), and stored 

in a PostgreSQL database. The SVM classifier was written in Python, using the scikit-

learn library, and was trained by using predictions from the previous classifier. Several 

validation and parameter optimization techniques were used to improve the SVM 

classifier’s accuracy. The previous classifier could classify about 93% of points from 

July 2013 to August 2014, but the SVM classifier can classify about 99.7% of those 

points. This new classifier can easily be expanded with additional features to further 

improve its predictive capabilities. 
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1. Introduction 

 

 The Louisiana Department of Wildlife and Fisheries (LDWF) manages recreational and 

commercial fishing in the inland and coastal waters of Louisiana. One of the most important 

species fished in these waters is the eastern oyster, Crassostrea virginica. From 1997 to 2012, 

Louisiana accounted for an average of 34% of the nation’s oyster landings, as well as 55% of all 

oysters landed among the gulf coast states in 2012 [2014 Oyster Stock Assessment Report, 2014]. 

Over 700 permits are issued each year, giving vessels access to state oyster grounds, which total 

1.6 million acres. In 2012, it became law that vessel's fishing in Louisiana's public oyster 

grounds were required to have a Vessel Monitoring System (VMS) installed to monitor vessel 

activity in public grounds [“Louisiana Wildlife and Fisheries Commission Considers”, 2012]. 

The monitors periodically record the vessel's latitude and longitude at a given timestamp. While 

the modules allowed the LDWF to monitor vessels’ locations in public waters, they do not 

specify which behavior (docked/anchored, poling, fishing, or traveling) the vessel is performing 

at the time of the ping. 

 Gallegos [2014] predicted the behavior of a vessel using its data from the installed VMS 

module. By running comparisons of speed versus net speed of a vessel, the vessel's behavior at 

most times was predicted. This method could not account for every ping, however. About twelve 

percent of the points from the 2012-2013 fishing season and about seven percent of points from 

the 2013-2014 fishing season fell into uncertain ranges, and were marked as exhibiting unknown 

behavior. It was decided that a machine learning approach would be attempted to classify these 

points. 
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 Machine learning is a branch of computer science concerned with training a model to 

produce an outcome measurement from a set of features. A set of training data is produced where 

the outcome and feature measurements are known for a group of objects for building a 

supervised machine learning model. The prediction model is built using this data as well as 

cross-validated, which can be used to predict the outcome for new data. Ideally, a model 

produced in this fashion will make accurate predictions by mapping the feature space into higher 

dimensions, and then separate the classes using efficiently built decision boundaries [Hastie, 

2009]. This is unlike the previously designed classifier, which used a deterministic approach to 

exhaustively map each data-point via if-then-else conditions. To handle the identification of 

points with unknown behavior, a method of machine learning was implemented via a support 

vector machine, or SVM, with probability estimates, which would allow it to accurately 

determine which behavior a previously unknown point was exhibiting. The SVM implementation 

used was from the scikit-learn library. Scikit-learn is a Python module for machine learning built 

on top of NumPy, SciPy, and matplotlib, and is available for personal and commercial use under 

the BSD license. [Scikit-learn, 2016].  

The purpose of this project was to produce a more robust classifier, that could more 

accurately predict vessel behavior from position-at-time data transmitted from the on-board 

VMS modules. The previous project by Gallegos [2014] developed a deterministic classifier, 

which classified all but about 7% of vessel behaviors from July 2013 to August 2014. The goal 

of this project was to use a support vector machine classifier, a machine learning based approach 

which can predict the unknown behavior by efficiently mapping the sample behaviors in higher 
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dimensional space, to overcome the limitations that were present in the previously developed 

deterministic approach. 

 Oyster fishing in Louisiana is generally by dredging over subtidal oyster reefs. Classifiers 

distinguishing fishing from other types of vessel behaviors could be used to discover oyster reefs 

that were unknown to the LDWF. By using data from vessel’s fishing, poling, and movement 

patterns, one could thus map reefs that were missed by the traditional Side Scan Sonar methods 

used by the LDWF, as well as determine the most utilized areas of each reef. With greater 

understanding of fishing behavior over shorter periods of time, one could determine catch per 

unit effort in sacks per hour fished as opposed to sacks per day. 

 An automated system to determine fishing effort can bypass more error prone methods, 

such as physical logging by the captain of a fishing vessel. By having accurate measurements of 

fishing effort on-hand, the LDWF will be more prepared to protect the oysters and their habitat. 

Knowing what reefs are most frequently fished would allow the LDWF to respond to protect 

them, such as by closing the grounds to fishing vessels, or seeding the grounds with oyster cultch.
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2. Materials and Methods 

 

Overview of Methods 

Figure 1 below demonstrates how the problem was approached. First, the VMS module 

onboard an oyster vessel produces a ping while the vessel is in the public oyster grounds of 

Louisiana. These pings contain the coordinates and ID of the vessel, as well as a timestamp. 

Pings with the same vessel ID and timestamps within 20 minutes of each other are concatenated 

together into a path, and the vessel’s speed and net speed at a given point are calculated from 

the coordinates and timestamps of the other points in the path. Points with speeds over 50 m/s are 

discarded as erroneous data, and the rest of the points have their speeds and movement angles 

calculated. The path is then passed to the previous classifier, which assigns each point to a 

behavior based on the point’s speed and net speed. These behaviors consist of docked, poling, 

fishing, traveling, and unknown. Unknown points are put aside, while points exhibiting the other 

four behaviors are used as training data for an SVM. Once the SVM is trained, points with 

unknown behavior are passed to it, and the SVM attempts to reclassify these points to the 

appropriate behavior, based on the combination of either the point’s speed and net speed or 

speed and movement angle. 
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Figure 1: Flowchart of project methods 

 

Machine Specifications 

 All experiments were performed on a 64-bit Windows 7 machine, with a 2.40 GHz AMD 

Athlon II X4 610e Processor, and 6 GB of RAM. 

Study Area 

 Oyster growing areas of Louisiana include private leases and public grounds. About 

155,800 hectares are privately leased. The public grounds encompass 667,732 hectares, of which 

about 24,000 hectares are oyster reef (Louisiana Department of Wildlife and Fisheries, 2012). 

The study area for this project is the Louisiana public oyster grounds, primarily consisting of 

Sabine Lake, Calcasieu Lake, Vermillion Bay, Atchafalaya Bay, Sister Lake (also known as 
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Caillou Lake), Barataria Bay, Lake Borgne, and Breton Sound. The seed grounds of each are 

outlined in purple in Figure 2 and Figure 3 below. 

 

Figure 2: Public oyster grounds of Louisiana 
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Figure 3: Detail shots of primary oyster grounds. In order from left to right, top to bottom: 

Sabine Lake (A), Breton Sound and Lake Borgne (B), Calcasieu Lake (C), Vermillion and 

Atchafalaya Bay (D), Barataria Bay (E), and Sister Lake (F). 
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VMS Modules 

 The data for the project was provided by the on-board VMS modules. These modules 

were provided free-of-charge to vessels fishing in the public oyster grounds of Louisiana, with 

the ship's operator only needing to provide minimal maintenance to the module [“Louisiana 

Wildlife and Fisheries Commission Considers”, 2012]. Three features were used to determine the 

behavior of a vessel: the vessel's speed, net speed, and movement angle. A vessel's VMS module 

pings approximately once a minute, giving a vessel ID, a timestamp, and a set of coordinates. 

 

Vessel Paths 

 Pings from the same vessel that are less than twenty minutes apart are concatenated 

together into a trip, or path. Vessel paths show the movement of a vessel over time, and can 

provide insight into what the vessel was doing at a given point. Figure 4 below shows two 

idealized movement patterns of oyster vessels, consisting of five points each. The top path (A) 

shows linear movement, where the last point in the path is far away from the origin. The bottom 

path (B) shows circular movement, where the first and last points are close to each other. Linear 

movement is associated with vessels that are traveling. Circular movement is associated with 

vessels that are poling and docked. Fishing can occur during either movement pattern, but is 

more common during circular motion. Determining a vessel’s movement pattern was based on 

several factors: the vessel’s speed, the vessel’s net speed, and the vessel’s movement angle. 



9 

 

Figure 4: Two idealized vessel movement paths, linear (A) and circular (B). 

 

Speed 

 A vessel’s speed was the first factor used to identify vessel behavior patterns. Speed was 

calculated by measuring the distance between two consecutive points in a path, over the 

difference in seconds between the last point’s VMS ping and the first point’s VMS ping. The 

speed of vessel at a point helps to determine if the vessel was performing an activity or traveling.  

 Data for vessel speeds during certain behaviors was gathered via interviews with ship 

captains [Gallegos, 2014]. If a point has a speed under 0.1 m/s, the vessel is docked. If a point 

has a speed between 0.1 m/s and 0.5 m/s, the vessel is probably poling for an area to fish. If a 
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point has a speed greater than 0.5 m/s, the vessel could either be fishing or traveling. If a point 

has a speed greater than 2 m/s, then the vessel is likely traveling. 

 

Net Speed 

 A vessel’s net speed was the second factor used to identify a vessel’s behavior at a point. 

Net speed was calculated using a sliding window of ten points. The distance between the last and 

first points of the window over the difference in seconds between those two points would be a 

single net speed value. Each point in the window has this net speed value appended to its list of 

net speeds, and the window would slide forward by one point. This process was repeated until 

the sliding window reached the last point in a path. For each point in the path, the net speed was 

calculated by averaging its list of net speeds. 

 There can be significant overlap between the net speeds associated with different 

behaviors, so speed must also be taken into account when using net speed to identify behaviors. 

Points with speeds and net speeds below 0.1 m/s likely indicate docked or anchored behavior. 

Points with speeds of less than 0.5 m/s and net speeds less than or equal to their speed plus 0.125 

m/s are probably poling. Points with speeds between 0.5 and 1.75 m/s, and net speeds less or 

equal to their speed minus 0.125 m/s, are probably fishing. Points with either speeds greater than 

or equal to 0.5 m/s and net speeds greater than their speed plus 0.125 m/s, or speeds greater than 

2 m/s and net speeds greater or equal to their speed minus 2 m/s, are probably traveling.  
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Movement Angles 

 While the original classifier used speed and net speed for its behavior calculations, the 

new classifier was implemented using movement angles in place of net speed. The reasoning 

behind this decision was that movement angles were easily calculated, and the delineation 

between circular and straight movement would be clear.   

 The points in a path derive their movement angles from their adjacent points. In a path 

consisting of 5 points, A, B, C, D, and E, we calculate B's movement angle by treating A, B, and 

C as the corners of a triangle. Below (Figure 5) is a visualization of this triangle, where A, B, and 

C are the sequential points of the path, and a, b, and c are the distances between those three 

points. 

 

Figure 5: Triangle representing three sequential points in a theoretical vessel path. 

 

The coordinate positions of these three points are known, so the distance from each point to each 

other point can be calculated. With these distances as the sides of the triangle, the Law of 

Cosines [“Law of Cosines”, 2016] is used to calculate B: 

B = cos-1(c2 + a2 − b2 / 2ca)     (1) 
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This process is repeated for points C and D in the example path. Because point A has no 

previous point, and point E has no next point, their movement angles cannot be calculated. 

Instead, A's angle is set to the angle of the next point, B, and E's angle is set to the angle of the 

previous point, D.  

 Like net speed, movement angle alone cannot determine a vessels behavior, as each 

behavior can exhibit movement angles between 0° and 360°. However, vessels that are traveling 

should generally have movement angles between 150° and 210°, making the delineation between 

those two behaviors more clear. If a point has a speed either greater than 2 m/s and a movement 

angle around 180°, it is most likely that the vessel is traveling. If a point has a speed between 0.1 

m/s and 0.5 m/s and any movement angle, the vessel is probably poling for an area to fish. If a 

point has a speed between 0.5 and 1.75 m/s and any movement angle, the vessel is likely going 

in circles over an oyster reef. If a point has a speed under 0.1 m/s and any movement angle, the 

vessel is docked or anchored. 

 

Features 

 Points in the dataset have six features: latitude, longitude, timestamp, speed, net speed, 

and movement angle. Latitude, longitude, and the timestamp are provided by the VMS modules, 

while speed, net speed, and movement angle are calculated from those values. These six features 

were provided to the original classifier, in order to generate the behaviors for the training and 

testing sets of data for the SVM classifier. 
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Previously Built Classifier 

 In the previous system, a simple classifier determined a vessel's behavior. This classifier 

used a deterministic if-then-else block to group points into the likeliest behavior, based on the 

combination of a point’s speed and net speed. The results from this classifier were used as 

training data for the SVM classifier later in the project. A vessel's speed at a point was 

determined by measuring its distance from its previous point by using the haversine formula. The 

haversine formula is a method to compute the distance between two points on the surface of a 

sphere. For two points on a sphere, the distance between them is represented by the formula: 

 hav(d/r) = hav(lat2 – lat1) + cos(lat1)cos(lat2)hav(lon2 – lon1)  (2) 

where hav is the haversine function: 

 hav(theta) = sin2(theta/2) = (1 – cos(theta))/2   (3) 

d is the distance between the two points, and r is the radius of the sphere. In this case, d is the 

distance between two consecutive pings of a VMS module, and r is the radius of the earth, 

approximately 6,371 kilometers. 

 

Support Vector Machines 

 The classification of data point behavior was handled by using a support vector network, 

also known as a support vector machine, or SVM. An SVM uses maximum-margin affine 

hyperplanes to separate data into distinct groupings, allowing it to predict the behavior of new 

data based on which grouping that data falls into. Methods to classify via support vectors had 

existed before, but the current incarnation of support vector networks were introduced by Cortes 

and Vapnick [1995]. 
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 In a data set of two linearly separable classes, there are hyperplanes, which are the planes 

separating the classes. The optimal hyperplane in a support vector machine is defined as the 

linear decision function with the maximum margin between the vectors of two classes. For this 

reason, the optimal hyperplane is also known as the maximum-margin hyperplane. The points 

that determine the size of the margin from the maximum-margin hyperplane are known as 

support vectors. Support vectors are significant because they determine the size and position of 

the optimal hyperplane, while other vectors have no effect on the optimal hyperplane. Having the 

largest possible margin prevents noise and random error from reducing the accuracy of the 

classifier. 

 

Figure 6: Graph depicting the linearly separable case of two classes of vectors 
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Figure 6 is a simplified graph showing poling and traveling points, and demonstrates a 

linearly separable case. There are two classes, poling, labeled with red points, and traveling, 

labeled with magenta points, as well as three planes, H1, H2, and H3. The plane H1 does not 

separate the classes, but H2 and H3 do. Points A and B are the support vectors of H2, and C and D 

are the support vectors of H3. While H2 separates the classes, H3 separates the classes with the 

largest possible margin, thus H3 is the maximum-margin hyperplane. 

 The best hyperplane is one that has the largest margin and correctly separates all classes. 

However, there are cases where a linear hyperplane cannot do both optimally. In this case, there 

is a way to relax the constraints so a maximum-margin hyperplane can be found. The cost 

parameter, C, which affects whether our SVM features a “hard” margin or a “soft” margin, 

controls the trade-off between complexity of the decision rule and frequency of errors. Greater 

values of C increase complexity of the decision rule but reduce the frequency of errors. Smaller 

values of C create larger margins, while large values of C create smaller margins [Hastie, 2009]. 

In short, higher C values cause the classifier to prefer hyperplanes which more correctly separate 

the classes, while lower C values cause the classifier to prefer hyperplanes with larger margins 

between the two classes. In the case that two classes cannot be completely separated, both 

vectors on the margins as well as vectors on the wrong side of the maximum-margin hyperplane 

are support vectors. 

 Additionally, if two classes are not linearly separable, a radial basis function, or RBF, 

kernel can be used to alleviate the situation. The value of a radial basis function depends on a 

point’s distance from a center. In this case, a “center” is a point in the training data, while a 

“point” is a point in the testing data. A point’s proximity to a center is what determines 
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which class it will be classified as. In addition to the cost parameter C, they possess an attribute, 

gamma, which affects the area of influence of each training example. Larger values of gamma 

reduce the radius of influence of a single vector. If the value of gamma is too high, the radius 

will only include the support vector itself, leading to overfitting. If the value of gamma is too 

small, the radius of influence will encompass all the training data, and will not reveal any pattern 

in vector behavior. Using an RBF kernel, input data that is not separable can be mapped into a 

higher-dimensional feature space where the data is separable [Hastie, 2009]. 

 

 

Figure 7: Effect of gamma and C on RBF SVMs 

  

The above image (Figure 7) was made using the scikit-learn library and demonstrates 

how C and gamma affect the decision function of an RBF SVM. These SVMs feature two 
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classes, fishing and traveling points, marked by yellow points and magenta points, respectively. 

Each point’s area of influence shown by an aura of the corresponding color. Low gammas 

produce large areas of influence, while large gammas create small areas of influence. Low values 

of C use few support vectors and make the model’s decision surface smooth, while large values 

of C increase the complexity of the model by allowing it to select more support vectors [“Scikit-

learn”, 2016].  

 In the case where more than two classes are being considered, an SVM can divide a 

problem into a series of two-class problems. There are several approaches to this binary 

classification system, including one-vs-all and one-vs-one. In one-vs-all, a classifier is produced 

for each class, where the first class is the class in question, and the other class is a combination 

of every other class. New data is tested against each classifier, and the one with the greatest 

output determines which class the new input is sorted into. In one-vs-one, a classifier is made for 

each combination of two classes. Each classifier casts a vote as to which class the new input 

belongs in, and the class with the most votes wins [Hastie, 2009]. Scikit features 

implementations of both methods, but we use a one-vs-one scheme for multi-class classification, 

as it is the default implementation for the SVC library [“Scikit-learn”, 2016].  

 For linearly separable classes, a linear kernel SVM should calculate faster and more 

accurately than an RBF kernel SVM. For non-linearly separable classes, RBF kernels should 

function better. Planes of speed and net speed are not linearly separable, so an RBF kernel should 

perform better in that case. Planes of speed and movement angle are separable, at least between 

all behaviors except fishing and movement, so a linear kernel should perform better, at least in 

separating docked, poling, and fishing behaviors from each other.  
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Cross-Validation 

 Estimating the prediction error of the classifier was done by using cross-validation, a 

testing method that is both simple and widely used. In cross-validation, a portion of the data is 

set aside to be used for testing while the rest of the data is used to train the classifier. This way, 

the classifier can be tested on data that it has never before encountered. Cross-validation is 

performed in folds, where the data is segmented into K parts which are each about equal size. 

When a fold is set aside for validation, the other K – 1 folds are used to train the validator. This 

process repeats until each fold has been set aside once for validation, and then the K estimates of 

error are combined to find the average [Hastie, 2009]. 

 

Figure 8: Figure demonstrating data set partitioned into 10 folds 

 

Figure 8 demonstrates 10-fold cross-validation. Say each of the ten squares above 

represents one-tenth of our data set. For training, we will use squares one through five, and seven 

through ten. Once the SVM is trained, we will take our data from square six, filled in with black 

in the image above, and use it as testing data. Once testing is complete for this iteration, the 

SVM’s accuracy is recorded for this configuration, another square is set aside as testing data, and 

square six is used as training data in all further iterations. This process will repeat until each of 

our ten squares has been used exactly once as testing data. 

 In our data set, there are five distinct behaviors to consider: unknown, docked, poling, 

fishing, and traveling. Points with unknown behavior are not inputted into our validator at this 

stage, as we do not want the validator to produce unknown points. Of the other four behaviors, 
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we have an abundance of fishing and traveling points, a smaller amount of poling points, and 

comparably few docked points. There were concerns that due to the comparably large volume of 

poling points in comparison to docked points, our classifier would discriminate against docked 

points and label them as poling, since the ranges of their behaviors were so similar. 

 To counteract this unwanted behavior, when the folds are prepared, only paths that have 

at least a single docked point are gathered. Docked points are still a minority, but now they make 

up a larger portion of the data, and are more likely to be correctly classified. However, if the 

folds happened to be grouped in such a way that all the docked points ended up in a single fold, 

it could greatly impact the classifier's ability to correctly predict docked behavior. 

 To circumvent this occurrence, stratified K-folds were used to partition the data into 

about even sets. In regular K-folds, there is no concern for what data points are grouped into 

which fold. Therefore, it is possible that an entire class could end up within a single fold, which 

could skew the accuracy of the classifier if it has never encountered the segregated class. 

Stratified K-folds split the data such that each fold has about an equal number of each class as 

every other fold. This way, the classifier is guaranteed to have encountered every class before it 

ever has to predict them. 

 With the folds stratified, a way to determine what value of K to choose was needed. If K 

is equal to our number of samples, a case known as leave-one-out cross-validation, the error will 

be very low, but the variance will be great. In addition, leave-one-out is computationally 

intensive, especially with a large dataset to test. For our data set, we chose to use 10 folds, which 

is widely accepted as a reasonable compromise for number of folds [Hastie, 2009]. 
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Windowing 

 Windowing was also used to improve the accuracy of the SVM. Instead of single points, 

a “window” of points was fed to the SVM. For example, if there is a path P with points A, B, C, 

D, and E, and the window size is three, the SVM would be given the following windows: [A, B, 

C], [B, C, D], [C, D, E]. The window sizes used in testing ranged from one to fifty. Paths that 

had fewer points than the window size were not fed to the SVM. 

 Using windows as opposed to individual points rapidly increases the complexity of our 

testing. For example, if we have 10,000 points and a window size of one, we have 10,000 points 

to consider. If the window size is increased to three, we now have (10,000 – (3 – 1)) * 3 = 29,994 

points. At window size 15, we have (10,000 – (15 – 1)) * 15 = 149,790 points. At 45, we have 

(10,000 – (45 – 1)) * 45 = 448,020 points. Increasing the window size by one increases the 

number of points to consider by an amount about equal to the number of points in the dataset. 

The formula for the number of points to be fitted by the SVM is  

(p – (w – 1)) * w     (4) 

where p is the total number of points in the dataset, and w is the window size. 

 

Grid Searching 

 There are a number of parameters which affect the SVM's behavior. In the case of a linear 

kernel, there is one value, C, which affects how harshly the SVM penalizes miscalculated data. 

An RBF kernel has a gamma value, which affects the area of influence each data point exhibits, 

as well as a C value. To find the best values for these parameters, a method called grid searching 

was used. 
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 In grid searching, an array of values is searched for those which give the best accuracy. In 

the event there are multiple parameters, such as when using a RBF kernel, the parameters are 

grouped together in every possible combination. For example, if there are values C = [a, b] and 

gamma  = [x, y], a grid search would produce the sets [a,x], [a,y], [b,x], and [b,y]. These sets 

would be tested with 3-fold cross-validation on a subset of the available data. After testing all 

combinations, the algorithm returns the set that produced the greatest accuracy. Because each set 

is independent of the others, this process is easy to run in parallel, which is especially efficient as 

the exhaustive searching of values is time-consuming. 

 

Smoothing 

 If a vessel’s behavior is near the threshold of two different behaviors, there is a chance it 

could cross from one into the other, and back again. To handle situations like these, we turn to 

the method known as smoothing, where the classes of the previous and next points affect the 

class of the current point. If we have classes A and B, and a series of points are attributed to the 

classes AABAA, then the center point is not likely to actually be class B. Rather, it is likely 

some change in values caused the classifier to misclassify the central point. To amend the 

situation, we “smooth” the middle point, by assigning it to the same class as its neighbors, in this 

case A. If our series was AABBB, then we would require no smoothing, as there is no “wiggling” 

between the classes.  

 The longest amount of time separating the timestamps of two points in a path is twenty 

minutes. If a ship that is exhibiting some behavior, it is unlikely that that ship will switch from 

one behavior to another, and then back again. For instance, if the classifier thinks a ship is 
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fishing, then poling, then fishing again within a brief period, it is unlikely that the ship was 

exhibiting different behavior for a brief period, but more likely that the ship was adjusting its 

course while still exhibiting the same behavior. 

 Smoothing was performed on the output after the SVM had predicted the behavior of 

points in the path. If smoothing was done before hand, the classifier would be less reliable, as 

points would be incorrectly attributed to the wrong behavior, due to smoothing the points. In the 

context of the SVM, the behavior of the previous and next points is irrelevant, as the only 

attributes of note are speed, net speed, and movement angle. 

 

Probability Estimates 

 Once the SVM has been trained on the known data, we still have to handle the points that 

the original classifier labelled as unknown. If we gave these points to the SVM, it would allocate 

each to its mostly likely class. However, in the event that a point's likelihood of belonging to 

multiple classes is equally unlikely, say if a point has a 34% chance of belonging to traveling, 33% 

chance to belong to fishing, 32% chance of belonging to poling, and a 1% chance to be docked, 

we should not mark it as traveling, because our confidence in the behavior is so low.  

 To handle this problem, we use SVM probability estimates to ensure the likelihood of a 

behavior is at least as likely as a confidence threshold we provide. The SVC class has a Boolean 

value “probability” which, when set to true, provides probability estimates of each class, at the 

expense of running slightly slower. The SVM calculates the probabilities of each class, and 

compares the top probability against a confidence threshold value of 0.5. If the most likely class 
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has a probability less than our confidence value, then we discard that point, as our SVM is not 

confident enough to label it as any of the classes.  

 

Scaling the Data 

 If the data of an SVM is not scaled, larger values can overshadow smaller ones and skew 

the hyperplanes in their favor. Also, larger values can make computations more intensive, 

causing calculations to take more time. It is important to note that if an SVM is trained on scaled 

data, it would be unable to accurately predict the behavior of new data, unless the new data is 

also scaled in the same range as the data the classifier was trained on. 

 For the data points, movement angles measured between 0° and 360°, net speeds ranged 

from 0 m/s to about 25 m/s, and speeds ranged from 0 m/s to about 50 m/s. A scale from -1 to 1 

was used for movement angles, with -1 representing 0°, and 1 representing 360°. Speeds and net 

speeds were likewise confined between -1 and 1, with -1 representing the slowest speed in our 

data, and 1 representing the greatest speed.  
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3. Results 

 

Movement Angle Versus Net Speed 

 After extensive testing, it was found that movement angles were not as robust as 

originally believed. For docked, poling, and fishing behaviors, the separation between the three 

based on speed was clear, but all three featured movement angles ranging from 0 to almost 360. 

Fishing and traveling typically had overlap between their speeds, however, traveling points 

generally had movement angles closer to 180, providing some division between the two points. 

There was significant overlap between the two behaviors between about 150° and 210°, however, 

the SVM classifier could still reach an accuracy of 98.5%, even with contamination between the 

two behaviors. Below is an image showing two graphs (Figure 9) of speed vs. movement angle 

of vessel points. The left image shows a number of points that were classified by the original 

classifier, the right graph is the trained SVM's prediction of the same points. The x-axis is the 

speed of the vessel, and the y-axis is the movement angle. Both are scaled between -1 and 1. 
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Figure 9: Graphs showing the speed, movement angle, and predicted behavior of vessel points. 

  

Upon reverting to using speed vs net speed in the behavior calculations, it was found that 

the classifier reached accuracies greater than 99%, and the graphs were also cleaner, with 

virtually no contamination between the behaviors. The image below (Figure 10) shows two 

graphs of speed vs. net speed. The left graph shows a number of points that were classified by 

the original classifier, the right graph is the trained SVM's prediction of the same points. The x-

axis is the speed of the vessel, and the y-axis is the net speed. Both are scaled between -1 and 1. 

Excess Traveling points have been cropped from the image, so the boundaries between the four 

behaviors are visible. Because of this, movement angles were discarded, and speed and net speed 

were chosen as the attributes to determine vessel behavior. 
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Figure 10: Graphs showing speed, net speed, and predicted behavior of vessel points 

  

Below are graphs (Figures 11-14) of each behavior's receiver-operating characteristic 

curve, also known as a ROC curve, demonstrating the ratio between the detection of true 

positives and false positives. The y-axis functions as sensitivity, while the x-axis functions as 

specificity. Typically, as sensitivity increases, specificity drops, as more true and false positives 

are detected. The diagonal, dotted line demonstrates the classifier of a coin flip, which is a 

useless classifier [Ebell, 2016]. The classifiers used to make these graphs were each trained on 

over 1000 paths each, with C values of 1,000, window sizes of 1, and the RBF classifier had a 

gamma of 10. The key in the bottom right shows the area under the curve for each behavior. A 

slight dip can be seen for the “Docked” and “Poling” curves in each kernel’s graph, but each 

curve still possesses an area of approximately 1.0, meaning the classifier is almost perfectly 

accurate. 
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Figure 11: ROC Curve for a linear kernel 

 

Figure 12: Close-up of ROC Curve for a linear kernel 
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Figure 13: ROC curve for an RBF kernel 

 

Figure 14: Close-up of ROC curve for an RBF kernel 
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Examining the close-ups of the ROC curves, we can see that poling and docked points 

have less area under their curves than fishing or traveling points, meaning the classifier is less 

accurate at determining their behavior than other points. This is likely because fishing and 

traveling points make up the majority of the training data, allowing the SVM to more accurately 

predict their boundaries. Still, even with comparably large dips in accuracy for those behaviors, 

both classifiers still predict the correct behavior of each point over 99% of the time. 

Using speed, net speed, and movement angle together could possibly improve the 

accuracy of the classifier. However, with accuracies in excess of 99.9%, it is unlikely the 

inclusion of movement angles would make any significant improvement. Additionally, adding 

movement angles would more than likely slow down the training of the SVM, as it would need 

to calculate the relations between three parameters instead of just two. 

Window Size vs. SVM Accuracy 

 Window size and accuracy have a positive correlation. As window size increases, 

accuracy undergoes an upward trend. Using a linear kernel with a C value of 1,000, with a 

dataset of only the first 250 paths consisting of 50 or more points, we see that accuracy generally 

increases with window size, starting at about 99.92% accuracy for window size 1, and rising 

steadily to 99.95% at window size 35. Below is a graph (Figure 15) showing the results. 
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Figure 15: Window Size vs. Accuracy for a Linear SVM 

  

With an RBF kernel with a C value of 1,000 and a gamma value of 10, using the same 

dataset, we see a similar trend, with accuracy starting at about 99.97% accuracy at window size 1 

and rising to about 99.98% at window size 35. This data is shown in Figure 16 below. 
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Figure 16: Window Size versus Accuracy for an RBF SVM 

  

It can be observed that increasing window size has a generally positive effect on accuracy. 

However, the classifiers’ accuracies only increased in amounts well under 1%, and training times 

increased dramatically as window size rose. 

Grid Searching 

 Using a range from 1 to 100, It was found that the classifier was generally more accurate 

with larger values of C, preferring values around 98. However, accuracy gains were slight, 

generally only showing improvements of under 1%, and calculation times increased considerably. 

Adjusting the range, we attempted a grid search with the C values [0.01, 0.1, 1, 10, 100, 1000] 

using net speed as our feature of choice. Generally, the gap in accuracy between a C of 0.01 and 

0.1 was large, over 20% for window size 1 and shrinking closer to 10% as window size grew. 

Between a C of 0.1 and 1, there was a 12% accuracy discrepancy at window size 1, shrinking to 
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about 3% as the window size grew. C's of 1 and 10 were about 1% different, and there was less 

than 1% difference between 10, 100, and 1000. 

 This process was repeated for gamma, with the range adjusted to [0.1, 1, 10]. In nearly 

every case, the grid search found a value of 10 to be optimal, though it was only slightly more 

accurate than the alternatives. Grid searching for gamma alone increased run times, but grid 

searching for both gamma and C simultaneously dramatically extended execution time. 

 Grid searching revealed that larger values of both C and gamma produced the most 

accurate results. Normally, having large C and gamma values can lead to overfitting of the model, 

where it performs well on test data but is unable to accurately predict new data. However, 

because the boundaries of the data were well defined, and because the SVM was trained using 

10-fold cross-validation, overfitting was unlikely to be a concern. 

 

Scaling 

 If an SVM is trained on unscaled data, larger values can overpower smaller ones, 

producing favoritism in the classifier and thus reducing its accuracy. Additionally, if values grow 

large, the calculations performed on them can take longer to complete. 

 An SVM using a linear kernel with a C of 1,000 was trained on 250 paths with over 50 

unscaled points each. With window sizes from 1 to 35, it had a mean calculation time of over 11 

minutes per window, and an average accuracy of about 99.95%. Using the same parameters with 

scaled data, the classifier had a mean calculation time of about 1.95 minutes per window, and 

had an average accuracy of about 99.94%. This process was repeated for an SVM using an RBF 

kernel with a gamma value of 10. For window sizes 1 to 35 with unscaled data, the RBF 
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classifier had a mean accuracy of 99.98% and an average calculation time of about 2.77 minutes. 

For scaled data, it had a mean accuracy of 99.96% and an average calculation time of 0.35 

minutes. 

 It can be observed that, in the case of a linear and RBF kernel SVMs with our dataset, 

scaling does not significantly affect accuracy, but does greatly reduce the amount of time spent 

training the SVM. 

 

Maps 

 Below are several maps (Figures 17-19) demonstrating the predictive capabilities of the 

SVM. The top map shows the previous classifier’s prediction of the vessel’s behavior at each 

point, while the bottom map is the SVM classifier’s prediction of the behaviors of those same 

points. The maps are nearly identical, as the SVM classifier has over 99% accuracy, in relation to 

the previous classifier’s prediction. 
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Figure 17: Previous classifier's prediction of vessel behavior versus SVM classifier's prediction 

of vessel behavior 

 

Figure 18: Previous classifier's prediction of vessel behavior versus SVM classifier's prediction 

of vessel behavior 
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Figure 19: Previous classifier's prediction of vessel behavior versus SVM classifier's prediction 

of vessel behavior 
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Below are several maps (Figures 20-23) of unknown behavior points in the Louisiana 

public oyster grounds. Again, the top map shows the original classifier’s prediction of the 

vessel’s behavior, while the bottom map shows the SVM classifier’s prediction. The unknown 

points have been reclassified to the likeliest behavior, based on a classifier with an accuracy of 

about 99.98%. Additionally, each of these points has to breach a 50% confidence threshold in 

order to be reclassified to its new behavior. These predictions are not completely indicative of 

the vessel’s actual behavior, they are simply the classifier’s best guess as to which behavior 

each point belongs in. As only speed and net speed are used to determine behavior, the classifier 

can only make an estimate of a vessel’s behavior based on those features. Additional factors 

that could affect behavior, such as the presence of an oyster reef or distance from a dock, are not 

taken into account. 

 

Figure 20: Unknown points for vessel operating in Sister Lake reclassified by SVM classifier 
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Figure 21:  Unknown points for vessel operating in Lake Mechant reclassified by SVM classifier 

 

Figure 22: Unknown points for a vessel operating in Sister Lake reclassified by SVM classifier 
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Figure 23: Unknown points for a vessel operating in Bay Junop reclassified by SVM classifier 
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4. Discussion 

  

 The SVM classifier is found to perform significantly better at determining behavior than 

the previous classifier. While the previous classifier left about 7% of behaviors from July 2013 to 

August 2014 undetermined, the SVM left about 0.3% of the behaviors unidentified. However, 

the classifier still had a number of uncertainties. For example, when reclassifying unknown 

points in a path, one can observe trends where a ship travels for a time, then shifts to fishing, 

while still maintaining its route as though it was still in motion. Without a ground truth for each 

vessel we cannot be completely certain in the predictions of the SVM classifier, however, its 

predictions are the most accurate metric we have with our current understanding of vessel 

behavior. 

 Larger window sizes produced classifiers that are more accurate, however, accuracy gains 

were under 1%, and large windows made training the SVM take a longer amount of time. 

Scaling sped up the training process, while degrading accuracy by a negligible amount. Both 

RBF and linear kernel SVMs performed better when using speed and net speed as attributes. In 

both cases, the SVMs trained faster and were more accurate when using net speed as a feature 

rather than movement angle. Using optimal setups, linear SVMs reached about 99.95% accuracy, 

while RBF SVMs reached about 99.98% accuracy.  

 There are a number of additions and adjustments that could improve the project. Adding a 

graphical user interface to the tools would make them easier to use. Using additional nautical 

data, such as location of docks, waterways, and oyster reefs, would improve vessel behavior 

predictions. If more parameters are used to determine vessel behavior, updating the classifier to 

use them would be easy. It would just be another dimension for the SVM, such as speed and net 
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speed are. The inclusion of more parameters would make training take more time, but would 

likely improve accuracy. A ground truth would be necessary to train a classifier to use this new 

data, however. Data from vessels about the value of the parameter in question during each 

behavior would need to be acquired. 

 Without adding more features to the classifier, the greatest way to improve the system 

would be to acquire data on each vessel’s speed for each behavior. The current system uses 

ranges gathered from interviews with several ship captains. However, if there is variance in the 

speeds at which each vessel can fish or pole, then ships that do not match the data from the 

interviews will be grouped incorrectly. While this data could make the classifier more accurate, 

establishing a ground truth would also have several downsides. The database would become 

more complicated, as each vessel ID would need to be correlated with some set of behavior 

ranges. These ranges would also need to be closely checked, as an error would cascade and 

invalidate the classifier’s predictions of an entire vessel’s data. Finally, if a vessel’s operating 

speeds are known in the system, they could be correlated with data on actual vessels to determine 

which vessel has which vessel ID, reducing the anonymity of the vessels.  
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