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Abstract 
 
Using a forensic imager to produce a copy of the storage is a common practice. Due to the large volumes of the 
modern disks, the imaging may impose severe time overhead which ultimately delays the investigation process. 
We proposed automated disk analysis techniques that precisely identify regions on the disk that contain data.  We 
also developed a high performance imager that produces AFFv3 images at rates exceeding 300MB/s. Using 
multiple disk analysis strategies we can analyze a disk within a few minutes and yet reduce the imaging time of  by 
many hours. Partial AFFv3 images produced by our imager can be analyzed by existing digital forensics tools, which 
makes our approach to be easily incorporated into the workflow of practicing forensics investigators. The 
proposed approach renders feasible in the forensic environments where the time is critical constraint, as it 
provides significant performance boost, which facilitates faster investigation turnaround times and reduces case 
backlogs. 
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Chapter 1  
 

Introduction 
 
Almost all digital forensics investigations require evidence preservation. Depending on the nature of the evidence 
being examined, different techniques apply in order to effectively extract data. For example, in order to extract 
data from non-volatile storage devices such as hard disk drives, solid state drives, and flash drives, forensic 
investigators typically use a tool called an imager. There are plenty of imagers available, both open source as well 
as commercial ones. Imagers vary from the simplest tools that blindly replicate a source device into a raw image 
(e.g., the Unix dd tool[1]), to complex software kits, e.g. AccessData FTK[2], X-way[3], ADF Triage[4] that can 
perform disk analysis and preserve data in special space-efficient forensic formats. The ultimate objective for an 
imager is to produce an accurate forensic image as quickly as possible, as time is often the critical limiting factor in 
forensic investigations.  
 
The trend of continuously increasing capacity for non-volatile storage devices has created a problem known in the 
digital forensics community as the volume challenge. Traditional approaches to imaging require a complete copy of 
a source storage device, which means that the source disk must be read in its entirety. The two main constraints 
that impose time overhead are the speed at which the source disk can be read and the speed at which a forensic 
image can being written onto a destination disk that will hold the copy of the data. 
 
The write constraint can be relaxed by using data formatting, which reduces the amount data to be written onto 
the copy of the evidence.  Modern forensic formats typically use data compression for reducing space of a 
resulting image, while also incorporating hashing to preserve the authenticity of evidence (e.g., the Advanced 
Forensic Format[5][6]). However, both formatting features come at the expense additional CPU overhead. Even if a 
source device is plugged into a fast interface, imaging speed can still be degraded due to inefficient algorithms 
used by the imaging tool. 
 
The read constraint has widely been discussed in the digital forensics community, and current trends are directed 
towards the selective imaging. For example imaging a 10TB storage device at the speed of the SATA3 interface 
(6GBit/s or 600MB/s) would take approximately 5 hours, which is actually not bad. However in practice an average 
SATA3 disk's read speed will be limited at approximately 150MB/s, which means that, in the ideal case scenario 
when the disk does not contain errors, the imaging time extends from 5 to 20 hours. The situation with solid state 
drives is a bit better, as they provide read speeds of 300 - 500 MB/s, depending on vendor. Nevertheless, as solid 
state drives gain popularity, they too will increase substantially in size, and exacerbate the volume challenge. Thus 
selective imaging is meant to reduce the quantity of data that is required, while attempting to maximize the 
quality of the resulting image.  
 
In the present work, we propose techniques that are meant to reduce imaging time by carefully omitting empty 
and other unimportant regions on the disk, so that only potentially important data needs to be imaged. Using 
multiple analysis strategies in conjunction, we are able to analyze a disk within a few minutes and yet reduce the 
imaging time of large devices by many hours. After the analysis of a disk is completed, our high performance 
selective imager can quickly produce an AFFv3 image of the disk, which is compatible with any forensics tool that 
can read AFFv3 images.  This allows our tools to be easily incorporated into the workflow of practicing forensics 
investigators. 
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Related Work 
 
Turner described the concepts of selective and intelligent imaging and discussed a number of options available 
when capturing data in selective manner[7]. He also proposed the data container called a Digital Evidence Bag 
(DEB), which is used to store objects selectively gleaned from multiple sources. The logical and structured 
approach of DEB maintains provenance and integrity of the evidence. 
 
Whereas Turner applied selectiveness only at the file level, J. Stuttgen introduced a more generic concept, where 
any data that can be found on disk is considered as an object of potential interest and included in the imaging 
process[8]. However Stuttgen's scheme involves a human in the loop, which imposes additional time requirement 
for an investigator to pre-process the evidence.  Furthermore, as storage sizes increase even further, a fully-
automated solution is preferable. 
 
Richard and Grier proposed a rapid imaging technique called sifting collectors[9] and they developed various sifting 
techniques to identify relevant data on disk. Using The Sleuth Kit's (TSK)[10] disk analysis capabilities, they 
automatically identified sectors associated with files of potential forensic interest. The file filtering is handled by 
specifying profiles that are essentially collections of regular expressions that express which files are relevant and 
should be collected. Once the analysis phase is done, the intermediary data, called grainset, is passed to a collector 
that extracts designated data from source disk and stores it as a sifted Advanced Forensic Format v3(AFFv3)  
image. 
 
Richard and Grier achieved up to x13 speed increases by sifting out irrelevant disk regions. The weak link in sifting 
collectors is that it performs the selectiveness only on the filesystem level. Because of this limitation, sifting 
collectors cannot identify the presence of data on a sub-filesystem level, e.g., volume slack space, unallocated 
space. Such analysis requires different approaches, e.g., sampling[11][12][13][14], which we use in the present 
work.  Another major limitation of sifting collectors was poor performance of the imager. Richard and Grier used 
the AFFv3 library[6] in order to produce .AFF format images and this library performs reading, hashing, 
compression and writing routines sequentially.  Such inefficient resource utilization ultimately degraded the 
imager's performance in all aspects: the source I/O read time, the CPU overhead imposed by hashing and 
compression, and the destination I/O write time.  While our approach also generates AFFv3 images, we have 
completely parallelized both the AFFv3 implementation as well as our own imaging components, which rely upon 
it, all without compromising the portability that AFFv3 offers. 
 
Shatz proposed extensions for Advanced Forensic Format 4 (AFF4) that allowed the acquisition routine to proceed 
at higher bitrates[15], by using lightweight compression schemes, which efficiently handle low entropy regions by 
compressing them symbolically. The symbolic compression is facilitated by the AFF4 format, which uses supports 
predefined streams of homogeneous data. Using block-based hashing, Shatz entirely omits hashing of symbolically 
compressed blocks, thus decreasing CPU overhead. Shatz also proposed horizontal scaling, e.g., storing evidence 
across multiple drives using data striping during acquisition.  Nevertheless the proposed approach still requires the 
source disk to be read from the first to the last byte during the imaging. Also, the AFF4 format has not seen 
widespread adoption due to its complexity, and cannot be uniformly used with existing digital forensics tools. 
Aside from these concerns, the data striping acquisition is not a portable solution, since it would require additional 
hardware with custom drivers in order to store and view the striped data. 
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Chapter 2  
 

Background 
 
This chapter discusses essential background concepts that underlie our efforts to develop a time efficient and 
accurate forensic imager. 
 

Target Filesystems 
 
Carrier described in detail the most widely used filesystems and volume systems in his book File System Forensic 
Analysis[16]. So as not to reinvent the wheel, we used the open source TSK API[17] in order to evaluate disk layout 
and run analysis on filesystems. TSK does not rely on the native OS filesystem drivers, which can easily be 
subverted by malware, but rather it analyzes the disk in a direct and non-intrusive fashion, which ensures data 
integrity. TSK has support for a wide variety of volume and filesystem types.  
 
As of today, Microsoft Windows has the largest segment of the commodity operating systems market, and 
Windows systems must typically be installed on a New Technology Filesystem (NTFS). Thus we mainly consider 
Windows filesystems in our effort. The FATxx filesystem has been around for long time and is still in widespread 
use. We do not support FAT16 at all, as it is very limited in maximum partition size and it is easy to simply capture 
the entire filesystem. FAT32 remains useful as a cross-platform filesystem, so we support FAT32, even though 
maximum partition sizes are relatively modest. The Linux ext3/4 family of filesystems and Mac HFS+ are also 
widely used, but in this initial effort we do not currently fully support them, deferring such support for future 
work. Nevertheless, any filesystem that is recognized and supported by the TSK has limited support and still can be 
analyzed. 
 

 
Disk Representation and Partial Image 
 
An operating system sees a storage device as a flat array of sectors, and a sector is an atomic unit for a storage 
device. A typical sector size is 512 bytes and while there are disks that support 4096 byte sectors, these typically 
have backward compatibility features that also support 512 byte sectors. Modern storage devices may consist of 
billions of sectors. For example, a disk volume of 6TB translates into 11,718,750,000 sectors. In our research effort, 
we will have to maintain state per storage unit to track which units are imaged, therefore, for the 6TB case, we 
would have to have an array of almost 12 billion elements to track sectors individually. This would be extremely 
inefficient, so for performance concerns we use a larger atomic unit called a chunk. A chunk is a fixed size data unit 
and can be: 2𝑥, where 𝑥 = [20, 29]. A disk representation using this strategy is shown in the Figure 2.1. The disk is 
represented as a set of chunks called chunk map.  
 

- non-empty chunk

- empty chunk

DISK

 
Figure 2.1. A disk represented as a set of fixed size chunks. 
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Any disk is considered to be a totally ordered set comprised of a finite numbers of fixed size chunks:  
 

 
A chunk is considered empty if and only if all the bytes within the chunk are equal to zero, denoted 𝑧. Otherwise 
the chunk is considered to be non-empty, and is denoted 𝑧̅. Empty chunks never intersect non-empty chunks, i.e., 
∀𝑧, 𝑧 ∈ 𝑍, 𝑧 ∉ 𝑍 ̅;  ∀𝑧̅, 𝑧̅ ∈ 𝑍,̅ 𝑧̅ ∉ 𝑍. In order to produce a full image 𝐼𝑓𝑢𝑙𝑙, all chunks must be included into the 

final subset: 
 

 
In order to produce a partial image 𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙  , only selected chunks must be included: 𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙 = 𝑓(𝐷), where 𝑓 is an 

fast disk analysis function.  
 

The ground truth partial image is the subset of all non-empty chunks: 𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙
𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ = �̅�. A filesystem may contain 

legitimate files that are filled with zeroes and if, for example, a filesystem does not support spasrse files or a file is 
not set the attribute that turns on sparse storage feature, then such files might be also included into the ground 
truth partial image. In practice there is no way to produce an ideal ground truth image unless the entire disk is 
read. Our goal is to use fast disk analysis methods in order to compose the 𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙, that is the closest 

approximation to the partial ground truth image 𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙
𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ.  The difference Δ between the partial image and 

partial ground truth image is expressed as a symmetric difference between 𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙  and 𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙
𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ:  

 

 
The Δ subset sub-divides onto false negative and false positive subsets:  
 

 
The false positives only impose additional overhead due to inclusion of empty chunks into the resulting image. 
The false negatives are undesired, as they break the completeness of the image. The overhead is evaluated as the 
following ratio:  

 
Logical Representation 
 
A disk can be considered as a complex infrastructure that accommodates multiple partitions and within each 
partition, a filesystem. In the scope of this research we only focus on the filesystem analysis. All problems related 
to integrity of volume systems, correct identification of partitions, and filesystem recognition are delegated to TSK, 
which has mature facilities for handling these issues. The Figure 2.2 shows the logical structure of a typical disk. 
The disk is logically split onto multiple partitions, which either contain a filesystem or a unallocated region. 
 

DISK

FILESYSTEM 1 FILESYSTEM 2 FILESYSTEM 3

- Filesystem, occupied space - Filesystem, free space - Unallocated space

 
Figure 2.2. A typical disk layout. 

 
A filesystem is a self-contained entity with numerous control structures and is aware of its own size. Each 
filesystem has a bookkeeping mechanism that allows for managing allocations and deallocations within the 

𝐷 = 𝐶0 ∪ 𝐶1 ∪ … ∪ 𝐶𝑛 2.1 

𝐼𝑓𝑢𝑙𝑙 = 𝑍 ∪ �̅� = 𝐷 2.2 

𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ∸ 𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙
𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ =    Δ 2.3 

Δ =  𝐹𝑁 ∪ 𝐹𝑃 2.4 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =  |𝐹𝑃|/|𝐷| 2.5 
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filesystem's storage space. A filesystem distinguishes only two regions, allocated (shown as green), and not 
allocated (shown as light-green). A filesystem uses a mechanism that keeps track of free space. The NTFS uses a 
bitmap that is a flat array of bits, each of which represents one cluster on the filesystem. If a bit in the bitmap is set 
then the associated with it cluster is allocated, otherwise the cluster is not allocated. FATxx systems use a similar 
approach but instead of a literal bitmap they use a file allocation table (FAT), which serves two purposes. First, 
each entry contains a reference to the next entry, such that walking the chain of entries in the FAT tracks file 
fragments. The second purpose is that it keeps track of allocations, i.e., if an entry has a non-zero value then the 
cluster associated with that entry is either used by some file, or is a bad cluster. The important issue is that 
regardless of the specific mechanism, filesystems know which regions are free and which are occupied. 
 
The front end of a filesystem is the abstraction of file, directory, and an interface for interacting with these objects. 
There are  a wide variety of filesystems in current use and while different filesystems may have completely 
different internal mechanisms, they carry out many of the same functions. TSK abstracts away these differences 
between filesystems and allows for conducting filesystem analysis in a generic way.  
 
The contents of a filesystem can be treated as the filesystem's critical metadata structures plus a set of files. Each 
file is defined by metadata and typically has associated with it a group of clusters. There are also special types of 
files, which may not have distinct clusters associated with them (e.g., very small files on the NTFS are stored within 
the $MFT entries). File attributes and parameters are maintained by a file metadata facility, e.g. $MFT on NTFS. 
Any file that is currently allocated and has valid metadata can be located and accessed. If a file has been deleted, 
then its metadata may be fully or partially destroyed. In this case the file is unrecoverable via the filesystem's 
facilities. An example of a filesystem that does not facilitate data recovery is the ext3/4, which explicitly destroys 
the inode blocks chains associated with a file upon deletion, making it impossible to retrieve the deleted file via 
the filesystem. However, there are filesystems that do facilitate data recovery, whether as an intentional design 
choice or otherwise. These do not completely destroy the metadata upon file deletion, which allows queries 
against the file metadata facility to reveal the data clusters associated with the deleted file. Nevertheless, even if 
the filesystem facilitates file recovery, there are cases when recovery fails. There are two required conditions for 
the recovery to succeed. First, the file metadata must be intact in order to correctly locate the clusters and recover 
the file content. Second, the clusters must not be overwritten by other data, otherwise the content will be not 
recoverable. The clusters no longer associated with active files typically linger in the filesystem until they are reused. 
Thus, a typical filesystem's contents can be expressed as a union of the three data subsets:  
 

 
An unallocated region(shaded regions) is considered any region that was not identified by TSK as a valid filesystem. 
Our approach allows for fast allocation pattern analysis within the disk, therefore each unallocated region can be 
pre-analyzed, and an appropriate decision can then be made accordingly. 

 
Chunk Subsets 
 
In the left portion of Error! Reference source not found., data is represented from the filesystem perspective. As in e
xpression (2.6), there are three subsets that comprise the filesystem. 
 

𝐹𝑆 = 𝐹𝑆𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 ∪ 𝐹𝑆𝑑𝑒𝑙𝑒𝑡𝑒𝑑 ∪ 𝐹𝑆𝑢𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑  2.6 
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Figure 2.3. Left portion: data representation from the filesystem's perspective. Right portion: raw data 

representation. 
 
The allocated subset describes critical filesystem structures that are required for a filesystem to properly function. 
The allocated subset also includes all currently allocated data that is available to user. Imaging only the allocated 
region is enough for a filesystem to operate normally. Therefore, the allocated subset has the highest priority in 
terms of forensic imaging, and must be included in the resulting image.  
 
The deallocated subset describes data regions that were occupied by files in the past until they were deleted. 
Deleted files are often of forensic interest, as an adversary might delete some portions of available evidence either 
during a normal course of action or in a deliberate attempt to render data unrecoverable. Like the allocated 
subsets, deallocated subsets should be fully included in a forensic image. 
  
Richard and Grier used the TSK API[17] for automated filesystem analysis and the approach they developed is able 
to efficiently identify allocated and deleted files and locate clusters associated with them. However, the scope of 
TSK does not extend to unallocated regions, which are also a part of the filesystem.  Also, while a filesystem is 
aware of the limits of the unallocated regions, it is typically unaware of the content lingering in those regions. 
Unallocated regions may contain data that either has accumulated over time due to deletion of files and relocation 
of corresponsive metadata entries, or due to disk reformatting. Although the unallocated data within a filesystem 
is essentially a raw binary blob, it may contain important evidence or fragments of evidence. Therefore portions of 
an unallocated subset that contains data should be included into the resulting forensic image. In the right portion 
of Error! Reference source not found., there is an alternate view of the same, but expressed in zero and non-zero r
egions. Denote the data part of unallocated region as 𝐹𝑆𝑢

′  and an ideal resulting image would be: 
 

 
  

𝐼𝑝𝑎𝑟𝑡𝑖𝑎𝑙
𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ = �̅� = 𝐹𝑆𝑎 ∪ 𝐹𝑆𝑑 ∪ 𝐹𝑆𝑢

′  2.7 
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Chapter 3  
 

Methodology 
 
From the discussion in the previous section, it is clear that in order create a partial forensic image that closely 
approximates the ground truth partial image, we must devise a disk analysis function 𝑓(𝐷) which will effectively 
identify chunks subsets 𝐹𝑆𝑎, 𝐹𝑆𝑑, and 𝐹𝑆𝑢

′ . The complete disk analysis can be split into disk pre-processing and 
subsequent analysis of all of its partitions. 
 
The processing of the contents of a partition may include more than one analysis strategy and specifically, we 
distinguish three fundamental strategies: file-based, bitmap-based, and allocation-based strategies. The three 
approaches differ in the principles they use to identify data regions. The file-based strategy utilizes the metadata 
facility on a filesystem in order to identify chunks that should be included into the final chunk subset. The bitmap-
based strategy uses the allocation management facility on a filesystem in order to capture the allocated chunk 
subsets. The allocation-based strategy views the disk as raw data and applies statistical approaches in order to 
build up the unallocated subset  𝐹𝑆𝑢

′  that contains data. The analysis strategies have four basic attributes: the 
processing time 𝑇, the scope 𝑆, analysis capabilities 𝐴, and the prerequisites 𝑅, which define what is required in 
order to run the analysis routine. Table 3.1 briefly reviews the analysis strategies and their attributes. The analysis 
strategies are discussed in detail in the following sections. 
 
Table 3.1. An overview of the filesystem analysis strategies and their attributes. 

Analysis 
strategy 

Attributes 

𝑇 𝑆 𝐴 𝑅 
File Content dependent. The 

analysis time depends on 
the amount of allocated 
and deallocated contents, 
and a file system type. 

𝐹𝑆𝑎 , 
𝐹𝑆𝑑  

Basic consistency checks on 
content and metadata. The 
analysis is stopped if a metadata 
inconsistency is detected. Profile-
based file triage. 

Requires TSK support only. 
Consistency checks can 
only be done on NTFS and 
FAT32 filesystems. 

Bitmap Filesystem size dependent. 
For a 1TB with cluster size 
4Kb the bitmap will be 
~30MB. The time to walk 
through 30MB is 
approximately 5 seconds. 

𝐹𝑆𝑎  Captures any data hidden via 
setting cluster allocation status 
on the bitmap. Checks if the 
bitmap size corresponds to the 
size of the filesystem. 

Analysis can be done only 
for NTFS and FAT32. 
Analysis cannot be done if 
the bitmap cannot be 
located on the filesystem. 
 

Allocation Filesystem size dependent. 
Data allocation pattern 
dependant. Depends on 
multiple input parameters. 

𝐹𝑆𝑑 , 
𝐹𝑆𝑢

′  
N/A Requires either bitmap-

based or file-based analysis 
to be done in order to 
proceed. 

 
Disk Pre-Processing 
 
When a source disk is supplied as an input, the first analysis routine must pre-process the disk and pass it on for 
further processing. The disk pre-processing routine is illustrated in the Figure 3.1. Its primary objectives are to 
measure the disk, initialize the chunk map, add the first and last chunks of the disk, and query the disk partition 
table to recognize filesystems and unallocated regions between them. For each partition, the routine includes the 
first and last chunks in the final chunk subset. If there is a slack space between the filesystem and the volume 
boundaries, this slack space is also added to the final chunk subset. If a partition does not contain a valid filesystem 
or the filesystem is not supported by TSK, then it can be fully added to the final chunk subset or passed for further 
analysis (small regions can be added without analysis). Each discovered filesystem is measured and a filesystem 
object is created and inserted into the filesystem array, which upon completion of the disk pre-processing is 
passed down to filesystem processor. 
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Figure 3.1. Disk Pre-Processing abstract schema. 

 
One might be curious about why we are turning on chunks that designate boundaries for the disk and each 
volume. A typical disk normally starts with a Master Boot Record (MBR), but if the disk has a GPT structure then 
the first chunk will also include the primary GPT header, and the last chunk will capture the secondary GPT header. 
Even with the minimum chunk size that is equal only 1MB, these essential structures will be included into the 
resulting image.  
 
A similar reason justifies capturing a volume's boundaries. Some volumes may contain a Volume Boot Record (VBR) 
structure, which is the first sector on the volume. Notably, however, a filesystem inside a volume might not be the 
same size as the volume. In this case there is slack space that can exist before the first byte of the filesystem 
and/or after the last byte of the filesystem. Some filesystems, e.g., NTFS, may use such this slack space to store a 
backup of the boot record. Therefore to ensure the integrity of the disk we add these corresponding chunks into 
the final chunk subset. 
 
Any error during disk pre-processing will cause termination of further analysis, which will ultimately mean that the 
disk should not be analyzed using our methods because the disk metadata is corrupted. The analysis of corrupted 
disk may produce inaccurate results, which defeats the purpose of imaging. In this case the investigator is urged to 
produce a complete forensic image using traditional methods, if possible. 

 
Filesystem Processing 
 
After the disk pre-processing has completed, the resulting filesystem array is passed to the filesystem processor, 
where each filesystem object is analyzed individually. The filesystem processor is an abstract interface. For each 
filesystem the filesystem processor must be implemented individually. The objective of a filesystem processor is to 
check whether a filesystem meets sanity checks so it can be analyzed. If a filesystem passes consistency checks 
then it is approved for further analysis, otherwise it is rejected and added into the final chunk subset in its entirety. 

 
As mentioned earlier, we currently support only NTFS and FAT32 filesystems. For each filesystem we make sure 
that its critical structures are in a valid state. For example, for FAT32 we examine the boot sector and make sure 
that it does not have suspicious values set. We also identify and capture the FAT32 reserved region and File 
Allocation Tables FAT1 and FAT2. For NTFS we simply make sure that we can locate and access the clusters of the 
essential MFT entries, such as $MFT, $MFTMirr, $Bitmap, $BadClus, et al. that comprise the filesystem metadata. If 
all entries are located then they are included in the final chunk subset and the analysis proceeds. If one entry could 
not be found then the consistency check is failed and the entire filesystem is added to the final chunk subset. 
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Bitmap Interface 
 
For each filesystem that successfully passes the consistency check we create a generic bitmap interface. A bitmap 
interface is an abstract entity that defines access operations for the allocation management facility of a filesystem. 
For NTFS, the generic bitmap interface simply provides access to the $Bitmap file. For FAT32, which does not have 
a literal bitmap, the generic bitmap interface provides on-the-fly translation of the FAT into a bitmap, e.g., each 
FAT entry is converted into one bit. Bitmaps are queried via a bitmap index, which represents one bitmap 
transaction, spanning 64 sequential bits. Thus one bitmap transaction describes 64 clusters on a filesystem and 
represents one data transaction. For a typical cluster size of 4096, the bitmap transaction translates into a data 
transaction of 262144 bytes. Thus larger cluster sizes result in larger data transaction sizes.  
 
The bitmap interface provides optimizes the interaction with actual bitmaps using bitmap buffering, e.g., only a 
small size of a bitmap resides in the memory at any given time. 
 
 
The main reason behind introducing the concept of a custom bitmap interface is that the bitmap is the central 
component for the bitmap-based and the allocation-based analysis strategies. The bitmap interface turns a static 
bitmap structure 𝐵, fetched from a filesystem into a dynamically updated bitmap by overlapping the actual bitmap 
with the bitmap mask 𝑀. The bitmap mask is a translation of chunk map region that corresponds to a filesystem 
being analyzed such that the complete bitmap 𝐵𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒  is expressed as:  𝐵𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = 𝐵 ∪ 𝑀. 

 
There is an edge case when a bitmap mask is used as a complete bitmap: 𝐵𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = 𝑀. For unsupported 

filesystems the bitmap structure cannot be retrieved. If the filesystem is supported by TSK, then having conducted 
the file-based phase it is possible to produce a chunk map that may be used as a start point for the allocation-
based analysis. 
 

Analysis Strategies 
 
File-based strategy 
 
The files are located on the filesystem using their metadata information. Based on the byte offsets a file is 
expressed in terms of chunks and the file chunk subset is added to the final chunk map. This procedure is 
performed for all valid file metadata entries that TSK can discover on the filesystem.  
 
During this phase there is a possibility of content or file metadata inconsistency. Content inconsistencies occur 
when allocated clusters are associated with more than one entry. A file metadata inconsistency occurs when a 
file's metadata indicates that its data is stored in a region of unallocated clusters or beyond the limits of the 
filesystem. Any inconsistency will stop further analysis and add the entire filesystem to the final chunk subset, 
since our tools do not currently differentiate between minor and major filesystem corruptions. 
 
The file-based strategy is mainly used either for profile-based file triage or for non-supported filesystems in order 
to build up a bitmap mask based on the produced chunk map. 
 
Profile-based File Triage 
 
In order to apply selectiveness at the file level, we have implemented a profile-based triage feature, which allows 
imaging of desired file types and/or names based on a pre-defined profile.  This system is an expansion of that 
proposed by Richard and Grier[9]. The profile is organized as a structured set of regular expressions with simple 
syntax, and must have the extension .profile in order to be recognized by the system. If a profile is malformed, the 
parser will provide an error message and point out the error location and describe the issue. 
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The profile supports three fundamental directives: 
 

 :Files - defines the patterns for files. During the file search if a file matches at least one pattern the file 
location is expressed in terms of chunks and added to the final chunk map. 

 :Path - defines the patterns for paths. The mechanism is the same as in the case with files, but instead of 
filenames, paths are evaluated according to the supplied patterns. 

 :include - includes an existing profile into the current profile. This allows multiple profiles to be used in 
conjunction. 

 
The following section represents an example of a profile that targets pictures: 

:Paths 
/Pictures 
/My Pictures 
/Pics 
/Photos 
 
:Files 
\$ 
\.(png|gif|jpg|bmp|ppm|xbm|raw|tiff|tif|crw|cr2|nef)$ 

 
In order to supply desired paths and files we first supply a desired directive, e.g., :Paths or :Files. Any data supplied 
under the directive is considered related to that directive. A directive's scope ends if another directive is 
encountered. 
 
If we want to combine several profiles into one we use :include directive, as shown below: 
 

:include "Email.profile" 
:include "Financial.profile" 
:include "Photography.profile" 
:include "WindowsBrowserHistory.profile" 
:include "WindowsDataExfiltration.profile" 
:include "WindowsDocuments.profile" 
:include "WindowsLogs.profile" 
:include "WindowsRegistry.profile" 
 
Files: 
\$ 
^SAM(\.log)?$ 
^SECURITY(\.log)?$ 
^SOFTWARE(\.log)?$ 
^Default(\.log)?$ 
^Userdiff(\.log)?$ 
^Ntuser\.dat$ 
^Usrclass\.dat$ 
^Repair(\.log)?$ 
^System(\.alt|\.log)$ 

 
The given profile has the :File directive that is given the set of desired file patterns. The profile also includes other 
profiles and inherits their search criteria. It is possible that a profile may try to include another profile that has the 
calling profile already included, which causes infinite recursion. The parser recognizes this situation and ignores 
recursive profile inclusions. 
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The final chunk subset produced via profile-based file triage describes a filesystem in such a way that it can be 
mounted and analyzed as if it was cloned. In the resulting partial image the filesystem metadata will be preserved, 
so it will have an identical layout with the original filesystem. However an investigator will be able to access only 
those items that matched the search patterns—others will appear to be zero-filled. 
 
This technique is useful if an investigator has a preliminary knowledge about the case, so he can quickly use the 
profile and extract only relevant data that may be several orders of magnitude smaller than the size of the entire 
disk. The complete procedure may take just a few minutes, compared to hours if traditional imaging were used.  
 
The profile-based file triage is a file-based analysis, and it inherits all the limitations related to it. Thus the profile-
based file triage cannot be used if the filesystem is in an inconsistent state, e.g., has corrupted metadata. Another 
limitation is that if a filesystem is has a very large number of files, then in some cases it would be faster to image 
the entire filesystem. In particular, TSK processing time drastically increases as the amount of entries on a 
filesystem grows.  
 
During the pre-processing stage, our tool summarizes some important information about each analyzed filesystem 
and provides this information to the investigator:  
 

 The number of entries in the metadata management facility. For NTFS, this is information about how 
large the $MFT structure is.  For filesystems like FAT32, we cannot provide this information, because 
there is no means to discover the number of files without searching for Directory Entries, which may be 
scattered all over the filesystem. 

 The average read speed and approximate imaging time for a current filesystem. Thus prior to starting 
selective imaging, an investigator knows how long would it take to produce a complete image. In order to 
enable the read speed check feature the configuration must be adjusted, so the program knows the 
interface bandwidth. This is currently required due to caching issues. 
 

Thus having basic information about the filesystem that is about to be passed for further analyses, an investigator 
can get a first impression of what to expect if the analysis proceeds. In any event, if the file-based analysis is 
predicted to take too long and is considered impractical, it can always be terminated, and other means used for 
further disk examination. 
 
Bitmap-based strategy 
 
The bitmap-based strategy captures all valid entries that are currently allocated on a filesystem. It is much faster 
than the file-based approach as it does not invoke TSK file searching routines, which may take a long time for 
filesystems with large number of files. 
 
During the bitmap-based analysis, the complete bitmap is walked from start to ending bitmap index, sequentially 
processing each bitmap transaction.  The entire complete bitmap can be expressed as a set of all the bitmap 
transactions, 𝐵𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = (𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑠𝑡𝑎𝑟𝑡+1, . . . , 𝑡𝑒𝑛𝑑). 

 
Each chunk in the chunk map can be expressed as a subset of 𝑖 sequential bitmap transactions. If there is a chain of 
sequential bitmap transactions 𝐶 = (𝑡0, 𝑡1, … , 𝑡𝑖), ∀𝑗, 𝑗 ∈ [0, 𝑖], 𝑡𝑗 = 0, then the chunk that corresponds to the 

chain 𝐶 is said to be empty and is not added to the final chunk subset. Otherwise if at least one bitmap transaction 
is non-zero, then the entire chunk to which the transaction belongs is added to the final chunk subset. 
 
 
For a typical NTFS or FAT32 filesystem, the bitmap-based strategy will ultimately collect the entire filesystem. If we 

feed the chunk map into our selective imager the resulting imager will be a fully functional clone of the source 

filesystem, omitting unallocated space. The Figure 3.2 illustrates a disk layout used in our experiments. The Figure 

3.3 illustrates a bitmap capture, while the Figure 3.4 represents the ground truth capture of the same disk.  
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500GB disk

327680000(167.8GB) 409600000(209.7GB) 81920000(41.9GB) 152571072(80.7GB)

Windows 8 2.5 years old Empty Random numbers Empty

 
Figure 3.2. The layout of a 500GB disk with 4 NTFS filesystems. 

  
Comparing the Figure 3.3 with the Figure 3.4, we can see that they are slightly different. In particular, the bitmap 
capture is missing some deallocated data that is located within the first filesystem (the upper part).  Analyzing the 
chunk maps, we can identify the limits of the filesystems, e.g., chunk 10000 is equivalent to sector 327680000, 
which corresponds to the end of the first filesystem and beginning of the second one. The second filesystem starts 
at chunk 10000 and ends at chunk 22500. It does not contain any data other than NTFS system files, therefore the 
region occupied by the second filesystem is almost completely filled with zeroes. The third filesystem contains a 
40GB file filled with random numbers, therefore the entire range of chunks from 22500 to 25000 is filled with data. 
The last filesystem is analogous to the second filesystem and does not contain user data. 
 
If a disk has valid filesystems then it is most likely that a large part will be captured during bitmap-based analysis. 
However it is also possible that a disk was reformatted. In this case the bitmap-based strategy will not be able to 
produce a sound chunk map, because the information about the allocations on the previous filesystem(s) has been 
destroyed. This raw data discovery is in the scope for the allocation-based routines. 
 

 
Figure 3.3. The chunk map produced by the bitmap-based 

strategy for the 500GB disk with four valid filesystems. 

 
Figure 3.4. The ground truth chunk map for the 

500GB disk with four NTFS filesystems. 
 
Allocation-based 
 
Technically, the allocation-based strategy uses the same basis as the bitmap-based strategy. It is walking through 
the complete bitmap, but evaluates whether regions that are unallocated according to the bitmap may in fact 
contain non-zero data, corresponding to, e.g., deleted files. Such data composes the subset 𝐹𝑆𝑢

′ , that has been 
defined earlier. 
 
In order to identify a data subset 𝐹𝑆𝑢

′  within an unallocated subset 𝐹𝑆𝑢 we use statistical analysis methods, namely 
sampling[11]. The allocation-based analysis is split into two phases: the coarse bitmap walk (CBW) and the fine 
bitmap walk (FBW). The coarse bitmap walk is bitmap size dependent only, whereas the fine bitmap walk also 
depends on the allocation patterns in a filesystem.  
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Random Sampling in Bitmap Walking 
 
In general, the idea behind sampling is to evaluate the characteristics of the entire disk without reading it in full, 
which would defeat the purpose of partial imaging. Therefore we read a small part of a disk, sufficient to identify 
the data subset 𝐹𝑆𝑢

′  with an acceptable level of error and overhead. Garfinkel applied random sampling to identify 
known artifacts and data presence, e.g., whether a disk was properly wiped[14].  
 
The scope of allocation-based analysis is not concerned with file contents, but with the identification of regions 
that contain data. Simply applying sampling on the unallocated data subset 𝐹𝑆𝑢 is not enough for identifying data 
boundaries. Hence we need a robust way for accurate identification of data regions on a disk. We have employed 
the random sampling algorithm in bitmap walking procedures. The randomization part is necessary in order to 
ensure that there will be no easy way to predict where a sample is taken from.  
 
Both phases of the allocation-based analysis have three common parameters that can specified by a user: 
 

1. Maximum data step size, 𝐷𝑆𝑚𝑎𝑥  -- specifies the size of a disk to be sampled. After the data step is 
established, it is randomly sampled with one data transaction. If the data transaction contains all zeros, 
then the entire step is assumed to be zeros. Otherwise the entire step is considered to be non-zero, 
expressed in terms of chunks, and then added to the chunk map. For CBW, this parameter is static and for 
the FBW this parameter is dynamic. 

2. Reference data transaction size, 𝐷𝑇𝑟𝑒𝑓  -- specifies the data transaction size that is read from a data step. 

This parameter remains fixed for both walking procedures throughout the analysis.  
3. Join distance - specifies the minimum size in chunks for a zero region. All data gaps not larger than the join 

distance are added to the resulting partial image.  
 
Figure 3.5 illustrates our bitmap walking procedure and the mapping between bitmap transactions (represented by 
yellow and light gray squares, where each square is a single bitmap transaction) and data regions (of size bitmap 
data transaction size and represented by blue and dark gray squares). The notations related to the complete 
bitmap facility are prefixed with "𝐵𝑀". The notations related to the data region facility are prefixed with "𝐷". 
 

 
Figure 3.5. Description of bitmap walking procedure for allocation-based analysis. 

 
Whereas the complete bitmap is addressed by a bitmap index 𝐵𝑀𝐼, the data region is addressed by actual data 
offsets on the disk. In order to convert a bitmap index into the actual disk offset the bitmap index must multiplied 
by the bitmap transaction data size, and the offset of the start of the filesystem must be added. 
 
For a cluster size as 𝐶𝑆, the bitmap transaction data size that corresponds to one bitmap transaction is expressed 
as: 𝐷𝑇𝑏𝑖𝑡𝑚𝑎𝑝 = 64 × 𝐶𝑆. The maximum data step size 𝐷𝑆𝑚𝑎𝑥  maps onto the complete bitmap where it is called the 

maximum bitmap step size 𝐵𝑀𝑆𝑚𝑎𝑥 . For 𝐷𝑆𝑚𝑎𝑥 ≥ 𝐷𝑇𝑏𝑖𝑡𝑚𝑎𝑝: 
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In order to sample data on a given step, a chain of zero bitmap transactions must be accumulated. The quantity of 
sequential bitmap transactions is denoted as the current bitmap step 𝐵𝑀𝑆. For the zero chain 𝐶 = (𝑡1, 𝑡2, … , 𝑡𝑁), 
where 𝐵𝑀𝑆 = 𝑁, there are two situations: 
 

 
The scenario described by the expression 3.2 corresponds to the Figure 3.5. The chain of sequential zero bitmap 
transactions spans the bitmap indices from 1 to 8. Due to encountering a non-zero bitmap transaction 𝑡9 ≠ 0, the 
chain of sequential zero transactions breaks, having accumulated only 7 bitmap transactions that are equal zero. 
Thus, the resulting bitmap step size 𝐵𝑀𝑆 = 8 − 1 = 7, whereas the maximum bitmap step size 𝐵𝑀𝑆𝑚𝑎𝑥 = 𝑛 − 1.  
 
The scenario related to the expression 3.3 represents a case when the chain of sequential zero bitmap transactions 
has reached the maximum bitmap step size 𝐵𝑀𝑆𝑚𝑎𝑥  such that 𝐵𝑀𝑆 = 𝐵𝑀𝑆𝑚𝑎𝑥 . 
 
Denote the first bitmap transaction for the current step as 𝐵𝑀𝐼𝑠. In order to identify the location on the disk from 
which to take a sample we need to calculate the data step start offset 𝐷𝐼𝑆  that must correspond to 𝐵𝑀𝐼𝑠: 
 

 
Since the current 𝐵𝑀𝑆 is known, the resulting data step size is calculated as: 
 

 
Finally, the data transaction size 𝐷𝑇 for the given data step size 𝐷𝑆 is calculated as: 
 

 
The data transaction 𝐷𝑇 may two edge cases:  
 

1. The first case is depicted in the Figure 3.6, where 𝐷𝑇𝑟𝑒𝑓 <  𝐷𝑇𝑏𝑖𝑡𝑚𝑎𝑝. The resulting data transaction size in 

this scenario will be always equal to 𝐷𝑇𝑟𝑒𝑓 . 

2. In the Figure 3.7 there is a case when 𝐵𝑀𝑆 corresponds to 𝐷𝑆 such that: 𝐷𝑇𝑟𝑒𝑓 > 𝐷𝑆 ≥  𝐷𝑇𝑏𝑖𝑡𝑚𝑎𝑝. In this 

situation the resulting data transaction size will be equal to 𝐷𝑆. 
 

Reference data transaction size (DTref)

......

 
Figure 3.6. Example when 𝐷𝑇𝑏𝑖𝑡𝑚𝑎𝑝 > 𝐷𝑇𝑟𝑒𝑓  

... ...

Reference bitmap 

transaction size (BMTref) 

Zero chain(BMS)

 
Figure 3.7. Example when 𝐷𝑇𝑟𝑒𝑓 > 𝐷𝑆 

 
 
 

𝐵𝑀𝑆𝑚𝑎𝑥 =
𝐷𝑆𝑚𝑎𝑥

𝐷𝑇𝑏𝑖𝑡𝑚𝑎𝑝

 3.1 

𝑁 < 𝐵𝑀𝑆𝑚𝑎𝑥 ;  ∀𝑘, 𝑘 ∈ [1, 𝑁], 𝑡𝑘 = 0; 𝑡𝑁+1 ≠ 0 3.2 
  

𝑁 = 𝐵𝑀𝑆𝑚𝑎𝑥 ;  ∀𝑘, 𝑘 ∈ [1, 𝑁], 𝑡𝑘 = 0 3.3 

𝐷𝐼𝑆 = 𝐷𝑇𝑏𝑖𝑡𝑚𝑎𝑝 × 𝐵𝑀𝐼𝑠  3.4 

𝐷𝑆 = 𝐵𝑀𝑆 × 𝐷𝑇𝑏𝑖𝑡𝑚𝑎𝑝 3.5 

𝐷𝑇 = 𝑀𝐼𝑁(𝐷𝑇𝑟𝑒𝑓 , 𝐷𝑆) 3.6 
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Sampling Parameters 
 
Since the allocation-based analysis uses a statistical approach we have to evaluate the probability of 
misclassification a data region as a zero region, 𝑃𝑚𝑖𝑠𝑠. The sampling accuracy for a given step 𝑖 depends on current 
data step size  𝐷𝑆𝑖 , the current data transaction size 𝐷𝑇𝑖 , and the current data density,  Φ𝑖, where Φ𝑖 ∈ [0, Φ𝑟𝑒𝑓], 

and Φ𝑟𝑒𝑓 is the reference data density.  

 
The reference data density is a data density of a region that contains data. Our imager will encounter a wide 
variety of data types and hence, allocation patterns. For example a compressed data typically has very high data 
density, whereas an uncompressed data may have much lower data density. The analysis of data types and their 
allocation patterns are beyond the scope of this research, and we are striving to choose parameters that work well 
in common scenarios Therefore we assume that the reference data density on a region that contains data is a fixed 
value Φ𝑟𝑒𝑓 = 0.1. Thus any sector within a data region has the probability  Φ𝑟𝑒𝑓   that it is not completely filled 

with zeroes, e.g. at least one bit within the sector is set to 1. 
 
Throughout the analysis any given step 𝑖 may span the amount of non-zero data transactions that is smaller than 
the data step size, thus forming data steps with different density Φ𝑖. In the Figure 3.8 there is an example of 
possible data transaction layouts within a data step of a fixed size.  

Фi

ФH

ФL

Data step size

0

 - non-zero

 - zero
 

Figure 3.8. Data density for a fixed data step size. 
 
In the Figure 3.8 Φ𝐿 corresponds to a low data density, and Φ𝐻 represents a high data density. Each square 
represents one data transaction. Each blue square is a non-zero data transaction and is assumed to have the data 
density Φ𝑟𝑒𝑓 . Each dark-gray square is a zero data transaction and has data density 0.  

 
The layout of data transaction within a given data step is not known and assumed to be random. Thus if we 
randomly read one data transaction from within a data step of size 𝐷𝑆𝑖  with 𝑛 non-zero data transactions, the 
resulting data density is expressed as: 

 
There are two edge cases for the data transaction layout. If there is a transition from a data region to a zero region 
then the layout within the data step forms the falling edge. If there is a transition from a zero region to a data 
region then the layout within the data step forms the rising edge. In the Figure 3.9 there are examples of rising and 
falling edges. 

Φ𝑖 = Φ𝑟𝑒𝑓

𝑛

𝐷𝑆𝑖

 3.7 
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Falling edge

Data step size

Rising edge

 - non-zero

 - zero
 

Figure 3.9. Example of a falling and a rising edges. 
 
In reality a data step size can include thousands of data transactions. Generally speaking, if data within a step is 
clustering at the beginning of the step, then the step represents the falling edge. If data within a step is clustering 
towards the end of the step, then the step represents the rising edge. The edges tend to have very low data 
density therefore they accuracy on them is lower than the accuracy on a solid data region. 
 
Due to the fact that the CBW runs with a fixed data step size, it might not precisely capture the falling and rising 
edges. The edges are not dangerous within solid data regions as all the gaps that are not larger than the join 
distance will be smoothened during the chunk map post-processing. However the problem arises when a data 
region ends and the large zero region begins, or vice versa, a large zero region ends and data region begins.  
 
The data transaction size 𝐷𝑇𝑖  also affect the accuracy of the sampling. After a data transaction has been read from  
within a given step 𝑖, the chances that all the sectors within the transaction are equal to zero depend on the data 
density Φ𝑖  as well as on the data transaction size itself. From the expression 3.7 we calculate the data density Φ𝑖  
and from the expression 3.6 we can find out the size of the data transaction for the step 𝑖. A sector is considered 
empty if and only if all the bits within its limits are equal to 0, otherwise the sector is said to be non-empty. Thus 
the sectors within the data transaction of size 𝐷𝑇𝑖  distributed according with the binomial distribution law[18]: 
 

 
The probability of success 𝑝 = Φ𝑖, the probability of an fail 𝑞 = (1 − 𝑝), the number of trials 𝑛 = 𝐷𝑇𝑖, and the 
number of expected successes 𝑘 = 0. Plugging the parameters into the expression 3.9, the probability of not 
finding at least one non-empty sector within the data transaction is calculated as: 
 

 
Optimal Values for Sampling 
 
According to the expression 3.7, the data density is inversely proportional to the data step size. From the 

expression 3.9, smaller maximum data step sizes 𝐷𝑆𝑚𝑎𝑥 , decrease the probability of misclassification a data region 

as a zero region, 𝑃𝑚𝑖𝑠𝑠 . In order to determine appropriate range of values for the maximum data transaction sizes, 

that do not overstress a source disk with high volume I/O load yet produce the results within reasonable amount 

of time, we have evaluated the impact of read operations on a hard disk performance. We randomly distributed 

disk offsets, sorted them, and performed read operations from those locations such that the total amount of data 

to read was 0.48% of the size of the disk. The results are presented in the   

𝑃 =
𝑛!

(𝑛 − 𝑘)! × 𝑘! 
× 𝑝𝑘 × (1 − 𝑝)𝑛−𝑘  3.8 

𝑃𝑚𝑖𝑠𝑠 = (1 − Φ𝑖)
𝐷𝑇𝑖 3.9 
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Table 3.2. The first column describes the transaction size, the second column shows the number of transaction on 
the disk, the third column expresses the total amount of read operations, and the fourth column is the time taken 
to complete all the read operations. 
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Table 3.2. Random sampling with a fixed sample size and different transaction sizes. 

Total on disk: 71677952 sectors (36.7GB). The sample size = 0.48% 

Transaction size, sectors Total transactions on disk Number of read operations Read time, sec 

1 71677952 344054 201.97 

2 35838976 172027 199.64 

4 17919488 86013 178.9 

8 8959744 43006 131.78 

16 4479872 21503 84.71 

32 2239936 10751 49.74 

64 1119968 5375 27.83 

128 559984 2687 16 

256 279992 1343 8.74 

512 139996 671 5.41 

1024 69998 335 3.07 

2048 34999 167 2 

4096 17499 83 1.5 

8192 8749 41 1.22 

16384 4374 20 1.09 

32768 2187 10 1.02 

 
The smaller the amount of read operations the less it takes to read the outlined sample. However If instead of the 
relative sample size we use a fixed amount of data steps that must be traversed in order to complete the sampling 
the results look a bit different. The results of reading a fixed sample of 1000 transactions is provided in the Table 
3.3. 
  
Table 3.3. Random sampling with a fixed amount of transactions for different transaction sizes. 

Sample size: 1000 transactions 

Transaction size, sectors Amount data to read, sectors Read time, sec 

1 1000 5.84 

2 2000 5.99 

4 4000 5.88 

8 8000 6.07 

16 16000 6.06 

32 32000 6.06 

64 64000 6.01 

128 128000 6.3 

256 256000 6.61 

512 512000 7.9 

1024 1024000 9.28 

2048 2048000 11.92 

4096 4096000 17.17 

8192 8192000 27.24 

16384 16384000 47.42 

32768 32768000 88.84 

The first column defines the transaction size, the second column shows the amount data to read, and the third 
column shows the time taken to read 1000 transactions. 
 
Based on the results from the   
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Table 3.2 and the Table 3.3, we have empirically determined the range of appropriate values for the reference data 
transaction size (highlighted as light-green): 128, 256, 512, 1024, and 2048 sectors, which corresponds to 64KB, 
128KB, 256KB, 512KB, and 1MB respectively. The given values do not over stress the disk with excessive amounts 
of read operations. Smaller data transaction sizes can be used with small data step sizes, and larger data 
transaction sizes can be used with large data step sizes. 
 
For the chosen data transaction size values range we have evaluated the probability of not finding a single non-
empty sector within a data transaction, 𝑃𝑚𝑖𝑠𝑠. The result of the evaluation is presented in the Figure 3.10. 
 

 
Figure 3.10. Probability of misclassification a data region as a zero region for different data density and data 

transaction size values. 
 
For an average data density Φ = 1%, and the data transaction size 𝐷𝑇 = 64𝐾𝐵 = 128 𝑠𝑒𝑐𝑡𝑜𝑟𝑠, 𝑃𝑚𝑖𝑠𝑠 ≈30%. 
After the analysis phase has completed, the chunk map undergoes the post-processing which eliminates all small 
gaps of zero regions based on the specified join distance value. The join distance spans multiple data steps 𝑁, 
where each data step has a certain 𝑃𝑚𝑖𝑠𝑠  value. Thus the probability of not finding a single non-zero data step 
within the entire region 𝑃𝑚𝑖𝑠𝑠

′  equals to the average of the probabilities on each step: 
 

 
Using the expression 3.8 we can evaluate the probability of failure, 𝑃𝑓𝑎𝑖𝑙  for which our approach fails to locate a 

region on the disk filled with data. Assume the probability of success 𝑝 = (1 − 𝑃𝑚𝑖𝑠𝑠), the probability of failure 
𝑞 = 𝑃𝑚𝑖𝑠𝑠, the number of trials 𝑛 = 𝑗𝑜𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒/𝐷𝑆𝑚𝑎𝑥, and the number of expected successes 𝑘 = 0.  The 
parameters used are: 𝐷𝑆𝑚𝑎𝑥 = 1𝐺𝐵 (the maximum value that our tool can accept) and the join distance is 500 
chunks. The evaluation of probability of failure 𝑃𝑓𝑎𝑖𝑙  is presented in the Figure 3.11. 
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Figure 3.11. The probability of failure of the chunk map post-processing. 

 
For an approximate data density Φ > 0.5%, 𝐷𝑆 = 128𝑀𝐵, and the join distance of 500 chunks, the chunk map 
post-processing makes the probability 𝑃𝑓𝑎𝑖𝑙  to be negligibly small even for small 𝐷𝑇 values. 

 
Although the chunk map post-processing increases the accuracy at the cost of reasonable overhead it is not 
effective for discovering small non-zero areas lying in within large regions of disk filled with zeroes. Specifying a 
shorter maximum data step size may increase the chances for catching small data regions, but the chunk map post-
processing is also inefficient in detecting the borders between data-filled and zero-filled regions. Such regions are 
in the scope of the FBW. 
 
Fine Bitmap Walk 
 
After the CBW has completed, the FBW starts. Unlike the CBW, FBW has a dynamic maximum data step 
size 𝐷𝑆𝑚𝑎𝑥

′ , where 𝐷𝑆𝑚𝑎𝑥
′ ∈ [𝑀𝐴𝑋(𝐷𝑇𝑏𝑖𝑡𝑚𝑎𝑝 , 𝐷𝑇𝑟𝑒𝑓), 𝐷𝑆𝑚𝑎𝑥

𝐹𝐵𝑊]. The main feature of the FBW is that it determines 

transitions between non-zero and zero bitmap/data transactions, and adjusts 𝐷𝑆𝑚𝑎𝑥
′  accordingly. The FBW uses an 

additional parameter called the shift threshold 𝑆𝑇. The shift threshold defines the minimum amount of zero data 
transactions to pass in order to shift up 𝐷𝑆𝑚𝑎𝑥

′ . If the FBW internal counter that counts zero data transactions is 
denoted as 𝐶𝑁𝑇, then the 𝐷𝑆𝑚𝑎𝑥

′  can be expressed as: 
 

 
Each time the 𝐷𝑆𝑚𝑎𝑥

′  is changed the 𝐵𝑀𝑆𝑚𝑎𝑥  is recalculated via the expression 3.1. The FBW uses an exponential 
increment, which allows to quickly pass large zero regions at high 𝐷𝑆𝑚𝑎𝑥

′ . Using a large shift threshold 𝑇𝑆 ensures 
slow step increase which allows to more precisely examine falling and rising edges at low 𝐷𝑆𝑚𝑎𝑥

′ . There are three 
major cases when the FBW takes an action to adjust 𝐷𝑆𝑚𝑎𝑥

′ : 
 

1. Transition from a non-zero bitmap transaction to a zero bitmap transaction (capturing falling edges). In 
this case the FBW simply drops the speed at its minimum: 𝐷𝑆𝑚𝑎𝑥

′ = 𝑀𝐴𝑋(𝐷𝑇𝑏𝑖𝑡𝑚𝑎𝑝 , 𝐷𝑇𝑟𝑒𝑓). 

2. Transition from a zero bitmap transaction to a non-zero bitmap transaction (capturing rising edges). If the 
𝐷𝑆𝑚𝑎𝑥

′ > 𝑀𝐴𝑋(𝐷𝑇𝑏𝑖𝑡𝑚𝑎𝑝 , 𝐷𝑇𝑟𝑒𝑓), then the FBW backs off by the amount of bitmap transactions that 

correspond to the last taken data step. The speed is dropped to its minimum value: 
𝐷𝑆𝑚𝑎𝑥

′ = 𝑀𝐴𝑋(𝐷𝑇𝑏𝑖𝑡𝑚𝑎𝑝 , 𝐷𝑇𝑟𝑒𝑓). The region is re-walked. If the 𝐷𝑆𝑚𝑎𝑥
′ = 𝑀𝐴𝑋(𝐷𝑇𝑏𝑖𝑡𝑚𝑎𝑝 , 𝐷𝑇𝑟𝑒𝑓), then 

simply  proceed to the next bitmap transaction. 
3. Transition from a zero data transaction to a non-zero data transaction. In this case the data offset 

translates into the chunk number and the chunk is added to the chunk map. The rest is analogous to the 
case 2. 

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1.0%

P
fa

il

Data density

128

256

512

1024

2048

𝐷𝑆𝑚𝑎𝑥
′ = 𝑀𝐴𝑋 ( 𝐷𝑇𝑏𝑖𝑡𝑚𝑎𝑝 , 𝐷𝑇𝑟𝑒𝑓 × 2

𝐶𝑁𝑇
𝑇𝑆 ) 3.11 



 

21 
 

 
It is possible that the FBW backs off at the same bitmap transaction more than one time. For example if the FBW 
has increased to a certain data step size, the first back off would adjust the bitmap index according to the last 
taken step. By the time the FBW has reached the bitmap transaction that caused the back off, the data step size 
may have already increased and is more than the minimum value, thus the back off occurs again. 
 
We evaluated the efficiency of the allocation-based strategy by wiping out the layout of the 500GB disk discussed 
previously, and trying to identify data region with the allocation-based strategy only. We used the following 
parameters: 𝐷𝑆𝑚𝑎𝑥 = 32𝑀𝐵, 𝐷𝑇𝑟𝑒𝑓 = 512𝐾𝐵, 𝑗𝑜𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 500, 𝑇𝑆 = 100. The Figure 3.12 shows the chunk 

map produced during the allocation-based analysis. The Figure 3.13 represents the ground truth chunk map. 
 

 
Figure 3.12. The chunk map produced by the allocation-

based strategy for a  500GB disk without valid 
filesystems on it. 

 
Figure 3.13. The ground truth chunk map for a 500GB 
disk. Red chunks represent the data that are located 

within the large zero region. 

 
We performed more thorough examination of the not captured chunks: 7609, 7631, 10000, 11562, and 25601, in 
order to understand why they are difficult to capture using our approach. 

 The chunk 7609 contains only two identical copies of a boot sector.   

 The chunk 7631 contains four copies of the same boot sector. 

 Running strings on chunk 10000 revealed that it contains two boot sector, back to back and an $MFT. The 
first boot sector is the last sector of the first volume, the second is the first sector of the second volume. 
The megabyte of sporadic data is the $MFT for the second NTFS filesystem (see Figure 3.6). 

 The chunks 11562 and 25601 contain similar data pattern. They both are parts of the filesystem that were 
previously defined on the disk. We randomly sampled both chunks 100 times with 1MB sample size. Only 
18 hits were discovered. The density on those chunks is considered very low. The chunks 11562 and 
25601 are in the scope of the bitmap-based analysis. 

 
For the rest, our allocation-based approach successfully accomplished its goal and  composed a very accurate 
chunk map. 
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For all the experiments the following parameters were used: 𝑗𝑜𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 500, 𝑇𝑆 = 100. We have conducted 
the experiment on the 500GB disk without valid filesystems for different step sizes and transaction sizes in order to 
evaluate the time taken to complete the analysis. The results are presented in the  
Table 3.4. The first column is the data transaction size, the second column is the maximum data step size, and the 
third column describes the number of chunks in the final chunk subset. The fourth and fifth columns show false 
positives and false negatives, respectively. The sixth column expresses the overhead calculated as the ratio of the 
false positives to the size of the entire disk in chunks. The seventh column displays the time taken by the 
allocation-based analysis. The eighth and the ninth columns show the number of read operations performed 
during the CBW and FBW phases respectively. The tenth column shows the total amount of data read during the 
allocation-based analysis. The last column shows the imaging increase ratio. 
 
 
Table 3.4. Results of the allocation-based analysis of 500GB disk without filesystems. 

Ground truth chunk map size: 7260 Disk size in chunks: 29809 

𝐷𝑇𝑟𝑒𝑓  𝐷𝑆𝑚𝑎𝑥  

Chunk 
subset FP FN OH Time 

CBW read, 
ops 

FBW read, 
ops 

Read, 
Mb Boost 

65536 32 8372 1117 5 4% 183 14904 8756 1479 3.56 

65536 64 8372 1122 10 4% 111 7452 7468 933 3.56 

65536 128 8369 1139 15 4% 73 3726 6260 624 3.56 

65536 256 8391 1141 10 4% 65 1863 7684 597 3.55 

65536 1024 8423 1178 15 4% 52 466 7646 507 3.54 

131072 32 8373 1118 5 4% 254 14904 7785 2836 3.56 

131072 64 8379 1124 5 4% 103 7452 7653 1888 3.56 

131072 128 8376 1126 10 4% 110 3726 6553 1285 3.56 

131072 256 8363 1123 20 4% 54 1863 3117 623 3.56 

131072 1024 8359 1119 20 4% 63 46 6531 822 3.57 

262144 32 8376 1121 5 4% 288 14904 6854 5440 3.56 

262144 64 8382 1127 5 4% 177 7452 6459 3478 3.56 

262144 128 8376 1126 10 4% 117 3726 5564 2323 3.56 

262144 256 8378 1133 15 4% 107 1863 7487 2338 3.56 

262144 1024 8359 1119 20 4% 56 466 4403 1217 3.57 

524288 32 8400 1143 3 4% 353 14904 7295 11100 3.55 

524288 64 8378 1123 5 4% 214 7452 5881 6667 3.56 

524288 128 8375 1125 10 4% 148 3726 4809 4268 3.56 

524288 256 8368 1123 15 4% 95 1863 4066 2965 3.56 

524288 1024 8365 1120 15 4% 114 466 5080 2773 3.56 

1048576 32 8377 1121 4 4% 465 14904 5663 20567 3.56 

1048576 64 8375 1125 5 4% 284 7452 5143 12595 3.56 

1048576 128 8388 1136 4 4% 216 3726 5840 9566 3.55 

1048576 256 8378 1133 15 4% 155 1863 5647 7510 3.56 

1048576 1024 8382 1142 20 4% 101 466 4416 4882 3.56 

 
The common part among all the results presented in the  
Table 3.4 is that the speed increase is approximately 3.5 times. A complete image of the analyzed disk takes 5920 
seconds, thus the partial image is created in approximately 1670 seconds, a savings of more than an hour, even on 
a relatively small disk. The overhead is consistent across the all runs and is within acceptable range.  
 
We outlined several groups of data, based on the number of false negatives. 
 

1. The group with the least amount of 𝐹𝑁 (highlighted as green). There is only one run with three false 
negatives. The following analysis parameters were used: 𝐷𝑇𝑟𝑒𝑓 = 512𝐾𝑏, 𝐷𝑆𝑚𝑎𝑥 = 32𝑀𝑏. This run 
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completed in 353 seconds, which is higher than the average. Because the FBW discovered the chunks 
7609 and 7631, it had to drop the speed and speed up again, which caused longer processing time. The 
chunks 7609 and 7631 have very low data density, therefore they are not consistently discovered across 
multiple runs. 

2. The group with 𝐹𝑁 =  4 (highlighted as light-green). There are two entries with four false negatives. The 
first has parameters 𝐷𝑇𝑟𝑒𝑓 = 1𝑀𝑏, 𝐷𝑆𝑚𝑎𝑥 = 32𝑀𝑏, the second has parameters 𝐷𝑇𝑟𝑒𝑓 = 1𝑀𝑏, 𝐷𝑆𝑚𝑎𝑥 =

128𝑀𝑏. The both cases have identified chunk 26501, yet couldn't capture the chunks 7609 and 7631 that 
were discovered by the first group. On the other hand the first group is missing chunk 25601. 

3. The group with 𝐹𝑁 =  5 (highlighted as yellow). The given group is large and spans all runs with  
𝐷𝑆𝑚𝑎𝑥 = 32𝑀𝑏, and four of the five runs with the analysis parameters 𝐷𝑆𝑚𝑎𝑥 = 64𝑀𝑏. The group is 
missing the chunks that have very low density and are located in the middle of the large zero regions. We 
have discussed these chunks earlier, when analyzed results of the allocation-based strategy. 

4. All the remaining runs have missed more than 5 chunks. The following series of chunks were overlooked: 

 14904, 14905, 14906, 14907, 14908. 

 16250, 16251, 16252, 16253, 16254. 

 27404, 27405, 27406, 27407, 25408. 
The density of the aforementioned chunks is moderate, but due to large 𝐷𝑆𝑚𝑎𝑥  values, the cumulative 
data density on the data steps that span the sequences of the chunks is very low. 

 
The average analysis time across the highlighted groups took approximately 215 seconds. 
 
Despite the fourth group produced more false negatives, it still accurately identified large data regions. For 
example if an investigator wants to find out whether it worth to do selective imaging on a disk with an unknown 
content, he can specify large the maximum data step size 𝐷𝑆𝑚𝑎𝑥 = 1024𝑀𝑏 and 𝐷𝑇𝑟𝑒𝑓  between 64Kb and 256Kb. 

In this case the analysis would complete faster than if it was running with small step sizes. The resulting chunk map 
could be interpreted via the chunk map visualizer into a PNG picture, so the investigator could evaluate the disk 
layout and decide whether it needs to be further analyzed, or not. If the resulting chunk map has large zero regions 
then the selective imaging renders suitable. If the resulting chunk map is fully marked than the disk most likely has 
very dense data allocation patterns. It can be rescanned with smaller join distance values, in order to lower the 
amount of false positives. If a disk has a dense allocation pattern it is a subject for complete imaging. 
 
The last part of the experiment is to run the full analysis on the 500GB disk with valid filesystems, and on a 2TB 
disk with two valid filesystems. The results for 500GB disk with four valid NTFS filesystems are presented in the 
Table 3.5. The results for the 2TB disk with two valid filesystems are provided in the Table 3.6. 
 
Table 3.5. Results of the allocation-based analysis of 500GB disk with 4 valid NTFS filesystems. 

Ground truth chunk map size: 7526 Disk size in chunks: 29809 

𝐷𝑇𝑟𝑒𝑓  𝐷𝑆𝑚𝑎𝑥  

Chunk 
subset FP FN OH Time 

CBW read, 
ops 

FBW read, 
ops 

Read, 
MB Boost 

65536 64 8370 846 2 3% 44 5661 8899 910 3.6 

65536 1024 8370 846 2 3% 17 375 8899 580 3.6 

131072 64 8370 846 2 3% 42 5661 8899 1820 3.6 

131072 1024 8370 846 2 3% 17 375 8899 1159 3.6 

262144 64 8370 846 2 3% 42 5661 8899 3640 3.6 

262144 1024 8370 846 2 3% 18 375 8899 2319 3.6 

524288 64 8374 849 1 3% 41 5661 8579 7120 3.6 

524288 1024 8370 846 2 3% 19 375 7933 4154 3.6 

1048576 64 8371 846 1 3% 47 5661 7479 13140 3.6 

1048576 1024 8370 846 2 3% 20 375 6787 7162 3.6 

 
The results of analyzing the 500GB disk with valid filesystems vs. analysis as raw data is almost identical for all the 
parameters that we tried. In particular, the false negatives are still the same as for the raw disk (7609, 7631). The 
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major difference between the analysis of the raw version of the 500GB disk and the version with valid NTFS 
filesystems is that the time taken to analyze the second disk is noticeably lower. Also, the number of reads during 
the CBW is much lower, because it didn't have check the regions captured during the bitmap-based analysis. The 
longest analysis time for a precise run with the parameters for 𝐷𝑇𝑟𝑒𝑓 = 1𝑀𝐵, 𝐷𝑆𝑚𝑎𝑥 = 64𝑀𝐵 is 47 seconds. The 

quick run with the parameters for 𝐷𝑇𝑟𝑒𝑓 = 64𝐾𝐵, 𝐷𝑆𝑚𝑎𝑥 = 1𝐺𝐵  completed in 17 seconds. 

 
The bitmap capture for this experiments well as the ground truth chunk map were presented earlier in the Figure 
3.3 and the Figure 3.4 respectively. The resulting chunk map for the given experiment is presented in the Figure 
3.14. 
 

 
Figure 3.14. The chunk map produced by the allocation-based strategy for 500GB disk with 4 valid filesystems. 

 
The analysis results for the 2TB disk are interesting because this disk is an ordinary disk that has been in use for 
approximately one year. It was reformatted once, and it had massive deletions. The bitmap-based strategy was 
able to capture only the allocated data subset, whereas the allocation-based analysis discovered the unallocated 
data lingering on the disk. The chunk map produced by the bitmap-based analysis is shown in the Figure 3.15. The 
ground truth bitmap is shown in the Figure 3.16. The resulting chunk map produced during the disk analysis is 
presented in the Figure 3.17. 
  
Table 3.6. Results of the allocation-based analysis of 2TB disk with 2 valid NTFS filesystems. 

Ground truth chunk map size: 51043 Disk size in chunks: 119234 

𝐷𝑇𝑟𝑒𝑓  𝐷𝑆𝑚𝑎𝑥  

Chunk 
subset FP FN OH Time 

CBW read, 
ops 

FBW read, 
ops 

Read, 
Mb Boost 

65536 64 51868 827 2 1% 244 21912 5350 1704 2.3 

65536 1024 51867 826 2 1% 65 1400 5365 423 2.3 

131072 64 51867 826 2 1% 377 21912 5361 3409 2.3 

131072 1024 51867 826 2 1% 144 1400 16203 2200 2.3 

262144 64 51867 826 2 1% 414 21912 5361 6818 2.3 

262144 1024 51867 828 2 1% 154 1400 16251 4413 2.3 

524288 64 51867 826 2 1% 489 21912 4830 13371 2.3 

524288 1024 51924 883 2 1% 108 1400 4724 3062 2.3 

1048576 64 51867 826 2 1% 634 21912 4129 26041 2.3 

1048576 1024 51867 826 2 1% 255 1400 8988 10388 2.3 

 

Was not captured, 
chunk_7609 

Was captured by the CBW, 
as it spans 64MB step size 
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Analyzing the Table 3.6, we see that all the runs share some common outcomes, specifically, the false negative 
rate, false positive rate, overhead, and the speed increase of 2.3 times. The longest analysis time a for precise run 
with the parameters for 𝐷𝑇𝑟𝑒𝑓 = 1𝑀𝐵, 𝐷𝑆𝑚𝑎𝑥 = 64𝑀𝐵 is 634 seconds. The quick run with the parameters for 

𝐷𝑇𝑟𝑒𝑓 = 64𝐾𝐵, 𝐷𝑆𝑚𝑎𝑥 = 1𝐺𝐵 completed in 65 seconds. The scan with the moderate parameters  

𝐷𝑇𝑟𝑒𝑓 = 256𝐾𝐵, 𝐷𝑆 = 64𝑀𝐵 took 414 seconds. As it can be seen comparing the Figure 3.15 with the Figure 3.16, 

our 2TB has very large unallocated region that contains data. 
 
The two false negatives, namely chunks 28369 and chunk 87982, are located in the middle of large zero region 
which makes the data density on a given step to be very small. The data density of the chunks themselves was also 
very small, 2-4 sectors per 16MB chunk. 

 
Figure 3.15. The bitmap-based 

chunk map for 2TB disk with two 
valid NTFS filesystems 

 
Figure 3.16. The ground truth 

chunk map for 2TB disk with two 
valid NTFS filesystems. 

 
Figure 3.17. The allocation-based 
chunk map for 2TB disk with two 

valid NTFS filesystems. 

 
Having analyzed the 2TB disk we discovered that more than 50% of its space consists of zeros, which should not be 
captured during the imaging. In the ideal case, when there is an appropriate hardware capacity and the disk works 
at high bitrates of approximately 150MPbs, the imaging time for a 2TB would about 4 hours. Even if we ran the 
longest analysis it would still decrease the imaging time by approximately two hours. However if a storage device is 
an old USB2.0 external hard disk with 2TB space, the imaging would proceed at the speed of approximately 
40MB/s, which would turn into almost 14 hours. Of course the analysis of slower disks will take more time as well. 
Our strategy in this case would be to run a quick scan to see if there is any data on it other than the legitimate 
allocated subset. After the analysis has completed the tool produces the subsets for each of the phase that took 
place during the disk examination.  
 
An investigator may use either the chunk map visualizer in order to interpret the chunk maps as a picture, and 
evaluate them visually, or as an alternate method, he can use the chunk map viewer, which has multiple functions, 
one of which is to compare any two chunk maps produced for the same disk.  
 
In any event, even if the investigator spends a modest amount of time performing disk analysis, if this drastically 
reduces the imaging time, then a large amount of time can be saved. 
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Density: 32Kb per 16MB 
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Chapter 4  
 

Selective Imager 
 
After the final chunk map has been created, the data must be acquired from the source disk (based on the chunk 
map) and stored on a destination drive in an efficient format. As a part of the research, we developed a high 
performance selective imager which creates AFFv3 format images.  While some attention is being generated 
around AFFv4, we used AFFv3 it has much wider support among commonly used digital forensics tools. Images 
produced with our selective imager can therefore be readily analyzed by the majority of other existing digital 
forensics tools, without modification. 
 
AFFLIBv3 Constraints 
 
AFF is a well-known and widely adopted digital forensics image format and AFF offers attractive features, such as 
maintaining attributes and metadata for an acquired image. However the AFFLIBv3 cannot be used by our selective 
imager straight out of the box. The major drawback of the AFFLIBv3 library is that it is not optimized for concurrent 
data flow. When a chunk of data is written to a AFF file, the data is first compressed and hashed, unless 
compression and/or hashing are turned off, which is typically not the case, and only after all formatting operations 
have completed is it written to the output file in the form of an AFF page. It is clear that such an approach leads to 
inefficient resource utilization.  Specifically, the destination storage device must always wait on the CPU to finish 
compression and hashing prior to the data being written to the AFF image. 
 
The AFFLIBv3 supports two compression algorithms: deflate, LZMA, and three hashing algorithms: MD5, SHA1 and 
SHA256. For compression used only the deflate algorithm with compression level 1, as higher compression levels 
impose larger compression overhead. The compression is the most intensive task, consuming by far the most CPU 
time. Nevertheless hashing also impacts the aggregated throughput. To assess the performance of the AFFLIBv3 
implementation, we used deflate level 1 for compression and MD5 for signing data. The test platform was a 
desktop with a Intel i7 processor running at 4.7GHz and a PlextorM5 Pro SSD as the source disk. As a destination 
disk we used an HDD 7200RPM and an SDD Crucial MX100. The source disk contained a Windows 8 filesystem 
which was 70% full with user data. With a sufficiently fast destination disk, the throughput for the original 
AFFLIBv3 implementation was approximately 60-80 MB/s, which is inadequate for high-performance imaging. 
 
AFFLIBv3 Tuning: Selective Imager Design 
 
In order to relax the constraints imposed by the original implementation of the AFFLIBv3, we have implemented 
our selective imager in the way that it outsources the formatting of the data from the AFFLIB onto itself. The 
design of the imager allows us to fully utilize available CPU power for compressing and hashing the chunks of data 
by parallelizing the formatting procedure.  The design of the selective imager is presented in the Figure 4.1.  
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Figure 4.1. The design of the selective imager. 

 
The imager has three major components: 

 The Reader - iterates through the chunk map and for each set of chunks, it reads the data from the 
corresponding disk location. After a chunk has been read, metadata, i.e., chunk number and ordinal 
number, is associated and the chunk is pushed into the Read Queue. If the Read Queue reaches the size 
limit, it notifies the reader via the Reader Feedback Loop that it needs to wait until the Read Queue is 
unloaded and it is notified by the formatters (curly green arrows). 

 The Formatter - queries the Read Queue and fetches chunks with their metadata. The Formatter performs 
compression and hashing according to parameters set by the user, and pushes the formatted chunk with 
its metadata into the Priority Page Queue. The system may have multiple formatters, depending on the 
number of CPU cores. The Priority Page Queue notifies the Formatters if it is full (curly red arrows). The 
Formatters wait until the Writer unloads the queue so they can proceed. 

 The Writer - queries the Priority Page Queue and fetches formatted chunks in-order based on the order 
they have been read from the disk. When a formatted chunk is fetched it already has the compressed 
buffer and the hash signature(s) that are supplied via AFFLIBv3 facilities, which were modified to support 
the external formatting. After the imaging is completed the writer has produced a partial image in AFFv3 
format, which is fully functional and can be readily consumed by other existing digital forensics tools.  

 
The imager, due to its concurrent nature, maintains its state in a centralized manner. All the asynchronous 
modules, e.g., the Reader, the Formatters, and the Writer, transmit their states via the Control Queue. The 
controller monitors the state, maintains the user interface, and in case of an error, gracefully terminates all the on-
going routines, displays a description of the error, and exits the imager. 
 
Throughout the tuning of the AFFLIBv3 we also discovered an interesting fact, specifically, that write performance 
was degrading over time with the growth of AFF pages in the image. The problem was caused by the page 
placement policy the standard AFFLIBv3 uses to accommodate the next AFF page. The more pages an image 
contains, the longer time it takes to iterate through all of them to check whether there is enough space to fit the 
current page.  We did not change the allocation policy, but we optimized it such that if a new image is created, 
then there is no need to check whether there is a space in-between the pages. As the AFF image grows, the pages 
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are therefore allocated contiguously. For incremental imaging, the AFFLIBv3 will try to find a hole that would fit the 
current page, but once the previous AFF image size has been exceeded, the hole search ceases, and the imaging 
will proceed without the placement policy overhead. 
 
Selective Imager Performance Evaluation 
 
We performed an evaluation to assess the performance of our imager. As a source disk, we used a 500GB Samsung 
EVO 850 SSD, attached to the same system we used to evaluate the original AFF implementation. We created four 
partitions on the source disk. The first partition contained the installation of Windows 8, extended to 167.8GB. The 
second and fourth partitions were allocated 209.7GB and 80.7GB respectively, which were just fresh NTFS 
filesystems without any user files. The third partition contained 41.9GB of random data. The performance chart is 
presented in Figure 4.2.  
 
For sufficiently powerful computers, the bottleneck will generally be source disk read speed, unless the source disk 
is an SSD with high transfer rates. In that case, performance can be limited by CPU speed or the write speed of the 
destination device. For computers with weak CPUs, the overhead will mostly be imposed by formatting, which 
includes compression. The write speed of a destination storage device will likely be a problem only when dealing 
with high entropy data, which resists compression. Other than this case, write speed is not really a problem, as the 
compressed data is substantially more compact and does not overload the I/O interface. 
 

 
Figure 4.2. The imaging performance chart for 500GB SSD with different types of content. 

 
Average imaging speed on the data region (the orange part) is 316 MB/s. On zero regions (blue parts) the speed is 
bottlenecked by the maximum speed of the SSD. On the high entropy region (red part) of the plot, the 
performance is bottlenecked by the CPU. The spikes are caused by the logging facility, as the result is being 
updated every few seconds.  
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Chapter 5  
 

Conclusion  
 
The volume challenge severely impedes forensic investigations by imposing delays during the imaging process that 
impact the ability of investigators to perform investigations in a timely manner. In the present research, we have 
developed the disk analysis techniques that accurately locate regions on disk that contain potentially important 
data. Using multiple analysis strategies in conjunction we are able to analyze a disk within a few minutes and yet 
reduce the imaging time of large storage media by many hours. Our imager produces AFFv3 images, while relaxing 
some of the performance issues present in the original AFFv3 implementation, all while maintaining compatibility 
with existing tools that support the AFF image format. The proposed approach can be easily incorporated into the 
workflow of practicing forensics investigators. 
 

Limitations and Future Work 
 
Analysis of the solid state drivers might require alternate techniques for maximum efficiency, since SSDs might 
utilize features such as TRIM and garbage collection. King and Vidas discussed in detail the retention properties of 
SSDs from different vendors[19]. 
 
The AFFLIBv3 uses the compression algorithms that provide high compression ratio at the cost of time. Since the 
storage is cheap and available, it would be more efficient to use high-performance compression algorithms, e.g., 
snappy [20], which would give higher bitrates with lower amount of the CPU cores.   
 
For the future directions, we have outlined the support for other popular filesystems, e.g., the ext filesystem 
family, HFS+, and exFAT. Also we look forward to implement the entire tool kit with intuitive front end interface. In 
the future work we may consider to incorporate other image formats that support high performance compression 
algorithms.  
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