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Abstract 

Documenting life history characteristics of populations, especially of herbivorous insects 

such as butterflies, is fundamental to the ecological study of tropical rainforests. However, we 

know relatively little about tropical forest butterflies. Here, I combine information gathered 

using the mark-release-recapture (MRR) approach with manipulative and observational 

experiments in a natural environment to explore aspects of the population biology of three 

closely-related species of Costa Rican fruit-feeding understory butterflies (Cithaerias pireta, 

Dulcedo polita, and Pierella helvina), specifically: vertical stratification, attraction to and 

persistence in fruit-baited traps, relative abundance and distribution, movement patterns, 

probabilities of recapture and daily survival, and factors that affect those probabilities. 

Among the three focal species there were differences in capturability, recapturability, spatial 

distribution, and degree of vertical stratification. Males appear to fly within smaller home 

ranges than females, and P. helvina can traverse the entire forest reserve in a single day. 

These findings have implications for the genetic diversity of these populations and for the 

risk of local extinction in the face of changing ecological conditions. 
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Chapter 1: Life History Characteristics of Three Species of Costa Rican Haeterini 

 

Introduction 

Documenting life history characteristics of populations is fundamental to the ecological study 

of tropical rainforests. Terrestrial invertebrates, especially herbivorous insects in the tropics, 

are essential to processes that regulate terrestrial ecosystems, and are good indicators of 

ecological condition (Andersen et al. 2002; Barbosa et al. 2005). The spatial and temporal 

heterogeneity inherent in the tropics makes generalizations about these ecosystems difficult 

(Basset et al. 2004), in turn making the study of tropical insect populations particularly 

valuable. Butterflies are ideal insects for the study of ecologically important topics (Ehrlich 

1989; Gilbert 1989), and work on tropical butterflies has been important for understanding 

population biology and evolutionary ecology (Vane-Wright and Ackery 1989; Brown and 

Freitas 2000; Boggs, Watt and Ehrlich 2003; DeVries, Austin and Martin 2008; Wahlberg et 

al. 2009; Bonebrake et al. 2010; DeVries, Penz and Hill 2010; Fordyce 2010; Grotan et al. 

2012). Approximately 90% of tropical butterfly species are found only within forest habitats 

(Beccaloni and Gaston 1995), which are rapidly disappearing (Laurance 1999; Achard et al. 

2002). Even in Costa Rica, known for its commitment to protecting natural habitats, 70% of 

the forest is outside protected areas and the remainder exist primarily as small fragments 

(Kricher 1997; Sanchez-Azofeifa 2001). This habitat loss makes the study of tropical forest 

butterflies even more important. However, we know relatively little about them in terms of 

life history characteristics, mortality and longevity, spatial structure, dispersal, or sex-linked 

behavioral differences (Carey 2001; Bonebrake et al. 2010). 

The published literature has focused on relatively few butterfly genera, many of 

which comprise temperate meadow and grassland species. Examples include Maculinea spp 

(Lycaenidae) in wet meadows (e.g., Thomas 1984; Meyer-Hozak 2000; Maes et al. 2004;  
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Table 1.1. Estimates of butterfly species richness by biogeographical realm. Estimates (Robbins and 
Opler 1996, p. 71) compared with the contribution to the scientific literature of each realm based on 
a search of mark-release-recapture (MRR) butterfly papers published from 2000 through 2013.  
 

 
Species 

 
Published papers 

Biogeographical realm Estimate % 
 

Count % 

Neotropical (Central/South America & 
Caribbean) 7500 41.8  13 9.77 

 Oriental & Australian (India/Southeast 
Asia & Australia/New Zealand) 4500 25.1  2 1.50 

 

Ethiopian (Sub-saharan Africa) 3650 20.3  1 0.752 
 

Palearctic (Europe and Asia) 1550 8.64  91 68.4 
 

Nearctic (North America) 750 4.18  26 19.5 
  

 
 

  
 

  

 

Kőrösi et al. 2008; Nowicki and Vrabec 2011; Bonelli et al. 2013), Melitaea sp. 

(Nymphalidae) in dry meadows (e.g., Kuussaari, Nieminen and Hanski 1996; Harrison, 

Hanski and Ovaskainen 2001; Zheng et al. 2007; Niitepõld et al. 2011; Novotny, Konvička 

and Fric 2012), and Parnassius sp. (Papilionidae) in alpine and sage brush meadows (e.g., 

Roland, Keyghobadi and Fownes 2000; Adamski 2004; Auckland, Debinski and Clark 2004; 

Fred and Brommer 2009; Matter and Roland 2013). Of the studies conducted in the tropics, 

many have focused on species in the genus Heliconius. Bonebrake et al. (2010) reference 18 

studies on Heliconius color pattern mimicry, pollen-feeding, population dynamics and 

reproductive biology. But Heliconius represents only a few of the 7500-8000 estimated 

tropical forest butterfly species (Beccaloni and Gaston 1995; Robbins and Opler 1996; Tufto 

et al. 2012). 

Non-tropical forest ecosystems are disproportionately reflected in the literature. A 

recent search of the Web of Science database for mark-release-recapture (MRR) butterfly 

literature published since 2000 found that for the 133 pertinent results, 116 (88%) of the 

study habitats were in North America, Europe and Asia (excluding southeast Asia; Table 1.1)  
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Figure 1.1. Phylogenetic relationships of Haeterini genera. Tree created by A. Cespedes 
(unpublished) based on recent work by Wahlberg et al. (Wahlberg personal communication) 
showing the phylogenetic relationships of genera of the tribe Haeterini (Nymphalidae, Satyrinae). 
Branch lengths and topology were estimated simultaneously in BEAST (v.1.7.4; Drummond and 
Rambaut 2007; Drummond et al. in preparation). The most recent common ancestor of all taxa were 
constrained to the age estimated in Wahlberg et al. (2009), and output was analyzed in Tracer (v. 
1.4; Rambaut and Drummond 2007) for convergence. References for the host plant families: DeVries 
1987; Constantino 1993; Peña 2007; Janzen and Hallwachs 2013. My = millions of years. 

 

even though those regions represent less than 13% of estimated worldwide butterfly species 

richness (Robbins and Opler 1996). The Neotropical realm comprises almost 42% of 

butterfly richness (Robbins and Opler 1996) but < 10% of the study regions found in the 

literature search (Table 1.1). Granted, the literature search used limited search terms and was 

biased toward MRR papers published in English, and a diverse body of work has been 

published on tropical species. Researchers have studied spatial, temporal, and species 

diversity of communities of forest fruit-feeding (Nymphalidae) butterflies in a variety of 

tropical locations, including Belize (Lewis 2001), Borneo (Hamer et al. 2003; Tangah et al. 

2004), Brazil (Barlow et al. 2007), Costa Rica and Ecuador (DeVries et al. 2012, and 

references therein), Indonesia (Fermon et al. 2005), Southeast Asia (Dumbrell and Hill 2005), 

and Uganda (Molleman et al. 2006). Nevertheless, given the relative contribution tropical 

forest butterflies make to the world’s butterfly diversity, in-depth studies of tropical forest 

species are vastly underrepresented in the scientific literature. 
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Figure 1.2. Wing marks. Placement of marks on the ventral surface of the left fore- and hindwings of 
(a) Cithaerias pireta and (b) Dulcedo polita, and (c) the left and right forewings of Pierella helvina 
(only left side shown). Images are not to scale. 

 

Many questions in ecology and evolutionary biology require detailed information on 

individuals within populations (Lomnicki 1988; Clutton-Brock and Sheldon 2010), and mark-

release-recapture (MRR) is an appropriate way to collect data on tropical forest butterfly 

populations. MRR allows individuals to be tracked, provides a wide range of demographic 

information, and produces data that can be analyzed in a statistically rigorous fashion (Elton 

1927; Jolly 1965; Seber 2001; Nichols 2005; Haddad et al. 2008). Marking individuals is 

often the only way to derive estimates of vital population rates, and MRR can be used to 

estimate species richness and assess wildlife monitoring programs (White and Burnham 

1999). Statistical models for MRR data can incorporate individual and group covariates to 

describe physical condition, genetics or habitat conditions, allowing researchers to explore 

the role of ecological mechanisms such as competition, habitat quality or weather conditions 

in population dynamics (Franklin 2001). As a result, MRR methods have been used with a 

variety of taxa and habitats to answer many population ecology questions (Appendix A). 

MRR is an excellent tool for use with butterflies when they are robust to marking (Haddad et 

al. 2008), and there is an extensive literature on its use in butterfly populations (e.g. Ehrlich 

1965; Brakefield 1982; Hanski, Alho and Moilanen 2000; Matter and Roland 2013). 
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Figure 1.3. Map of Costa 
Rica showing life zones 
in various colors. The 
study region is enclosed 
in a circle. This map was 
created by LGA with 
ArcGIS in November 
2007 using regional 
coverages of the Rio 
Sarapiquí Watershed 
made publicly available 
by the Organization for 
Tropical Studies, 
combined with the USGS 
Hurricane Mitch 
Program Data: Central 
American Ecosystem 
Map, May 2001. 

A familiar but largely unstudied group of tropical forest butterflies that lends itself 

well to the MRR approach is the tribe Haeterini (Nymphalidae, Satyrinae). The Haeterini are 

fruit-feeding understory butterflies that are common and locally abundant within rainforest 

habitats (DeVries 1987). They are well-known phylogenetically within the Satyrinae (Freitas 

and Brown 2004; Peña et al. 2006; Wahlberg et al. 2009), and recent work (Cespedes, Penz 

and DeVries, unpublished) showed the relationships of all five genera in the tribe (Fig. 1.1). 

The Haeterini can be sampled in fruit-baited traps, are robust to handling, and can be 

uniquely and permanently marked on the wings (Fig. 1.2). They also are visually distinctive 

and in Costa Rica can be unambiguously identified in the field. Three sympatric species of 

Haeterini (Cithaerias pireta Cramer, Dulcedo polita Hewitson, and Pierella helvina 

Hewitson) are present year-round in the Sarapiquí River Basin of Costa Rica (DeVries et al. 

2012). Here, I combine information gathered using the MRR approach with manipulative and 

observational experiments in a natural environment to explore aspects of the population 

biology of these three species, specifically: vertical stratification within the low understory, 

attraction to and persistence in fruit-baited traps, relative abundance and distribution,  
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Figure 1.4. Map 
of the Sarapiquí 
River Basin. The 
location of the 
Tirimbina 
reserve enclosed 
in a circle. This 
map was created 
with ArcGIS in 
November 2007 
using regional 
coverages of the 
Rio Sarapiquí 
Watershed 
made publicly 
available by the 
Organization for 
Tropical Studies. 
 

 
 

movement patterns, probabilities of recapture and daily survival, and the relative effects of 

species, sex, rain, abundance, and sampling site on those probabilities. 

 

Study Location 

The field work for this dissertation took place in the Sarapiquí River Basin, Heredia Province, 

a geographic region in the interior of Costa Rica that has been well studied (Janzen 1983; 

DeVries 1987; Gentry 1990; Rich et al. 1993; McDade et al. 1994; Lieberman et al. 1996; 

Kricher 1997). Costa Rica contains four mountain ranges, experiences weather systems from 

two oceans, and is situated on the land bridge between North and South America, all 

contributing to extremely high biodiversity and life zones (Fig. 1.3; DeVries 1987; Janzen 

1983; Longhi 2000; Wainwright 2007). Forests in the Sarapiquí River Basin are classified 

primarily as Tropical Wet Forest (Bosque Muy Humedo Tropical; Fig. 1.4) comprising 

undisturbed wet forest, swamp forest, riparian forest, light gaps, and second growth (Frankie, 

Baker and Opler 1974; Longhi 2000). The study region receives an average of 3.7 to 4.2 m of 

precipitation per year and has no distinct dry season (Zuchowski 2007, p. 237), although  
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Figure 1.5. GoogleEarth image of 
the inner portion of the 
Sarapiquí River basin. Shows the 
confluence of the Sarapiquí and 
Puerto Viejo rivers, La Selva 
Biological Station (OTS), and the 
forest corridor leading to the 476 
sq km Parque Nacional Braulio 
Carillo. Tirimbina, bordered on 
its western edge by the Sarapiquí 
river, is enclosed in an oval. 
Imagery dates: 2003-2007. 

 

 

December to April are usually dryer months. This region is characterized by an agriculture-

dominated matrix of developed lands and small, privately owned patches of forest used for 

ecotourism. 

Reserva Biológica La Tirimbina, hereafter referred to as Tirimbina, is a private, non-

profit wildlife refuge that uses ecotourism to fund educational outreach for local 

communities. It is situated with the Sarapiquí River along its western border, and is 

approximately 10 km from the forested corridor that leads north to La Selva Biological 

Station (OTS) or south to Parque Nacional Braulio Carillo (Fig. 1.5). Tirimbina is 3.4 sq km 

in size and is 85% primary forest (http://www.tirimbina.org/what-is-tirimbina/physical-

description.html; 20 Sep 2010). The forest interior is structurally complex, but is 

characterized by abundant Pentaclethra macroloba trees and many palms species (Marquis 

and Braker 1994; Longhi 2000; Isidro Chacón personal communication). Tirimbina is criss-

crossed by two small rivers and numerous creeks that drain into the Sarapiquí River, and is 

traversed by a network of paths to accommodate local educational programs and ecotourism 

visitors (Fig. 1.6). 

A nearby forest patch used as a secondary sampling site was similar in forest 

composition to Tirimbina, but different in size and disturbance level. The nearby patch,  
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Figure 1.6. 
Tirimbina 
Biological Reserve, 
Heredia Province, 
Costa Rica. 
 

 

hereafter referred to as Pozo Azul, is owned by Hacienda Pozo Azul and used for nature 

walks. Pozo Azul is separated from Tirimbina by approximately 2 km of roads, agricultural 

fields, pastures, and small homes and businesses. Although individuals of the butterfly genus 

Morpho have been observed flying along rivers, forest edges, and roads in the study region, 

butterflies such as the Haeterini are confined to the forest interior and do not traverse open or 

developed lands or fly across roads (DeVries 1987; personal observation). Thus, the study 

species were unlikely to move between Tirimbina and Pozo Azul, and the two populations of 

butterflies were effectively isolated. Pozo Azul was similar to Tirimbina in terms of plants 

and forest structure, i.e., degree of understory visibility, size and density of trees, and number 

and size of natural tree gaps, small streams and rivers. However, at 1.6 sq km it was about 

half the size of Tirimbina, and its boundaries were closer to roads and homes. Furthermore, 

Pozo Azul was bisected by a dirt road at the northern end so that approximately one-third of 

the patch was separated from the rest of the reserve. It is unclear whether haeterines would  
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Figure 1.7. Haeterini wing patterns. Shows (a) pink hindwing coloration in two individuals of 
Cithaerias pireta, one fresh and one with damaged hindwings, feeding on banana adjacent to an 
individual of Greta oto (Ithomiini), (b) the transparent wings lacking bright coloration of a fresh 
female Dulcedo polita, and (c) the vivid red, white and black coloration of an extremely fresh female 
Pierella helvina. Images are not to scale. 
 
 

cross that interior dirt road, but it is possible that the functional size of Pozo Azul was smaller 

than 1.6 sq km for the haeterine populations. 

 

Study Organisms 

Satyrines comprise the most speciose group of nymphalids, with approximately 2,000 species 

worldwide (Peña 2004), and the larvae generally feed on monocots like palms, bamboos and 

grasses in the families Arecaceae and Poaceae (DeVries 1987; Peña et al. 2006; Chacón and 

Montero 2007). The host shift to grasses is considered a driving mechanism in the 

diversification of this subfamily (Peña et al. 2006), and many satyrines are meadow or 

grassland species in temperate zones where they primarily have been studied (Beccaloni and 

Gaston 1995). However, the Haeterini are part of a clade that diverged from the rest of 

Satyrinae before its adaptive radiation coincident with the spread of grasses across the globe 

(Peña 2007; Wahlberg et al. 2009). Larval haeterines feed not on grasses but primarily on 

philodendrons (Araceae), palms (Arecaceae) and heliconias (Heliconiaceae and Marantaceae; 

Appendix B), and are considered “primitive” satyrines in this respect (Peña et al. 2006).  

Haeterines differ from “typical” satyrines in flight behavior and appearance. Satyrine 

flight has been described as unsteady, jumpy or bouncy (Weymer 1924; DeVries 1987), but  
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Figure 1.8. Nymphalid butterfly abundance. Monthly abundance for the three focal Haeterini 
butterflies and 97 other Nymphalidae butterflies captured in fruit-baited traps at Tirimbina from 
November 2003 through October 2008 (DeVries et al. 2012). The haeterines are plotted against the 
right y-axis and the other fruit-feeding nymphalids are plotted against the left y-axis. 

 

haeterines have been observed soaring smoothly along trails centimeters above the ground 

(Weymer 1924; DeVries 1987; Constantino 1992) and gliding from low vegetation to the 

ground with their wings held in a dihedryl (personal observation). Satyrines may have 

forewings that are rounded, angled, sickle-shaped or pointed (Weymer 1924; DeVries 1987), 

but haeterines have comparatively narrow forewings that are rounded at the apex. In 

appearance, the typical satyrine is small and brown with rows of eye spots on the hindwings 

(Weymer 1924; DeVries 1987; Chacón and Montero 2007). The genus Pierella, the first of 

the Haeterini to diverge within that clade (Fig. 1.1; Peña et al. 2006; Wahlberg et al. 2009), is 

closest in wing pattern to the typical satyrine by having brown wings and multiple ocelli 

(Weymer 1924). However, many members of Pierella also have bright patches of color on 

the hindwing, possibly functioning to direct predator attacks away from vital body parts (Hill 

and Vaca 2004; Murillo-Hiller 2009). In Costa Rica, P. helvina has red hindwing patches 

(Fig. 1.7). The other genera within Haeterini diverge further from the typical satyrine wing 

pattern by having slightly iridescent, transparent wings with only one or two eyespots and, 

except for Dulcedo, variously colored hindwing patches. Thus, the Haeterini generally soar or 
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skim rather than bounce in flight, and are bright and/or transparent rather than drab in 

coloration. 

The Haeterini at Tirimbina exhibit a roughly bimodal seasonal pattern in abundance 

similar to some other nymphalid species, with annual abundance peaks in July-September 

and January-March (Fig. 1.8; DeVries et al. 2012; Alexander and DeVries b). They also have 

been observed congregating at fruit falls with other members of the fruit-feeding butterfly 

guild (Young 1972; personal observation), although the haeterines are usually solitary 

(DeVries 1987). Daily survival was similar among the focal haeterines and averaged < 0.82, 

suggesting that less than 82% of the population survives from one day to the next (Alexander 

and DeVries b). These haeterines also showed similar daily movements in terms of straight-

line distances, with most observed movements within 80 m. And for C. pireta and P. helvina 

in particular, females tended to disperse while males flew in smaller home ranges (Alexander 

and DeVries a).  

We know almost nothing about mating and reproduction in the haeterines, and what 

we do know primarily has to do with descriptions of eggs and larvae (not covered here), and 

brief descriptions of oviposition and larval behavior. This is an important topic because larval 

survival and development are critical to the life history and could affect characteristics of the 

adult population (Price et al. 2011, p. 62). For the focal butterflies, we know that all lay eggs 

singly (DeVries 1986, 1987; Murillo-Hiller 2009; Isidro Chacón personal communication), 

and one account describes egg-laying behavior for each species plus an account for Haetera 

piera in Colombia (Constantino 1993). Murillo-Hiller (2009) observed a single C. pireta lay 

one egg on the underside of a Philodendron leaf close to the central leaf vein at a height of 15 

cm. Development time from egg to adult of neotropical butterflies can range from two weeks 

to three months (DeVries 1987, 1997; Grotan et al. 2012). The C. pireta larva reared by 

Murillo-Hiller (2009) developed in 65 days, whereas the H. piera larva reared by Constantino  
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Table 1.2. Palm-feeding nymphalid butterflies. Eleven species of Satyrinae that have been recorded 
feeding on palms (Arecaceae) as larvae (DeVries 1987, personal communication). 
 

Species Tribe Palm record Notes 

Brassolis isthmia Brassolini Cocos nucifera gregarious, nocturnal feeders; can 
defoliate entire trees 

Opsiphanes quiteria 
quirinus 

Brassolini "palms"                 
Cocos nucifera 

 

Opsiphanes invirae 
cuspidatus 

Brassolini "palms"                 
Cocos nucifera 

 

Opsiphanes cassina 
fabricii 

Brassolini Acrocomia vinifera, 
Cocos nucifera 

 

Catoblepia orgetorix 
championi 

Brassolini "palms"  

Eryphanis aesacus 
buboculus 

Brassolini "palms" but E. polyxena lycomedon feeds on 
bamboo (Poaceae) 

Dulcedo polita Haeterini Geonoma sp., 
Welfia sp. 

 

Antirrhea pterocopha Morphini Calypterogyne sp.  

Antirrhea miltiades Morphini Geonoma 
longivaginata 

old mature leaves 

Caerois gerdrudtus Morphini Socratea durisima                 
Cocos nucifera 

mature leaves 

Cissia confusa Satyrini Iriartia sp., 
Geonoma sp. 

most Cissia sp. feed on grasses (Poaceae); 
C. confusa also observed on Calathea sp. 
(Marantaceae); the only other Cissia sp. 
with a non-Poaceae host plant is C. 
calixta, observed on the sedge Cyperus 
lazulae (Cyperaceae) 
 
 
 

 

(1993) developed in 44 days. It may be that D. polita and P. helvina also lay eggs close to the 

ground although this is not included in published accounts, and there are no accounts 

indicating larval development time for either species. Dulcedo polita has been observed 

laying single eggs more than once on the same plant, while P. helvina usually oviposits only 

once per plant (DeVries 1986). The larvae of both are solitary, with D. polita larvae feeding 

first on new leaves then on old leaves, and P. helvina larvae feeding on all leaves (DeVries 

1986). There are no published records of male-male interactions or mating behaviors in any 

of these species. 
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Table 1.3. Wing lengths. Average forewing length (±SE) calculated from 2,267 living butterflies 
measured in the field at Tirimbina and Pozo Azul in 2009, 2010 and 2011, and average variation (±SE) 
in length measurements taken from a subset (n=509) of butterflies for which multiple 
measurements were available. 
 

Species Sex 

Wing length (mm) 

 

Variation (mm) 

 N mean ± SE  N mean ± SE 

Cithaerias pireta ♀ 170 29.16 ± 0.09 38 0.33 ± 0.04 

 ♂ 258 27.69 ± 0.07 54 0.42 ± 0.06 

Dulcedo polita ♀ 236 34.04 ± 0.09 53 0.50 ± 0.07 

 ♂ 151 31.1 ± 0.11 30 0.49 ± 0.06 

Pierella helvina ♀ 435 37.61 ± 0.07 104 0.43 ± 0.04 

 ♂ 494 33.27 ± 0.05 131 0.42 ± 0.03 

 
Other species: 

Species Sex 

Wing length (mm) 

 

Variation (mm) 

 N mean ± SE  N mean ± SE 

Antirrhea miltiades ♀ 127 47.11 ± 0.24 22 0.73 ± 0.29 

 ♂ 130 43.35 ± 0.12 29 0.38 ± 0.04 

Caligo atreus ♀ 66 78.91 ± 0.39 10 0.37 ± 0.09 

 ♂ 52 73.19 ± 0.60 12 1.41 ± 0.92 

Caligo eurilochus ♀ 42 83.81 ± 0.67 6 0.43 ± 0.10 

 ♂ 59 75.00 ± 0.38 10 0.44 ± 0.08 

Caligo illioneus ♀ 5 72.84 ± 1.04 0 na 

 ♂ 7 63.75 ± 0.82 0 na 

Morpho granadensis ♀ 6 67.87 ± 2.37 2 0.13 ± 0.06 

 ♂ 8 64.07 ± 1.08 3 0.21 ± 0.06 

Pierella luna ♀ 1 37.19 1 na 

 ♂ 5 34.11 ± 0.34 1 na 

Taygetis andromeda ♀ 2 35.96 ± 0.06 1 na 

 ♂ 13 33.71 ± 0.40 5 0.46 ± 0.13 

 

 

Host plants from different families have been recorded for the focal haeterines, with 

relatively few records for C. pireta and D. polita. As mentioned above, C. pireta has been 

recorded using philodendrons from the family Araceae (DeVries 1987; Janzen and Hallwachs 

2009; Murillo-Hiller 2009; Isidro Chacón personal communication). In addition to the single 

record of Philodendron herbaceum observed on the Caribbean slope of Costa Rican lowland 

rainforest (Murillo-Hiller 2009), there are seven records from multiple forest types of the 

Guanacaste region of northwestern Costa Rica: six on Philodendron rhodoaxis and the  
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Table 1.4. Movement distances. One-day travel distances observed in selected butterflies marked 
and released in the years 2009-2011 at Tirimbina. Sampling effort was identical for the focal 
haeterines, but varied for the other species. N = number of observed one-day distances. 
 

Focal haeterines: Sex N Median (m) Mean ± SE (m) Max (m) 

Cithaerias pireta 
♀ 17 43.88 65.8 ± 17.8 269.97 

♂ 10 36.91 41.7 ± 10.2 91.63 

Dulcedo polita 
♀ 33 34.07 48.0 ± 13.5 431.65 

♂ 17 37.71 43.4 ± 10.2 124.12 

Pierella helvina 
♀ 78 21.74 62.4 ± 21.2 1170.49 

♂ 73 17.99 48.1 ± 14.3 872.73 

 
Other Species Sex N Median (m) Mean ± SE (m) Max (m) 

Antirrhea miltiades 
♀ 69 0.00 29.5 ± 9.5 508.01 

♂ 104 0.00 39.5 ± 11.3 968.41 

Caligo atreus 
♀ 22 17.04 117.0 ± 44.0 804.27 

♂ 19 36.62 80.5 ± 30.8 458.02 

Caligo eurilochus 
♀ 10 0.00 47.5 ± 23.5 219.01 

♂ 30 0.00 87.2 ± 27.5 559.58 

Caligo illioneus 
♀ 1 na 0.00 0.00 

♂ 3 0.00 19.1 ± 19.1 57.25 

Morpho granadensis 
♀ 3 0.00 0.0 ± 0.0 0.00 

♂ 5 254.37 296.8 ± 108.6 710.11 

Pierella luna 
♀ 1 na 0.00 0.00 

♂ 3 19.90 16.3 ± 3.6 19.90 

Taygetis andromeda 
♀ 2 na 0.0 ± 0.0 0.00 

♂ 7 0.00 0.0 ± 0.0 0.00 
 
 
      

 

seventh on Philodendron sulcatum (Janzen and Hallwachs 2009). Dulcedo polita has been 

recorded using palms in the genera Euterpe, Geonoma and Welfia (Arecaceae) in Costa Rica, 

although the palm species have only been identified in Colombia (DeVries 1986, 1987; 

Beccaloni et al. 2008). There also is a single record for D. polita on Asplundia microphylla, a 

palm-like plant from the family Cyclanthaceae, in Guanacaste, Costa Rica (Janzen and 

Hallwachs 2009). 

There are many more host plants records for P. helvina than the other two focal 

species. This may be, in part, because P. helvina uses noticeable, ornamental plants that often 

grow in easily observed successional environments (Kricher 1997; Zuchowski 2007).  
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Table 1.5. Abundances for Dulcedo polita (Nymphalidae, Satyrinae, Haeterini). Observed from 
November 2003 through October 2008 in the community diversity study using mid-understory traps, 
and from December 2009 through June 2010 in the MRR study using ground-level traps, both 
conducted at Tirimbina reserve. Binomial test p-values are two-tailed. 

 
Female Male Total % Male P-value Conclusion 

Community diversity study 213 293 506 0.58 p = 0.0002 Male-biased 

MRR study 197 119 316 0.38 p < 0.0001 Female-biased 
 
 

Observations for P. helvina host plants fall primarily into the families Heliconiaceae and 

Marantaceae, although they have been recorded using plants from other families as well 

(DeVries 1986, 1987; Janzen and Hallwachs 2009). In Guanacaste, P. helvina has been 

recorded 203 times using 35 plant species in seven families. Six species represent the bulk of 

the observations (140 records, 69%), with Heliconia irrasa (Heliconiaceae) the most 

commonly observed host species (40 records, 20%), and the remaining five species 

representing 17-24 records each (8-12% each): H. latispatha (Heliconiaceae), and Calathea 

marantifolia, C. macrosepala, Hylaeanthe hoffmannii, and Pleiostachya leiostachya 

(Marantaceae). The remainder of the host plant records may represent ovipositing “mistakes” 

or identification errors.  

Nutrition for haeterine larvae has not been studied. Generally speaking, leaves in 

tropical forests relative to those in temperate forests are low in nutrition and protected from 

herbivory by a variety of secondary metabolites or defensive structures (Coley and Barone 

1996). With that said, most host plants recorded for the focal haeterines are not considered 

particularly toxic (Watson and Dallwitz 1992; Longhi 2000; Murillo-Hiller 2009). 

Philodendrons in the family Araceae produce cyanogenic glycosides (Grayum 1990), but 

Cithaerias does not appear to be unpalatable to predators and so presumably does not 

sequester this toxin (DeVries 1987). 

All recorded host plant families contain calcium oxalate crystals. Most plants express 

non-cytoplasmic structures of some kind in their cells, with the expression of silica in grasses  
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Table 1.6. MRR data for Costa Rican Haeterini. Summary of captures and recaptures for butterflies 
sampled at Tirimbina during the January-March 2011 post-study. Return rate is the ratio of 
individuals recaptured to individuals marked. 

 
Individuals marked Indivs. recaptured No. of recaptures Return rate 

 
♀ ♂ Total ♀ ♂ Total ♀ ♂ Total ♀ ♂ Total 

Cithaerias pireta 20 18 38 1 1 2 1 1 2 0.05 0.06 0.05 

Dulcedo polita 28 20 48 3 1 4 4 2 6 0.11 0.05 0.08 

Pierella helvina 139 135 274 33 38 71 50 54 104 0.24 0.28 0.26 
 

 

 

being a familiar example (Prychid and Rudall 1999). Calcium oxalate crystal is widespread in 

flowering plants, particularly palms, and often is produced with sharp, pointy ends that act as 

physical abrasives during feeding and may interfere with digestion (Prychid and Rudall 1999; 

Zona 2004; Korth et al. 2006). Lepidoptera larvae feeding on plants with abundant calcium 

oxalate crystals grow more slowly and die more often than when feeding on plants with lower 

crystal concentrations (Korth et al. 2006). As a result, growth rate may be slower and larval 

stages longer in palm feeders such as D. polita compared to other tropical forest butterflies. 

Relatively few satyrine butterflies feed on palms (Peña 2004). DeVries (1987) 

summarized natural history observations for 532 species of Costa Rican butterflies in the 

families Papilionidae, Pieridae and Nymphalidae, of which only 11 satyrine species (2.07%) 

were recorded feeding on palms (Table 1.2). In the Janzen and Hallwachs (2009) online 

database, 16 Nymphalidae species (4.97%) are recorded as having oviposited on palms out of 

322 species for which host plants were recorded. Palms are characteristic of the tropics and 

subtropics, and the humid forest zone of the Sarapiquí River Basin is rich in palms (Hahn 

1997; Longhi 2000). However, in addition to the challenge to herbivores presented by high 

calcium oxalate crystal concentrations, palms represent a spatially heterogeneous resource. 

Palm populations are negatively affected by habitat fragmentation due to obligate outcrossing 

and specialized insect pollination (Arroyo-Rodriguez et al. 2007). Palm density also can vary 

significantly with soil type (Clark et al. 1995) making palm distributions patchy in spite of 
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their abundance. Therefore, palms may represent a less attractive host plant resource for 

butterflies than their ubiquity at first glance suggests. 

 

Species Summaries 

Cithaerias pireta: 

Cithaerias pireta is a familiar inhabitant of the forest floor in the Tirimbina forest. This 

species primarily has been observed flying just above the forest floor and perching on the 

ground or on leaf litter (DeVries 1987; personal observation), and as with the other focal 

haeterines, it is most likely to be captured in traps positioned very close to the ground 

(Alexander and DeVries 2012). These butterflies are seen on trails and hills, along stream-

edges, and in light gaps wherever its host plants – philodendrons – are found (Janzen and 

Hallwachs 2009; Murillo-Hiller 2009; Isidro Chacón personal communication). The study 

region is rich in Araceae (Zuchowski 2007), and this may help explain the homogeneous 

spatial distribution of trap abundance shown for this species in the forest interior (Alexander 

and DeVries b). 

In spite of its relatively cosmopolitan distribution within the reserve, C. pireta is more 

difficult to capture in traps than the other haeterines. Abundances for C. pireta were about 

half that observed for P. helvina, which also frequents hills and light gaps (Whittaker 1983; 

DeVries 1987). The difference in abundance may be due, in part, to lower capture 

probability. While the other two study species showed about a 50/50 chance of remaining in 

or escaping from traps in a 24-hr period, C. pireta showed a significantly lower chance of 

remaining in a trap long enough to be marked (Alexander and DeVries 2012). This means 

that population sizes based on data from trap studies will be underestimated more for this 

species than for more easily captured species (Hughes, Daily and Ehrlich 1998; Williams, 

Nichols and Conroy 2002). 
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Figure 1.9. Pierella luna (Nymphalidae, Satyrinae, Haeterini). 
A female P. luna trapped, marked, and photographed March 
2010 at site 6 (site E) in the Tirimbina reserve. 

Cithaerias pireta is the most petite of the focal species, and flew the shortest 

maximum distances. The forewing length of C. pireta averaged about 28 mm, making it 75-

91% of the size of the other butterflies (Table 1.3). Its daily movements were similar in 

distance to those of the other haeterines, but its maximum distances were shorter (Table 1.4). 

This may be due to shorter forewing length due to the positive relationship between wing 

span and dispersal ability (Dudley 2000; Sekar 2012). The maximum single-day distance 

observed for C. pireta was a little over half of that observed for D. polita, and less than a 

quarter of that observed for P. helvina.  

Males and females of C. pireta differed in movement patterns and daily survival. 

While female C. pireta gradually moved away from their initial capture locations, males did 

not (Alexander and DeVries a). In keeping with this, females have been documented flying 

near their host plants without remaining for longer than one day (Whittaker 1983; Murillo-

Hiller 2009), whereas males may remain in a single location for many days in a row (DeVries 

1987). Males have been observed flying up and down trails apparently patrolling territories, 

although these males were seldom captured in nearby fruit-baited traps and had to be hand 

netted to be marked (personal observation). Males also had higher estimated daily survival 

than females (Alexander and DeVries b), presumably due to smaller home range sizes and 

lower emigration rates as has been found in insects and other butterflies (Watt et al. 1977; 

Ehrlich 1989; Carey 2001). 
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With its habit of skimming the forest floor, small body size, and transparent 

forewings, C. pireta appears delicate and fragile. This species is widespread in the 

philodendron-rich Tirimbina interior but difficult to trap, with males and females showing 

differences in movement and home range size.  

 

Dulcedo polita: 

Dulcedo polita is locally abundant but less often observed at Tirimbina than the other two 

haeterines. It has transparent wings lacking a bright hindwing patch, so it may be more 

difficult to see, but the primary explanation probably has to do with its avoidance of sunny 

locations. Unlike the other two species, D. polita is seldom observed in light gaps or on 

hilltops (DeVries 1987; personal observation), and is associated with swamp forest habitats, 

especially palm swamps (DeVries 1987). The study region is rich in palms that serve as its 

host plants (DeVries 1987; Beccaloni et al. 2008; Janzen and Hallwachs 2009), but palms are 

patchily distributed (Clark et al. 1995). In keeping with this, D. polita showed strong 

heterogeneity in abundance among sampling sites, with the greatest abundances in swampier 

habitats (Alexander and DeVries b). 

Spatial heterogeneity can reduce capture probability since some traps may be 

positioned in less frequented habitats by random chance (Borchers and Efford 2008). The 

heterogeneous spatial distribution of D. polita may have lowered capture probability and 

reduced trap abundances. Trap persistence (i.e., the likelihood of an individual remaining in a 

trap long enough to be marked; Alexander and DeVries 2012) can interact with spatial 

distribution and affect capture probability. Consider C. pireta, in which low trap persistence 

countered the positive effect of its homogeneous spatial distribution on capture probability 

and may have resulted in smaller trap abundances. This contrasts with P. helvina, in which 

higher trap persistence plus homogeneous spatial distribution (particularly males) contributed  
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Figure 1.10. Long-distance 
movements by Pierella helvina. In 
February 2011, two female P. helvina 
were observed flying > 1 km in a 
single 24-h period, from traps placed 
along the outer boundaries of the 
reserve west through the interior. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

to higher capture probability and larger trap abundances. As with P. helvina, D. polita had 

higher trap persistence, but it was countered by strong heterogeneity in spatial distribution, 

reducing capture probability and contributing to smaller trap abundances. This suggests that 

abundance of D. polita was likely under-represented relative to more homogeneously 

distributed species even when they had similar persistence rates within traps. 

As with the other focal haeterines, D. polita flys near the forest floor, but shows a sex 

bias in capture height: females were more likely to be captured in lower traps than males 

(Alexander and DeVries 2012). Thus capture height probably contributed to observed female 

bias in trap abundance in low traps (Alexander and DeVries b). Compare this to the male bias 

observed in trap abundance when using mid-understory traps (Table 1.5). More often than the 

other focal haeterines, D. polita was seen perching on vegetation about 1 m above the ground 

(personal observation). It would be interesting to assess whether these higher-perching 

individuals are males and, if so, whether they are gaining a vantage point that allows them to 

locate females visually, as in Heliconius numata (Joron 2005). 
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With its transparent wings, patchy distribution and preference for swampy forest 

habitats, D. polita is less noticeable than the other haeterines. Vertical stratification of the 

sexes suggests a potential mate-searching behavior in this species. 

 

Pierella helvina: 

Pierella helvina is the most noticeable focal species, partly due to its penchant for sunny, 

easy-to-observe locations. This species frequently has been observed basking in the sun with 

wings held open, and flying on hilltops and in light gaps (Whittaker 1983; DeVries 1987). Its 

primary host plants are species of the ubiquitous and often successional genera Heliconia 

(Heliconiaceae) and Calathea (Marantaceae) (DeVries 1987). Thus is it not surprising that P. 

helvina was sampled more than five times as often as the other two haeterines in the sunny, 

disturbed habitats along the reserve boundaries (Table 1.6). 

Pierella luna, which has brown and black wings (Fig. 1.9), also was observed at 

Tirimbina, but at considerably lower numbers. Six individuals of P. luna were captured over 

the entire course of this project. This contrasts with Whittaker’s (1983) observations in 

Corcovado National Park on the Pacific coast of Costa Rica where he hand netted 40 P. luna 

but only four P. helvina. The difference in abundance between the two sites could have to do 

with temporal heterogeneity (Whittaker sampled in July) or climate (the Corcovado site was 

about 1 km from the ocean). 

Of the three focal species at Tirimbina, P. helvina showed the most pronounced 

vertical stratification. When traps were available at both ground-level and mid-understory, a 

proportion of the other two species entered the higher traps, but P. helvina only entered the 

ground-level traps (Alexander and DeVries 2012). This may be one reason why, when using 

ground-level traps in the interior of the reserve, P. helvina was captured almost twice as often 

as C. pireta and D. polita (Alexander and DeVries 2012; Alexander and DeVries b).  
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Figure 1.11. Vertical trap 
placement. Photos of butterfly 
traps showing placement in (a) 
the mid-understory using a trap 
hung from an overhead tree 
branch, and (b) at ground level 
using a trap strung from a free-
standing pole. 

 

 

Moreover, abundances for P. helvina were about four times higher in the MRR study using 

ground-level traps than in the community diversity study conducted at the same sites using 

higher trap placement (see section “MRR vs community diversity study”). Pierella helvina 

showed a significant behavioral difference in vertical stratification as it was least likely of the 

three species to fly and feed higher than ground level. 

Females of P. helvina flew the farthest. With an average forewing length of over 37 

mm, females of P. helvina were larger than the other butterflies, including conspecific males 

(Table 1.3). This may explain why they showed the longest one-day travel distances (Table 

1.4; Dudley 2000; Sekar 2012; Alexander and DeVries a). Some females traversed Tirimbina 

in a single day (Fig. 1.10) and it seems likely that their dispersal was confined by the non-

forest matrix surrounding the reserve. 

Males of P. helvina were evenly distributed, relatively easy to recapture, and flew in 

smaller home ranges relative to females. While females showed heterogeneity in spatial 

distribution, the males were homogeneously distributed (Alexander and DeVries b). Males 

also had the highest recapturability of the focal butterflies (Alexander and DeVries b), 
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suggesting lower dispersal rates (Hill et al. 2001; Prieto, Takegami and Rivera 2005; Tufto et 

al. 2012). Males moved shorter net distances than females, and tended to return to the 

location where they were initially captured (Alexander and DeVries a), supporting the 

hypothesis that females roamed in search of resources such as oviposition sites, and males 

moved in smaller areas. 

Pierella helvina was an abundant, visible, and easily recaptured inhabitant of 

relatively sunny areas within primary and secondary forest. Its low-to-the-ground flight 

behavior, combined with fairly even spatial distribution and high recapturability suggest that 

capture probabilities were highest when sampled near the ground. 

 

Methods 

Sampling occasions: 

I collected data in Costa Rica on three separate occasions. Pilot studies were conducted 

January-March 2009, and the main data set was collected December 2009-June 2010. 

Adjunctive persistence data was collected during ten extra days of sampling in early June 

2010, and a follow-up data set was collected February-April 2011. All data, except where 

noted, were collected at Tirimbina using the same MRR methods, but number, height and 

spatial configuration of the traps were not identical during the three collection periods (see 

Trap Placement). Secondary data collection at Pozo Azul was interspersed with collection at 

Tirimbina in January-March 2010 by alternating ten days of sampling at one site with ten 

days of sampling at the other site (Appendix C).  

 

Basic methodology: 

Butterflies were captured in cylindrical, fabric-net traps (see DeVries 1987 and DeVries and 

Walla 2001 for design) that were either hung from tree branches or from free-standing poles 
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stuck into the ground (Fig. 1.11). The traps were baited with mashed bananas that had been 

fermented in a large barrel 48 h prior to use. The bait was refreshed or replaced in each trap 

as needed, often daily, and traps were checked at 24-h intervals. Butterflies were identified, 

sexed, and uniquely marked using a non-toxic permanent marker, and released immediately 

at the trap site unless otherwise noted.  

 

Measuring wing length: 

Upon first capture, forewing length was measured to the nearest 0.01 mm using dial calipers 

(Table 1.3). Measurements were made by grasping the thorax of the butterfly between the left 

thumb and forefinger and measuring the span of the ventral surface of the left wing from 

where the wing attached to the thorax to the rounded tip of the wing at the termination of the 

upper R5 vein. Wing length measurements were made with living butterflies in the field 

under a variety of weather conditions, so some degree of variability in measurement precision 

is to be expected. Multiple wing lengths were recorded for a subset individuals, and these 

records were used to estimate variation in wing length measurements (Table 1.3). To do so, 

the standard deviation of the measurements for individual butterflies was calculated, then 

those values were averaged for each species and sex. Relative to the average lengths for each 

species and sex, intra-individual variation in measurement was small. 

 

Trap placement: 

Trap sites were established in seven areas within Tirimbina that encompassed various levels 

of disturbance and habitat types but mostly primary forest (Fig. 1.6; Appendix D). Twenty-

nine to 80 traps were baited at any one time as noted for each trial (see Brief Summaries). 

Traps were placed in all seven areas during the pilot studies conducted January-March 2009, 

but site 1 was not sampled thereafter due to low abundance of focal butterfly species. During  
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Table 1.7. Preliminary MRR analysis results. The 95% confidence set from an analysis of non-

covariate time-variation models of apparent daily survival (phi) and recapture probability (p). AICc= 

Aikake Information Criterion corrected for small sample size;  = distance from the lowest ranking 
model; Wt = relative model weight; ĉ = median estimated inflation factor. 
 

Model AICc  Wt Likelihood Parameters ĉ 

Phi(constant) p(attraction) 4508 0.00 0.722 1.000 14 1.00 

Phi(attraction) p(attraction) 4511 3.61 0.119 0.164 16 1.00 

Phi(attraction) p(constant) 4513 5.16 0.055 0.076 14 1.00 

Phi(constant) p(constant) 4513 5.19 0.054 0.075 12 0.96 
 
 
 

the ten days of adjunctive sampling in June 2010, traps were placed along a ridge overlooking 

the Tirimbina River. In February-April 2011, during post-study sampling for assessment of 

abundance heterogeneity and maximum dispersal capability, traps were placed throughout the 

reserve, along the boundaries, and in site 6 (site E). Except as described for the height trial 

during the 2009 pilot, the traps were positioned with the bases approximately 15 cm above 

the ground and are referred to as low or ground-level traps. They were arranged in groups of 

ten with adjacent traps 20 to 40 m apart, except for the 2011 post-study in which they were 

farther apart.  

 

Software choice: 

In the last 20 years a variety of computer software packages have been developed to allow 

researchers and wildlife managers to analyze MRR data. In a list last updated in mid-2011, 

the USGS Patuxent Wildlife Research Center described 39 software packages designed for 

the analysis of marked animal populations, 27 of which were specifically developed to 

estimate parameters such as survival, detectability, population size/density, and spatial 

distribution (http://www.mbr-pwrc.usgs.gov/software.html). MRR data also can be analyzed 

in the free software environment R (R Core Team 2013). The MRR software package 

recommended by Williams, Nichols and Conroy (2002) in their standard work on the analysis 

and management of animal populations is MARK (White and Burnham, 1999). MARK is 
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capable of performing analyses on many types of data involving marked animals, is 

particularly powerful when working with data stratified into classes, and uses maximum 

likelihood and the information-theoretic approach to sort models by AIC values (Cooch 2001; 

Williams, Nichols and Conroy 2002). MARK also is widely used and well-supported online 

(http://warnercnr.colostate.edu/~gwhite/mark/mark.htm and http://www.phidot.org) and in 

the literature (e.g., Anderson and Burnham 1999; Cooch 2001; White, Burnham and 

Anderson 2001), with a comprehensive software manual (Cooch and White 2008). Program 

MARK was used to analyze the MRR data in this study. 

 

Time structure analysis: 

The information-theoretic approach was used for the covariate-based analysis of the main 

data set. Prior to analysis, however, it was necessary to choose an underlying time structure, 

and to do so six non-covariate time-variation models were compared (Appendix E). All six 

models allowed the parameters for recapture and survival to vary by sex and species, but 

within each sex/species group the parameters could (1) remain constant over the ten sampling 

occasions, (2) increase or decrease with each successive 24-h time interval, or (3) differ 

between the first time interval and the remaining intervals to simulate increased trap 

attractiveness immediately after baiting, termed the attraction effect (Otis et al. 1978). Four of 

the models explained 96% of the variation in the model set, and the top three had estimated 

median ĉ values of 1.00 + 0.0001 indicating good fit of the models to the data (Table 1.7; 

Appendix F). The best ranking model, Phi(constant)p(attraction), constrained survival to be 

constant, and applied the attraction effect to recapture probability.  

In general, when using the information-theoretic approach the best model from among 

a set of models should have a minimum weight of 90% (Burnham and Anderson 2002, p. 

176). However, in the above time structure analysis, the best model explained only 72% of  
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Table 1.8. MRR pilot results. Summary of captures and recaptures for a subset of butterflies sampled 
at Tirimbina during the January-March 2009 pilot studies. Return rate is the ratio of individuals 
recaptured to individuals marked.  
 

 
Individuals marked Indivs. recaptured No. of recaptures Return rate 

 
♀ ♂ Total ♀ ♂ Total ♀ ♂ Total ♀ ♂ Total 

Cithaerias pireta 20 20 40 2 3 5 2 5 7 0.10 0.15 0.13 

Dulcedo polita 30 22 52 5 5 10 6 8 14 0.17 0.23 0.19 

Pierella helvina 27 27 54 8 6 14 14 11 25 0.30 0.22 0.26 

 
 

the variation in the data set. The difference between the best model and its nearest neighbor 

was > 2 AIC units (3.61 units), implying substantial empirical support in favor of the best 

model as the most parsimonious approximating model for the underlying time structure. 

Furthermore, manually changing the value of ĉ resulted in no changes to the rankings of the 

top models, increasing confidence in the choice of best time structure model (Cooch and 

White 2008). 

The likelihood ratio for survival also supports substantial discrimination between the 

best time structure model and its nearest neighbor. Model likelihoods are good measures of 

data-based weight of evidence about parameter values, and model likelihood (or AIC weight) 

ratios are used to estimate the relative importance of variables (Burnham and Anderson 2002, 

pp. 75 and 167). A ratio = 1 indicates no discernible difference in effect between two 

variables. In this case, since both top ranking time structure models applied the attraction 

effect to recapture probability, the question regarding discrimination between them concerned 

the relative importance of the attraction effect on survival. The likelihood ratio calculated 

using the four models in the 96% confidence set (Table 1.7) showed that a model with 

constant survival was 4.5 times more likely to better approximate the data than one in which 

survival varied according to the attraction effect. This ratio provides additional support for 

the choice of the best model as the underlying time structure for the covariate-based analysis 

of the main data set. 
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MRR analysis of the main data set: 

For specifics of the MRR analysis of the main data set, please see Chapter 4. 

 

Nomenclature: 

Two of the focal species that occur in Costa Rica have been considered as subspecies: 

Cithaerias pireta pireta and Pierella helvina incanescens (see Table 1 of Constantino 1995). 

Here the nomenclature of Lamas (2004) is employed to refer to these entities as C. pireta and 

P. helvina, but readers should be aware of nomenclature used by other authors (e.g., DeVries 

1987; Janzen and Hallwachs 2009; DeVries et al. 2012). 

 

Research Summaries 

Pilot studies: 

From 25 January through 11 March, 2009, I conducted preliminary trials to explore best 

practices regarding marking and trap placement, look for species- or sex-related differences 

that might affect capturability, and determine whether return rates would be high enough to 

make the haeterines a viable system for MRR study (Alexander and DeVries 2012). 

Marking was easy in C. pireta and D. polita due to their scale-free forewings, but 

because they are transparent I placed the unique identifier in the discal cells of the left 

forewing and left hindwing so that resighted individuals might be identified from a distance 

(Fig. 1.2). The forewings of P. helvina are lightly scaled and could be marked in the discal 

cells of both forewings. 

All three species were more likely to be captured in traps placed very near the forest 

floor than 1 m above it, and P. helvina entered only the lowest traps. I captured more females 

than males of D. polita, and D. polita females were more likely to enter low traps than  
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Figure 1.12. Sampling sites 
and trap locations. 
Sampling sites A-F 
correspond to sites 2-7 
from the pilot studies. The 
sites pictured were used 
during the main MRR study 
conducted December 2009 
through June 2010 at 
Tirimbina. Trap locations 
within each site are shown. 

 

 

conspecific males. I also found that the odds of C. pireta remaining in a trap for 24 hours 

were significantly lower than for the other two species. Altogether, I captured about twice as 

many P. helvina as the other species (see Table 3 in Alexander and DeVries 2012). Return 

rates ranged from 0.10 to 0.30 depending on species and sex (Table 1.8). 

These pilot studies showed that focal species were easy to handle and mark, exhibited 

behaviors that could differentially affect their capturability depending on trap placement, 

species and sex, and were sufficiently abundant within the study area to use the MRR 

method. 

 

Main study: 

To measure relative abundance, examine spatial and temporal distribution, estimate 

probabilities of recapture and daily survival (Alexander and DeVries b), and explore 

movement patterns (Alexander and DeVries a), I used the MRR method to sample individual 

butterflies from December 2009 through June 2010 using 60 traps deployed within six 

sampling sites (Fig. 1.12). The traps were checked for ten consecutive days (sampling  
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Figure 1.13. Trap locations along the 
Ajillo Ridge. Utilized during ten days of 
adjunctive sampling in early June 2010 
at Tirimbina. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

occasions) per month in seven consecutive months (sampling periods) as described in 

Methods. 

As in the pilot study sample sizes for P. helvina were about twice those of the other 

species. Dulcedo polita and female P. helvina were heterogeneously distributed among 

sampling sites, while C. pireta and male P. helvina showed spatial homogeneity. All 

butterflies exhibited attraction effect (Otis et al. 1978), with sample sizes highest in the first 

few days of sampling each month. All butterflies showed estimated recapture probabilities > 

0.10 although recaptures were higher in certain regions of the forest and for male P. helvina. 

Daily survival did not vary markedly among species and averaged 0.815 (± 0.024) per day. 

While average movement distances did not differ among species, there were significant 

differences between the sexes, with females dispersing from where they were originally 

marked and males moving within narrower home ranges. 
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Table 1.9. Adjunctive sampling results. Summary of individual butterflies marked along the Ajillo 
Ridge during ten adjunctive days of sampling between the May and June 2010 main sampling 
periods. 

 
♀ ♂ Total 

Cithaerias pireta 6 20 26 

Dulcedo polita 2 3 5 

Pierella helvina 11 25 36 
 
    

 

Adjunctive study: 

During ten adjunctive days of sampling in early June 2010 between the main May and June 

sampling periods, I deployed 29 traps along the Ajillo Ridge overlooking the Pozo Azul river 

(Fig. 1.13). The goals were to determine what proportions of species would be found in that 

region of the reserve, whether there would be movement between Ajillo Ridge and other 

sampling sites, and to collect additional persistence data. Captures observed during this 

period were not included in MRR analysis. 

I captured very few D. polita at this site (Table 1.9). The low abundance of this 

species was no surprise considering the habitat was reminiscent of site 4 (site C) where we 

sampled fewer D. polita than expected (Alexander and DeVries b). There was virtually no 

movement between this site and the other sampling sites. Only one butterfly that had been 

previously marked in a different sampling site was recaptured on the Ajillo Ridge: a male C. 

pireta captured by net on 23 May in site 7 (site F). No butterflies marked on the Ajillo Ridge 

during this adjunctive sampling period were recaptured elsewhere in the reserve during the 

final June sampling period. 

Because traps were checked twice daily, some movement among traps was detected in 

the adjunctive persistence trial that was not detected in the 2009 pilot trial. Of the 42 

individuals included in the adjunctive persistence trial (Table 1.10), 15 persisted (i.e., were in 

the traps 24 hours later), including a single male P. helvina that was marked in the morning, 

was not present in the trap that afternoon, but returned to the same trap the next morning. Of 

the 27 individuals that did not persist, 11 were resighted outside of the trap or recaptured in a  
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Table 1.10. Results of the adjunctive persistence trial. Uses a subset (n=42) of butterflies marked on 
the Ajillo Ridge between the main May and June 2010 sampling periods. Persisted = alive and in the 
trap after 24 hrs. Died = found dead. Escaped = seen alive outside of the trap on some future 
occasion. Unknown = not in trap, unknown if alive or dead. 
 

 
Individuals Persisted Died Escaped Unknown 

 
♀ ♂ Total ♀ ♂ Total ♀ ♂ Total ♀ ♂ Total ♀ ♂ Total 

Cithaerias pireta 4 7 11 1 2 3 0 1 1 1 2 3 2 2 4 

Dulcedo polita 2 3 5 1 0 1 1 1 2 0 1 1 0 1 1 

Pierella helvina 7 19 26 4 7 11 0 3 3 2 5 7 1 4 5 
 

 
Table 1.11. Pooled results of both persistence trials. The first trial (n=90) conducted in January 2009 
in sampling sites 1-6, and the second (n=42) conducted in June 2010 on the Ajillo Ridge. Persisted = 
alive and in the trap after 24 hrs. Results of independent binomial tests to determine whether the 
ratio of persisted to not persisted = 50/50 are presented as two-tailed p-values with significant 
results marked by asterisks. 

 
Pooled individuals Persisted P-value 

 

♀ ♂ Total ♀ ♂ Total ♀ ♂ 

Cithaerias pireta 13 28 41 2 7 9 0.023* 0.013* 

Dulcedo polita 20 15 35 8 6 14 0.50 0.61 

Pierella helvina 21 35 56 11 13 24 1.00 0.18 
 

 

different trap, indicating that at least 40% of the non-persisting individuals were escapees 

rather than victims of mortality factors. Individual binomial tests conducted using the 

combined data sets from the 2009 and 2010 persistence trials supported the results from 2009 

data alone: about 50% of D. polita and P. helvina remained in the traps for at least 24 hours 

while significantly fewer than 50% of C. pireta remained (Table 1.11).  

This study showed that the three species were not found in all locations in constant 

proportions, individual butterflies may not have moved among all portions of the reserve, 

individual butterflies escaped from (and returned to) traps, and individuals of C. pireta were 

less likely to remain in traps for 24 hours than the other species. 

 

Post-study: 

To measure maximum dispersal capability of the focal species and explore heterogeneity in 

abundance between years, I used the MRR method to sample individual butterflies from 

February through March 2011 using 47 traps deployed throughout the reserve. Ten of the  
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Figure 1.14. Wide spatial trap placement 
in 2011. Trap locations along the outer 
Tirimbina boundaries and within site 6 
(site E; marked by a polygon), used from 
February-April 2011. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

traps were deployed in sampling site 6 (site E) at the same GPS coordinates as in 2010 so that 

butterfly abundances at that site could be compared between 2010 and 2011 for those three 

months. The remaining traps were spread as evenly as possible around the outer boundary of 

the reserve and in the reserve interior with the goal of measuring the longest possible straight-

line distances travelled by individual butterflies (Fig. 1.14). 

Return rates were low (Table 1.6), probably due to the wide-spread placement of 

traps. The focus was to detect long-range movements, so traps were positioned to cover the 

perimeter of the reserve and key interior points. Excluding the traps in site 6, the average 

distance between adjacent traps was about 186 m, too far apart to observe most daily 

movements. The distance between traps probably also helps explain why return rates were 

highest for P. helvina, which by virtue of its longer wingspan might be expected to fly farther 

(c.f., Dudley 2000; Sekar 2012) and, thus, be recaptured more often in widely spaced traps. 

The longest single-day movements observed during the post-study were two P. helvina, both 

captured > 1 km from their starting points (Fig. 1.10). Large movements were not detected in 

the other two species in any phase of this research (Table 1.4). 
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Table 1.12. Comparison of abundances between years. Abundances observed in 2010 and 2011 (a) 
in the MRR study during the months February-April in site 6 (site E) only, (b) in the community 
diversity study for the entire year and all sampling sites, and (c) also for the entire year in the 
community diversity study but only for site 6 (site E). 
 

(a) MRR post-study, Feb-Apr, site 6 
  

 
2010 2011 2011/2010 

Cithaerias pireta 26 4 0.15 

Dulcedo polita 73 10 0.14 

Pierella helvina 93 28 0.30 

    (b) Community diversity study, Jan-Dec, all areas 
 

 
2010 2011 2011/2010 

total species, abundance 1709 1665 0.97 

total species, species richness 84 82 0.98 

Cithaerias pireta 128 65 0.51 

Dulcedo polita 125 84 0.67 

Pierella helvina 44 27 0.61 

    (c) Community diversity study, Jan-Dec, site 6 
 

 
2010 2011 2011/2010 

total species, abundance 441 359 0.81 

total species, species richness 60 53 0.88 

Cithaerias pireta 28 9 0.32 

Dulcedo polita 73 40 0.55 

Pierella helvina 13 6 0.46 
 

 

Ecological differences between the habitats in the post-study and those in the prior 

trials might have influenced relative abundances. In the post-study, a larger proportion of the 

sample than expected was represented by P. helvina: 76% (274 individuals) compared to 

49% (139 individuals) in the pilot study and 48% (547 individuals) in the main study 

(Alexander and DeVries 2012; Alexander and DeVries b). For the pilot and main studies, 

traps were placed in sites that reflected ecological variability, but all were in the interior of 

the reserve except site 1. In the post-study, traps deployed along the outer boundaries of the 

reserve were often placed in habitats sunnier than the interior, with more successional plants 

such as Passiflora sp. (Passifloraceae) and Heliocarpus sp. (Malvaceae). Since host plants of 

P. helvina are in plant families that tend to occur in successional conditions (Kricher 1997;  
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Figure 1.15. Secondary sampling 
sites. GoogleEarth image (imagery 
dates 2003-2007) showing trap 
locations within secondary sites 8 and 
9 at Pozo Azul. 
 

 

Zuchowski 2007), it is not surprising this species was more abundant in the post-study traps 

relative to the other two haeterines. 

Butterfly abundance observed in sampling site 6 during the post study was less than a 

quarter of the abundance observed in 2010 during the same three months (Table 1.12a). To 

place this into context, consider that the results from the ongoing community diversity study 

at Tirimbina (e.g., DeVries et al. 2012) showed that total sampled richness and abundance 

were similar in 2010 and 2011. However, abundances of the three focal species averaged 1.7 

times lower in 2011 than in 2010 (Table 1.12b), an effect more pronounced in site 6 (Table 

1.12c). These differences support findings of temporal heterogeneity in tropical butterflies 

(DeVries 1987; DeVries and Walla 2001; Bonebrake et al. 2010; Grotan et al. 2012) and 

indicate that individual species can exhibit fluctuations that are not necessarily reflected in all 

species of the same feeding guild, especially if combined with subtle environmental changes 

in forest microhabitats. 
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Table 1.13. Secondary MRR results. Captures for butterflies sampled at Pozo Azul from January 
through March 2010. Return rate is the ratio of individuals recaptured to individuals marked. 
 

 
Individuals marked Indivs. recaptured No. of recaptures Return rate 

 
♀ ♂ Total ♀ ♂ Total ♀ ♂ Total ♀ ♂ Total 

Cithaerias pireta 38 53 91 14 20 34 25 44 69 0.37 0.38 0.37 

Dulcedo polita 10 11 21 6 3 9 14 4 18 0.60 0.27 0.43 

Pierella helvina 36 41 77 14 19 33 31 40 71 0.39 0.46 0.43 
 

 

Table 1.14. Return rate comparison between sampling areas. Return rates and proportions observed 
at Tirimbina (December 2009-June 2010, 10 traps per site, six sites) and at Pozo Azul (Jan 2010, 10 
traps, one site, plus February-March 2010, 20 traps per site, two sites). 
 

 
Return rates Relative proportions of each species 

 
Tirimbina Pozo Azul Tirimbina Pozo Azul 

Cithaerias pireta 0.34 0.37 0.24 0.48 

Dulcedo polita 0.40 0.43 0.28 0.11 

Pierella helvina 0.51 0.43 0.48 0.41 

 
 
Table 1.15. Abundance comparison between sampling areas. Individuals per trap marked in 
February and March 2010 at Tirimbina and Pozo Azul, Costa Rica. 
 

 
Tirimbina Pozo Azul Relative proportion 

(Tirimbina/Pozo Azul) 

 
♀ ♂ Total ♀ ♂ Total 

Cithaerias pireta 1.10 1.22 2.32 1.75 2.20 3.95 0.59 

Dulcedo polita 1.65 1.20 2.85 0.40 0.50 0.90 3.17 

Pierella helvina 2.42 2.32 4.73 1.30 1.95 3.25 1.46 

 
 

Secondary sampling sites: 

To compare return rates and relative abundances of focal species between forest patches of 

different sizes, in January-March 2010 I established two secondary sampling sites at Pozo 

Azul, which is structurally similar to Tirimbina but about half the size. Sampling at Pozo 

Azul began in January 2010 with ten traps deployed within a single sampling site (site 8) with 

guidelines as those in the main study. In February and March 2010, I added a second 

sampling site (site 9; Fig. 1.15). 

I captured 189 individuals of the three species at Pozo Azul (Table 1.13). In spite of 

lower sampling effort at Pozo Azul, return rates were similar to those observed at Tirimbina 
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(Table 1.14). However, the relative proportions at which the species were captured differed, 

with observations at Pozo Azul almost equal between C. pireta and P. helvina (Table 1.14). 

Dulcedo polita was captured three times less often per trap at Pozo Azul than at Tirimbina 

(Table 1.15). This could be due to random chance given D. polita’s spatial heterogeneity, but 

it also could indicate greater edge effects due to smaller patch size and proximity to roads and 

housing. Cithaerias pireta and P. helvina have both been observed more often in light gaps 

(DeVries 1987), and P. helvina in particular uses successional plants as larval food sources 

(DeVries 1997; Kricher 1997; Zuchowski 2007; Janzen and Hallwachs 2009), so it seems 

reasonable to expect them to be more abundant in habitats exhibiting edge effects. However, 

to assess the effects of patch size on abundances, one would need to quantify differences 

among the reserves and surrounding landscapes and assess factors that might confound 

detection of species responses to habitat fragmentation (Turner 1989; Ewers and Didham 

2006).  

 

Comparison of MRR and removal studies: 

A comparison of abundances from the MRR study and an ongoing community diversity study 

at the same location (e.g., DeVries et al. 2012) supports the hypothesis that while all three 

species fly and feed at ground level, vertical stratification is most pronounced in P. helvina. 

In the MRR study, traps were positioned at ground-level, but in the community 

diversity study, traps were positioned in the mid-understory with the bases approximately 1 m 

above the ground. The MRR study was conducted December-June 2009/2010. From the 

community diversity study we used trap abundances observed during the five years from 

2003/2004 through 2007/2008, and pooled the pertinent seven months over the five years. In 

other words, total abundance for December is the sum of December 2003, December 2004 …  
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Figure 1.16. Abundance comparison between two studies. Butterfly abundances observed in the 
community diversity study (black bars) and MRR study (white bars), both as raw data 
(unstandardized) and standardized for sampling effort. 
 

December 2007, etc. Data were only included from the five sampling sites shared between 

the two studies: sites 2-6 (sites A-E). 

Sampling effort was not identical for the two studies, although the difference in effort 

was not as large as it might seem at first glance. The MRR study was conducted within a 

single year for ten consecutive days per month using ten traps per site, while the five-year 

portion of the community diversity study included here was conducted for five consecutive 

days per month using five traps per site in the understory. The sampling effort in the 

community diversity study was only 1.25 times that of the MRR study. 

Abundances observed during the community diversity study were a bit higher than 

from the MRR study for C. pireta and D. polita (Fig. 1.16). Independent t-tests showed that 

differences in abundance between the two studies were not significant (C. pireta: t=0.593, 

df=12, p=0.564; D. polita: t=0.430, df=12, p=0.675), and differences vanished when results 

were standardized for sampling effort. However, we captured significantly more P. helvina in 

the MRR study whether considering standardized (t=3.295, df=12, p=0.0064) or 

unstandardized (t=3.05, df=12, p=0.0101) abundances (Fig. 1.16). 

These findings suggest that C. pireta and D. polita were more likely to fly into mid-

understory traps than P. helvina. While all three species were trapped more often close to the 

ground, about a quarter of individuals for C. pireta and D. polita entered higher traps when  
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Figure 1.17. Abundance comparison among 
years. Mean butterfly abundances (±SE) 
observed in the community diversity study 
during the months December through June 
for five consecutive years (2003/2004-
2007/2008) and the year 2009/2010, with 
results of one-way ANOVAs included. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

traps were available at both heights (Alexander and DeVries 2012). But zero individuals of P. 

helvina entered higher traps when ground-level traps were also present (Alexander and 

DeVries 2012). Thus, a likely explanation for the increased sampling of P. helvina in the 

MRR study appears to be vertical stratification. 

Two other potential explanations for higher abundance in the community diversity 

study compared to the MRR study for P. helvina were unsupported by the evidence. First, we  
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Figure 1.18. Abundance comparison between 
early and late sampling occasions. Mean 
butterfly abundance (±SE) observed in the MRR 
study, stratified by sampling occasion (days 1-5 
versus days 6-10), with results of unpaired t-tests 
included. 

 

 

thought butterfly abundance might have been higher in the year 2009/2010 compared to the 

five years used for comparison. To test this, we used a one-way ANOVA for each species to 

compare mean butterfly abundance from the community diversity study for the year 

2009/2010 to mean abundances for each of the five comparison years, but found no 

significant difference (Fig. 1.17). This suggests that higher P. helvina abundances observed in 

the MRR study cannot be attributed to heterogeneity among years. 

Second, we wondered if the five extra sampling days in the MRR protocol contributed 

more than expected to overall abundance. This was tested using an independent t-test for each  
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Table 1.16. Summary of non-focal Satyrinae butterflies. Non-haeterine butterflies arked and 
recaptured at (a) Tirimbina in 2010, (b) Pozo Azul in 2010, and (c) Tirimbina in 2011. Because some 
Caligo sp. butterflies were incorrectly sexed, only total numbers are shown for those butterflies in 
2010. *Antirrhea miltiades was marked beginning in February 2010, not January. 
 

(a) Tirimbina, Jan-Jun 2010, 60 traps 
      

 
Indivs. marked Indivs. recaptured Indivs. marked per 

trap per month 
Return 

rate 
 

♀ ♂ Total ♀ ♂ Total 

Antirrhea miltiades* 89 82 171 43 45 88 0.57 0.51 

Caligo atreus - - 94 - - 43 0.26 0.46 

Caligo eurilochus - - 87 - - 50 0.24 0.57 

Caligo illioneus - - 23 - - 11 0.06 0.48 

Pierella luna 1 4 5 1 2 3 0.01 0.60 

         (b) Pozo Azul, Feb-Mar 2010, 20 traps 
      

 
Indivs. marked Indivs. recaptured Indivs. marked per 

trap per month 
Return 

rate 
 

♀ ♂ Total ♀ ♂ Total 

Antirrhea miltiades 8 6 14 2 2 4 0.35 0.29 

Caligo atreus - - 18 - - 9 0.45 0.50 

Caligo eurilochus - - 15 - - 8 0.38 0.53 

Caligo illioneus - - 1 - - 0 0.03 0.00 

Pierella luna 0 1 1 0 1 1 0.03 1.00 

         (c) Tirimbina, Feb-Apr 2011, 47 traps 
      

 
Indivs. marked Indivs. recaptured Indivs. marked per 

trap per month 
Return 

rate 
 

♀ ♂ Total ♀ ♂ Total 

Antirrhea miltiades 33 50 83 6 11 17 0.59 0.20 

Caligo atreus 33 22 55 9 5 14 0.39 0.25 

Caligo eurilochus 20 22 42 4 6 10 0.30 0.24 

Caligo illioneus 0 0 0 0 0 0 na na 

Pierella luna 0 0 0 0 0 0 na na 

Morpho granadensis 7 8 15 2 3 5 0.11 0.33 

Taygetis andromeda 2 13 15 2 5 7 0.11 0.47 

 

 

species to compare mean abundance per month observed in the first five sampling days to the 

second five sampling days, and again found no significant difference (Fig. 1.18). Apparently, 

higher P. helvina abundance observed in the MRR study was not due to the five additional 

sampling days. 

With both large- and small-scale temporal heterogeneity excluded, the abundances 

observed in these two studies supported the hypothesis that P. helvina shows a significant  
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Figure 1.19. Antirrhea miltiades (Nymphalidae, Satyrinae, Morphini) abundance. Total abundance of 
the butterfly A. miltiades from the five-year community diversity study (black bars; years 2003/2004 
- 2007/2008), and from the 2010 MRR study (white bars), both as raw data (unstandardized) and 
standardized for sampling effort. 
 
 

behavioral difference in vertical stratification compared to the other haeterines. Pierella 

helvina was the least likely of the three species to fly and feed higher than ground level. 

 

Non-focal species: 

Although three Haeterini species were the focus of this research, other satyrine species were 

captured in the traps. Beginning in January 2010 I marked the most conspicuous of these 

thinking they might be appropriate future study subjects. As mentioned elsewhere (see the 

section on Pierella helvina), a fourth member of the tribe Haeterini – Pierella luna – was 

captured rarely. Nevertheless, it was marked along with three species of the Brassolini genus 

Caligo, and a single species from the tribe Morphini, Antirrhea miltiades (Table 1.16). In 

2011, I also marked another morphine, Morpho granadensis, plus a member of the tribe 

Euptychiini, Taygetis andromeda. 

Of the marked non-haeterines, A. miltiades appeared to spend the most time flying 

and feeding near the ground. I captured approximately twice as many individuals in ground-

level traps during the MRR study compared to mid-understory traps in the community 

diversity study (Fig. 1.19). In spite of this apparent difference, an unpaired t-test did not find  
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Figure 1.20. Antirrhea miltiades movement distances. Distributions of travel distances observed 
females (n = 43) and males (n = 45) of the butterfly species A. miltiades in February-June 2010 at 
Tirimbina. 

 

a statistically significant difference in abundance between the two studies, whether 

considering raw abundances (t=1.64, df=8, p=0.141) or abundances standardized for 

sampling effort (t=2.00, df=8, p=0.0804). This suggests that even if A. miltiades spends a 

large proportion of its time at ground-level, it can be captured as readily in the mid-

understory. 

Legibly marking the darker colored and more thickly scaled non-haeterines was more 

challenging than marking the transparent or thinly-scaled haeterines, but non-haeterines were 

easier to handle due to their larger sizes (Table 1.3). Return rates were high (Table 1.16) 

suggesting these species would be appropriate subjects for using MRR methods if sampled 

long enough to achieve adequate sample sizes. 

One question that would be interesting to explore is whether the non-focal species 

show the same sex-based movement patterns as the haeterines. The histograms of distances 

moved by male and female A. miltiades, for example, show that males seemed to move more 

intermediate distances than conspecific females (Fig. 1.20). This suggests that, unlike 

haeterines, male A. miltiades might be the dispersing sex.  
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Figure 1.21. Spatial distributions of fruit-feeding Nymphalidae butterflies. Includes 27 species with 
total abundance ≥ 60 after being sampled monthly by trap for five years (Nov 2003 - Oct 2008). 

Results of 2 tests for homogeneous distribution are shown. P-values are two-tailed. ns = not 
significant. 15 species shown here; figure continued on next page. 
 

Spatial distribution of Nymphalidae butterflies at Tirimbina: 

During the five year period from November 2003 through October 2008, butterflies were 

sampled in fruit-baited traps in an ongoing community diversity study at Tirimbina (e.g., 

DeVries et al. 2012). Traps were positioned in the mid-understory in sites 1-6 with five traps 

per site and checked daily for five consecutive days each month. As described elsewhere (see 

Appendix D), even though most of the sites were primary forest (Isidro Chacón personal 

communication), they varied in anthropogenic disturbance, plant composition, hydrology and 

topography. This variation may have affected average butterfly abundance and species 

abundances among sites. To explore this, we pooled abundances for all five years within each  



45 
 

Figure 1.21 – cont.- 

 

species and partitioned them by sampling site (Appendix G). Of the 100 species sampled 

(n=6984), 27 species (n=5885) had total abundance ≥ 60, an average of ten individuals per 

site. To avoid effects of small sample size, we used the 27 most abundant species to conduct 

three analyses: 

First, to test the hypothesis that average abundances did not differ among sampling 

sites, we conducted a one-way ANOVA. Based on the results (F5,156=0.8912, p=0.4886, R
2
 = 

0.02777) we accepted the null hypothesis and concluded that average abundance did not vary 

by sampling site. 

Second, to test the hypothesis that species abundances were distributed 

homogeneously among sampling sites, we conducted a chi-square test. Based on the results 

(
2
=1446, df=130, p<0.0001), we rejected the null hypothesis and concluded that species 

abundances were heterogeneously distributed among the six sampling sites. 
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Figure 1.22. Abundance per sampling 
site for Cithaerias pireta. From (a) the 
community diversity study conducted 
November 2003 through October 2008 
in sites 1-6, and (b) the MRR study 
conducted December 2009 through 
June 2010 in sites 2-7. Includes results 

of 2 tests comparing observed and 
expected abundances. 

 

Due to the significant result of the chi-square test, we wanted to determine which of 

the 27 species were heterogeneously distributed among sampling sites. To do so, we 

conducted independent chi-square tests for each species to compare observed versus expected 

abundances per site, with expected abundance being the average abundance per site for each 

species. We found that 22 (81.5%) of 27 species were heterogeneously distributed among 

sampling sites (see Fig. 1.21 for stats). 

It is interesting to note that C. pireta (=menander) was among the heterogeneously 

distributed species in the community diversity study, but in the MRR study conducted 

December 2009 through June 2010, it was homogeneously distributed (Fig. 1.22; Alexander 

and DeVries b). During the MRR pilot studies conducted in early 2009, all focal haeterines 

were seldom captured at site 1, an old cacao plantation. Thus, for the main MRR study, site 1 

was replaced with a more interior site (site 7; Fig. 1.12). Replacement of site 1 with site 7 

resulted in a change in the perception of spatial distribution for C. pireta from heterogeneous 

to homogeneous.  

It is well known that tropical ecosystems, especially rainforests, are heterogeneous in 

space and time (Connell 1978; Gentry 1990; DeVries, Walla and Greeney 1999). The 

findings above reinforce that even when sampled butterfly abundance is homogeneously 

distributed among sampling sites, species abundances can vary by habitat in small spatial 

scales. 
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Conclusion 

This dissertation explored the population biology of three butterfly species in Costa Rican 

forest. The Haeterini are a group of fruit-feeding understory butterflies that share pattern of 

seasonal abundance, and heterogeneity in spatial distribution as do other tropical 

Nymphalidae. They differ from other members of the subfamily Satyrinae in larval food 

resources, flight behavior, appearance, and vertical stratification. Among the three focal 

species there were differences in capturability, recapturability, spatial distribution, and degree 

of vertical stratification. Males appeared to fly within smaller home ranges than females. 

Nevertheless, the ability of P. helvina to traverse the entire reserve in a single day suggests 

that the 3.4 sq km reserve was not large enough to allow full expression of their dispersal 

capability. This has implications for the genetic diversity of these populations and risk of 

local extinction in the face of changing ecological conditions. Directions for future research 

should include mating and reproduction, territoriality and home range size, and landscape-

level assessment of patch size on abundances of these unique butterflies. As tropical forests 

continue to show the effects of anthropogenic pressure and climate change, studies on 

tropical insects such as butterflies can improve our ecological understanding of diverse forest 

habitats and our ability to conserve and manage them. 
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Chapter 2: Variation in Capture Height and Trap Persistence Among Three Costa 

Rican Understorey Butterfly Species 

 

Abstract 

Tropical forest insects are vertically stratified between the canopy and understorey. Using 60 

traps set at two heights above the forest floor (30 at 15 cm and 30 at 1 m) we compared 

abundances in capture height, persistence in traps, and sex of three co-occurring understorey 

butterflies (Cithaerias pireta, Dulcedo polita, and Pierella helvina) in Costa Rica. We 

captured, marked and released 283 individual butterflies (65 C. pireta, 79 D. polita, 139 P. 

helvina) and showed all three species were captured more often in low traps, and P. helvina 

was captured only in low traps. The probability of remaining in traps for 24 h did not differ 

significantly for D. polita and P. helvina, but was significantly lower for C. pireta. The odds 

of trapping either sex did not differ significantly for P. helvina and C. pireta, but they were 

significantly lower for D. polita males. We experimentally demonstrate that these co-

occurring species fly and feed just above the forest floor, but differ with respect to their 

persistence in traps and attraction to traps by sex. Our study implies that closely related 

species can exhibit behavioural differences that may influence population abundance 

estimates in multi-species studies.  

Keywords: abundance, Cithaerias pireta, Dulcedo polita, Haeterini, mark-recapture, 

Nymphalidae, Pierella helvina, population biology, tropical rain forest. 

 

Introduction 

Insects have been central to developing a framework for understanding tropical 

diversification (Grimaldi and Engel 2005, Wilson 1992), and studies on butterflies have been 

particularly important to illuminating the population biology and evolutionary ecology of 
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tropical insects (Boggs et al. 2003; Bonebrake et al. 2010; Brown and Freitas 2000; DeVries 

1987; DeVries et al. 2008, 2010; Fordyce 2010; Vane-Wright and Ackery 1989; Wahlberg et 

al. 2009). Trap studies of tropical fruit-feeding nymphalid butterflies have demonstrated 

spatial and temporal variation in species diversity, and vertical stratification between the 

forest canopy and understorey (DeVries and Walla 2001, DeVries et al. 2012, Dumbrell and 

Hill 2005, Fermon et al. 2005, Grotan et al. 2012, Hamer et al. 2003). While the importance 

of sampling both canopy and understorey partitions in tropical fruit-feeding nymphalid 

communities is now established, little is known about whether some understorey species are 

more abundant close to the forest floor, or if there are differential behavioural responses to 

traps among species.  

Butterflies in the Neotropical tribe Haeterini (Nymphalidae, Satyrinae) occur in forest 

habitats in Central and South America with the greatest diversity in the Amazon. All 

Haeterini fly low to the ground, are easily sampled with fruit-baited traps, and may live over 

1 mo in the wild as adults (DeVries 1987; and unpublished data). Of the five species of Costa 

Rican Haeterini, three (Cithaerias pireta Cramer, Dulcedo polita Hewitson, Pierella helvina 

Hewitson) are abundant throughout the year in the Sarapiquí River Basin (DeVries et al. 

2012). By taking advantage of their local abundance, this study experimentally tested three 

hypotheses relevant to the behaviour of these three species. Based on field observations, 

previous long-term studies, and their close phylogenetic relationships, we predicted that these 

species would: (1) be trapped more frequently near the forest floor than 1 m above it, (2) not 

differ in the duration individuals stayed in traps (trap persistence), and (3) would exhibit 

differences in sex-associated sampling bias. 
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Study Area 

This investigation was conducted from 25 January to 11 March 2009 at the Tirimbina 

Biological Reserve, Heredia Province, Costa Rica. The reserve encompasses an altitudinal 

range of 180–220 m within c. 345 ha of lowland rain forest in the Rio Sarapiquí river basin 

(10°29’50.3”S; 76°22’28.9”W). The study site is located within c. 150 ha with some natural 

and anthropogenic disturbance, but is effectively 85% primary forest. Rainfall records from 

the nearby La Selva Biological Station indicate this region receives an average of 3.7–4.2 m 

y-1 precipitation.  

 

Methods 

Individuals of C. pireta, D. polita and P. helvina were captured with traps (see DeVries 1987 

and DeVries & Walla 2001 for design) baited with mashed bananas that had been fermented 

in a large barrel 48 h prior to use, and the bait was refreshed or replaced in each trap as 

needed. Individual trap sites were established in the understorey of seven areas (see Fig. 1.6) 

that encompassed four levels of disturbance: 1 = old cocoa plantation, most disturbed; 2 = 

secondary forest with some disturbance; 3-6 = intact forest, least disturbed; and 7 = 

selectively logged over 40 y ago. All traps were checked at 24-h intervals, and butterflies 

were identified, sexed, uniquely marked using a non-toxic permanent marker, and released at 

the trap site. 

To test for potential differences in vertical distribution we compared individual 

abundances of species in areas 1-6 with 60 traps set at two heights: 15 cm and 1 m above the 

ground. Each area contained ten traps with five of each height interspersed. All traps were 

checked daily from 10 February to 1 March 2009. Only initial captures were included in the 

test for differential vertical distribution.  
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Table 2.1. Vertical distribution of three Costa Rican butterfly species in low and high understorey 
traps. Species abundances among trap heights were assessed with binomial tests. Adundances 
between sexes among trap heights were assessed using a Fisher’s exact test, with odds ratios 
calculated for captures in low traps. 

  Marked 
Captured in 

low traps P-value 
Odds of capture 

in low traps 

Cithaerias pireta 30 22 0.0161 2.75 

Dulcedo polita 32 25 0.0021 3.57 

Pierella helvina 89 89   < 0.0001 19.0 

 

C. pireta female 10 5 0.0778 1.00 

C. pireta male 20 17  5.67 

 

D. polita female 21 19 0.0318 9.50 

D. polita male 11 6  1.20 

 

P. helvina female 33 33 1.00 19.0 

P. helvina male 56 56   19.0 
 
 
 

Trap persistence was defined as the continued presence of an individual in a trap 24 h 

after its presence was initially recorded. To evaluate potential differences among species to 

persist in traps we used the same 60 traps in areas 1-6, plus 20 traps in area 7. Here, trapped 

individuals were marked, returned to the trap, and the following day the presence or absence 

of marked individuals was noted. Any marked individuals still present in the traps were 

released. We continued sampling until trap persistence was determined for 30 individuals of 

each species, and because P. helvina was more abundant than the other species we assessed 

30 individuals of each sex separately.  

We used binomial tests to assess the null hypothesis that sample abundances were 

equal with respect to vertical trap height, trap persistence, species, and sex. Relative 

differences among species were analysed using an odds ratio test with degrees of freedom = 1 

(Sokal and Rohlf 1995) and are reported in the text with a chi-square value. We used a 

Fisher’s exact test to assess if trap persistence was affected by sex or vertical placement. 

Two-tailed P-values are reported for both binomial and Fisher’s exact tests.  
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Table 2.2. Number of individuals remaining in traps 24 h after marking was used to evaluate the 
effects of species, trap height, and sex on trap persistence in three Costa Rican butterfly species. 
Species persistence was analyzed with a binomial test. A Fisher’s exact test was used to analyze 
persistence of species among traps heights, and between sexes for P. helvina. 

  Marked Persisted P-value 
Odds of 

persisting 
Proportion 
persisted 

Cithaerias pireta 30 4 < 0.0001 0.15 0.13 

Dulcedo polita 30 13 0.585 0.76 0.43 

Pierella helvina 30 11 0.201 0.58 0.37 

 

All species, high traps 16 7 0.385 0.78 0.44 

All species, low traps 74 23  0.45 0.31 

 

P. helvina female 30 14 0.180 0.88 0.47 

P. helvina male 30 8   0.36 0.27 
 

 

Results 

We captured, marked and released a total of 283 individual butterflies, of which 151 were 

included in the height trial, and 120 in the persistence trial. All three species had significantly 

greater abundances in the low traps (Table 2.1). Because the odds of capture in low traps did 

not differ significantly between C. pireta and D. polita (χ
2
 = 0.19, P > 0.05), we pooled them 

and found that they were more likely to be captured in the low traps. All P. helvina 

individuals were captured in the low traps. There was no significant difference between the 

sexes in capture in low traps for P. helvina and C. pireta, but there was a greater likelihood 

for female D. polita to be captured in low traps (Table 2.1). 

The number of individuals persisting in traps for 24 h was three times higher for D. 

polita and P. helvina than for C. pireta (Table 2.2). Because the odds of persisting did not 

differ between D. polita and P. helvina (χ
2
 = 0.27, P > 0.05), we pooled them and found that 

persistence did not differ significantly from 0.5 for those two species. Only C. pireta 

exhibited a probability of persistence in the traps significantly less than 0.5. Trap height had 

no effect on persistence and there was no difference in persistence between sexes of P. 

helvina (Table 2.2).  
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Table 2.3. Abundance differences between sexes for three Costa Rican butterflies in low and high 
understorey traps. Abundance differences were assessed using a binomial test, with odds ratios 
calculated for capture probabilities of males. 

  Female Male Total 
Binomial test 

P-value 
Male capture 

odds 
Male 

proportion 

Cithaerias pireta 28 37 65 0.3211 1.32 0.57 

Dulcedo polita 49 30 79 0.0422 0.61 0.38 

Pierella helvina 60 79 139 0.1265 1.32 0.57 
 
 

Only D. polita exhibited differential attraction to traps with respect to sex (Table 2.3). 

The odds of capturing males did not differ for P. helvina and C. pireta, and when pooled 

there was no difference in attraction to traps between sexes. The odds of capturing males was 

significantly lower for D. polita compared to the other two (χ
2
 = 7.91, P < 0.01). 

 

Discussion 

Although previous studies of tropical fruit-feeding butterflies have been sampled at heights 

ranging from 0.5 to 40 m (Barlow et al. 2007; DeVries et al. 2012; Molleman et al. 2006; 

Tangah et al. 2004), no study has sampled simultaneously at two levels within the lower 

forest understorey. By comparing the abundances of three closely related butterflies at two 

understorey levels, this investigation showed that all were trapped near the ground more often 

than 1 m above it. Members of Haeterini are well-known to fly close to the forest floor 

(DeVries 1987; DeVries and Walla 2001; DeVries et al. 2012), but here we found that even 

within the tribe there were differences in capture height. This strongly suggests that 

seemingly small vertical differences in trap placement can affect species abundance estimates 

of these butterflies.  

Since many other species of fruit-feeding nymphalid also visit rotting fruits on the 

forest floor (DeVries 1987; personal observation) feeding at ground level is not restricted to 

the Haeterini. For example, during this study we caught Morpho granadensis Felder 

(Satyrinae, Morphini) and Caligo atreus Kollar (Satyrinae, Brassolini) in the lowest traps, but 
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unlike members of Haeterini, these and many other nymphalid species generally fly and 

perch several metres above the forest floor (DeVries 1987). 

All available evidence indicates that members of Haeterini inhabit a unique vertical 

position within Neotropical forests (i.e. the forest floor). In concert with other work on insect 

stratification (Brühl, Gunsalam and Linsenmair 1998; Charles and Basset 2005; DeVries et 

al. 2012) the findings here imply the potential for other, undocumented vertical strata 

between the forest canopy and understorey. Given the ease of sampling them with traps, we 

suggest that fruit-feeding nymphalid communities may be useful for exploring species 

stratification at multiple vertical levels, and help gain a better understanding of species 

diversity in tropical forests. 

We found that the three focal species differed in their probability of staying in traps 

over a 24-h period, with C. pireta most likely to leave. In the persistence trials every 

individual had been in the trap anywhere from 1 min to 24 h before being removed, marked 

and returned to the trap. Individual persistence could be affected by length of time in a trap, 

and future studies of Haeterini could test this by checking traps more frequently as in Hughes 

et al. (1998). Nevertheless, our study did show that trap persistence varied among these three 

species, and in concert with trap height this variation may lead to underestimating parameters 

such as relative abundance.  

The present study found no sex differences in abundance for C. pireta and P. helvina, 

but we captured significantly more females of D. polita. This was unexpected because 5 y of 

trapping at Tirimbina (DeVries et al. 2012) showed that 39 of 51 abundant species were 

male-biased while the remainder had no detectable sex bias (unpublished data). It seems 

unlikely that sex-associated sampling bias in D. polita reflects skewed natal sex ratios. 

Rather, the greater female abundance of D. polita in low traps suggests potential sex-specific 

differences in flight behaviours, temporal activity times, spatial distribution (DeVries, Austin 
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and Martin 2008; DeVries, Penz and Hill 2010), or other factors that may have influenced 

sampling. In any event, in the present study the males of D. polita were likely under-sampled 

relative to females. 

This investigation revealed several behavioural characteristics in three closely related 

forest understorey butterflies. Compared to traps placed at 1 m or higher, all three species 

were more abundant in traps closest to the ground. Furthermore, one species, P. helvina, only 

entered the lowest traps, and female D. polita were more likely to enter low traps than males. 

In concert with previous work on fruit-feeding nymphalids (DeVries et al. 2012), this 

provides experimental evidence suggesting that members of Haeterini most frequently fly and 

feed in a third stratum found just above the forest floor. We also found sex differences among 

species with respect to attraction to traps, and differential persistence within traps. This 

shows that closely related species within the same forest can exhibit significant behavioural 

differences that may influence estimates of population characteristics derived from multi-

species studies. 
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Chapter 3: Movement in Three Sympatric Rainforest Butterflies Show that Females 

Disperse and Males Move in Narrower Home Ranges 

 

Abstract 

Movement is important to population dynamics and distributions of species within the 

landscape, but little is known about spatial structure and dispersal capabilities of most 

tropical butterflies. We present the first study of movement patterns in populations of 

rainforest butterflies in the tribe Haeterini (Nymphalidae, Satyrinae). We used mark-release-

recapture data on Cithaerias pireta, Dulcedo polita, and Pierella helvina to assess movement 

patterns among species and between sexes in a Costa Rican rainforest.  

Overall movement among species did not differ, but there were significant differences 

between sexes.  Female movements were correlated with time between captures, and they 

moved greater net distances (74.53±8.866 m) than males (45.66±5.855 m). In contrast, male 

movements were not correlated with time between captures, and they tended to return to 

where they were first marked. Predicted probabilities of females moving specific distances 

were best fit by a NEF function, while probabilities of males were better fit by an IPF 

function. Our analyses indicated that females dispersed from where they were originally 

marked, supporting the idea that they move through the landscape, potentially searching for 

oviposition sites.  Conversely males moved within narrower home ranges, thus exhibiting a 

behavior potentially maximizing the likelihood of encountering unmated females. 

Keywords: angles of departure, distance distribution, inverse power function (IPF), negative 

exponential function (NEF), sex differences, tropical forest. 

 

Introduction 

Movement is a fundamental characteristic of life. Within the context of population biology 

organisms are thought to disperse or move away from their places of birth and thus avoid 
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inbreeding and/or colonize new habitats (Wright 1951; Pusey and Wolf 1996). The terms 

dispersal and movement are sometimes used interchangeably, but movement (i.e., traversal 

through the landscape) is only one of the stages of dispersal (Van Dyck and Baguette 2005; 

Ronce 2007; Stevens, Turlure and Baguette 2010). Estimating the movement of individuals 

within natural populations has become increasingly important to understanding population 

dynamics and species’ distributions (Wilkinson 2003, 2011; Van Dyck and Baguette 2005; 

Stevens, Pavoine and Baguette 2010; Stevens, Turlure and Baguette 2010). Movement within 

a habitat can vary in distance and direction depending on the life histories and activities of 

particular species, e.g. foraging, territoriality, mate seeking, oviposition, predator escape, 

migration (Drake and Gatehouse 1995; Van Dyck and Baguette 2005; Hapca, Crawford and 

Young 2009). Movements contribute to individual fitness, heterogeneity within populations 

in spatial distribution, genetic diversity, and the evolution of life histories (Williams 1957; 

Kareiva, Mullen and Southwood 1990; Ronce 2007; Price et al. 2011). 

Insects have played a critical role in how we perceive biological diversity (DeVries 

2000; Grimaldi and Engel 2005; Price et al. 2011), and among insects the butterflies have 

been an important group for understanding insect population biology, ecology and evolution. 

Our conceptual underpinning of butterfly spatial movement, however, comes mainly from 

work on temperate zone species, particularly those occurring in Europe (e.g., Brakefield 

1982; Conradt et al. 2000; Asher et al. 2001; Wahlberg et al. 2002; Ehrlich and Hanski 2004; 

Kuefler and Haddad 2006; Stevens, Turlure and Baguette 2010; and references therein).  

Although the greatest butterfly diversity is tropical (DeVries 1987, 1997, 2000; and 

references therein), few studies have focused on spatial movements of tropical species 

(Mallet and Jackson 1980; Molleman et al. 2006; Tufto et al. 2012). In sum, it is remarkable 

that even the most basic elements of population biology are unknown for the vast majority of 

tropical butterfly species (Bonebrake et al. 2010). 
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Adult butterflies in the family Nymphalidae that feed on the juices of rotting fruit 

comprise a guild known as fruit-feeding nymphalids. This guild includes members of the 

subfamilies Charaxinae, Satyrinae, and some genera of Nymphalinae and Biblidinae (Chacón 

and Montero 2007; DeVries et al. 2012), and can account for over 50% of the nymphalid 

richness in tropical forests (DeVries 1987; unpublished data). On the whole, these butterflies 

have been important for elucidating spatial and temporal patterns of tropical insect diversity 

(Molleman et al. 2006; DeVries et al. 2012; Grotan et al. 2012; Penz, DeVries and Wahlberg 

2012; Penz et al. 2013; Tufto et al. 2012; and references therein). 

Within the Satyrinae, unusual wing-shapes combined with transparent wings and 

iridescent coloration make members of the monophyletic tribe Haeterini some of the most 

visually striking of all Neotropical butterflies (Weymer 1924, DeVries 1987, Constantino 

1992).  Embracing five genera and over 20 species (Lamas 2004), these butterflies are 

confined to shaded forest understory and are readily sampled with fruit-baited traps (DeVries 

1987). Some of our recent work on sympatric Costa Rican Haeterini (Cithaerias pireta 

Cramer, Dulcedo polita Hewitson, Pierella helvina Hewitson) showed that they are abundant 

throughout the year (DeVries et al. 2012), and differ in flight height and persistence within 

traps (Alexander and DeVries 2012).  No studies, however, have documented movements in 

any species of Haeterini. 

The genera Cithaerias, Dulcedo and Pierella are sister taxa within a well-wrought 

phylogeny (Peña et al. 2006), that differ in color patterns, life histories and geographical 

distributions (DeVries 1987; Hill and Vaca 2004; Peña et al. 2006; Murillo-Hiller 2009; 

Alexander and DeVries 2012). Nevertheless, initial field observations on sympatric C. pireta, 

D. polita and P. helvina in Costa Rica suggested these species differed in their movement 

patterns. Observations also suggested that females move away from their initial capture 

locations, whereas males moved among a restricted number of locations. Given there are no  
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Figure 3.1. Sampling locations and exemplar directional movements by individual butterflies.  (a) Six 
sampling sites each containing ten traps in the Tirimbina Biological Reserve. (b) Movements with an 
angle > 90° showing a return direction toward where an individual originated. (c) Movements with 
an angle ≤ 90° showing a forward direction away from where an individual originated. Circles denote 
trap locations. Solid circles denote trap locations corresponding to angles of departure illustrated in 
(b) and (c). 

 

empirical measures of movement for these three species, we used mark-release-recapture data 

to evaluate potential differences in movement among species and between sexes. 

Accordingly, this study addresses two questions: (1) Do  movement patterns differ among 

species? and (2) Do movement patterns differ between sexes? 

 

Methods 

This study was conducted from December 2009 through June 2010 at the Tirimbina 

Biological Reserve, Heredia Province, Costa Rica (10°29’50.3”S; 76°22’28.9”W). The 

reserve encompasses an elevation of 180-220 m and approximately 345 hectares of lowland 

rainforest in the Rio Sarapiquí river basin. The study was conducted within approximately 

150 hectares of the reserve, of which 85% is intact forest, the rest having some historical 
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anthropogenic disturbance. The region receives an average of 3.7 to 4.2 m of precipitation per 

year, with a dry season from December to April. 

To sample individuals of C. pireta, D. polita, and P. helvina, we used 60 traps 

positioned in the low understory (see Alexander and DeVries 2012) and deployed within six 

sampling sites, ten traps per site (Fig. 3.1a). Within sampling sites, traps averaged 36.5 ± 9.28 

m (± SD) from adjacent traps. Traps were baited with mashed bananas and bait was 

replenished daily. Traps were checked at 24 h intervals for ten consecutive days each month, 

thus there were no recaptures for time intervals of 10 to 19 days. More details on trap design 

and sampling protocol are found in Alexander and DeVries (2012) and DeVries et al. (2012). 

Butterflies were identified to species, sexed, uniquely marked using a non-toxic 

permanent marker, and released. In addition we measured forewing length to the nearest 0.01 

mm (as a proxy for body size), and assessed potential differences in forewing length among 

species and sexes with a Kruskal-Wallis ANOVA, using Dunn’s pairwise comparisons for 

post hoc exploration of significant results. Here we employ the nomenclature of Lamas 

(2004) for our three study species, but readers should be aware of nomenclature used by other 

authors  for access to further biological information on them (e.g., DeVries 1987, DeVries et 

al. 2012). Because the focal species are closely related (Peña et al. 2006), they were pooled 

when necessary to increase statistical power, but analysed separately wherever possible.  

Movement includes two components, time and space.  Each recapture is associated 

with a time in days and a distance in meters between two consecutive captures of an 

individual. We define movement as occurring when the two consecutive captures were at 

different locations (traps) so that the distance was > 0 m.  

To assess distribution of recaptures among distances for species and sexes, we pooled 

recaptures into 20 m distance classes (i.e., 0-19.9 m, 20-39.9 m, etc.) and used 
2
 tests. For 

recaptures with distance > 0 m (i.e., movements), we used the Pearson’s correlation  
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Table 3.1. Butterfly sample sizes and sex ratios. For (a) all butterflies captured and movements 
observed, and (b) for individuals recaptured at least once and number of recaptures. 

 
Individuals marked Movements (> 0 m) 

(a) ♀ ♂ Total ♀:♂ ♀ ♂ Total ♀:♂ 

Cithaerias pireta 107 172 279 1.0:1.6 24 36 60 1.0:1.5 

Dulcedo polita 197 119 316 1.7:1.0 45 29 74 1.6:1.0 

Pierella helvina 252 295 547 1.0:1.2 92 115 207 1.0:1.3 

Total 556 586 1142 
 

161 180 341 
 

         

 
Individuals recaptured No. of recaptures 

(b) ♀ ♂ Total ♀:♂ ♀ ♂ Total ♀:♂ 

Cithaerias pireta 35 61 96 1.0:1.7 63 109 172 1.0:1.7 

Dulcedo polita 83 44 127 1.9:1.0 128 71 199 1.8:1.0 

Pierella helvina 120 157 277 1.0:1.3 245 365 610 1.0:1.5 

Total 238 262 500 
 

436 545 981 
 

  

 

coefficient (r) to assess correlation between the time measured between captures and the 

associated distance in meters. 

We define average distance as the total distance moved by an individual divided by 

the number of times that individual was recaptured, and net distance as the straight-line 

distance between the first and last capture locations. Average and net distances were 

calculated for butterflies recaptured at least once. To test the null hypotheses that average and 

net distances were equal among species and between sexes, we used two-way analysis of 

ANOVA.  

Homing behavior may be considered the orientation of individuals toward familiar 

habitat patches (Conradt, Roper and Thomas 2001), and individuals moving within home 

ranges tend to visit the same locations rather than move away in one particular direction. To 

characterize the direction of individual movements relative to initial capture location, we 

calculated angles of departure as in Zimmermann (1979) except we calculated all angles to be 

between 0° and 180°. The angles were calculated for individuals showing pairs of 

consecutive captures with distance > 0 m. Angles > 90° were considered a return or backward 

movement (Fig. 3.1b) and those ≤ 90° as a forward movement (Fig. 3.1c).  We used a  
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Figure 3.2. Box plots comparing median forewing lengths among species and sexes (n = 1142), with 
maximum one-day distances in parentheses. Whiskers show minimum and maximum wing lengths. 

 
 

binomial test within each sex to assess the null hypothesis that individuals returned from 

whence they came equally as often as they moved forward. 

When studying animal movement it is often necessary to fit models to predict 

movements or compare among data sets (Kareiva, Mullen and Southwood 1990; Carey 2001; 

Wahlberg et al. 2002; Fric and Konvicka 2007; Hamm, Williams and Landis 2013). 

Negative-exponential (NEF) and inverse-power (IPF) functions are frequently employed to 

describe butterfly movements (e.g., Hill, Thomas and Lewis 1996; Fric and Konvicka 2007). 

To compare movement probabilities in males and females, we calculated the probabilities of 

moving particular distances, linearly transformed those data using either semi-ln (NEF) or 

double-ln (IPF) plots, and analysed the results using the regression methods of Hill, Thomas 

and Lewis (1996). To assess model fit, we compared R
2
 values and also used a t-test with 

Welch’s correction for unequal variances to compare average magnitudes of variation from 

the regression line (i.e., the square root of the squared residuals). 

For all statistics P-values are two-tailed, where alpha < 0.05 was considered 

significant. Means are presented with their standard errors (± SE). 
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Figure 3.3. Distribution of 
recaptures across time. For 
pooled species, shows recaptures 
across one-day time intervals (n = 
981). There were no recaptures 
for time intervals of 10 to 19 days 
as sampling was done for 10 
consecutive days each month. 
Movements between capture 
locations (> 0 m) are depicted in 
gray, and recaptures at the same 
locations (i.e., with no 
movement; 0 m) are depicted in 
white. 

  

Results 

We marked and released 1142 butterflies: 279 C. pireta, 316 D. polita, and 547 P. helvina 

(Table 3.1a). Median wing lengths differed significantly among species (Fig. 3.2; K-W5 = 

988.4, P < 0.0001), and between sexes for D. polita and P. helvina (Dunn’s pairwise 

comparisons, both P < 0.0001).  

From the total sample, 500 individuals were recaptured at least once, resulting in 981 

recaptures (Table 3.1b), and 263 recaptured individuals were observed moving between 

capture locations, resulting in 341 movements > 0 m (Table 3.1a). Most movements were 

observed over one- or two-day time intervals (n=180, 52.8%; Fig. 3.3), with the longest time 

interval by a female P. helvina that was recaptured 68 days after initial capture. For distance, 

the bulk of the movements (n=224, 65.7%) were < 80 m (Fig. 3.4). Of the 56 long-distance 

movements (> 180 m), six were observed over a one-day interval (Fig. 3.4), but most 

occurred over many days (Appendix H). Maximum one-day distances for each species and 

sex ranged from 92-532 m (Fig. 3.2), and although individuals in all three species showed 

long-distance movements, species with longer forewing lengths tended to move farther.  

We found significant heterogeneity in the distribution of recaptures among distance 

classes for species and sexes (
2
20 = 33.45, P = 0.0301). When sexes were pooled, we found  
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Figure 3.4. Distribution 
of recaptures across 
distance. For pooled 
species, shows 
distributions of 
recapture intervals 
across 20 m distance 
classes in females (n = 
436) and males (n = 
545), with proportions 
represented by the 0 m 
and 180+ m classes given 
for each sex. Includes 
the six long-distance 
movements observed in 
a one-day interval. 

 

that distribution of recaptures among distances did not differ among species (
2

8 = 5.657, P = 

0.6856), suggesting that all three species moved similar distances. But when species were 

pooled, the distribution of recaptures among distances differed significantly between sexes 

(Fig. 3.4; 
2

4 = 19.80, P = 0.0005), with males moving shorter distances more often than 

females, and females moving longer distances more frequently than males. When sexes were 

compared within individual species, sample sizes were not large enough in distance classes > 

0 m to show significant effects in C. pireta and D. polita. But in P. helvina, for which sample 

size was not an issue, the distribution of movements among distances differed significantly 

between the sexes (
2

4 = 17.35, P = 0.0017), with females moving distances ≥ 80 m more 

than twice as often as males (males n = 23, 6.30%; females n = 39, 15.9%). 

With species pooled the time between captures was positively correlated with distance 

moved in females (r = 0.3524, P < 0.0001) but not males (r = 0.1334, P = 0.0742). When 

species were examined separately, this difference held for C. pireta (females: r = 0.6453, P = 

0.0007) and P. helvina (females: r = 0.2578, P = 0.0131). In D. polita time between captures 

and movement distance was positively correlated for both sexes (females: r = 0.4681, P =  
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Figure 3.5. Net distances. Mean net distance 
(± SE) for females and males of each butterfly 
species (n = 500). 

 

0.0012; males: r = 0.3792, P = 0.0425), although this may be due to a small sample size for 

D. polita  males. Our findings indicate that movement distances in male C. pireta and P. 

helvina were unrelated to days between captures, but in females the longer the time between 

captures, the farther away from the initial capture point they had moved. 

Average movement distance did not differ among species (F2,494 = 1.741, P = 0.1764) 

or sexes (F1,494 = 3.749, P = 0.0534), nor did net distance differ among species (F2,494 = 

0.9327, P = 0.3942). However, females moved significantly greater net distances than did 

males (Fig. 3.5; F1,494 = 5.221, P = 0.0227). Female net movements averaged 74.53 ± 8.866 m 

between first and last capture locations, 1.6 times that of males (45.66 ± 5.855 m), indicating 

that females moved further from their initial capture locations than males.  

We were able to calculate relative direction for 80 pairs of consecutive movements, 

most of which were for P. helvina (Table 3.2). For P. helvina alone and for the species 

pooled, 80% of the males returned in the direction where they originated rather than moving 

in a forward direction (P < 0.0001 and P = 0.0014, respectively). On the other hand, female 

movements did not differ with respect to return and forward directions. These observations 

suggest that males in our study may exhibit home range behavior. 

Calculated distance probabilities for species and sexes presented in Figure 3.6 were 

fitted to model functions for sexes with species pooled (Fig. 3.7) and with species separated  
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Table 3.2. Relative directional movements of the sexes. Based on successive pairs of movements (n = 
80). Comparisons done with a binomial test with species pooled, and with Pierella helvina analysed 
separately. 

 
Sex Forward (≤ 90°) Backward (> 90°) Total P-value 

Species pooled ♀ 13 22 35   0.1755 

♂ 9 36 45 < 0.0001 
Pierella helvina ♀ 10 16 26   0.3269 

♂ 6 24 30   0.0014 
 

(Appendix I). In all cases, R
2
 values were higher for NEF in females and IPF in males. With 

species pooled the difference in fit was significant for females (t30.86 = 4.156, P = 0.0002) and 

males (t37.14 = 2.806, P = 0.0079), and when species were separated the difference was 

significant in males of P. helvina (t24.63 = 3.609, P = 0.0014). The lack of significance in 

separate analyses of C. pireta and D. polita was likely due to small sample sizes. Based on 

these results, parameters estimated by fitting the logarithms were used to describe predicted 

probabilities of the NEF model for females and the IPF model for males, together illustrating 

distinct movement differences (Fig. 3.8). The probability of moving relatively long distances 

decreases gradually in females but rapidly in males, thus supporting observations that females 

move further from initial capture locations than males. 

 

Discussion 

By sampling individuals with fruit-baited traps and employing a combination of mark-

release-recapture methods and fitted models, here we elucidated empirical and probable 

spatial movements in three closely related Neotropical forest butterflies, C. pireta, D. polita, 

and P. helvina. This investigation is one of the few studies of spatial movements in 

Neotropical butterflies (Cook, Thomason and Young 1976; Mallet and Jackson 1980; Mallet 

1986; Tufto et al. 2012), and the only study to document spatial movements in members of 

the tribe Haeterini.  

  Maximum movement distances appeared to differ among species, and may be related 

to body size as maximum movement increased roughly with forewing length (Fig. 3.2). There  
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Figure 3.6. Movement 
probabilities. Probability of 
movement within 20 m 
distance classes among 
species plotted as the 
inverse cumulative 
proportion of movements.  

 

 

were, however, no significant differences found among species in the spatial distribution of 

movements, average and net distances moved, relative direction moved, nor movement 

probability densities. Similarities in these species may stem from their shared ancestry (Peña 

et al. 2006), but similarities in movement among close relatives should not be assumed a 

priori (Wahlberg et al. 2002).  

An important finding stemming from the present work is the significant difference in 

movements between sexes. In general, species were typically observed over one- and two-day 

time intervals (Fig. 3.3) moving < 80 m per day (Fig. 3.4), and although individuals were 

often recaptured multiple times at the same location (Appendix H), the distance between 

captures increased with time for females, not males. Females showed larger net distances 

(Fig. 3.5) and moved away from their initial capture locations. In contrast, males of C. pireta 

and P. helvina tended to return to the location where they were initially captured (Table 3.2), 

a characteristic of home range behavior (Conradt, Roper and Thomas 2001; Börger, Dalziel 

and Fryxell 2008). 

The abundant short movements and correlation of time between captures and 

movement distance helps explain why female predicted probability distributions were best fit 

by the NEF (Fig. 3.7), a method used for modelling short, within-habitat movements (Hill,  
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Figure 3.7. Comparative movement probabilities. Females = upper plots. Males = lower plots. 
Expressed as negative-exponential (NEF) and inverse-power function (IPF) plots. Regression lines 
show the functions Ln(I) = ln(a) – k•D and Ln(I) = ln(C) – n•ln(D), where I is the probability of moving 
distance D. 

 

Thomas and Lewis 1996). The lack of correlation between time and male movement distance 

likely explains why the male distribution was best fit by the IPF, which is better at estimating 

long-distance movements that occur at very low probabilities (Fric and Konvicka 2007). This 

is in keeping with the observation that males moved shorter distances than females (Fig. 3.4). 

Differential movement patterns in butterflies have been attributed to sex-specific life 

history traits (Ehrlich 1965; Brussard, Ehrlich and Singer 1974; Kingsolver 1983; Beccaloni 

1997; Brakefield 1982; Szymanski, Shuey and Oberhauser 2004; Joron 2005; Grill et al. 

2006; DeVries, Penz and Hill 2010; Junker and Schmitt 2010). Ehrlich (1989) viewed 

tropical butterflies as continuous dispersers, with the distribution of nutritional resources as a 

major factor that structures non-migrating butterfly populations. Considering that Central 

American rainforest understory fruit is likely available throughout the year (Frankie, Baker  
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Figure 3.8. Probabilities of movement 
partitioned by species and sex. Comparisons are 
expressed as a function of distance predicted by 
the negative-exponential function (NEF) for 
females and the inverse-power function (IPF) for 
males. 
 

and Opler 1974), it seems likely that the distribution of oviposition sites should be equally, if 

not more important to population structure in fruit-feeding butterflies (DeVries 1987; Grotan 

et al. 2012; and references therein). 

One basic optimal foraging strategy for efficient individuals to avoid re-searching 

areas is to meander in a habitat until a resource is encountered (Zimmermann 1979). This 

strategy can be applied to female butterflies searching for critical oviposition sites. Our 

results suggest that female Haeterini meander through the forest – a behavior that could 

increase their encounter rates of useable oviposition sites, and move them away from their 
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initial capture locations, thus reflecting the concept of dispersal away from natal locations 

(Ronce 2007; Stevens, Turlure and Baguette 2010). In contrast, male Haeterini by and large 

appeared to move within narrower home ranges. Here, potential male home range behavior 

could maximize the likelihood of encountering new, unmated females (e.g. Börger, Dalziel 

and Fryxell 2008; Mallet and Jackson 1980). We suggest future work on these species should 

assess home ranges by documenting the size and shape of home ranges, and the effects of 

population density on their spatial movements. 

It has been suggested that movements of adult butterflies shape butterfly population 

structure (Ehrlich 1989), and population structure is governed, in part, by reproductive 

strategies of the sexes (Boggs and Watt 1981). In the face of widespread tropical habitat 

destruction, documenting sex-specific differences in movement is critical for understanding 

and conserving population structure of rainforest butterflies, particularly since the population 

biology for the vast majority of tropical butterflies is unknown. We acknowledge that 

inferences here are limited by the physical configurations of traps within sampling sites, 

different sample sizes among species and sexes, and the variation of in time spans among 

individuals for estimating of movement distances. However, given the paucity of data on 

movements of tropical forest butterflies, this study provides a window into the life histories 

of these butterflies, and represents a first step toward exploring their population dynamics 

that can provide a better understanding of differential movements of the sexes through time 

and space. 
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Chapter 4: Recapture Probability and Daily Survival for Three Fruit-Feeding 

Understory Butterfly Species 

 

Abstract 

Butterflies population characteristics have been studied only for a small number of species. 

We used mark-release-recapture data to estimate recapture probability and daily survival for 

three sympatric rainforest understory butterfly species in Costa Rica (Cithaerias pireta, 

Dulcedo polita, Pierella helvina). Sampling sites influenced the estimated recapture 

probabilities, with more recaptures observed in two sites.  This suggested there were lower 

dispersal rates in those sites. Male P. helvina had the highest average recapture probability 

(0.232 ± 0.007), followed by pooled females (0.160 ± 0.005) and male C. pireta and D. polita 

(0.109 ± 0.004). Monthly butterfly abundance influenced the estimation of daily survival, 

which was sensitive to sample size. Daily survival did not vary among species and averaged 

0.815 (± 0.024) per day, implying strong daily turnover in these populations. Variation in 

abundance among sampling occasions suggests greater movement within the reserve than 

previously thought. This has potential implications for interpreting movement patterns, local 

population densities, and temporal and spatial heterogeneity in the distances over which 

species respond to resources. Continued work on these species will improve our 

understanding of the ecology of tropical butterfly populations and increase our ability to 

conserve and manage rainforest organisms. 

Keywords: Attraction distance, attraction effect, Cithaerias pireta, Costa Rica, Dulcedo 

polita, Haeterini, mark-release-recapture, Nymphalidae, Pierella helvina, rainforest, 

Satyrinae 
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Introduction 

Estimating population structure among closely related species in natural communities is a 

fundamental underpinning in ecology. Critical to the development of population ecology as a 

field has been the use of mark-release-recapture (MRR) for estimating population parameters 

such as abundance, dispersal, recapture probability and survival (Elton 1927; Jolly 1965; 

Seber 2001; Nichols 2005; Vlasanek, Sam and Novotny 2013; and references therein). 

Recapture probability is important because it can influence estimates for other parameters, it 

is affected by individual survival status, and it may provide insights into relevant behavioral 

traits (Barker and White 2004; Szymanski, Shuey and Oberhauser 2004). Information on 

adult insect survival is practically nonexistent for most species (Carey 2001), despite survival 

being a direct component of fitness (Zimmerman, Gutiérrez and Lahaye 2007) and important 

to understanding and predicting population dynamics (Williams, Nichols and Conroy 2002).  

The analysis of MRR data generally assumes homogeneity in recapture and survival 

probabilities within populations (Mallet et al. 1987, Burnham and Anderson 2002, Nichols 

2005). However, these probabilities may vary among species (Samways and Lu 2007, Fric et 

al. 2010), sex (Brussard, Ehrlich and Singer 1974), habitat (Vlasanek, Sam and Novotny 

2013), sampling occasion (Konvička et al. 2005), movement type (Van Dyck and Baguette 

2005), and handling method (Mallet et al. 1987). Thus, documenting heterogeneity in 

recapture and survival probabilities is fundamental to studies seeking to understand the 

population ecology of all focal species (Amstrup, McDonald and Stirling 2001; Alldredge et 

al. 2007; Haddad et al. 2008). 

Terrestrial species diversity is accounted for largely by insects, yet basic population 

biology studies are confined to relatively few species (Cornell and Hawkins 1995; Price et al. 

2011). Among insects, population ecology in the wild is perhaps best known in the butterflies 

(Ehrlich 1989, Gilbert 1989, Boggs, Watt and Ehrlich 2003). Although most butterfly species 
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are tropical (DeVries 2000; DeVries and Walla 2001), studies estimating butterfly recapture 

and survival probabilities derive almost entirely from MRR work performed on a handful of 

temperate zone butterflies. These include the North American grassland Euphydryas editha 

(Ehrlich 1965, Brussard, Ehrlich and Singer 1974; Harrison, Murphy and Ehrlich 1988; 

Junker and Schmitt 2010; Zimmermann et al. 2011a,b), migratory Danaus plexippus (Brower 

1958; Calvert, Hedrick and Brower 1979; Masters, Malcolm and Brower 1988; Brower and 

Boyce 1991; Dockx et al. 2004; Lyons et al. 2012), North American members of Colias 

(Watt et al. 1977; Kingsolver 1983; Karowe 1990; Buckley and Kingsolver 2012), and 

metapopulations of European Melitaea cinxia (Hanski, Kuussaari and Nieminen 1994; 

Kuussaari, Nieminen and Hanski 1996; Hanski, Alho and Moilanen 2000). The high species 

diversity and structurally complex habitats in the tropics (Connell 1978; Janzen 1983, Kricher 

1997; Sparrow et al. 1994) makes the estimation of demographic parameters especially 

important for tropical populations (Haddad et al. 2008), although few studies have estimated 

recapture probability and daily survival in tropical butterflies (Owen, Owen and Chanter 

1972; Mallet and Jackson 1980; Molleman et al. 2007; Tufto et al. 2012; Li et al. 2013). 

Butterflies in the family Nymphalidae that feed on juices of rotting fruit as adults 

form a feeding guild termed fruit-feeding nymphalids, and include members of the 

subfamilies Charaxinae, Satyrinae, and some genera of Nymphalinae and Biblidinae 

(DeVries et al. 2012).  In many lowland tropical forests these butterflies account for over 

50% of the nymphalid species richness, and they are readily sampled with traps (DeVries 

1987). For this reason fruit-feeding nymphalids have been important for exploring patterns of 

tropical spatial and temporal diversity (DeVries and Walla 2001; Hamer et al. 2003; 

Dumbrell and Hill 2005; Fermon et al. 2005; DeVries et al. 2012; Grotan et al. 2012; 

Molleman et al. 2006; Penz, DeVries and Wahlberg 2012; Tufto et al. 2012; Penz et al. 2013; 

and references therein). 
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Confined to lowland forest understory habitats, the fruit-feeding nymphalids in the 

monophyletic satyrine tribe Haeterini (Peña et al. 2006) represent some of the most 

distinctive of all Neotropical butterflies (DeVries 1987; and unpublished data). Recent work 

on three sympatric Costa Rican species (Cithaerias pireta Cramer, Dulcedo polita Hewitson, 

Pierella helvina Hewitson) showed them to be abundant throughout the year (DeVries et al. 

2012), and that there are differences among species and sexes in flight height, persistence 

within traps and movement behaviors (Alexander and DeVries 2012; Alexander and DeVries 

a). Nevertheless, no study has investigated the population biology for any member of 

Haeterini. The present investigation uses MRR to estimate recapture probability and daily 

survival in C. pireta, D. polita, and P. helvina, and assess the effects of species, sex, rain, 

abundance, and sampling site on those probability estimates. Therefore, this study addresses 

two questions: (1) How do recapture and daily survival probabilities differ among species and 

sexes? and (2) Do these probabilities vary based on total rainfall during sampling, monthly 

butterfly abundance, and sampling site/habitat? 

 

Methods 

Study Area: This study was conducted from December 2009 through June 2010 at the 

Tirimbina Biological Reserve, Heredia Province, Costa Rica (10°29’50.3”S; 76°22’28.9”W), 

an area encompassing an elevation of 180-220 m within approximately 3.4 sq km of lowland 

rainforest in the Rio Sarapiquí basin. The investigation was performed within approximately 

1.5 sq km of forest at the Tirimbina Biological Reserve that has some natural and 

anthropogenic disturbance, but is essentially 85% primary forest. The area receives an 

average of 3.7 and 4.2 m of precipitation per year, with no distinct dry season (Zuchowski 

2007) although it tends to be dryer from December to April. 
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Study Species: This study included three species of Haeterini that co-occur year-

round at the study area: Cithaerias pireta Cramer, Dulcedo polita Hewitson, and Pierella 

helvina Hewitson. Here we use the nomenclature of Lamas (2004), but readers should be 

aware of older nomenclature in the literature (Cithaerias menander and Pierella helvetia 

incanescens) for access to more biological information on these butterflies (see DeVries 

1987; Janzen and Hallwachs 2009; DeVries et al. 2012). 

Sampling Methods: Individuals were sampled using 60 fruit-baited traps that were 

deployed within six sampling sites, each with 10 traps placed about 36 m apart and 15 cm 

above the forest floor (see Fig. 1.12). All traps were baited with mashed bananas taken from a 

large reservoir, and checked at 24 h intervals for ten consecutive days (sampling occasions) 

for seven consecutive months (sampling periods). To maintain consistency throughout each 

sampling period, the bait in traps was refreshed as needed, often daily. In the interest of 

efficiency the traps were checked in consecutive order within each sample site, but to 

approximate a haphazard sampling design the starting sample site was alternated each month. 

For example the site order was A B C F E D in December, D E F C B A in January, and so 

forth. Individual butterflies were identified to species, sexed, uniquely marked with a number 

using an indelible marking pen, and released. Further details on trap designs and sampling 

protocols are found in Alexander and DeVries (2012) and DeVries et al. (2012). 

MRR Analysis: We used 10-day binary capture histories and an open population 

approach in version 6.0 of the program MARK (White and Burnham 1999) to estimate two 

parameters: recapture probability (p), the probability that a marked individual will be 

captured again, and daily survival (phi), the probability that a marked individual is alive and 

available for further recapture (i.e., apparent survival). For parameter estimation, we used an 

underlying model structure in which recapture probability (p) and daily survival (phi) could 

vary with species and sex (Eberhardt 1969). Recapture probability also could vary depending 
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on whether an individual had been trapped the day before (Appendix E), and the recapture 

probability estimated for the first recapture occasion (i.e., sampling occasion 2) was allowed 

to vary separately from the remaining occasions to simulate the attraction effect (Otis et al. 

1978). 

The initial goal of analysis was to estimate recapture and survival probabilities over 

the entire observed lifespans of these butterflies. However, most individuals were observed 

over a single sampling period (month), and the data set that included multi-month 

observations was too sparse to produce estimates with reasonable confidence intervals 

(Burnham and Anderson 2002). Thus, to increase data density and improve model fit, we 

treated marks as temporary, lasting for a single month, so that marked butterflies captured in 

more than one sampling period were considered “new” the first time they were captured in a 

subsequent month. We assessed model fit of the underlying model structure using the median 

ĉ procedure within MARK and found that ĉ = 1.00 (± 0.0001), which indicates we achieved a 

good fit to the data using 10-day capture histories. 

We hypothesized that, in addition to species and sex, three other variables would 

affect the estimation of recapture and survival probabilities: 1) rainfall: total rainfall during 

the 10 sampling occasions of each sampling period, 2) abundance: total abundance of 

individuals captured during each sampling period, and 3) site: the sampling site where the 

first capture occurred in each capture history. To assess the degree to which these variables 

influenced parameter estimates, and to improve the accuracy of the estimates themselves, we 

included combinations of these three variables as covariates to the underlying model structure 

using a balanced design, and assessed the outcomes. A total of 16 models were formulated 

(Appendix J). Relative model fit among those 16 models was determined using Akaike’s 

Information Criterion (AICc) corrected for small sample size (Burnham and Anderson 2002), 

and results were reported for the 95% confidence set. 
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Table 4.1. MRR results. Summary of captures and recaptures for (a) individuals and (b) ten-day 
capture histories where capture histories > 1 contain more than one capture. 
 

 
Individuals Indivs. recaptured Return rate Total recaptures 

(a) ♀ ♂ Total ♀ ♂ Total ♀ ♂ Total ♀ ♂ Total 

Cithaerias pireta 107 172 279 35 61 96 0.33 0.35 0.34 63 109 172 

Dulcedo polita 197 119 316 83 44 127 0.42 0.37 0.40 128 71 199 

Pierella helvina 252 295 547 120 157 277 0.48 0.53 0.51 245 365 610 

Total 556 586 1142 238 262 500 0.43 0.45 0.44 436 545 981 

 

 
Capture histories Cap. histories > 1 Return rate Total recaptures 

(b) ♀ ♂ Total ♀ ♂ Total ♀ ♂ Total ♀ ♂ Total 

Cithaerias pireta 108 180 288 36 59 95 0.33 0.33 0.33 62 101 163 

Dulcedo polita 205 126 331 80 42 122 0.39 0.33 0.37 120 64 184 

Pierella helvina 280 340 620 114 148 262 0.41 0.44 0.42 217 320 537 

Total 593 646 1239 230 249 479 0.39 0.39 0.39 399 485 884 

 

 

Statistical Analysis: We used a non-parametric Kruskal-Wallis test to assess whether 

median rainfall differed among sampling periods, and report the K-W statistic and P-value, 

and used independent Pearson’s correlation tests to assess correlation of 1) rainfall and 

butterfly abundance, rainfall and lifespan, and 2) butterfly abundance and lifespan. Lifespan 

was estimated using the number of days from first to last capture in each capture history 

(Brussard, Ehrlich and Singer 1974; Cook, Thomason and Young 1976). Butterfly abundance 

was the number of new marks each month. For Pearson’s tests we report the coefficient (r), 

R
2
 value and P-value. 

Chi-squared tests were used to compare abundance distributions among sampling 

periods and sampling sites, with species and sexes analyzed independently. To assess the null 

hypothesis that recaptures for species and sexes were distributed homogeneously among 

sampling occasions, i.e., to test for marking effect, trap dependence, and handling effect, we 

used 
2
 tests in the RELEASE section of Program MARK, and report only significant results.  

For all tests we report the 
2
 statistic, degrees of freedom and P-value. 
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Table 4.2. The 95% confidence sets. From (a) the original mark-release-recapture (MRR) analysis and 
(b) post hoc analysis. The abundance covariate influenced estimation of daily survival (phi), and the 
site covariate influenced estimation of recapture probability (p). 

 Delta AICc AICc Weights 
Model 

Likelihood (a) 

Phi (abundance) p(sampling site) 0.00 0.93 1.00 

Phi (abundance) p( ) 7.13 0.03 0.03 

 

   
(b) 
Phi (abundance) p(sampling site) revised for 3 groups in p 0.00 0.94 1.00 

Phi (abundance) p(sampling site) 5.68 0.05 0.06 

 

 

We used a one-way analysis of variance (ANOVA) to determine whether mean 

recaptures per day (sampling occasion) were the same among sampling sites. Here, species 

and sexes were pooled, then analyzed independently. We report the F-statistic, degrees of 

freedom and P-value. 

For all statistics, P-values are two-tailed and alpha < 0.05 was considered significant, 

and means are given with their standard errors (± SE). 

 

Results 

A total of 1142 individual butterflies were captured and marked, and recaptures occurred in 

500 (43.8%) individuals for a total return rate of 0.44 (Table 4.1a). In other words, 44% of 

marked individuals were recaptured 981 times. Ninety-one marked individuals were captured 

in more than one sampling period, yielding 1239 ten-day capture histories (Table 4.1b). 

Because many of these multi-month individuals were captured only once per sampling 

period, the number of capture histories that contained recaptures was < 500 (n = 479, 38.7%), 

resulting in a slightly lower return rate of 0.39 and 884 total recaptures.  

In all but 34 of the capture histories, individuals were recaptured within the same 

sampling site, indicating that the site covariate accurately reflected site of capture for the 

majority of capture histories. The best fit model explained 93% of the variation in the model  
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Figure 4.1. Total rainfall (mm) for each sampling 
period (month).  Rainfall during the ten sampling 
occasions depicted in black, and the non-sampling 
days in white.  

 

set, and included site as a covariate for recapture probability and abundance as a covariate for 

daily survival (Table 4.2).  

Rainfall was not part of any model in the 95% confidence set. Median rainfall did not 

differ significantly among monthly sampling periods (Fig. 4.1; K-W statistic = 12.39, P = 

0.0537), but did differ when looking only at rainfall during the 10 sampling occasions (days) 

each period (K-W statistic = 17.86, P = 0.0066). We found no correlation between monthly 

abundance and total monthly rainfall (r = 0.2991, R
2
 = 0.08947, P = 0.5146) or rainfall during 

the 10 sampling days (r = 0.6220, R
2
 = 0.3869, P = 0.1358). There also was no correlation 

between lifespan and total monthly rainfall (r = 0.1009, R
2
 = 0.01017, P = 0.8297) or rainfall 

during the 10 sampling days (r = 4445, R
2
 = 0.1976, P = 0.3177). 

Butterfly abundance varied significantly among sampling periods (
2
 = 80.68, df = 

30, P < 0.0001), but all species and sexes showed similar monthly patterns of abundance 

distribution, with 52% (594 individuals, 648 capture histories) of new captures occurring in 

February and March (Fig. 4.2). Abundance also varied significantly among sampling sites (
 

2
 = 56.24, df = 25, P = 0.0003), largely due to abundance variation in both sexes of D. polita 

and female P. helvina (Fig. 4.2). 

Mean daily recaptures varied by sampling site (Fig. 4.3; F5,54 = 9.891, P < 0.0001) 

with species and sexes pooled. When species and sexes were analyzed independently, mean 

daily recaptures were homogeneously distributed among sampling sites for females of C. 

pireta (F5,54 = 1.352, P = 0.2570) and males of P. helvina (F5,54 = 1.737, P = 0.1418), and  
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Figure 4.2. Butterfly abundance distributions among months and sites. Distribution of each butterfly 
species showing distribution of abundance (new captures) among sampling periods and sampling 

sites. Results of 2 tests for homogeneity of distribution are given below each bar chart. Male 
abundance is depicted in black, and female abundance in white. ns = not significant 

 

heterogeneously distributed for males of C. pireta (F5,54 = 4.242, P = 0.0025), both sexes of 

D. polita (females: F5,54 = 8.068, P < 0.0001, R
2
 = 0.4273; males: F5,54 = 6.493, P < 0.0001), 

and females of P. helvina (F5,54 = 19.32, P < 0.0001). Notably, almost half of all recaptures 

(48.7%, n=478) were observed at sites E and F. 
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Figure 4.3. Mean daily recaptures (± SE) per 
site. Species and sexes are pooled. 

 

Estimated recapture probabilities were highest on the first recapture occasion 

(sampling occasion 2) in all species and sexes, then decreased steadily, and leveled off by 

recapture occasion six (Fig. 4.4). Overall, recapture probabilities were highest in male P. 

helvina, lowest in males of C. pireta and D. polita, and all female recapture probabilities 

were distributed between the males (Fig. 4.4a; Appendices K andL). A post hoc model was 

developed to constrain recapture probability to vary in three groups: (1) male P. helvina, (2) 

male C. pireta and D. polita, and (3) pooled females for of all species, and the post hoc model 

provided the best fit of for the revised model set (Table 4.2b). The resulting estimates, 

averaged over the nine occasions showed that male P. helvina had the highest average 

recapture probability (Fig. 4.4b; 0.232 ± 0.007), followed by pooled females (0.160 ± 0.005) 

and male C. pireta and D. polita (0.109 ± 0.004). 

Median lifespans ranged from 2 to 4 days, and 56.7% of observed lifespans were 3 

days or less (Table 4.3). Most individuals showing lifespans ≤ 9 days were initially captured 

and marked by sampling day 2 or 3 (Table 4.4a), while most multi-month individuals were 

marked on sampling days 3-9 (Table 4.4b), suggesting that the reason many of these 

individuals were observed in more than one month was because they were initially captured 

late in the sampling period. The maximum observed lifespan was 68 days in an individual 

female P. helvina. On average, individuals lived 3.57 (± 0.977) to 12.0 (± 1.23) days, and  
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Figure 4.4. Butterfly recapture probabilities. Estimated from a) the original best fit model where 
recapture probability was allowed to vary with sex and species, and (b) the post hoc model where 
recapture probability was constrained to vary in the three groups depicted. 

 

average monthly lifespans were positively correlated with monthly abundance (Fig. 4.5; r = 

0.7989, R
2
 = 0.6382, P = 0.0312). Depending on species and sex, estimated daily survival 

ranged from 0.751 (± 0.049) to 0.896 (± 0.041), and averaged 0.815 (± 0.024) per day (Fig. 

4.6; Appendices M and N), suggesting that about 81.5% of these populations survived each 

day. 

More than half (614 individuals, 686 capture histories) of all new captures occurred 

within the first three sampling occasions (Fig. 4.7). When species and sexes were examined 

separately, the frequency of new captures among sampling occasions was highest in the first 

few capture occasions, except when sample sizes were very small (Appendix O). The 

butterflies also exhibited trap dependence, which means they were recaptured more often  
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Table 4.3. Lifespans. Average, median and maximum lifespans for three species of Costa Rican 
understory butterfly (n=500).  

   
Lifespan (days) 

Species Sex 
 

Average (± SE) Median Max 

Cithaerias pireta ♀ 
 

3.57 (± 0.977) 2 35 

Cithaerias pireta ♂ 
 

6.59 (± 1.20) 3 37 

Dulcedo polita ♀ 
 

5.02 (± 1.15) 2 62 

Dulcedo polita ♂ 
 

6.73 (± 1.55) 2 33 

Pierella helvina ♀ 
 

9.93 (± 1.31) 3 68 

Pierella helvina ♂ 
 

12.0 (± 1.23) 4 64 
 
 
Table 4.4. Day of first capture. Abundance, median sampling day on which butterflies were marked 
(first captured), and median lifespan for individuals showing lifespans of (a) ≤ 9 days and (b) > 9 days. 
*Actual sampling day and observed lifespan is given for the single female C. pireta observed in (b). 
 

 
Individuals (≤ 9 days) Median day marked Median lifespan 

(a) Female Male Total Female Male Total Female Male Total 
Cithaerias 
pireta 34 53 87 2 3 3 2 2 2 

Dulcedo polita 76 37 113 2 3 3 2 2 2 
Pierella 
helvina 94 115 209 3 2 2 2 3 2 

          

 
Individuals (> 9 days) Median day marked Median lifespan 

(b) Female Male Total Female Male Total Female Male Total 
Cithaerias 
pireta 1 8 9  2* 9 8 35* 30 32 

Dulcedo polita 7 7 14           6 7 7         33 30 31 
Pierella 
helvina 26 42 68           4 3 3         32 31 31 

 
 

than expected when they had been trapped and released the day before (
2
 = 153.51, df = 60, 

P < 0.0001).  

 

Discussion 

This study estimated recapture probability and daily survival in three sympatric species of 

Costa Rican understory butterflies in the tribe Haeterini (Table 4.1). Using mark-release-

recapture methods and evaluating potential environmental influences on populations, this is 

one of the few studies to assess recapture and survival probabilities in tropical butterflies  
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Figure 4.5. Lifespan and abundance. 
Correlation between monthly abundance and 
average number of days from first to last 
capture, an estimator for lifespan in the field.  
Here, the maximum lifespan is 9 days 
(n=1239).   

 

(Mallet and Jackson 1980; Fleming, Serrano and Nassar 2005; Molleman et al. 2007; Tufto et 

al. 2012). The findings here are relevant to estimating population characteristics such as 

abundance, individual movements, longevity, and illuminating behavioral differences among 

closely-related species in this distinctive group of butterflies. 

We evaluated the effect of rainfall, sampling site and monthly abundance on butterfly 

recapture probability and daily survival (Table 4.2) and found that site and abundance were 

influential covariates, but rainfall was not. Despite its variation among sites (Fig. 4.1), models 

including rainfall as a covariate achieved extremely low likelihoods, and did not correlate 

with butterfly abundance or with lifespan, strongly implying that rainfall did not influence 

recapture probability and daily survival. Other studies indicate that tropical butterfly 

abundance is not strongly influenced by rainfall. For example, DeVries et al. (2012) found no 

correlation between rainfall (or temperature) and monthly abundance of 101 species of fruit-

feeding butterflies.  The study of Morpho sulkowskyi by Prieto, Takegami and Rivera (2005) 

also found no correlation between rainfall and abundance, but they did find that temperature 

and abundance were correlated.  This implies that temperature may be a useful environmental 

covariate for assessing influences on recapture probabilities and daily survival for some 

tropical insects. 

We found that recapture probabilities of our study species varied among sample sites. 

Recaptures in some tropical butterflies may be lower in second growth habitats compared to  
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Figure 4.6. Estimates of daily survival (phi ± 
SE) for the three butterfly species. 

 

primary rainforest (Vlasanek, Sam and Novotny 2013). In the present work, our sampling 

sites were all within primary forest (Isidro Chacón personal communication), but each site 

may have manifested subtle microhabitat differences that influenced abundance and recapture 

probabilities (Figs 4.2 and 4.3). For example, almost half of all individuals and twice the 

daily recaptures were observed in sites E and F. Higher recapture rates in these two sites 

suggest greater site fidelity and lower dispersal rates (Hill et al. 2001; Tufto et al. 2012), 

especially for D. polita. 

The recapture probabilities found here were similar to those estimated for other 

butterflies (e.g., Schtickzelle, Le Boulenge and Baguette 2002; Wahlberg et al. 2002; 

Fleming, Serrano and Nassar 2005; Konvička et al. 2005; Fric et al. 2010), but varied among 

species and sexes (Fig. 4.4b). Male P. helvina had higher recapture probabilities than males 

of C. pireta and D. polita, whereas female recapture probabilities were similar in all species. 

Even though closely related taxa may show significant behavioral differences among both 

sexes, it is not uncommon to see larger behavioral differences among species for males than 

females (Shuster and Wade 2003). With a sample size of three species, it is impossible to tell 

from the present work whether that is the case here. Future work should focus on estimating 

recapture probabilities for more tropical forest satyrines so that we can assess whether males 

exhibit more variability among species than females. Variation in recapture probability could  
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Figure 4.7. Butterfly abundance distribution among sampling days. Distribution of butterfly 
abundance (new captures) among sampling occasions within each sampling site for 1142 individuals. 
Species and sexes are pooled. 

 

indicate differences in a wide variety of traits that have not yet been studied in these species, 

including feeding frequency (Molleman et al. 2005), movement rate (Brussard, Ehrlich and 

Singer 1974), and home range size (Chew 1981). 

Daily survival was affected by abundance, highlighting the inherent stochasticity of 

MRR observations (Williams, Nichols and Conroy 2002). Monthly butterfly abundance was 

positively correlated with lifespan (Fig. 4.5), most likely because the probability of observing 
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longer lifespans increased with sample size. The effect of abundance on estimation of daily 

survival also reflected significantly higher abundances in February and March (Fig. 4.2). 

Given that temporal heterogeneity in abundance is common in tropical butterfly populations 

(e.g., DeVries, Walla and Greeney 1999), and assuming data dense enough to support extra 

parameterization (Burnham and Anderson 2002), future studies might incorporate controls 

for abundance into underlying model structure. The results here, however, cannot safely be 

interpreted with respect to density-dependent effects because we could not eliminate the 

possibility that survival in the focal species may have been constant across sample periods. 

The survival estimates here imply potentially large daily population shifts. Most 

individuals apparently died within a week (Table 4.3), although comparison of initial capture 

days between single-month and multi-month individuals suggests that median lifespan may 

be between 2 and 33 days (Table 4.4b). Daily survival probabilities ranged from 0.75 to 0.90 

per day (Fig. 4.6), and given that the probability of individual survival is closely related to the 

proportion of animals in a population that survive (Williams, Nichols and Conroy 2002), the 

implication is that 75-90% of these butterfly populations survived each day, thus 10-25% did 

not. Although these survival probabilities likely underestimate true daily survival due to their 

inability to discriminate between actual mortality and emigration (Tufto et al. 2012), they 

nonetheless represent significant daily turnovers. 

The distribution of new captures among sampling days (Fig. 4.7) suggests the 

presence of novel individuals within sampling sites in the early days of sampling each month. 

All available evidence suggests that members of Haeterini do not fly outside of the forest 

(DeVries 1987), and here we also assumed they stayed within fairly small areas rather than 

ranging freely across the entire reserve. Because bait was kept fresh consistently, higher than 

expected numbers of new captures early in sampling suggest a response to new food 

resources (Muirhead-Thomson 1991). Otis et al. (1978) referred to this as the attraction 
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effect, namely temporary higher sampling density at a new food source. Samples of 

butterflies marked before the attraction effect subsided had larger proportions of unsampled 

individuals compared to later samples (Appendix O), suggesting greater movement within the 

reserve than previously assumed. In other words, individuals appeared to respond to the 

newly baited traps by temporarily redistributing themselves within the landscape.  

The attraction effect interacted with trap dependence to influence daily 

recapturability, with implications for our understanding of local butterfly densities. To correct 

for the attraction effect we allowed the first recapture probability to vary independently, but 

the tendency for butterflies to be recaptured immediately after initial capture (trap 

dependence) caused the remaining recapture probabilities to decrease incrementally over 

several days (Fig. 4.4). A way to stabilize attraction effect in the field is by pre-baiting (Otis 

et al. 1978), and in the present study the first few days of sampling essentially fulfilled the 

function of pre-baiting. This suggests that abundances observed during the later sampling 

occasions may more accurately reflect true butterfly densities at each sampling site, a finding 

important for understanding spatial abundance distribution and local population sizes.  

The attraction effect also may interact with attraction distance. The distance over 

which an insect will respond to an attractant may be species-specific (Finch 1980; Tufto et al. 

2012). In general using MRR data to measure attraction distance is problematic because 

recapturing marked individuals released at known distances from a source point indicates 

only how far those individuals moved (Finch 1980). But, Tufto et al. (2012) used a Bayesian 

method to calculate attraction distance of some common fruit-feeding nymphalids, including 

a distance of about 20 m for the satyrine Bia actorion (tribe: Brassolini; Peña et al. 2006), an 

understory species similar in wing length to the Haeterini studied here. Knowing the 

attraction distance of a species affords the potential to estimate local population densities 

using some fairly simple calculations if the overlap in attraction area among traps is low 
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(Tufto et al. 2012). However, the temporary induction of higher than expected density 

immediately after baiting implies that the distance across which a butterfly can detect a food 

source is not always equivalent to the distance across which it will respond. Temporal and 

spatial heterogeneity in functional attraction distance is potentially an important consideration 

for estimating population densities within prescribed areas, and for understanding movement 

and demography. 

This work analyzed 10-day capture histories instead of full capture histories to 

improve model fit and reduce sampling variances (Burnham and Anderson 2002). We 

captured over 100 individuals of each species/sex pair and more than a thousand individuals, 

with recapture rates sufficient for the chosen MRR methods (Table 4.1). However, while the 

study spanned almost 200 days, median lifespans were two to four days (Table 4.3). When 

individual lifespans are shorter than the study duration and resulting capture histories are 

sparse, i.e., dominated by zeros, models can be underfitted, making biologically relevant 

effects difficult to detect (Burnham and Anderson 2002). Here, less than 8% of the butterflies 

were captured in more than one sampling period, so the 10-day capture histories incorporated 

the full lifespans and recaptures of the majority of individuals with minimal loss of data. 

Thus, although recapture probability and daily survival were slightly underestimated, 

analyzing 10-day histories allowed us to use fitted models. 

Using MRR methods on three closely related butterflies, C. pireta, D. polita, and P. 

helvina, this study is the first to formally estimate probabilities of recapture and daily survival 

for populations of members of the tribe Haeterini. Habitat heterogeneity and monthly 

butterfly abundance, but not rainfall, were influential in the estimation of these parameters, 

and we found daily survival was sensitive to stochasticity in the data. Recapture probability 

was highest in certain sampling sites, in the first few days of sampling, and for male P. 

helvina, and daily survival did not differ markedly among species, suggesting large daily 
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turnover. Our findings also point to an attraction effect and suggest that functional attraction 

distance to fruit baits varies in time and space. Basic elements of population ecology such as 

those estimated here remain obscure for the vast majority of tropical butterfly species 

(Bonebrake et al. 2010).  It is therefore important to continue work on members of the 

Haeterini to advance our understanding of tropical butterfly population biology in species 

confined to forests, and increase our ability to conserve and manage rainforest organisms. 
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Appendix A: Examples of Mark-Release-Recapture (MRR) Studies (on Various Taxa, 

Habitats, Geographic Regions, and Questions) 

 

Species Order: Family Study habitat Study region Question Reference 

Allium 
amplectens 

Asparagales: 
Amaryllidaceae 

dry, sunny 
slopes 

North America What are the annual 
rates of prolonged 
dormancy in a 
perennial wild onion? 

Hawryzki, 
Allen and 
Antos 2011 

18 species various savanna and 
gallery forest 
mosaic 

Sub-saharan Africa What are effects of 
rain, fire and age on 
survival of savanna tree 
seedlings? 

Gignoux et al. 
2009 

Polythore 
gigantea 

Odonata: 
Polythoridae 

tropical 
streams 

South America What are the effects of 
stream vegetation 
variables on population 
size of a tropical 
dragonfly? 

Altamiranda 
and Ortega 
2012 

Chorthippus 
pullus 

Orthoptera: 
Acrididae 

alpine river 
gravel banks 

Europe How does historical 
landscape 
management impact 
patch occupancy and 
gene flow in a 
metapopulation of 
endangered 
grasshoppers? 

Maag, Karpati 
and Bollmann 
2013 

Agriotes lineatus, 
A. obscurus 

Coleoptera: 
Elateridae 

organic 
research farm 

Europe What is the range of 
attraction (distance) of 
a pest click beetle to 
pheromone traps? 

Sufyan, 
Neuhoff and 
Furlan 2011 

Luciola lateralis Coleoptera: 
Lampyridae 

restored 
paddy fields 

East Asian Pacific 
Ocean (Japan) 

How does adult 
detectability, 
recruitment, and 
survival rate vary 
seasonally in a 
declining populations 
of firefly? 

Koji, 
Nakamura and 
Nakamura 
2012 

Zaspilothynnus 
gilesi, Z. nigripes 

Hymenoptera: 
Thynnidae 

open sandy 
areas within 
woodlands 

Australia How do male wasp 
pollinators search for 
mates, and what is the 
effect of that behavior 
on pollen movement in 
a sexually deceptive 
orchid? 

Menz et al. 
2013 

87 species Lepidoptera: 
various 

seminatural 
broad-leaved 
forests 

Europe How do life-history 
traits and landscape 
characteristics affect 
distribution/movement 
of macro-moths among 
forest fragments? 

Slade et al. 
2013 

Papilio polyxenes 
 
 
 
 
 
(table cont.) 

Lepidoptera: 
Papilionidae 

grasslands 
and 
woodlands 

East Asian Pacific 
Ocean (Japan) 

Does bird predation 
significantly impact 
monthly density of 
black swallowtail 
butterflies? 

Kiritani, 
Yamashita and 
Yamamura 
2013 
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Lutzomyia 
longipalpis 

Diptera: 
Psychodidae 

urban area South America What are the dispersal 
distance, population 
size, and daily survival 
of a fly disease vector? 

De Oliveira et 
al. 2013 

Anguilla anguilla Anguilliformes: 
Anguillidae 

river Europe What is the mean 
growth rate of the 
European eel, and how 
does body size 
correlate with 
habitat/seasonality? 

Chadwick et 
al. 2007 

Eleutherodactylus 
coqui 

Anura: 
Leptodactylidae 

native forest 
and 
eucalyptus 
plantation 

West Indies/ 
Caribbean 

How do population 
densities, movements, 
and habitat use differ 
in native forests versus  
non-native eucalyptus 
plantation for a 
common frog? 

Fogarty and 
Vilella 2003 

Trachemys 
scripta scripta  

Testudines: 
Emydidae 

barrier island 
wetlands 

North America What is the population 
density and size class 
distribution of a habitat 
generalist turtle on 
barrier islands? 

DeGregorio, 
Grosse and 
Gibbons 2012 

Oligosoma 
maccanni 

Squamata: 
Scincidae 

dry scrub 
habitat 

southwestern Pacific 
Ocean (New Zealand) 

Does marking method 
affect short-term 
recapture probability 
of a skink? 

Jones and Bell 
2010 

Tadorna 
variegata 

Anseriformes: 
Anatidae 

hill country 
and flat 
coastal plains 

southwestern Pacific 
Ocean (New Zealand) 

What is the temporary 
emigration and year-
to-year survival of a 
game duck? 

Barker, White 
and 
McDougall 
2005 

Petrochelidon 
pyrrhonota 

Passeriformes: 
Hirundinidae 

cliffs, bridges 
and culverts 

North America Is there a correlation 
between annual 
survival and oscillation 
in morphological traits 
under directional 
selection in cliff 
swallows? 

Brown, Brown 
and Roche 
2013 

Deomys 
ferrugineus 

Rodentia: Muridae primary 
rainforest and 
fallow land 

Sub-saharan Africa How does habitat 
affect survival and 
movement of the 
Congo forest mouse? 

Kennis et al. 
2012 

Arctocephalus 
gazella 

Carnivora: 
Otariidae 

coastal 
breeding 
colony 

Antarctica How does age-targeted 
predation affect 
population size of 
Antarctic fur seals? 

Schwarz et al. 
2013 

Ursus maritimus Carnivora: Ursidae the southern 
Beaufort Sea 

Arctic Ocean Are there differences in 
detection/capture 
probability between 
two populations of 
polar bears? 

Amstrup, 
McDonald and 
Stirling 2001 

Cheirogaleus 
medius 
 
 
 
 
(table cont.) 

Primates: 
Cheirogaleidae 

tropical forest western Indian 
Ocean (Madagascar) 

Are there seasonal 
changes in body mass 
and behavioral traits in 
a small, nocturnal, 
tropical-forest lemur? 

Fietz and 
Ganzhort 1999 
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Phaeosphaeria 
nodorum 

Pleosporales: 
Phaeosphaeriaceae 

experimental 
fields of 
winter wheat 

Europe What are the relative 
contributions of 
immigration, sexual 
reproduction, and 
asexual reproduction 
of a pathogenic fungus 
to wheat epidemics? 

Sommerhalder 
et al. 2010 
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Appendix B: Hostplant Families for Three Species of Costa Rican Haeterini 

 

Araceae (philodendrons) 

The host plants used by Cithaerias pireta in the family Araceae are abundant and common. 

Araceae is an exceptionally diverse and widespread family of tropical/subtropical 

monocotyledonous shrubs, herbs and vines. They are mostly pollinated by beetles and flies, 

and usually produce fleshy fruits (Watson 1992; Gentry 1993; Grayum 1990; Longhi 2000). 

Philodendron herbaceum, one of three host plant species recorded for C. pireta, is a slender 

twining herb of low, damp sites in primary forest near streams, swamp-forest, and at the 

edges of light-gaps and trails (Grayum 1996). Atypically of the genus, it may reproduce more 

often by vegetative multiplication than by insect pollination. It exhibits a southern Central 

America/Pacific South America distribution pattern in common with many other tropical 

plants, and is abundant in the Atlantic lowlands of Costa Rica, but unlike other closely related 

Philodendron species, has not been found in the Pacific lowlands of that country (Grayum 

1996). Philodendron rhodoaxis, also recorded as a host plant for C. pireta (Janzen and 

Hallwachs 2009), is a member of the same natural subgroup as P. herbaceum but is found on 

both Atlantic and Pacific slopes (Grayum 1996), as is the third recorded host plant species, 

Philodendron sulcatum (Janzen and Hallwachs 2009). Philodendrons flower during the 

wetter months, sometimes en masse, and are common and abundant throughout their 

distributions (Grayum 1996), probably contributing to the homogeneous spatial distribution 

observed in C. pireta (Alexander and DeVries b). 

 

Arecaceae (palms) 

Cyclanthaceae and Arecaceae are the host plant families observed for Dulcedo polita, 

although the single observation on a cyclanth may represent an oviposition mistake. 
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Cyclanthaceae is a diverse Neotropical family found in lowland rain forests from southern 

Mexico to the Atlantic Forest of southern Brazil, and contains a variety of structural forms 

including some that are palm-like (Leal and Forzza 2012). Both cyclanths and the true palms 

of Arecaceae are flowering perennials with compound leaves that produce fleshy fruits 

(Watson 1992). In spite of some superficial similarities, cyclanths and palms are not 

particularly closely related and differ in many respects (Tomlinson and Wilder 1984). 

Cyclanths grow in wet, protected areas, are non-spiny, and may be terrestrial or aerial, while 

palms grow in diverse habitats including some that are exposed and sunny, are often spiny, 

and are never strictly epiphytic (Tomlinson and Wilder 1984). Dulcedo polita is most often 

observed in wet swampy habitats where cyclanths may be found alongside palms, so an 

accident either in oviposition or in plant identification would be understandable. 

 

Heliconiaceae (heliconias) and Marantaceae (calatheas) 

Heliconiaceae and Marantaceae, the host plant families used by Pierella helvina, both contain 

understory herbs that are common and abundant in wet forest, along streams and edges, and 

in secondary forest (Gargiullo et al. 2008). The primarily Neotropical family of 

Heliconiaceae contains a single genus, Heliconia, comprising 80 species of large, erect 

perennial herbs that are abundant and common, with large conspicuous leaves, brightly 

colored bracts, and hummingbird-pollinated flowers (Watson 1992; Gentry 1993; Longhi 

2000; Zuchowski 2007). Many species of Heliconia are sun-loving species that grow along 

roadsides, streams or gaps, and in second-growth, although a few are semi-shade or forest 

species (Zuchowski 2007). As with Heliconiaceae, plants within the family Marantaceae are 

noticeable components of tropical forests (Gentry 1993). Marantaceae has 31 genera and 

about 535 species in warm temperate and tropical parts of the world, with 14 genera in the 

New World (Prince and Kress 2006). Members of this family are cultivated for a variety of 
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products and as landscape and potted plants (Prince and Kress 2006). Also in common with 

Heliconia, many species of Marantaceae are weedy and grow in sunny or disturbed locations 

(Prince and Kress 2006). 
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Appendix C: Sampling Calendars for 2009/2010 

 

Calendars showing dates of sampling at the Tirimbina and Pozo Azul reserves during the 

main study period from December 2009 through June 2010. “PozoAzul 10” and “PozoAzul 

20” refer to the use of ten and twenty traps, respectively, at Pozo Azul. “Adj-Tirimbina” 

refers to additional sampling at Tirimbina in June 2010. 
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Appendix D: Brief Descriptions of the Sampling Sites Used During Various Phases of 

the 2009-2011 MRR Study of Costa Rican Haeterini 

 

Generally speaking, the forest at Tirimbina is characterized by the nitrogen-fixing tree 

Pentaclethra macroloba (Fabaceae) and many types of palms (Isidro Chacón personal 

communication). However, there is a great deal of habitat heterogeneity at a fine resolution 

within the reserve, and the vegetation, insolation and topography around the traps in each 

sampling site are variable. Site descriptions provided here are compilations of the shared 

features from individual trap locations within each site observed in March 2010. Based on 

advice by Isidro Chacón, Associate Researcher and Lepidoptera Curator at Instituto Nacional 

de Biodiversidad (INBio), I focused on five general characteristics to describe the sampling 

sites: 

1. Tree size 

2. Degree of visibility through the understory 

3. Presence of logs and old tree trunks 

4. Presence and size of woody vines 

5. Abundance, species richness and size of palms 

 

Site 1: 

Site 1 is located within an abandoned cacao plantation. This area floods severely during 

heavy rains, and contains many old Theobroma cacao (Sterculiaceae) trees along with some 

other large tree species on the perimeter. The understory is largely clear with very good 

visibility except for some weedy patches along the streams and river that enclose the area. 

The understory contains comparatively few palms, and is characterized by ferns 

(Blechnaceae) and spike mosses (Selaginellaceae). 
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Site 2 (site A): 

Site 2 is rather swampy and mostly shady, except for one large recent tree fall where it is very 

sunny. The area contains large trees and large logs from old tree falls, with relatively clear 

understory and good visibility. There are some palms, but many non-palm herbs. The site is 

bordered by a stream. Trap 6 is on a bluff above a wide stream separating this site from the 

old cacao plantation and site 1. 

 

Site 3 (site B): 

This site contains many large trees and small to medium palms. Trap 12 is on a hill, but the 

site leading up to it is swampy with moderately dense to relatively clear understory and many 

palms. Trap 15 is near an old tree fall and receives more sunshine than the rest of the site, 

with dense, thicket-like undergrowth composed of many non-palm plants including ferns and 

herbs. 

 

Site 4 (site C): 

Site 4 runs along a ridge and is breezier, less deeply shaded and drier than the other sites. 

There are small to medium size trees including many Euterpe precatoria (Arecaceae) and 

Pentaclethra macroloba (Fabaceae), and broad-leaved saplings of Fabaceae or Moraceae. 

The undergrowth is moderately dense with small palms and herbs. 

 

Site 5 (site D): 

This site generally has low visibility through the thick undergrowth, many palms almost to 

the exclusion of other understory plants, many woody vines of small to large diameter 

(although see the description of trap 21), many small samplings, a few large trees, and 

evidence of trees selectively cut in the past (some old, large tree trunks). Trap 21 is on a ridge 
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above the Rio Sarapiquí, with the river audible but not visible. The terrain around trap 21 is 

different from the rest of the site, with more large trees and large vines, and more non-palm 

understory plants, including ferns and erect, showy herbs (Heliconiaceae and Marantaceae). 

 

Site 6 (site E): 

Site 6 has trees of all sizes and large saplings, some logs from old tree falls, and two broad 

open areas from very recent tree falls containing large logs and thick undergrowth. This site 

contains a mild decline, at the bottom of which is quite swampy. The understory includes 

many palms and palm-like plants, especially in the swampy interior, but also plants from the 

families Melastomaceae, Araceae (e.g., Anthurium, Philodendron), and Blechnaceae (ferns). 

 

Site 7 (site F): 

The terrain in this site is steeply sloped in places, with a small ravine that drains rainwater, 

and a swampy portion at one end. There is extensive evidence of selective logging in the past, 

with many old, large tree stumps and the remains of an unpaved logging road that serves as a 

rain sluice. The remaining trees are mostly medium sized, and the area is well-shaded with 

moderate visibility and many palms and palm-like plants in the understory. 

 

Ajillo Ridge: 

The adjunctive study was conducted on this ridge overlooking the Pozo Azul River along the 

northern boundary of the Tirimbina reserve. The site is reminiscent of site 4 (site C) in that it 

is elevated, with the river valley on one side and a deep stream valley on the other. At spots 

the ridge is quite narrow and steep, and throughout is relatively dry and breezy, with many 

small to medium size trees and broad-leaved saplings. The understory visibility is clear to 

moderately obscured. 
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The outer trails (2011 post-study): 

The trails along the boundary of the Tirimbina reserve, specifically along the eastern and 

southern borders, are often located in more disturbed habitats than in the interior, as 

evidenced by patches of thick undergrowth, sunny spots, and successional plants such as 

passion flowers (Passifloraceae) and majagua trees (Malvaceae). 

 

Pozo Azul (sites 8 and 9): 

Traps were established at two sites in the Pozo Azul reserve. Ten traps were initially 

established in site 8, which was close to the entrance to the reserve. It contained many small 

samplings and a few large trees, had good to moderately obscured understory visibility, and 

contained a mixture of palms, herbs, and successional plants. In the second month of 

sampling at Pozo Azul (February 2010), another ten traps were established in site 9 deeper 

within the reserve. Compared to site 8, site 9 was notably wetter with more large trees, fewer 

saplings and small trees, and a conspicuous presence of philodendrons. 
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Appendix E. Preliminary MRR Models: Underlying Time Structure 

 

Six non-covariate time-variation mark-release-recapture (MRR) models were tested prior to 

evaluating covariates and estimating final probabilities. Probabilities of daily survival (phi) 

and recapture (p) were allowed to vary with sex and species, but otherwise were held 

constant, constrained by attraction effect, or allowed to vary independently. 

Model 

phi 
 

p 

Constant Attraction effect 
 

Constant Attraction effect Varying 

1 * 
  

* 
  2 * 

   
* 

 3 * 
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4 
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Appendix F: Goodness of Fit, Median ĉ, and Trap Dependence 

 

The information-theoretic approach to data analysis is founded on the assumption that the 

data being analyzed are relevant and appropriately collected (Burnham and Anderson 2001, 

p. 112), and that at least one model in the model set provides a reasonable fit to the data 

(Nichols 2005, p. 98). One of the most difficult parts of the analytical process is designing the 

models, and each model in the set should represent a biologically plausible scientific 

hypothesis based on knowledge of the system being studied (Burnham and Anderson 2002, 

pp. 15-16; McDonald et al. 2005, p. 222). The goal of analysis is to find the simplest model 

that accurately reflects the data so that inferences can be made about the sample population 

(Burnham and Anderson 2002, p. 143). To formulate appropriate models, it is necessary to 

determine the level of complexity the data will support (Burnham and Anderson 2002, p. 

143). In other words, it is important to formulate models that are neither underfitted (ignore 

important aspects of the data and fail to identify effects supported by the data) nor overfitted 

(have poor estimator precision and identify features that are unique only to the data at hand; 

Burnham and Anderson 2002, pp. 32-33). Poor fit can be caused by lack of independence in 

the data, such as when the fate of one animal influences the fate of another, heterogeneous 

parameters (probabilities) within classes, or other unknown factors that cause the data to be 

more complicated than the model predicts (Barker 2005, p. 160; McDonald et al. 2005, p. 

236). 

The recommended way to assess model fit is by estimating the single variance 

inflation factor (c) of the most general or underlying model (Burnham and Anderson 2002, p. 

68). The estimated statistic ĉ measures the extent to which the model fails to represent the 

data (Barker 2005, p. 160) using the ratio of the observed variation in the data to the variation  
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expected given the model (Manly, McDonald and Amstrup 2005, p. 19). Therefore, ĉ = 1 

indicates perfect fit and ĉ > or < 1 indicates over- or under-dispersion. 

There are two ways to estimate the variance inflation factor (Barker 2005). The 

approach recommended by White, Burnham and Anderson (2001, p. 374) uses the parametric 

bootstrap method in which the model being evaluated for goodness-of-fit is used to generate 

bootstrap data sets. For perfect fit of the model to the data, the ratio of the observed deviance 

and the expected deviance (represented by the mean of the simulated deviances) should equal 

1. A more recent approach using the bootstrap method termed the median ĉ procedure (Cooch 

and White 2008, section 5.6.1) can be accessed in the program MARK (White and Burnham 

1999) and was employed to assess goodness-of-fit for the present project. This procedure 

uses simulation and resampling to generate an estimate of ĉ, and is based on the premise that 

the best estimate of ĉ is the value for which the observed deviance ĉ falls exactly halfway in 

the distribution of all simulated deviances under the hypothesis that a given value of c is the 

true value (Cooch and White 2008, section 5.6.1). The halfway point of that distribution is 

the median ĉ, and it can be used to account for model selection uncertainty (Cooch and White 

2008, section 5.9.1). 

The median ĉ is robust when the primary source of lack of fit is simple extra-binomial 

variation (Cooch and White 2008, section 5.7), so it is important to assess structural problems 

in the model. This is possible using a series of 
2
 tests in the RELEASE section of program 

MARK that answer three questions: 

1. Did marking affect whether an individual was ever seen again (marking effect 

or survival effect)? 

2. Did marking affect when that individual was seen again (trap dependence)? 

3. Did when an individual was last captured affect when that individual was seen 

again (handling effect)? 
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We conducted all three sets of 
2
 tests for this project but reported results only for trap 

dependence since results were non-significant for marking effect and handling effect. 

Structural issues in the data, when they exist, can be corrected by stratifying the data into 

classes or by using covariates. We stratified the data by species and sex, and used covariates 

to correct for trap dependence. 
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Appendix G: Distribution Among Sampling Sites of Fruit-Feeding Nymphalids 

 

Abundances of 100 fruit-feeding Nymphalidae butterfly species (n=6984) sampled in mid-

understory fruit-baited traps (i.e., with the trap base positioned approximately 1 m above the 

ground) at Tirimbina from November 2003 through October 2008 (e.g., DeVries et al. 2012), 

sorted from most to least abundant. 

 

  
Sampling site 

 Species Subfamily 1 2 (A) 3 (B) 4 (C) 5 (D) 6 (E) Total 

Taygetis andromeda Satyrinae 162 210 52 41 60 99 624 

Dulcedo polita Satyrinae 10 79 106 39 45 227 506 

Cithaerias menander = pireta Satyrinae 24 99 87 60 85 104 459 

Nessaea aglaura Biblidinae 79 54 28 79 107 93 440 

Tigridia acesta Nymphalinae 93 70 57 98 75 39 432 

Caligo atreus dionysos Satyrinae 33 102 52 56 64 101 408 

Caligo eurilochus sulanus Satyrinae 53 114 44 40 51 55 357 

Catonephele orites Biblidinae 13 40 40 63 42 51 249 

Hamadryas laodamia saurites Biblidinae 101 29 15 26 50 26 247 

Hamadryas arinome ariensis Biblidinae 18 23 26 48 50 37 202 

Pierella helvetia incanescens = helvina Satyrinae 10 20 32 27 57 50 196 

Antirrhea miltiades Satyrinae 6 37 47 17 28 54 189 

Colobura annulata Nymphalinae 31 35 20 23 20 35 164 

Historis acheronta Nymphalinae 39 22 12 28 30 28 159 

Prepona omphale octavia Charaxinae 51 17 14 14 27 17 140 

Opsiphanes cassina Satyrinae 34 28 19 22 20 12 135 

Archaeoprepona demophon centralis Charaxinae 37 26 13 13 19 18 126 

Catoblepia orgetorix championi Satyrinae 12 20 25 22 14 29 122 

Memphis xenocles Charaxinae 8 4 2 32 56 12 114 

Callicore patelina Biblidinae 5 15 17 14 32 13 96 

Historis odius Nymphalinae 23 10 5 15 26 9 88 

Colobura dirce Nymphalinae 23 17 13 12 8 10 83 

Cissia metaleuca Satyrinae 31 18 11 6 7 4 77 

Chloreuptychia arnaea Satyrinae 11 8 3 1 20 32 75 

Hamadryas amphinome mexicana Biblidinae 20 11 8 16 9 7 71 

Opsiphanes quiteria Satyrinae 13 16 8 10 6 11 64 

Morpho amathonte Satyrinae 2 5 4 6 3 42 62 

Archaeoprepona demophoon gulina Charaxinae 8 11 8 8 8 16 59 

Catonephele numilia esite Biblidinae 9 13 3 7 13 6 51 

Archaeoprepona camilla Charaxinae 5 9 4 13 8 11 50 

Caligo oedipus Satyrinae 35 6 1 1 5 2 50 

Morpho granadensis polybaptus Satyrinae 1 6 7 2 10 24 50 

Opsiphanes invirae cuspidatus Satyrinae 9 9 4 12 10 6 50 

Archaeoprepona meander amphimachus Charaxinae 3 13 12 10 0 11 49 

Memphis orthesia Charaxinae 6 4 6 8 9 15 48 

Morpho peleides limpida Satyrinae 14 6 7 3 2 15 47 

(table cont.)         
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Caligo illioneus oberon Satyrinae 28 6 4 3 3 2 46 

Memphis cleomestra Charaxinae 8 10 1 7 11 6 43 

Baeotus baeotus Nymphalinae 0 2 4 5 6 15 32 

Callicore lyca aerias Biblidinae 9 6 2 6 1 6 30 

Memphis chrysophana Charaxinae 19 1 
 

1 6 
 

27 

Opsiphanes bogotanus Satyrinae 9 8 1 3 3 2 26 

Nica flavilla canthara Biblidinae 10 6 3 
 

2 2 23 

Agrias amydon Charaxinae 3 3 
 

5 7 5 23 

Memphis morvus boisduvali Charaxinae 3 2 3 3 8 4 23 

Memphis eurypyle confusa Charaxinae 13 5 
 

2 2 
 

22 

Smyrna blomfildia datis Nymphalinae 6 3 2 4 4 3 22 

Taygetis virgilia rufomarginata Satyrinae 3 4 3 3 6 3 22 

Myscelia leucocyana smalli Biblidinae 14 2 2 1 1 1 21 

Taygetis salvini Satyrinae 
  

2 2 16 1 21 

Zaretis itys Charaxinae 2 6 1 2 6 3 20 

Hypna clytemnestra clytemnestra Charaxinae 1 1 3 2 6 3 16 

Manataria maculata Satyrinae 1 6 2 3 2 2 16 

Megeuptychia antonoe Satyrinae 1 2 
 

7 5 1 16 

Myscelia cyaniris cyaniris Biblidinae 7 3 
 

2 2 1 15 

Cissia hesione Satyrinae 8 4 
   

1 13 

Temenis laothoe agatha Biblidinae 7 2 1 
  

1 11 

Consul fabius cecrops Charaxinae 7 1 1 
 

2 
 

11 

Cissia usitata Satyrinae 5 
 

2 
 

1 2 10 

Prepona dexamenus Charaxinae 1 3 1 2 2 
 

9 

Caerois gerdrudtus Satyrinae 1 1 
 

3 
 

4 9 

Ectima rectifascia Biblidinae 2 2 1 
 

2 1 8 

Memphis proserpina Charaxinae 1 4 
 

2 1 
 

8 

Taygetis celia keneza Satyrinae 
 

1 1 5 1 
 

8 

Consul panariste jansoni Charaxinae 1 
 

1 
 

3 2 7 

Cissia confusa Satyrinae 2 2 
 

2 1 
 

7 

Cissia pseudoconfusa Satyrinae 2 2 
 

1 2 
 

7 

Callicore peralta Biblidinae 1 1 1 3 
  

6 

Memphis aureola Charaxinae 1 
  

3 1 1 6 

Siderone marthesia Charaxinae 
 

2 
 

2 1 
 

5 

Morpho cypris Satyrinae 1 3 
   

1 5 

Cissia similis Satyrinae 2 
   

1 1 4 

Agrias aedon Charaxinae 
 

1 2 
   

3 

Memphis chaeronea indigotica Charaxinae 2 1 
    

3 

Opsiphanes tamarindi Satyrinae 
 

1 
  

1 1 3 

Taygetis zimri Satyrinae 1 2 
    

3 

Catonephele mexicana Biblidinae 2 
     

2 

Hamadryas feronia ferinulenta Biblidinae 
 

1 
 

1 
  

2 

Hamadryas guatemalena guatemalena Biblidinae 1 
  

1 
  

2 

Hamadryas ipthime ipthime Biblidinae 
   

2 
  

2 

Memphis artacaena Charaxinae 
   

1 1 
 

2 

Caligo memnon memnon Satyrinae 1 
 

1 
   

2 

Cissia agnata Satyrinae 
 

1 
 

1 
  

2 

Cissia labe Satyrinae 
 

1 
  

1 
 

2 

Euptychia mollis Satyrinae 
 

2 
    

2 

Morpho theseus aquarius Satyrinae 1 
  

1 
  

2 

Taygetis mermeria excavata Satyrinae 
   

1 1 
 

2 

Callicore pacifica bugaba Biblidinae 
 

1 
    

1 

Myscelia pattenia Biblidinae 1 
     

1 

(table cont.)         
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Panacea procilla lysimache Biblidinae      1 1 

Memphis aulica Charaxinae 
   

1 
  

1 

Memphis centralis Charaxinae 
    

1 
 

1 

Memphis oenomais Charaxinae 
    

1 
 

1 

Memphis pithyusa Charaxinae 
    

1 
 

1 

Catoblepia xanthicles xanthicles Satyrinae 
   

1 
  

1 

Cissia hermes Satyrinae 
  

1 
   

1 

Cissia libye Satyrinae 
    

1 
 

1 

Cissia terrestris Satyrinae 1 
     

1 

Eryphanis aesacus buboculus Satyrinae 1 
     

1 

Eryphanis polyxena lycomedon Satyrinae 
    

1 
 

1 
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Appendix H. Examples of Movement Patterns in Three Costa Rican Haeterini 

Individual butterflies are identified by their unique identifying number, species, sex, total 

distance moved, total time during which movements were observed, and net distance from 

first to last capture. Symbols: Open circle = a capture location. Multiple circles = multiple 

captures at the same location. Asterisk = position of first capture. Arrow = direction of 

movement. Scale bar = 50 m.  
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Appendix I. Comparative movement probabilities for three Costa Rican butterflies. 

 

Movement probabilities for females and males of C. pireta (upper plots), D. polita (middle 

plots), and P. helvina (lower plots) expressed as negative-exponential (NEF) and inverse-

power function (IPF) plots. Regression lines show the functions Ln(I) = ln(a) – k·D and Ln(I) 

= ln(C) – n·ln(D), where I is the probability of moving distance D. 

 

(cont.) 
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Appendix J. MRR Models with Covariates 

 

Sixteen mark-release-recapture (MRR) models based on the best fit model from the first 

phase of analysis (see model 2 in Appendix I) were tested in the second phase of analysis in 

which two group covariates (rain and abundance) and one individual covariate (sampling site) 

were incorporated. 

Model 

phi 
 

p 

Rain Abundance Site 
 

Rain Abundance Site 

2.1 * 
   

* 
  2.2 * 

    
* 

 2.3 * 
     

* 

2.4 * 
      2.5 

 
* 

  
* 

  2.6 
 

* 
   

* 
 2.7 

 
* 

    
* 

2.8 
 

* 
     2.9 

  
* 

 
* 

  2.10 
  

* 
  

* 
 2.11 

  
* 

   
* 

2.12 
  

* 
    2.13 

    
* 

  2.14 
     

* 
 2.15 

      
* 

2.16 
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Appendix K. Estimated Recapture Probabilities 

 

Recapture probability (p) estimated for three species of understorey rainforest Nymphalidae 

(Satyrinae) in Costa Rica. SE = standard error. LCI and UCI = lower and upper boundaries 

for the 95% confidence interval. 

Species Sex 
Sampling 
interval p SE LCI UCI 

Cithaerias pireta  1 0.18 0.05 0.11 0.29 

2 0.17 0.04 0.11 0.25 

3 0.16 0.04 0.10 0.24 

4 0.15 0.03 0.09 0.23 

5 0.14 0.03 0.09 0.22 

6 0.14 0.03 0.09 0.22 

7 0.15 0.03 0.09 0.23 

8 0.15 0.03 0.09 0.23 

9 0.14 0.03 0.09 0.22 

 1 0.13 0.03 0.08 0.19 

2 0.11 0.02 0.08 0.16 

3 0.11 0.02 0.08 0.16 

4 0.10 0.02 0.07 0.15 

5 0.09 0.02 0.06 0.14 

6 0.10 0.02 0.07 0.14 

7 0.10 0.02 0.07 0.15 

8 0.10 0.02 0.07 0.15 

9 0.10 0.02 0.07 0.14 
Dulcedo polita 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(table cont.) 

 1 0.21 0.04 0.14 0.29 

2 0.19 0.03 0.13 0.26 

3 0.18 0.03 0.13 0.25 

4 0.16 0.03 0.11 0.23 

5 0.15 0.03 0.11 0.22 

6 0.16 0.03 0.11 0.23 

7 0.17 0.03 0.12 0.23 

8 0.17 0.03 0.12 0.23 

9 0.16 0.03 0.11 0.23 

 1 0.14 0.03 0.08 0.22 

2 0.12 0.03 0.08 0.19 

3 0.12 0.03 0.08 0.18 

4 0.11 0.02 0.07 0.16 

5 0.10 0.02 0.07 0.16 

6 0.11 0.02 0.07 0.16 

7 0.11 0.02 0.07 0.17 
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8 0.11 0.02 0.07 0.17 

9 0.11 0.02 0.07 0.16 
Pierella helvina  1 0.19 0.03 0.13 0.26 

2 0.17 0.02 0.13 0.22 

3 0.16 0.02 0.12 0.21 

4 0.15 0.02 0.11 0.19 

5 0.14 0.02 0.10 0.19 

6 0.15 0.02 0.11 0.19 

7 0.15 0.02 0.11 0.20 

8 0.15 0.02 0.11 0.20 

9 0.15 0.02 0.11 0.19 

 1 0.27 0.04 0.20 0.36 

2 0.25 0.03 0.20 0.31 

3 0.24 0.03 0.19 0.30 

4 0.22 0.03 0.17 0.28 

5 0.21 0.03 0.16 0.27 

6 0.22 0.03 0.17 0.28 

7 0.22 0.03 0.17 0.28 

8 0.22 0.03 0.17 0.28 

9 0.22 0.03 0.17 0.28 
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Appendix L. Post Hoc Estimated Recapture Probabilities 

 

Recapture probability (p) as in Appendix K, but estimated from the post hoc best fit model. 

SE = standard error. LCI and UCI = lower and upper boundaries for the 95% confidence 

interval. 

Species Sex 
Sampling 
interval p SE LCI UCI 

Cithaerias pireta, 
Dulcedo polita 

and Pierella 
helvina 

 1 0.19 0.03 0.14 0.26 

2 0.17 0.02 0.14 0.22 

3 0.17 0.02 0.13 0.21 

4 0.15 0.02 0.12 0.19 

5 0.14 0.02 0.11 0.18 

6 0.15 0.02 0.12 0.19 

7 0.15 0.02 0.12 0.20 

8 0.15 0.02 0.12 0.20 

9 0.15 0.02 0.12 0.19 
Cithaerias pireta 

and Dulcedo 
polita 

 1 0.13 0.03 0.09 0.19 

2 0.12 0.02 0.09 0.16 

3 0.11 0.02 0.08 0.15 

4 0.10 0.02 0.07 0.14 

5 0.10 0.02 0.07 0.13 

6 0.10 0.02 0.07 0.14 

7 0.10 0.02 0.08 0.14 

8 0.10 0.02 0.08 0.14 

9 0.10 0.02 0.07 0.14 
Pierella helvina  1 0.27 0.04 0.20 0.36 

2 0.25 0.03 0.20 0.31 

3 0.24 0.03 0.19 0.30 

4 0.22 0.03 0.17 0.28 

5 0.21 0.03 0.16 0.27 

6 0.22 0.03 0.17 0.28 

7 0.22 0.03 0.17 0.29 

8 0.22 0.03 0.17 0.29 

9 0.22 0.03 0.17 0.28 
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Appendix M. Daily Survival Probabilities  

 

Daily survival (phi) estimated as described for recapture probability in Appendix K. SE = 

standard error. LCI and UCI = lower and upper boundaries for the 95% confidence interval. 

 

Species Sex phi SE LCI UCI 
Cithaerias pireta 

 0.76 0.06 0.61 0.86 

 0.90 0.05 0.77 0.96 
Dulcedo polita 

 0.74 0.04 0.65 0.82 

 0.82 0.06 0.68 0.91 
Pierella helvina 

 0.87 0.03 0.80 0.92 

 0.79 0.03 0.73 0.83 
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Appendix N. Post Hoc Estimated Daily Survival Probabilities 

 

Daily survival (phi) as in Appendix M, but estimated from the post hoc best fit model. SE = 

standard error. LCI and UCI = lower and upper boundaries for the 95% confidence interval. 

 

Species Sex phi SE LCI UCI 
Cithaerias pireta 

 0.75 0.05 0.64 0.83 

 0.90 0.04 0.79 0.95 
Dulcedo polita 

 0.76 0.04 0.68 0.82 

 0.83 0.05 0.71 0.91 
Pierella helvina 

 0.86 0.03 0.80 0.91 

 0.79 0.03 0.73 0.83 
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Appendix O. Distribution of Butterfly Abundance Among Sampling Occasions 

 

Abundance (new captures) for 1142 individual butterflies of three species distributed among 

sampling occasions, with sampling periods pooled, and species and sexes partitioned. 

  
 

(cont.) 
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